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Abstract

In Natural Language Processing(NLP), Event
Temporal Relation Extraction (ETRE) is to rec-
ognize the temporal relations of two events.
Prior studies have noted the importance of
language models for ETRE. However, the re-
stricted pre-trained knowledge of Small Lan-
guage Models(SLMs) limits their capability to
handle minority class relations in imbalanced
classification datasets. For Large Language
Models(LLMs), researchers adopt manually de-
signed prompts or instructions, which may in-
troduce extra noise, leading to interference with
the model’s judgment of the long-distance de-
pendencies between events. To address these is-
sues, we propose GDLLM, a Global Distance-
aware modeling approach based on LLMs. We
first present a distance-aware graph structure
utilizing Graph Attention Network(GAT) to as-
sist the LLMs in capturing long-distance de-
pendency features. Additionally, we design a
temporal feature learning paradigm based on
soft inference to augment the identification of
relations with short-distance proximity band,
which supplements the probabilistic informa-
tion generated by LLMs into the multi-head
attention mechanism. Since the global feature
can be captured effectively, our framework sub-
stantially enhances the performance of minor-
ity relation classes and improves the overall
learning ability. Experiments on two publicly
available datasets, TB-Dense and MATRES,
demonstrate that our approach achieves state-
of-the-art (SOTA) performance. Our code will
be available after the paper is accepted.

1 Introduction

In Natural Language Processing (NLP), Event Tem-
poral Relation Extraction (ETRE) aims to identify
temporal connections between event pairs. As il-
lustrated in Figure 1(a), in the given sentence, the
relation between the target Eventl continues and
Event2 grip is IS_INCLUDED.

sentence: A powerful ice storm [EV1] continues [/EV1] to maintain its
[EV2] grip [/EV2]. Yesterday New York governor George Pataki toured

five counties that have been declared under a state of emergency...
(@
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Figure 1: (a) is an example of the ETRE task. Above
the arrows in the legend are the corresponding relation
categories. “[E'V;]” is the hand-crafted symbol that can
explicitly mark event boundaries in such examples. (b)
is the relation distribution on two datasets.

Much of the existing studies pay attention to
the crucial role of language models for ETRE, es-
pecially Small Language Models(SLMs). Some
research utilizes SLMs to form certain rules for
temporal realtion(Zhang et al., 2022; Man et al.,
2022; Zhuang et al., 2023). Prior SOTA model
MulCo(Yao et al., 2024) combines GNNs and the
model of BERT variants via multi-scale knowl-
edge distillation to enhance the performance of
ETRE. However, the restricted pre-trained knowl-
edge of SLMs limits their capability to handle
minority class relations in imbalanced classifica-
tion datasets(UzZaman et al., 2013; Guan et al.,
2021). Although some researchers have invested
substantial effort in it (Han et al., 2019; Ning
et al., 2024; Yuan et al., 2024), the performance
of their models is still suboptimal on two pop-
ular datasets, MATRES(Ning et al., 2019) and
TB-Dense(Cassidy et al., 2014). As depicted in
Figure 1(b), the relation “SIMULTANEOUS” that
refers to two events happening simultaneously only
takes 1.5% in the TB-Dense dataset while “VAGUE”
has 47.7%(Yuan et al., 2024).



Recent advancements have noted the impres-
sive capabilities of Large Language Models(LLMs)
for ETRE. However, based on the powerful learn-
ing ability for contextual knowledge, prior studies
rely on manually designed prompts and instruc-
tions to fine-tune LLMs(Hu et al., 2025; Xu et al.,
2025), leading to noise accumulation(Chen et al.,
2024) that interferes with the model’s judgment
of the global event relation feature. As shown
in Figure 1(a), unlike most event pairs among
Events “continues”, “grip” and “toured”, two an-
other events occur between Events “continues” and
“toured” in the text and make their distance of the
occurrence order is longer. This indicates that there
are two different event relation features that consti-
tute the global feature: long-distance dependency
and short-distance proximity band. Since modeling
global event relation feature poses a challenge for
researchers, they often neglect the recognition of
long-distance dependency features when adopting
manually designed prompts and instructions, which
is also not conducive to handling minority class re-
lations in imbalanced classification datasets.

To resolve the aforementioned problems, we pro-
pose GDLLM, a Global Distance-aware modeling
approach based on LLMs, enabling the effective
identification of event relations with the global fea-
ture to alleviate the impact of data imbalance on
classification results. To be specific, we select the
Graph Attention Network(GAT) to assist the fine-
tuned LLMs in capturing event relations with long-
distance dependency features, which circumvents
the limitations of manually designed prompts or in-
struction templates. Compared to the “hard classifi-
cation” (0/1 decision labels) as graph edge features,
we integrate the probability distribution generated
by LLMs into GAT to learn more comprehensive
relation information. Both the probabilistic infor-
mation and the multi-head attention mechanism
augment the identification of relations with a short-
distance proximity band. Since the global feature
can be captured effectively, our framework sub-
stantially enhances the performance of minority
relation classes and the overall learning ability.

Our contributions can be summarized as follows:

* We propose GDLLM, a Global Distance-
aware modeling approach based on LLM:s.
Specifically, we introduce a global modeling
method integrating LLMs and GAT, which is
to identify the minority categories more effec-
tively in imbalanced classification datasets.

* We present a distance-aware graph structure
utilizing Graph Attention Network to assist
the fine-tuned LLMs in capturing event rela-
tions with long-distance dependency features,
which circumvents the limitations imposed by
manually designed prompts or instructions.

* We design a temporal feature learning
paradigm based on soft inference to augment
the relation extraction with a short-distance
proximity band. Rather than 0/1 decision la-
bels, the probability distribution we selected
as edge features enables the GAT to learn
more comprehensive relation information.

* We conduct extensive experiments on two pub-
lic datasets, TB-Dense and MATRES, which
demonstrate that our approach outperforms all
existing LLM-based and GNN-based bench-
marks, achieving state-of-the-art (SOTA) per-
formance without manually designed prompts
or instructions for LLMs.

2 Method

In this section, we introduce the overall architec-
ture of our proposed GDLLM method, which is de-
picted in Figure 2. Firstly, we formulate the ETRE
task. Secondly, we introduce the LLM-based prob-
ability distribution prediction module. Finally, we
present the distance-aware graph attention module.

2.1 Problem Formulation

Following Previous work, we define ETRE as a
text classification task. Given a sentence 7' that
contains two events F; and Es, our aim is to iden-
tify the temporal relation between these two events.
The output of our model is the particular temporal
relation label prediction.

2.2 Probability Distribution Prediction

Input and Fine-tuning for the LLM. In our work,
the unified format defined that input to LLMs from
datasets contains manually designed symbols of
the form [E'V;] in the given sentence 7', where 7 de-
notes the ordinal number of an event pair. It serves
as a marker to annotate the boundaries of the event.
The Appendix A takes Llama and Qwen as exam-
ples to show the specific input details. Before gen-
erating probabilistic information, we fine-tune the
LLM based on LoRA(Hu et al., 2022). As depicted
in Figure 2(a), the LoRA fine-tuned technique is
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Figure 2: Overall architecture of our proposed method.

used for sequence classification, which is adopted
for parameter-efficient fine-tuning.

Probability generation. As shown in Fig-
ure 2(a), while applying the LoRA fine-tuning,
the model is ready to make predictions of prob-
abilistic information generated by the LLM to con-
struct edge features of graph structure, forming
the soft inference-based temporal feature learning
paradigm we designed. For each pair of events
(E;, E;) in the document, the LLM outputs a prob-
ability distribution over a set of predefined and
annotated event relation classes.

Specifically, we define c as the number of event
relation classes, and the output of the LLM for the
event pair (F;, Ej) is a vector p;; € R In the
inference process of LoRA tuning, the model first
generates a set of logits for each event pair. These
logits are then passed through the softmax function.
This operation converts the logits into probabilities,
which represent the likelihood of each event pair
belonging to different relation labels. For c kinds
of relation types, and a specific event pair (E;, E;),
the probability of it belonging to relation r is de-
noted as P(p = r|E;, E;). Mathematically, the
logits for an event pair are 21, 22, - - , 2y, then the
probability P(p = r|E;, Ej;) is calculated as:

esr

Zc ezn '

n=1

P(p =r|E;, Ej) = (1
which normalizes the logits so that the sum of prob-
abilities for all relation classes is equal to 1, and
they are all stored in the probability distribution

vectors p;; € RC. As depicted in Figure 2(a),
rather than determining the most likely temporal re-
lation between events, these probabilities are made
to be a vector sequence distribution to provide more
comprehensive pre-trained information for the sub-
sequent module. For the TB-Dense dataset, which
is shown in Figure 2(a) as an instance, the LLM
provides the prediction distribution of the six labels
it has, while the MATRES dataset does so for the
four labels it possesses.

The training objective is the cross-entropy loss
for multi-class classification based on LLM, which
does not participate in the final loss calculation,
and the calculation details of the loss function are
similar to the final classification.

Notably, a topic that deserves discussion is why
we choose LLMs to be the main language mod-
els. We generate probability distributions through
different language models and visualize these dis-
tributions in scatter plots for comparison of the
accuracy of the probability value. To be specific,
we randomly select a sample sequence from the
TB-Dense dataset and compare the distribution of
probabilities for positive samples. It can be seen
from Figure 3 that LLMs can present probability
values with higher accuracy, which always assign a
value closer to 1 for the relation category with the
highest probability, while for low probability pre-
diction values, their distributions tend to be closer
to zero. In Appendix C, we compare the distribu-
tion of probabilities on the MATRES dataset, from
which we can draw the same conclusions as above.
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Figure 3: The distribution of probabilities generated by different language models on the TB-Dense dataset.

2.3 Distance-aware Graph Attention Module

From the previous section, we have obtained the
probability distribution vectors p;; € R for event
pair predictions generated by the LLM. Next, we
will introduce the construction of graph features
first, followed by the temporal feature learning
paradigm based on soft inference. Since our graph
structure is a solution for capturing relation features
at different distances, we define the proposed GAT-
based architecture as a distance-aware approach.

Graph feature construction. As depicted in
Figure 2(c), we construct a graph to model the rela-
tions between events based on every complete doc-
ument. Compared with traditional graph construc-
tion methods, our approach aims to be more con-
ducive to enabling the graph structure to learn ac-
curate global relational features at an earlier stage.
Each event E; in the document and its order and
type information are both represented as a node
v; € V. And the node features hEO) € R are ob-
tained from the dataset corresponding to the event.

For edge feature, which is shown as Figure 2(b),
it exists between every pair of nodes, and the edge
features are initialized as the probability distribu-
tion vectors p;; € R for the event pair (E;, Ej),
which is to form our temporal feature learning
paradigm based on soft inference.

Temporal feature learning paradigm. We de-
sign a temporal feature learning paradigm based on
soft inference as depicted in Figure 2(b), which is
to supplement the probabilistic information gener-
ated by LLMs into the multi-head attention mecha-
nism. This paradigm shifts the edge feature repre-
sentation from the previous 0/1 decision label to a
probability distribution for “soft inference”, which
augments the identification of relations with short-
distance proximity band. To achieve this, we apply
this paradigm to the edge feature learning of GAT,
which constructs a graph structure to model event
relations with a multi-head attention mechanism.

Specifically, our Graph Attention Network archi-
tecture consists of multiple layers of multi-head
attention mechanisms. In our implementation, in

order to enable the model to learn more diverse
feature combinations and interaction information,
we adopt two layers with K = 8 attention heads.
In the first GAT Layer, for each node v;, the output
of the k-th attention head is computed as:
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where N (i) is the set of neighboring nodes of v;,

W,(Cl) € R%*dn1 ig the weight matrix for the & - th
head, o is the activation function LeakyReLLU, and
the attention coefficients «;; j, are calculated as:
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where a;, € R3%1 is a learnable attention vector,
‘|’ denotes concatenation, and m € N (i). After-
wards, the output of the first layer for node v; is
then concatenated with the outputs of all heads:

hgl) = Concat(flgll)7 RN flz(li)() For the second
GAT layer, followi}lg a similar process of the first
layer, we get the output of the k-th attention head
flgzk? , and the final average multi-head feature hgz)

Final Classification. In the final classification
stage, as depicted in Figure 2(c), we integrate the
output of the second GAT layer and the processed
edge features p; ;. We concatenate these two types
of features as: h, = [h§2) Il pj | h§-2)]. The con-
catenated feature vector h, is then fed into a fully-
connected layer. The output of the fully-connected

layer is calculated as follows:

s = W¢h, + bgis, (6)

where W, € R%2%C ig the weight matrix of the
classification layer, and b € R is the bias vector
of the classification layer.



Subsequently, we apply the softmax function for
the output of the fully-connected layer to obtain the
predicted probability distribution over the classes.
The softmax function is defined as:

y = softmax(s), 7

where ¥ is the predicted probability for an event
pair (E;, Ej).

We employ the cross-entropy loss function to
measure the difference between the final predicted
probability and the true label. Given the true label
y = (y1,92, -+ ,yc), the cross-entropy loss for
this event pair is calculated as:

c
L(y,9) == yrlog(fr)- ®)
k=1

3 Experiments and Results

3.1 Datasets and Metrics

We validate our approach on two widely adopted
datasets: MATRES (Ning et al., 2019), and TB-
Dense(Cassidy et al., 2014). The data splits, along
with relation pairs statistics, are reported in Ap-
pendix B. The input format in zero-shot learning
scenarios is illustrated in Appendix A. In accor-
dance with prior study(Han et al., 2019), we adopt
the micro-F1 score, with the VAGUE label ex-
cluded, as the evaluative metric for the datasets.

3.2 Experimental Setup

We compare our method with the following base-
lines: 1) LLM-based approaches: these methods
leverage LLLMs to encode contextual information
and perform temporal reasoning through prompt
or instruction tuning(Xu et al., 2025; Hu et al.,
2025). Prior studies also explore zero-shot tempo-
ral relation extraction using different prompt strate-
gies(Yuan et al., 2023; Xu et al., 2025). Following
this work, we conduct zero-shot experiments on
two LLMs, the closed-source GPT4o(Hurst et al.,
2024) and the open-source Llama3.1. 2) Graph-
based approaches: These models construct event
graphs to capture temporal information, often using
Graph Neural Networks (GNNs) to propagate in-
formation(Mathur et al., 2021; Zhang et al., 2022;
Zhou et al., 2022; Yao et al., 2024). 3) Other
benchmarks: Methods that do not fit into the
above categories but have shown strong perfor-
mance, often combining neural networks or heuris-
tic features(Huang et al., 2023; Tan et al., 2023;

Ning et al., 2024; Yuan et al., 2024). In addition,
we employ RoBERTa-Large (Liu et al., 2019) and
BART-Large (Lewis et al., 2020), as two baseline
models for comparison of SLMs.

As for fine-tuning LLMs, the LoRA rank is set
to 16. All experiments are trained on NVIDIA
A800 GPUs with 80GB of memory. In this paper,
following previous work for hyperparameter opti-
mization(Yao et al., 2024), we employ the HEBO
(Heuristic-Efficient Bayesian Optimization) algo-
rithm. We show the experiment implementation
details aforementioned in Appendix B.

3.3 Main Results

As shown in Table 1, our method achieves SOTA
performance in all existing methods and baseline
methods. It is apparent from this table that very
few models utilize LLMs as their language model
to chase superior performance, but our methods
adopt LLMs and outperform all previous models
without manually designed prompts or instructions
tuning. Meanwhile, unlike previous approaches,
we arrange LL.Ms not as a standalone reasoning
model, which also shows the effectiveness of uti-
lizing distance-aware graph structure to form our
approach, and is validated to capture the global
feature of temporal event relations.

Additionally, our method GDLLM(Ours) outper-
forms the previous SOTA model(Yao et al., 2024)
that only adopts SLM as its language model, achiev-
ing an increase of 1.9% on the micro-F1 compar-
ison of the TB-Dense dataset. Although the rela-
tively smaller data scale of the MATRES dataset
and its characteristic of extremely imbalanced class
distribution may limit the model’s ability to fully
learn the event categories, our method still effec-
tively outperforms the existing best result by 0.5%.
This not only validates that our temporal feature
learning paradigm based on distance-aware model-
ing enables the model to learn global features with
different proximity more effectively, but also indi-
cates the impressive capabilities of the LLM we
employed. We also observe significant advantages
of our method compared with the two baseline
models we developed, the RoBERTa-Large and
BART-Large, which also confirms the superiority
of our method.

3.4 Performance on Minority Categories

To confirm that our method is valid to identify the
minority categories more effectively in the situation
of imbalanced data, we also compare the micro-F1



Model Language Model

TB-Dense MATRES
P(%) R(%) F1(%) P(%) R(%) F1(%)

TIMERS*(Mathur et al., 2021) BERT-Base

481 652 678 8l.1 846 823

SGT*(Zhang et al., 2022) BERT-Large - - 67.1 - - 80.3
RSGT*(Zhou et al., 2022) RoBERTa-Base  68.7 68.7 68.7 822 85.8 84.0
Bayesian (Tan et al., 2023) BART-Large - - 650 79.6 86.0 827
Unified (Huang et al., 2023) RoBERTa-Large - - 68.1 - - 82.6
TCT (Ning et al., 2024) BART-Large 703 716 709 790 872 829
CPTRE (Yuan et al., 2024) BERT-Base 73.4  69.5 714 813 86.3 84.2
MulCo* (Yao et al., 2024) RoBERTa-Large - - 85.6 - - 90.4
MAQInstruct (Xu et al., 2025) Llama2-7B - - - 85.5 839 84.7
LLMERE (Hu et al., 2025) Llama3.1-8B - - - 82.6 88.7 85.5
GDLLM_BART(Ours) BART-Large 75.8 689 713 80.6 84.7 81.2
GDLLM_RoBERTa(Ours) RoBERTa-Large  70.8 68.8 69.2 82.4 91.7 86.4
GDLLM_Qwen(Ours) Qwen2.5-7B 853 86.5 86.1 868 948 90.6
GDLLM(Ours) Llama3.1-8B 883 866 875 865 959 909

Table 1: The overall experiment results on the two datasets
The F1 score means micro-F1.

TB-Dense MATRES

Figure 4: The performance of micro-F1, macro-F1, and
the F1 score of some minority categories between our
methods and the selected study. SIM: SIMULTANEOUS.
INC: INCLUDES. Gap: the difference between micro-
F1 and macro-F1. A lower Gap value indicates better
performance of the model on minority categories.

score and macro-F1 score between our methods
and the most recent study on a similar issue(Yuan
et al., 2024), which reports that their results out-
perform earlier studies on the macro-F1 score. Ac-
cording to respective definitions, macro-F1 gives
equal weight to each category, while micro-F1
gives equal weight to each sample. This ensures
that if a model achieves a severe gap between mi-
cro and macro, the model cannot perform well on
minority categories.

It can be seen from the data in Figure 4 that
the “Gap” scores on our methods are obviously
lower than those in the model CPTRE. In gen-
eral, our GDLLM (Llama3.1) model outperforms
CPTRE on all minority categories. Although our

. Models marked with a * use the GNN-based approach.

Method LLMs P(%) R(%) F1(%)

GDLLM Llama3.1 86.5 959 90.9
w/o LP - 646 734 68.7
w/oGD Llama3.1 77.2 79.0 78.1
w/oPI  Llama3.1 789 86.7 82.6

GDLLM Qwen2.5 868 94.8 90.6
w/o LP - 646 734 68.7
w/oGD Qwen2.5 74.0 82.7 717.1
w/oPL  Qwen2.5 75.3 82.1 79.5

Table 2: Ablation study results on the MATRES. w/o LP
only uses GAT-based multi-head attention mechanism.

method GDLLM_Qwen performs suboptimally on
the EQUAL class when using Qwen as the language
model, we think that is because the EQUAL class
has an exceptionally low count, causing the model’s
severely biased prediction on the categories with
extremely high proportions during training. On the
basis of the analysis above, our proposed model
achieves significantly better performance on all
datasets regarding macro-F1 scores, and it indeed
improves the model’s performance on minority tem-
poral relation classes.

3.5 Ablation Study

Table 2 illustrates the ablation experimental re-
sults on the MATRES dataset(Appendix D shows



ablation results on the TB-Dense dataset). Our
experiments are based on two LLMs (Llama3.1
and Qwen2.5). When analyzing the impact of re-
moving components from the GDLLM method,
we observe that “w/o LP” (without LLM-based
Probability Generation), “w/o GD” (without GAT-
based Distance-aware Structure), and “w/o PI”
(without Probabilistic Soft Inference Learning
Paradigm) lead to a decrease in performance.

Analysis of LP. Through the comparison of the
w/o LP module, the micro-F1 scores decrease by
22.2% and 21.9%, respectively. This illustrates it
is challenging for GAT to identify event relations
without the probabilistic information generated by
LLMs, because the model has been deprived of
the powerful capability to capture relation features
with a short-distance proximity band.

Analysis of GD. Comparing the w/o GD mod-
ule, the micro-F1 scores drop by 12.8% and 13.5%
based on Llama and Qwen, respectively. This
indicates the limitation of utilizing LLMs stan-
dalone for ETRE, and further demonstrates that our
GAT-based distance-aware structure indeed aids
the LLMs to better learn the relation features with
long-distance dependency.

Analysis of PI. We also remove the probabilis-
tic soft inference paradigm for temporal feature
learning. That is, we make the LLMs only gener-
ate corresponding “0/1” label prediction values for
edge features, transforming the entire process into
a dual-stage hard classification. Comparing the w/o
PI module, the micro-F1 scores decline by 8.3%
and 11.1% on the two models. This suggests that
enabling the model to learn probabilistic distribu-
tion information improves the identification of the
event relation of the short-distance proximity band.

3.6 Performance on Distance Features

We also test the performance with modules w/o
GD and w/o PI under different distance conditions
utilizing Llama3.1. Specifically, we define the dis-
tance feature as follows: If there are n other events
between the target event pair (E;, E;), the distance
between them is set to n. As illustrated in Ta-
ble 3, when the distance is progressively increased,
the performance of the w/o GD models becomes
lower than the w/o PI models. This indicates that
our distance-aware graph structure can more ef-
fectively identify temporal relations with longer
event distances. Meanwhile, when we remove the
PI approach, the decline of micro-F1 scores be-
comes less pronounced as the event distance in-

Method Distance
2 3 4 5
w/ioGD 793 80.8 75.7 81.8
w/ioPI 78.1 86.3 87.8 90.2
Ours 87.3 93.1 957 90.9

Table 3: The comparison of micro-F1 scores(%) of
subsets divided based on different distance conditions
on the MATRES dataset. The data in bold and with
underlines represent the optimal and suboptimal results
under each distance condition, respectively.
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Figure 5: The micro-F1 score of the performance com-
parison on the MATRES dataset between our methods
and other benchmarks based on zero-shot.

creases. Notably, when the distance increases to
5, our method only outperforms the model w/o PI
by 0.7%. This suggests that the proposed feature
learning paradigm based on soft inference can more
effectively enhance the performance for events with
shorter distances.

3.7 Analysis of Zero-Shot Experiment

As depicted in Figure 5, we conduct various experi-
ments to compare the zero-shot performance on the
MATRES dataset with different benchmarks(Yuan
et al., 2023; Xu et al., 2025). 1)For Manually and
Vanilla, Manually means giving manually designed
prompts or instructions to the “Vanilla” LLMs
which are not fine-tuned. Early work(Yuan et al.,
2023) designs three kinds of prompt techniques
(ZS, ER, and CoT) to evaluate ChatGPT, which
gives their best performance on the CoT prompts
at 52.4%. We report the result on vanilla GPT4o,
which is higher than the CoT method. It suggests
the importance of the scale of different LLMs and
the limitation of manually designed prompts. 2)For
Zero-GDLLM, it is to directly generate probability
distribution from Llama3.1 to GAT without LoRA
tuning and the GAT operates with fixed parameters.
We can see our Zero-GDLLM method in Figure 5
outperforms all previous results above. That indi-



cates the superior capacity of our distance-aware
modeling approach in zero-shot learning scenarios.

3.8 Case Study for Minority Categories

To evaluate the effectiveness of clustering minor-
ity categories, we visualize the final prediction re-
sult representations of positive samples in high-
dimensional space. Specifically, we first obtain all
representations on the testing set of the TB-dense
dataset, which features highly imbalanced classes.
Given the complex and non-linear nature of the
data, we choose t-Distributed Stochastic Neighbor
Embedding (t-SNE) as the dimension reduction
technique to project the high-dimensional represen-
tations onto a two-dimensional space for visualiza-
tion. We employ three baseline models following
the ablation study.

As depicted in Figure 6(b) and Figure 6(c), the
representation distribution of all positive examples
has almost no obvious boundaries, which indicates
the model performs poorly in clustering. Com-
pared with Figure 6(a), it can be seen from Fig-
ure 6(d) that the t-SNE visualization of the pro-
posed approach clearly separates and clusters mi-
nority relation classes, such as INCLUDES and
IS_INCLUDED, although there is still some minor
overlap between classes, the distinct clustering pat-
terns indicate that the model effectively captures
the unique characteristics of these minority cate-
gories. This demonstrates that our approach effec-
tively augments the capacity of capturing the global
relation feature. Overall, the comparison results
from the t-SNE visualization strongly demonstrate
the superiority of the proposed model in handling
minority temporal relation classes.

4 Related Work

Earlier studies for ETRE predominantly rely on
machine learning(Mani et al., 2006; Yoshikawa
et al., 2009). Afterwards, some research integrates
Pre-trained Language Models to capture temporal
semantics in the context (Cheng et al., 2020; Wen
and Ji, 2021; Mathur et al., 2021; Man et al., 2022).
It is also worth noting that more and more studies
focus on the special structure of event temporal
relations. One of the widely employed graph-based
methods is GNNs. Different GNN-based meth-
ods have been proposed to better learn the rela-
tion cues (Mathur et al., 2021; Man et al., 2022).
Differently, other researchers embed events in hy-
perbolic spaces for better hierarchical structure

Figure 6: The visualized clustering comparison results
of the ablation study based on Llama3.1-8B.

modeling(Tan et al., 2021). Prior SOTA model
MulCo(Yao et al., 2024) combines GNNSs and the
model of BERT variants via multi-scale knowledge
distillation. There are also studies that tackle data
scarcity or imbalance(UzZaman et al., 2013; Wang
et al., 2020; Han et al., 2020; Guan et al., 2021; Tan
et al., 2023; Yuan et al., 2024), while some work
designs certain temporal rules (Ballesteros et al.,
2020; Zhuang et al., 2023; Ning et al., 2024).

With the rapid development of LLMs, re-
searchers pay great attention to the Question-
Answer (QA) mechanism(Xu et al., 2025; Hu et al.,
2025). Similar to the zero-shot studies, another
work proposes a variety of valuable prompt ex-
planations(Yuan et al., 2023) or utilizes a unified
framework(Huang et al., 2023). Appendix E re-
ports the results comparison on GNN-based and
LLM-based benchmarks.

5 Conclusion

In this paper, we propose GDLLM, a Global
Distance-aware modeling approach based on
LLMs. Specifically, we present a distance-aware
graph structure utilizing GAT to assist LLMs in
capturing long-distance dependency features. Ad-
ditionally, we design a temporal feature learning
paradigm based on soft inference to augment the
event relation extraction with a short-distance prox-
imity band. Our framework also substantially en-
hances the performance of minority relation classes
and improves the overall learning ability. Extensive
experiments on two public datasets, TB-Dense and
MATRES, demonstrate that our approach outper-
forms all LLM-based and GNN-based benchmarks,
achieving SOTA performance without manually
designed prompts or instructions for LLMs.



Limitations

Although our method has already achieved the
current state-of-the-art performance, the limita-
tions may still exist. Due to the different cate-
gory choices of LLMs, their inherent adaptability
to task diversity or bias may pose challenges to our
model training or performance. For example, on
the minority class EQUAL, the baseline utilizing
the Qwen model exhibits suboptimal performance
compared to the model CPTRE. Meanwhile, fu-
ture work is needed to explore more effective and
diverse modeling or training methods for Large
Language Models.
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A Input Formats Details

In the experiment, we make the input format of our
LLMs as following arrangements :

A)Llama: In the given sentence 7', manually de-
signed symbols of the form [E'V;], where i denotes
the ordinal number of the event in a pair, serve as
explicit in-text markers to annotate the boundaries
of the event to facilitate model focus.

B)Qwen: The internal structure of Qwen de-
termines that the model has a greater inclination
towards a dialogue-based model. Our inputs to the
Qwen model are carefully structured as “Input =
T”, and the processing of symbolic marking for
the events in sentence 7' is the same as that of the
Llama model.

C)Zero-Shot: For zero-shot scenarios, we uti-
lize hand-crafted prompts (e.g., “I will give you
a paragraph that uses [EV'1], [/EV'1], [EV2] and
[/ EV2] to, respectively mark two events, with the
event relations divided into ‘BEFORE’, ‘AFTER’,
‘VAGUE’ and ‘EQUAL’. You only need to provide
the final judgment result of the event relation”)
without task-specific training.

B Experiment Details

Our experiment details are reported as follows:

A)Datasets: Data splits statistics are reported in
Table 4.
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Figure 7: The distribution of probabilities generated by different language models on the MATRES dataset.

Dataset  Train:Validation:Test
TB-Dense 4,032:629:1,427
MATRES 182:73:20

Table 4: Data splits and relation statistics.

B)HEBO Algorithm for Hyperparameter Op-
timization: HEBO is a Bayesian optimization-
based algorithm designed to efficiently search for
optimal hyperparameter combinations in a high-
dimensional space. The algorithm details are as
follows:

Suppose x be a vector of hyperparameters, and
y = f(x) be the objective function, which is the
evaluation metric of the model on the validation set.
We utilize the Gaussian Process surrogate model
of HEBO, which is f(z) that has a mean func-
tion () and a variance function o2(), such that
f(x) ~ N(u(x),o%(x)). The acquisition function,
such as expected value E, is defined as:

a(x) = E[max(0, f(z*) = f(z))], )
where x* is the optimal hyperparameter point cur-
rently. The next hyperparameter point x,ez; to
evaluate is selected by maximizing the acquisition
function:

Tpest = AGMAX a(z). (10)

Specifically, we use the HEBOSearch implemen-
tation. The hyperparameter search space includes
parameters such as the dropout rates, class weights,
and the learning rate. We initialize the search pro-
cess with a set of randomly sampled hyperparame-
ter points. For each iteration, the HEBO algorithm
calculates the acquisition function values for all
points in the search space based on the current
surrogate model. The hyperparameter point with
the maximum acquisition function value is then
selected and evaluated on the model. After obtain-
ing the evaluation result, the surrogate model is

11

Method LLMs P(%) R(%) F1(%)
GDLLM Llama3.1 88.3 86.6 87.5
w/o LP - 47.3 69.1 53.2
w/o GD Llama3.1 67.8 58.1 62.5
w/o PI Llama3.1 624 72.6 66.0
GDLLM Qwen2.5 853 86.5 86.1
w/o LP - 473 69.1 53.2
w/oGD Qwen2.5 68.0 72.7 70.8
w/o PI Qwen2.5 63.6 71.5 66.0

Table 5: The ablation experimental results on the TB-
Dense dataset. “w/o LP” only adopts multi-head atten-
tion for ETRE.

updated to incorporate this new information. Com-
pared to traditional hyperparameter optimization
methods such as random search and grid search,
HEBO can more efficiently explore the hyperpa-
rameter space by leveraging the information from
previously evaluated points.

C Distribution of Generated Probabilities
on the MATRES Dataset.

Figure 7 depicts the distribution of probabilities
generated by different language models on the MA-
TRES dataset.

D The Ablation Experimental Results on
the TB-Dense Dataset.

As shown in Table 5, the ablation experimental
results on the TB-Dense dataset also reveal the
importance of different components.

E The Performance Comparison on
GNN-based and LL.M-based
Benchmarks

We analyze the performance of GNN-based meth-
ods with different benchmarks, which is depicted
in Figure 8. The existing SOTA model MulCo(Yao
et al., 2024) contributes various GNN-based results.
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Figure 9: The performance comparison on the MA-
TRES dataset between our method and other bench-
marks based on LLMs.

Our method, based on two layers of GAT, outper-
forms MulCo-RGAT(2), highlighting the effective-
ness of our GDLLM proposed in the GNN-based
approaches. We also test the performance of the
GCN-based method, the results suggest that GCN
lacks the capacity of multi-head attention, which
fails to effectively learn the probabilistic relation
features for the short-distance proximity band.

As shown in Table 9, our method reports the ex-
perimental results based on Llama3.1 and Qwen2.5.
Our results outperform all other LLM-based bench-
marks(Xu et al., 2025; Hu et al., 2025) on the MA-
TRES dataset.
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