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Abstract001

In Natural Language Processing(NLP), Event002
Temporal Relation Extraction (ETRE) is to rec-003
ognize the temporal relations of two events.004
Prior studies have noted the importance of005
language models for ETRE. However, the re-006
stricted pre-trained knowledge of Small Lan-007
guage Models(SLMs) limits their capability to008
handle minority class relations in imbalanced009
classification datasets. For Large Language010
Models(LLMs), researchers adopt manually de-011
signed prompts or instructions, which may in-012
troduce extra noise, leading to interference with013
the model’s judgment of the long-distance de-014
pendencies between events. To address these is-015
sues, we propose GDLLM, a Global Distance-016
aware modeling approach based on LLMs. We017
first present a distance-aware graph structure018
utilizing Graph Attention Network(GAT) to as-019
sist the LLMs in capturing long-distance de-020
pendency features. Additionally, we design a021
temporal feature learning paradigm based on022
soft inference to augment the identification of023
relations with short-distance proximity band,024
which supplements the probabilistic informa-025
tion generated by LLMs into the multi-head026
attention mechanism. Since the global feature027
can be captured effectively, our framework sub-028
stantially enhances the performance of minor-029
ity relation classes and improves the overall030
learning ability. Experiments on two publicly031
available datasets, TB-Dense and MATRES,032
demonstrate that our approach achieves state-033
of-the-art (SOTA) performance. Our code will034
be available after the paper is accepted.035

1 Introduction036

In Natural Language Processing (NLP), Event Tem-037

poral Relation Extraction (ETRE) aims to identify038

temporal connections between event pairs. As il-039

lustrated in Figure 1(a), in the given sentence, the040

relation between the target Event1 continues and041

Event2 grip is IS_INCLUDED.042

IS_INCLUDED

sentence: A powerful ice storm [EV1] continues [/EV1] to maintain its 

[EV2] grip [/EV2]. Yesterday New York governor George Pataki toured 

five counties that have been declared under a state of emergency...
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Figure 1: (a) is an example of the ETRE task. Above
the arrows in the legend are the corresponding relation
categories. “[EVi]” is the hand-crafted symbol that can
explicitly mark event boundaries in such examples. (b)
is the relation distribution on two datasets.

Much of the existing studies pay attention to 043

the crucial role of language models for ETRE, es- 044

pecially Small Language Models(SLMs). Some 045

research utilizes SLMs to form certain rules for 046

temporal realtion(Zhang et al., 2022; Man et al., 047

2022; Zhuang et al., 2023). Prior SOTA model 048

MulCo(Yao et al., 2024) combines GNNs and the 049

model of BERT variants via multi-scale knowl- 050

edge distillation to enhance the performance of 051

ETRE. However, the restricted pre-trained knowl- 052

edge of SLMs limits their capability to handle 053

minority class relations in imbalanced classifica- 054

tion datasets(UzZaman et al., 2013; Guan et al., 055

2021). Although some researchers have invested 056

substantial effort in it (Han et al., 2019; Ning 057

et al., 2024; Yuan et al., 2024), the performance 058

of their models is still suboptimal on two pop- 059

ular datasets, MATRES(Ning et al., 2019) and 060

TB-Dense(Cassidy et al., 2014). As depicted in 061

Figure 1(b), the relation “SIMULTANEOUS” that 062

refers to two events happening simultaneously only 063

takes 1.5% in the TB-Dense dataset while “VAGUE” 064

has 47.7%(Yuan et al., 2024). 065
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Recent advancements have noted the impres-066

sive capabilities of Large Language Models(LLMs)067

for ETRE. However, based on the powerful learn-068

ing ability for contextual knowledge, prior studies069

rely on manually designed prompts and instruc-070

tions to fine-tune LLMs(Hu et al., 2025; Xu et al.,071

2025), leading to noise accumulation(Chen et al.,072

2024) that interferes with the model’s judgment073

of the global event relation feature. As shown074

in Figure 1(a), unlike most event pairs among075

Events “continues”, “grip” and “toured”, two an-076

other events occur between Events “continues” and077

“toured” in the text and make their distance of the078

occurrence order is longer. This indicates that there079

are two different event relation features that consti-080

tute the global feature: long-distance dependency081

and short-distance proximity band. Since modeling082

global event relation feature poses a challenge for083

researchers, they often neglect the recognition of084

long-distance dependency features when adopting085

manually designed prompts and instructions, which086

is also not conducive to handling minority class re-087

lations in imbalanced classification datasets.088

To resolve the aforementioned problems, we pro-089

pose GDLLM, a Global Distance-aware modeling090

approach based on LLMs, enabling the effective091

identification of event relations with the global fea-092

ture to alleviate the impact of data imbalance on093

classification results. To be specific, we select the094

Graph Attention Network(GAT) to assist the fine-095

tuned LLMs in capturing event relations with long-096

distance dependency features, which circumvents097

the limitations of manually designed prompts or in-098

struction templates. Compared to the “hard classifi-099

cation” (0/1 decision labels) as graph edge features,100

we integrate the probability distribution generated101

by LLMs into GAT to learn more comprehensive102

relation information. Both the probabilistic infor-103

mation and the multi-head attention mechanism104

augment the identification of relations with a short-105

distance proximity band. Since the global feature106

can be captured effectively, our framework sub-107

stantially enhances the performance of minority108

relation classes and the overall learning ability.109

Our contributions can be summarized as follows:110

• We propose GDLLM, a Global Distance-111

aware modeling approach based on LLMs.112

Specifically, we introduce a global modeling113

method integrating LLMs and GAT, which is114

to identify the minority categories more effec-115

tively in imbalanced classification datasets.116

• We present a distance-aware graph structure 117

utilizing Graph Attention Network to assist 118

the fine-tuned LLMs in capturing event rela- 119

tions with long-distance dependency features, 120

which circumvents the limitations imposed by 121

manually designed prompts or instructions. 122

• We design a temporal feature learning 123

paradigm based on soft inference to augment 124

the relation extraction with a short-distance 125

proximity band. Rather than 0/1 decision la- 126

bels, the probability distribution we selected 127

as edge features enables the GAT to learn 128

more comprehensive relation information. 129

• We conduct extensive experiments on two pub- 130

lic datasets, TB-Dense and MATRES, which 131

demonstrate that our approach outperforms all 132

existing LLM-based and GNN-based bench- 133

marks, achieving state-of-the-art (SOTA) per- 134

formance without manually designed prompts 135

or instructions for LLMs. 136

2 Method 137

In this section, we introduce the overall architec- 138

ture of our proposed GDLLM method, which is de- 139

picted in Figure 2. Firstly, we formulate the ETRE 140

task. Secondly, we introduce the LLM-based prob- 141

ability distribution prediction module. Finally, we 142

present the distance-aware graph attention module. 143

2.1 Problem Formulation 144

Following Previous work, we define ETRE as a 145

text classification task. Given a sentence T that 146

contains two events E1 and E2, our aim is to iden- 147

tify the temporal relation between these two events. 148

The output of our model is the particular temporal 149

relation label prediction. 150

2.2 Probability Distribution Prediction 151

Input and Fine-tuning for the LLM. In our work, 152

the unified format defined that input to LLMs from 153

datasets contains manually designed symbols of 154

the form [EVi] in the given sentence T , where i de- 155

notes the ordinal number of an event pair. It serves 156

as a marker to annotate the boundaries of the event. 157

The Appendix A takes Llama and Qwen as exam- 158

ples to show the specific input details. Before gen- 159

erating probabilistic information, we fine-tune the 160

LLM based on LoRA(Hu et al., 2022). As depicted 161

in Figure 2(a), the LoRA fine-tuned technique is 162

2



A     powerful   ice     storm continues  to     [EV1] maintain[/EV1]   its     [EV2]    grip   [/EV2] 
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Figure 2: Overall architecture of our proposed method.

used for sequence classification, which is adopted163

for parameter-efficient fine-tuning.164

Probability generation. As shown in Fig-165

ure 2(a), while applying the LoRA fine-tuning,166

the model is ready to make predictions of prob-167

abilistic information generated by the LLM to con-168

struct edge features of graph structure, forming169

the soft inference-based temporal feature learning170

paradigm we designed. For each pair of events171

(Ei, Ej) in the document, the LLM outputs a prob-172

ability distribution over a set of predefined and173

annotated event relation classes.174

Specifically, we define c as the number of event175

relation classes, and the output of the LLM for the176

event pair (Ei, Ej) is a vector pij ∈ Rc. In the177

inference process of LoRA tuning, the model first178

generates a set of logits for each event pair. These179

logits are then passed through the softmax function.180

This operation converts the logits into probabilities,181

which represent the likelihood of each event pair182

belonging to different relation labels. For c kinds183

of relation types, and a specific event pair (Ei, Ej),184

the probability of it belonging to relation r is de-185

noted as P (p = r|Ei, Ej). Mathematically, the186

logits for an event pair are z1, z2, · · · , zn, then the187

probability P (p = r|Ei, Ej) is calculated as:188

P (p = r|Ei, Ej) =
ezr∑c
n=1 e

zn
, (1)189

which normalizes the logits so that the sum of prob-190

abilities for all relation classes is equal to 1, and191

they are all stored in the probability distribution192

vectors pij ∈ RC . As depicted in Figure 2(a), 193

rather than determining the most likely temporal re- 194

lation between events, these probabilities are made 195

to be a vector sequence distribution to provide more 196

comprehensive pre-trained information for the sub- 197

sequent module. For the TB-Dense dataset, which 198

is shown in Figure 2(a) as an instance, the LLM 199

provides the prediction distribution of the six labels 200

it has, while the MATRES dataset does so for the 201

four labels it possesses. 202

The training objective is the cross-entropy loss 203

for multi-class classification based on LLM, which 204

does not participate in the final loss calculation, 205

and the calculation details of the loss function are 206

similar to the final classification. 207

Notably, a topic that deserves discussion is why 208

we choose LLMs to be the main language mod- 209

els. We generate probability distributions through 210

different language models and visualize these dis- 211

tributions in scatter plots for comparison of the 212

accuracy of the probability value. To be specific, 213

we randomly select a sample sequence from the 214

TB-Dense dataset and compare the distribution of 215

probabilities for positive samples. It can be seen 216

from Figure 3 that LLMs can present probability 217

values with higher accuracy, which always assign a 218

value closer to 1 for the relation category with the 219

highest probability, while for low probability pre- 220

diction values, their distributions tend to be closer 221

to zero. In Appendix C, we compare the distribu- 222

tion of probabilities on the MATRES dataset, from 223

which we can draw the same conclusions as above. 224
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RoBERTa-Large

Figure 3: The distribution of probabilities generated by different language models on the TB-Dense dataset.

2.3 Distance-aware Graph Attention Module225

From the previous section, we have obtained the226

probability distribution vectors pij ∈ RC for event227

pair predictions generated by the LLM. Next, we228

will introduce the construction of graph features229

first, followed by the temporal feature learning230

paradigm based on soft inference. Since our graph231

structure is a solution for capturing relation features232

at different distances, we define the proposed GAT-233

based architecture as a distance-aware approach.234

Graph feature construction. As depicted in235

Figure 2(c), we construct a graph to model the rela-236

tions between events based on every complete doc-237

ument. Compared with traditional graph construc-238

tion methods, our approach aims to be more con-239

ducive to enabling the graph structure to learn ac-240

curate global relational features at an earlier stage.241

Each event Ei in the document and its order and242

type information are both represented as a node243

vi ∈ V . And the node features h(0)i ∈ Rdh are ob-244

tained from the dataset corresponding to the event.245

For edge feature, which is shown as Figure 2(b),246

it exists between every pair of nodes, and the edge247

features are initialized as the probability distribu-248

tion vectors pij ∈ RC for the event pair (Ei, Ej),249

which is to form our temporal feature learning250

paradigm based on soft inference.251

Temporal feature learning paradigm. We de-252

sign a temporal feature learning paradigm based on253

soft inference as depicted in Figure 2(b), which is254

to supplement the probabilistic information gener-255

ated by LLMs into the multi-head attention mecha-256

nism. This paradigm shifts the edge feature repre-257

sentation from the previous 0/1 decision label to a258

probability distribution for “soft inference”, which259

augments the identification of relations with short-260

distance proximity band. To achieve this, we apply261

this paradigm to the edge feature learning of GAT,262

which constructs a graph structure to model event263

relations with a multi-head attention mechanism.264

Specifically, our Graph Attention Network archi-265

tecture consists of multiple layers of multi-head266

attention mechanisms. In our implementation, in267

order to enable the model to learn more diverse 268

feature combinations and interaction information, 269

we adopt two layers with K = 8 attention heads. 270

In the first GAT Layer, for each node vi, the output 271

of the k-th attention head is computed as: 272

ĥ
(1)
i,k = σ

 ∑
j∈N (i)

αij,kW
(1)
k h

(0)
j

 , (2) 273

where N (i) is the set of neighboring nodes of vi, 274

W
(1)
k ∈ Rdh×dh1 is the weight matrix for the k - th 275

head, σ is the activation function LeakyReLU, and 276

the attention coefficients αij,k are calculated as: 277

zij,k = a⊤k [W
(1)
k h

(0)
i ∥ W

(1)
k h

(0)
j ∥ pi,j ], (3) 278

279

zim,k = a⊤k [W
(1)
k h

(0)
i ∥ W

(1)
k h(0)

m ∥ pi,m], (4) 280
281

αij,k =
exp (LeakyReLU(zij,k))∑
m exp (LeakyReLU(zim,k))

, (5) 282

where ak ∈ R3dh1 is a learnable attention vector, 283

“∥” denotes concatenation, and m ∈ N (i). After- 284

wards, the output of the first layer for node vi is 285

then concatenated with the outputs of all heads: 286

h
(1)
i = Concat(ĥ(1)

i,1 , · · · , ĥ
(1)
i,K). For the second 287

GAT layer, following a similar process of the first 288

layer, we get the output of the k-th attention head 289

ĥ
(2)
i,k , and the final average multi-head feature h

(2)
i . 290

Final Classification. In the final classification 291

stage, as depicted in Figure 2(c), we integrate the 292

output of the second GAT layer and the processed 293

edge features pi,j . We concatenate these two types 294

of features as: ho = [h
(2)
i ∥ pj ∥ h

(2)
j ]. The con- 295

catenated feature vector ho is then fed into a fully- 296

connected layer. The output of the fully-connected 297

layer is calculated as follows: 298

s = Wclsho + bcls, (6) 299

where Wcls ∈ Rdh2×C is the weight matrix of the 300

classification layer, and bcls ∈ RC is the bias vector 301

of the classification layer. 302
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Subsequently, we apply the softmax function for303

the output of the fully-connected layer to obtain the304

predicted probability distribution over the classes.305

The softmax function is defined as:306

ŷ = softmax(s), (7)307

where ŷ is the predicted probability for an event308

pair (Ei, Ej).309

We employ the cross-entropy loss function to310

measure the difference between the final predicted311

probability and the true label. Given the true label312

y = (y1, y2, · · · , yC), the cross-entropy loss for313

this event pair is calculated as:314

L(y, ŷ) = −
C∑

k=1

yk log(ŷk). (8)315

3 Experiments and Results316

3.1 Datasets and Metrics317

We validate our approach on two widely adopted318

datasets: MATRES (Ning et al., 2019), and TB-319

Dense(Cassidy et al., 2014). The data splits, along320

with relation pairs statistics, are reported in Ap-321

pendix B. The input format in zero-shot learning322

scenarios is illustrated in Appendix A. In accor-323

dance with prior study(Han et al., 2019), we adopt324

the micro-F1 score, with the VAGUE label ex-325

cluded, as the evaluative metric for the datasets.326

3.2 Experimental Setup327

We compare our method with the following base-328

lines: 1) LLM-based approaches: these methods329

leverage LLMs to encode contextual information330

and perform temporal reasoning through prompt331

or instruction tuning(Xu et al., 2025; Hu et al.,332

2025). Prior studies also explore zero-shot tempo-333

ral relation extraction using different prompt strate-334

gies(Yuan et al., 2023; Xu et al., 2025). Following335

this work, we conduct zero-shot experiments on336

two LLMs, the closed-source GPT4o(Hurst et al.,337

2024) and the open-source Llama3.1. 2) Graph-338

based approaches: These models construct event339

graphs to capture temporal information, often using340

Graph Neural Networks (GNNs) to propagate in-341

formation(Mathur et al., 2021; Zhang et al., 2022;342

Zhou et al., 2022; Yao et al., 2024). 3) Other343

benchmarks: Methods that do not fit into the344

above categories but have shown strong perfor-345

mance, often combining neural networks or heuris-346

tic features(Huang et al., 2023; Tan et al., 2023;347

Ning et al., 2024; Yuan et al., 2024). In addition, 348

we employ RoBERTa-Large (Liu et al., 2019) and 349

BART-Large (Lewis et al., 2020), as two baseline 350

models for comparison of SLMs. 351

As for fine-tuning LLMs, the LoRA rank is set 352

to 16. All experiments are trained on NVIDIA 353

A800 GPUs with 80GB of memory. In this paper, 354

following previous work for hyperparameter opti- 355

mization(Yao et al., 2024), we employ the HEBO 356

(Heuristic-Efficient Bayesian Optimization) algo- 357

rithm. We show the experiment implementation 358

details aforementioned in Appendix B. 359

3.3 Main Results 360

As shown in Table 1, our method achieves SOTA 361

performance in all existing methods and baseline 362

methods. It is apparent from this table that very 363

few models utilize LLMs as their language model 364

to chase superior performance, but our methods 365

adopt LLMs and outperform all previous models 366

without manually designed prompts or instructions 367

tuning. Meanwhile, unlike previous approaches, 368

we arrange LLMs not as a standalone reasoning 369

model, which also shows the effectiveness of uti- 370

lizing distance-aware graph structure to form our 371

approach, and is validated to capture the global 372

feature of temporal event relations. 373

Additionally, our method GDLLM(Ours) outper- 374

forms the previous SOTA model(Yao et al., 2024) 375

that only adopts SLM as its language model, achiev- 376

ing an increase of 1.9% on the micro-F1 compar- 377

ison of the TB-Dense dataset. Although the rela- 378

tively smaller data scale of the MATRES dataset 379

and its characteristic of extremely imbalanced class 380

distribution may limit the model’s ability to fully 381

learn the event categories, our method still effec- 382

tively outperforms the existing best result by 0.5%. 383

This not only validates that our temporal feature 384

learning paradigm based on distance-aware model- 385

ing enables the model to learn global features with 386

different proximity more effectively, but also indi- 387

cates the impressive capabilities of the LLM we 388

employed. We also observe significant advantages 389

of our method compared with the two baseline 390

models we developed, the RoBERTa-Large and 391

BART-Large, which also confirms the superiority 392

of our method. 393

3.4 Performance on Minority Categories 394

To confirm that our method is valid to identify the 395

minority categories more effectively in the situation 396

of imbalanced data, we also compare the micro-F1 397
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Model Language Model TB-Dense MATRES

P(%) R(%) F1(%) P(%) R(%) F1(%)

TIMERS*(Mathur et al., 2021) BERT-Base 48.1 65.2 67.8 81.1 84.6 82.3
SGT*(Zhang et al., 2022) BERT-Large - - 67.1 - - 80.3
RSGT*(Zhou et al., 2022) RoBERTa-Base 68.7 68.7 68.7 82.2 85.8 84.0
Bayesian (Tan et al., 2023) BART-Large - - 65.0 79.6 86.0 82.7
Unified (Huang et al., 2023) RoBERTa-Large - - 68.1 - - 82.6
TCT (Ning et al., 2024) BART-Large 70.3 71.6 70.9 79.0 87.2 82.9
CPTRE (Yuan et al., 2024) BERT-Base 73.4 69.5 71.4 81.3 86.3 84.2
MulCo* (Yao et al., 2024) RoBERTa-Large - - 85.6 - - 90.4
MAQInstruct (Xu et al., 2025) Llama2-7B - - - 85.5 83.9 84.7
LLMERE (Hu et al., 2025) Llama3.1-8B - - - 82.6 88.7 85.5

GDLLM_BART(Ours) BART-Large 75.8 68.9 71.3 80.6 84.7 81.2
GDLLM_RoBERTa(Ours) RoBERTa-Large 70.8 68.8 69.2 82.4 91.7 86.4

GDLLM_Qwen(Ours) Qwen2.5-7B 85.3 86.5 86.1 86.8 94.8 90.6
GDLLM(Ours) Llama3.1-8B 88.3 86.6 87.5 86.5 95.9 90.9

Table 1: The overall experiment results on the two datasets. Models marked with a * use the GNN-based approach.
The F1 score means micro-F1.
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Figure 4: The performance of micro-F1, macro-F1, and
the F1 score of some minority categories between our
methods and the selected study. SIM: SIMULTANEOUS.
INC: INCLUDES. Gap: the difference between micro-
F1 and macro-F1. A lower Gap value indicates better
performance of the model on minority categories.

score and macro-F1 score between our methods398

and the most recent study on a similar issue(Yuan399

et al., 2024), which reports that their results out-400

perform earlier studies on the macro-F1 score. Ac-401

cording to respective definitions, macro-F1 gives402

equal weight to each category, while micro-F1403

gives equal weight to each sample. This ensures404

that if a model achieves a severe gap between mi-405

cro and macro, the model cannot perform well on406

minority categories.407

It can be seen from the data in Figure 4 that408

the “Gap” scores on our methods are obviously409

lower than those in the model CPTRE. In gen-410

eral, our GDLLM (Llama3.1) model outperforms411

CPTRE on all minority categories. Although our412

Method LLMs P(%) R(%) F1(%)

GDLLM Llama3.1 86.5 95.9 90.9
w/o LP - 64.6 73.4 68.7
w/o GD Llama3.1 77.2 79.0 78.1
w/o PI Llama3.1 78.9 86.7 82.6

GDLLM Qwen2.5 86.8 94.8 90.6
w/o LP - 64.6 73.4 68.7
w/o GD Qwen2.5 74.0 82.7 77.1
w/o PI Qwen2.5 75.3 82.1 79.5

Table 2: Ablation study results on the MATRES. w/o LP
only uses GAT-based multi-head attention mechanism.

method GDLLM_Qwen performs suboptimally on 413

the EQUAL class when using Qwen as the language 414

model, we think that is because the EQUAL class 415

has an exceptionally low count, causing the model’s 416

severely biased prediction on the categories with 417

extremely high proportions during training. On the 418

basis of the analysis above, our proposed model 419

achieves significantly better performance on all 420

datasets regarding macro-F1 scores, and it indeed 421

improves the model’s performance on minority tem- 422

poral relation classes. 423

3.5 Ablation Study 424

Table 2 illustrates the ablation experimental re- 425

sults on the MATRES dataset(Appendix D shows 426
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ablation results on the TB-Dense dataset). Our427

experiments are based on two LLMs (Llama3.1428

and Qwen2.5). When analyzing the impact of re-429

moving components from the GDLLM method,430

we observe that “w/o LP” (without LLM-based431

Probability Generation), “w/o GD” (without GAT-432

based Distance-aware Structure), and “w/o PI”433

(without Probabilistic Soft Inference Learning434

Paradigm) lead to a decrease in performance.435

Analysis of LP. Through the comparison of the436

w/o LP module, the micro-F1 scores decrease by437

22.2% and 21.9%, respectively. This illustrates it438

is challenging for GAT to identify event relations439

without the probabilistic information generated by440

LLMs, because the model has been deprived of441

the powerful capability to capture relation features442

with a short-distance proximity band.443

Analysis of GD. Comparing the w/o GD mod-444

ule, the micro-F1 scores drop by 12.8% and 13.5%445

based on Llama and Qwen, respectively. This446

indicates the limitation of utilizing LLMs stan-447

dalone for ETRE, and further demonstrates that our448

GAT-based distance-aware structure indeed aids449

the LLMs to better learn the relation features with450

long-distance dependency.451

Analysis of PI. We also remove the probabilis-452

tic soft inference paradigm for temporal feature453

learning. That is, we make the LLMs only gener-454

ate corresponding “0/1” label prediction values for455

edge features, transforming the entire process into456

a dual-stage hard classification. Comparing the w/o457

PI module, the micro-F1 scores decline by 8.3%458

and 11.1% on the two models. This suggests that459

enabling the model to learn probabilistic distribu-460

tion information improves the identification of the461

event relation of the short-distance proximity band.462

3.6 Performance on Distance Features463

We also test the performance with modules w/o464

GD and w/o PI under different distance conditions465

utilizing Llama3.1. Specifically, we define the dis-466

tance feature as follows: If there are n other events467

between the target event pair (Ei, Ej), the distance468

between them is set to n. As illustrated in Ta-469

ble 3, when the distance is progressively increased,470

the performance of the w/o GD models becomes471

lower than the w/o PI models. This indicates that472

our distance-aware graph structure can more ef-473

fectively identify temporal relations with longer474

event distances. Meanwhile, when we remove the475

PI approach, the decline of micro-F1 scores be-476

comes less pronounced as the event distance in-477

Method Distance

2 3 4 5

w/o GD 79.3 80.8 75.7 81.8
w/o PI 78.1 86.3 87.8 90.2
Ours 87.3 93.1 95.7 90.9

Table 3: The comparison of micro-F1 scores(%) of
subsets divided based on different distance conditions
on the MATRES dataset. The data in bold and with
underlines represent the optimal and suboptimal results
under each distance condition, respectively.

25.3%
19.3%

52.4%

23.0%
26.0%

16.0%

53.0%

32.6%

64.5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ZS ER CoT Llama2 InstructERE MAQInstruct (ours) (ours) (ours)

ChatGPT Llama2-7B GPT4o Llama3.1-8B

m
ic

ro
-F

1

Manully Vanilla Zero-GDLLM

Figure 5: The micro-F1 score of the performance com-
parison on the MATRES dataset between our methods
and other benchmarks based on zero-shot.

creases. Notably, when the distance increases to 478

5, our method only outperforms the model w/o PI 479

by 0.7%. This suggests that the proposed feature 480

learning paradigm based on soft inference can more 481

effectively enhance the performance for events with 482

shorter distances. 483

3.7 Analysis of Zero-Shot Experiment 484

As depicted in Figure 5, we conduct various experi- 485

ments to compare the zero-shot performance on the 486

MATRES dataset with different benchmarks(Yuan 487

et al., 2023; Xu et al., 2025). 1)For Manually and 488

Vanilla, Manually means giving manually designed 489

prompts or instructions to the “Vanilla” LLMs 490

which are not fine-tuned. Early work(Yuan et al., 491

2023) designs three kinds of prompt techniques 492

(ZS, ER, and CoT) to evaluate ChatGPT, which 493

gives their best performance on the CoT prompts 494

at 52.4%. We report the result on vanilla GPT4o, 495

which is higher than the CoT method. It suggests 496

the importance of the scale of different LLMs and 497

the limitation of manually designed prompts. 2)For 498

Zero-GDLLM, it is to directly generate probability 499

distribution from Llama3.1 to GAT without LoRA 500

tuning and the GAT operates with fixed parameters. 501

We can see our Zero-GDLLM method in Figure 5 502

outperforms all previous results above. That indi- 503
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cates the superior capacity of our distance-aware504

modeling approach in zero-shot learning scenarios.505

3.8 Case Study for Minority Categories506

To evaluate the effectiveness of clustering minor-507

ity categories, we visualize the final prediction re-508

sult representations of positive samples in high-509

dimensional space. Specifically, we first obtain all510

representations on the testing set of the TB-dense511

dataset, which features highly imbalanced classes.512

Given the complex and non-linear nature of the513

data, we choose t-Distributed Stochastic Neighbor514

Embedding (t-SNE) as the dimension reduction515

technique to project the high-dimensional represen-516

tations onto a two-dimensional space for visualiza-517

tion. We employ three baseline models following518

the ablation study.519

As depicted in Figure 6(b) and Figure 6(c), the520

representation distribution of all positive examples521

has almost no obvious boundaries, which indicates522

the model performs poorly in clustering. Com-523

pared with Figure 6(a), it can be seen from Fig-524

ure 6(d) that the t-SNE visualization of the pro-525

posed approach clearly separates and clusters mi-526

nority relation classes, such as INCLUDES and527

IS_INCLUDED, although there is still some minor528

overlap between classes, the distinct clustering pat-529

terns indicate that the model effectively captures530

the unique characteristics of these minority cate-531

gories. This demonstrates that our approach effec-532

tively augments the capacity of capturing the global533

relation feature. Overall, the comparison results534

from the t-SNE visualization strongly demonstrate535

the superiority of the proposed model in handling536

minority temporal relation classes.537

4 Related Work538

Earlier studies for ETRE predominantly rely on539

machine learning(Mani et al., 2006; Yoshikawa540

et al., 2009). Afterwards, some research integrates541

Pre-trained Language Models to capture temporal542

semantics in the context (Cheng et al., 2020; Wen543

and Ji, 2021; Mathur et al., 2021; Man et al., 2022).544

It is also worth noting that more and more studies545

focus on the special structure of event temporal546

relations. One of the widely employed graph-based547

methods is GNNs. Different GNN-based meth-548

ods have been proposed to better learn the rela-549

tion cues (Mathur et al., 2021; Man et al., 2022).550

Differently, other researchers embed events in hy-551

perbolic spaces for better hierarchical structure552

(a)w/o GD (b)w/o LP

(c)w/o PI (d)Ours

Figure 6: The visualized clustering comparison results
of the ablation study based on Llama3.1-8B.

modeling(Tan et al., 2021). Prior SOTA model 553

MulCo(Yao et al., 2024) combines GNNs and the 554

model of BERT variants via multi-scale knowledge 555

distillation. There are also studies that tackle data 556

scarcity or imbalance(UzZaman et al., 2013; Wang 557

et al., 2020; Han et al., 2020; Guan et al., 2021; Tan 558

et al., 2023; Yuan et al., 2024), while some work 559

designs certain temporal rules (Ballesteros et al., 560

2020; Zhuang et al., 2023; Ning et al., 2024). 561

With the rapid development of LLMs, re- 562

searchers pay great attention to the Question- 563

Answer (QA) mechanism(Xu et al., 2025; Hu et al., 564

2025). Similar to the zero-shot studies, another 565

work proposes a variety of valuable prompt ex- 566

planations(Yuan et al., 2023) or utilizes a unified 567

framework(Huang et al., 2023). Appendix E re- 568

ports the results comparison on GNN-based and 569

LLM-based benchmarks. 570

5 Conclusion 571

In this paper, we propose GDLLM, a Global 572

Distance-aware modeling approach based on 573

LLMs. Specifically, we present a distance-aware 574

graph structure utilizing GAT to assist LLMs in 575

capturing long-distance dependency features. Ad- 576

ditionally, we design a temporal feature learning 577

paradigm based on soft inference to augment the 578

event relation extraction with a short-distance prox- 579

imity band. Our framework also substantially en- 580

hances the performance of minority relation classes 581

and improves the overall learning ability. Extensive 582

experiments on two public datasets, TB-Dense and 583

MATRES, demonstrate that our approach outper- 584

forms all LLM-based and GNN-based benchmarks, 585

achieving SOTA performance without manually 586

designed prompts or instructions for LLMs. 587
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Limitations588

Although our method has already achieved the589

current state-of-the-art performance, the limita-590

tions may still exist. Due to the different cate-591

gory choices of LLMs, their inherent adaptability592

to task diversity or bias may pose challenges to our593

model training or performance. For example, on594

the minority class EQUAL, the baseline utilizing595

the Qwen model exhibits suboptimal performance596

compared to the model CPTRE. Meanwhile, fu-597

ture work is needed to explore more effective and598

diverse modeling or training methods for Large599

Language Models.600
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A Input Formats Details 778

In the experiment, we make the input format of our 779

LLMs as following arrangements : 780

A)Llama: In the given sentence T , manually de- 781

signed symbols of the form [EVi], where i denotes 782

the ordinal number of the event in a pair, serve as 783

explicit in-text markers to annotate the boundaries 784

of the event to facilitate model focus. 785

B)Qwen: The internal structure of Qwen de- 786

termines that the model has a greater inclination 787

towards a dialogue-based model. Our inputs to the 788

Qwen model are carefully structured as “Input = 789

T ”, and the processing of symbolic marking for 790

the events in sentence T is the same as that of the 791

Llama model. 792

C)Zero-Shot: For zero-shot scenarios, we uti- 793

lize hand-crafted prompts (e.g., “I will give you 794

a paragraph that uses [EV 1], [/EV 1], [EV 2] and 795

[/EV 2] to, respectively mark two events, with the 796

event relations divided into ‘BEFORE’, ‘AFTER’, 797

‘VAGUE’ and ‘EQUAL’. You only need to provide 798

the final judgment result of the event relation”) 799

without task-specific training. 800

B Experiment Details 801

Our experiment details are reported as follows: 802

A)Datasets: Data splits statistics are reported in 803

Table 4. 804
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Figure 7: The distribution of probabilities generated by different language models on the MATRES dataset.

Dataset Train:Validation:Test

TB-Dense 4,032:629:1,427
MATRES 182:73:20

Table 4: Data splits and relation statistics.

B)HEBO Algorithm for Hyperparameter Op-805

timization: HEBO is a Bayesian optimization-806

based algorithm designed to efficiently search for807

optimal hyperparameter combinations in a high-808

dimensional space. The algorithm details are as809

follows:810

Suppose x be a vector of hyperparameters, and811

y = f(x) be the objective function, which is the812

evaluation metric of the model on the validation set.813

We utilize the Gaussian Process surrogate model814

of HEBO, which is f̂(x) that has a mean func-815

tion µ(x) and a variance function σ2(x), such that816

f̂(x) ∼ N (µ(x), σ2(x)). The acquisition function,817

such as expected value E, is defined as:818

a(x) = E[max(0, f(x∗)− f̂(x))], (9)819

where x∗ is the optimal hyperparameter point cur-820

rently. The next hyperparameter point xnext to821

evaluate is selected by maximizing the acquisition822

function:823

xnext = argmax
x

a(x). (10)824

Specifically, we use the HEBOSearch implemen-825

tation. The hyperparameter search space includes826

parameters such as the dropout rates, class weights,827

and the learning rate. We initialize the search pro-828

cess with a set of randomly sampled hyperparame-829

ter points. For each iteration, the HEBO algorithm830

calculates the acquisition function values for all831

points in the search space based on the current832

surrogate model. The hyperparameter point with833

the maximum acquisition function value is then834

selected and evaluated on the model. After obtain-835

ing the evaluation result, the surrogate model is836

Method LLMs P(%) R(%) F1(%)

GDLLM Llama3.1 88.3 86.6 87.5
w/o LP - 47.3 69.1 53.2
w/o GD Llama3.1 67.8 58.1 62.5
w/o PI Llama3.1 62.4 72.6 66.0

GDLLM Qwen2.5 85.3 86.5 86.1
w/o LP - 47.3 69.1 53.2
w/o GD Qwen2.5 68.0 72.7 70.8
w/o PI Qwen2.5 63.6 71.5 66.0

Table 5: The ablation experimental results on the TB-
Dense dataset. “w/o LP” only adopts multi-head atten-
tion for ETRE.

updated to incorporate this new information. Com- 837

pared to traditional hyperparameter optimization 838

methods such as random search and grid search, 839

HEBO can more efficiently explore the hyperpa- 840

rameter space by leveraging the information from 841

previously evaluated points. 842

C Distribution of Generated Probabilities 843

on the MATRES Dataset. 844

Figure 7 depicts the distribution of probabilities 845

generated by different language models on the MA- 846

TRES dataset. 847

D The Ablation Experimental Results on 848

the TB-Dense Dataset. 849

As shown in Table 5, the ablation experimental 850

results on the TB-Dense dataset also reveal the 851

importance of different components. 852

E The Performance Comparison on 853

GNN-based and LLM-based 854

Benchmarks 855

We analyze the performance of GNN-based meth- 856

ods with different benchmarks, which is depicted 857

in Figure 8. The existing SOTA model MulCo(Yao 858

et al., 2024) contributes various GNN-based results. 859
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Figure 8: The micro-F1 score of the previous GNN-
based method versus our approach. “MulCo-RGAT(n)”
represents the model adopts n GNN layers.
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Figure 9: The performance comparison on the MA-
TRES dataset between our method and other bench-
marks based on LLMs.

Our method, based on two layers of GAT, outper-860

forms MulCo-RGAT(2), highlighting the effective-861

ness of our GDLLM proposed in the GNN-based862

approaches. We also test the performance of the863

GCN-based method, the results suggest that GCN864

lacks the capacity of multi-head attention, which865

fails to effectively learn the probabilistic relation866

features for the short-distance proximity band.867

As shown in Table 9, our method reports the ex-868

perimental results based on Llama3.1 and Qwen2.5.869

Our results outperform all other LLM-based bench-870

marks(Xu et al., 2025; Hu et al., 2025) on the MA-871

TRES dataset.872
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