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Abstract
We propose EB-TCε, a novel sampling rule for ε-best arm identification in stochas-
tic bandits. It is the first instance of Top Two algorithm analyzed for approximate
best arm identification. EB-TCε is an anytime sampling rule that can therefore be
employed without modification for fixed confidence or fixed budget identification
(without prior knowledge of the budget). We provide three types of theoretical
guarantees for EB-TCε. First, we prove bounds on its expected sample complex-
ity in the fixed confidence setting, notably showing its asymptotic optimality in
combination with an adaptive tuning of its exploration parameter. We complement
these findings with upper bounds on its probability of error at any time and for any
error parameter, which further yield upper bounds on its simple regret at any time.
Finally, we show through numerical simulations that EB-TCε performs favorably
compared to existing algorithms, in different settings.

1 Introduction
In pure exploration problems, the goal is to answer a question about a set of unknown distributions
(modelling for example the efficacy of a treatment) from which we can collect samples (measure
its effect), and to provide guarantees on the candidate answer. Practitioners might have different
pre-defined constraints, e.g. the maximal budget might be fixed in advance or the error made should
be smaller than a fixed admissible error. However, in many cases, fixing such constraints in advance
can be challenging since a “good” choice typically depends on unknown quantities. Moreover, while
the budget is limited in clinical trials, it is often not fixed beforehand. The physicians can decide to
stop earlier or might obtain additional fundings for their experiments. In light of those real-world
constraints, regardless of its primal objective any strategy for choosing the next treatment should
ideally come with guarantees on its current candidate answer that hold at any time.

We formalize our investigations in the well-studied stochastic bandit model [4, 29], in which a
learner interacts sequentially with an environment composed of K ∈ N arms, which are unknown
distributions (νi)i∈[K] with finite means (µi)i∈[K]. At each stage n ∈ N, the learner chooses an
arm In ∈ [K] based on the samples previously observed and receives a sample Xn,In , random
variable with conditional distribution νIn given In. It then proceeds to the next stage. An algorithm
for the learner in this interaction is specified by a sampling rule, a procedure that determines In
based on previously observed samples. Formally, the sampling rule defines for all n ∈ N a function
from ([K]× R)n−1 to the probability distribution on [K], which is measurable with respect to the
σ-algebra Fn := σ({It, Xt,It}t∈[n−1]). We call that σ-algebra history before n.

Identification tasks We focus on best arm identification (BAI). In that task, the goal of the algorithm
is to find which of the arms has the largest mean, and to do so with a small probability of error, as
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quickly as possible. If several arms have means very close to the maximum, finding the one with the
highest mean might be difficult. However in practice we are often satisfied by any good enough arm,
in the sense that its mean is greater than µ⋆ − ε, where µ⋆ = maxi∈[K] µi. This is the ε-BAI task.
Our results can also be adapted to the multiplicative ε-BAI task, in which all means are non-negative
and we want to find an arm with mean µi ≥ (1− ε)µ⋆ [19] (see Appendix I for details).

Now that we have a (for now informal) goal, we need to complement the sampling rule with a
recommendation rule that specifies which arm is the candidate returned by the algorithm for the
best arm. We follow [5] and define that rule for all stages: for all n ∈ N, we denote by ı̂n this
Fn-measurable function from ([K]×R)n−1 to [K]. We call algorithm the combination of a sampling
and a recommendation rule.

Performance criteria There are several ways to evaluate the performance of an algorithm for
ε-BAI. Let Iε(µ) = {i ∈ [K] | µi ≥ µ⋆ − ε} be the set of ε-good arms. The probability of ε-error
or the recommendation at n is defined as Pν (̂ın /∈ Iε(µ)). Introduced in [1], the expected simple
regret is defined as Eν [µ⋆ − µı̂n ], and is independent of any parameter ε. Based on those notions,
several setting are studied in the bandit identification literature.

• Fixed confidence: we augment the algorithm with a stopping rule, a stopping time τε,δ with
respect to the history of samples and we impose that the algorithm should be (ε, δ)-PAC.
That is, its probability of ε-error at τε,δ must satisfy Pν(τε,δ < +∞, ı̂τε,δ /∈ Iε(µ)) ≤ δ.
The parameter δ is known to the algorithm. An algorithm is judged based on its expected
sample complexity E[τε,δ], the expected number of samples it needs to collect before it can
stop and return a good arm with the required confidence.

• Fixed budget: we run the algorithm until a predefined time T and we evaluate it based on
the probability of error at T . This setting has been mostly studied for ε = 0 [1, 25], but [41]
present the first bounds for ε > 0 for an algorithm that is actually agnostic to this value.

• Simple regret minimization: we evaluate the expected simple regret at T [5, 41].

Simple regret is typically studied in an anytime setting: [5] contains upper bounds on the simple
regret at time n for any n ∈ N∗. Similarly, [23] propose the anytime exploration setting, in which
they control the error probability P (̂ın ̸= i⋆) for exact best arm identification. Interestingly, the
authors build on an algorithm for the fixed-confidence setting, LUCB [24], whose sampling rule
depends on the risk parameter δ, which they replace by a sequence δn. The algorithm that we study in
this paper, motivated by the fixed-confidence ε-BAI problem, will already be anytime, which means
that it does not depend on a given final time T or a confidence level δ. We shall analyze its sample
complexity in the fixed confidence setting but thanks to the anytime property we will also be able to
prove guarantees on its probability of ε-error for every ε ≥ 0 and its simple regret at any time.

Additional notation and assumption We denote by D a set to which the distributions of the arms
are known to belong. We suppose that all distributions in D are 1-sub-Gaussian. A distribution ν0
is 1-sub-Gaussian if it satisfies EX∼ν0 [e

λ(X−EX∼ν0
[X])] ≤ eλ

2/2 for all λ ∈ R. For example, all
distributions bounded in [−1, 1] are 1-sub-Gaussian. Let us denote by i⋆(µ) := argmaxi∈[K] µi the
set of arms with largest mean (i.e. i⋆(µ) = I0(µ)). Let ∆i := µ⋆ − µi denote the sub-optimality gap
of arm i. We denote by △K ⊂ RK the simplex of dimension K − 1.

Fixed-confidence ε-best-arm identification Let ε ≥ 0 and δ ∈ (0, 1) be fixed error and confidence
parameters. In the fixed-confidence ε-BAI setting [31, 13, 35, 16], the probability of error of an
algorithm is required to be less than δ for all instances ν ∈ DK . That requirement leads to an
asymptotic lower bound on the expected sample complexity on any instance.

Lemma 1 ([10]). For all (ε, δ)-PAC algorithms and all instances νi = N (µi, 1) with µ ∈ RK ,
lim infδ→0

Eν [τε,δ]
log(1/δ) ≥ Tε(µ) where Tε(µ) = mini∈Iε(µ) minβ∈(0,1) Tε,β(µ, i) with

Tε,β(µ, i)
−1 = max

w∈△K ,wi=β
min
j ̸=i

1

2

(µi − µj + ε)2

1/β + 1/wj
. (1)

We say that an algorithm is asymptotically (resp. β-)optimal if its sample complexity matches that
lower bound, that is if lim supδ→0

Eν [τε,δ]
log(1/δ) ≤ Tε(µ) (resp. Tε,β(µ) = mini∈Iε(µ) Tε,β(µ, i)). Note
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that the expected sample complexity of an asymptotically 1/2-optimal algorithm is at worst twice
higher than that of any asymptotically optimal algorithm since Tε,1/2(µ) ≤ 2Tε(µ) [34].

The asymptotic characteristic time Tε(µ) is of order
∑K

i=1 min{ε−2,∆−2
i }. It is computed as a min-

imum over all ε-good arms i ∈ Iε(µ) of an arm-specific characteristic time, which can be interpreted
as the time required to verify that i is ε-good. Each of the times minβ∈(0,1) Tε,β(µ, i) correspond to
the complexity of a BAI instance (i.e. ε-BAI with ε = 0) in which the mean of arm i is increased by ε
(Lemma 9). Let wε,β(µ, i) be the maximizer of (1). In [16], they show that Tε(µ) = Tε,β⋆(i⋆)(µ, i

⋆)
and Tε,β(µ) = Tε,β(µ, i

⋆), where i⋆ ∈ i⋆(µ) and β⋆(i⋆) = argminβ∈(0,1) Tε,β(µ, i
⋆). For ε = 0, a

similar lower bound to Lemma 1 holds for all δ [15]. Lower bounds of order
∑K

i=1 ∆
−2
i log log∆−2

i
(independent of δ, but with a stronger dependence in the gaps) were also shown [17, 6, 38, 7]. Note
that the characteristic time for σ-sub-Gaussian distributions (which does not have a form as “explicit”
as (1)) is always smaller than the ones for Gaussian having the same means and variance σ2.

A good algorithm should have an expected sample complexity as close as possible to these lower
bounds. Several algorithms for (ε-)BAI are based on modifications of the UCB algorithm [24, 17, 14].
Others compute approximate solutions to the lower bound maximization problem and sample arms in
order to approach the solution [15, 11, 39]. Our method belongs to the family of Top Two algorithms
[34, 36, 21], which select at each time two arms called leader and challenger, and sample among
them. It is the first Top Two algorithm for the ε-BAI problem (for ε > 0).

Any time and uniform ε-error bound In addition to the fixed-confidence guarantees, we will
prove a bound on the probability of error for any time n and any error ε, similarly to the results of
[41]. That is, we bound Pν (̂ın /∈ Iε(µ)) for all n and all ε. This gives a bound on the probability of
error in ε-BAI, and a bound on the simple regret of the sampling rule by integrating: Eν [µ⋆ − µı̂n ] =∫
Pν (̂ın /∈ Iε(µ))d ε.

The literature mostly focuses on the fixed budget setting, where the time T at which we evaluate the
error probability is known and can be used as a parameter of the algorithm. Notable algorithms are
successive rejects (SR, [1]) and sequential halving (SH, [25]). These algorithms can be extended to
not depend on T by using a doubling trick [23, 41]. That trick considers a sequence of algorithms that
are run with budgets (Tk)k, with Tk+1 = 2Tk and T1 = 2K⌈log2K⌉. Past observations are dropped
when reaching Tk, and the obtained recommendation is used until the budget Tk+1 is reached.

1.1 Contributions
We propose the EB-TCε0 algorithm for identification in bandits, with a slack parameter ε0 > 0,
originally motivated by ε0-BAI. We study its combination with a stopping rule for fixed confidence
ε-BAI (possibly with ε0 ̸= ε) and also its probability of error and simple regret at any time.

• EB-TCε0 performs well empirically compared to existing methods, both for the expected
sample complexity criterion in fixed confidence ε-BAI and for the anytime simple regret
criterion. It is in addition easy to implement and computationally inexpensive in our regime.

• We prove upper bounds on the sample complexity of EB-TCε0 in fixed confidence ε-BAI
with sub-Gaussian distributions, both asymptotically (Theorem 1) as δ → 0 and for any
δ (Theorem 2). In particular, EB-TCε with ε > 0 is asymptotically optimal for ε-BAI with
Gaussian distributions.

• We prove a uniform ε-error bound valid for any time for EB-TCε0 . This gives in particular
a fixed budget error bound and a control of the expected simple regret of the algorithm
(Theorem 3 and Corollary 1).

2 Anytime Top Two sampling rule

We propose an anytime Top Two algorithm, named EB-TCε0 and summarized in Figure 1.

Recommendation rule Let Nn,i :=
∑

t∈[n−1] 1 (It = i) be the number of pulls of arm i before
time n, and µn,i :=

1
Nn,i

∑
t∈[n−1]Xt,It1 (It = i) be its empirical mean. At time n > K, we recom-

mend the Empirical Best (EB) arm ı̂n ∈ argmaxi∈[K] µn,i (where ties are broken arbitrarily).
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1: Input: slack ε0 > 0, proportion β ∈ (0, 1) (only for fixed proportions).
2: Set ı̂n ∈ argmaxi∈[K] µn,i, Bn = ı̂n and Cn ∈ argmini ̸=Bn

µn,Bn−µn,i+ε0√
1/Nn,Bn+1/Nn,i

.

3: Set β̄n+1(Bn, Cn) = (Tn(Bn, Cn)β̄n(Bn, Cn) + βn(Bn, Cn))/Tn+1(Bn, Cn) with [fixed]
βn(i, j) = β or [IDS] βn(i, j) = Nn,j/(Nn,i +Nn,j) and Tn+1(Bn, Cn) = Tn(Bn, Cn) + 1.

4: Set In = Cn if NBn

n,Cn
≤ (1− β̄n+1(Bn, Cn))Tn+1(Bn, Cn), otherwise set In = Bn.

5: Output: next arm to sample In and next recommendation ı̂n.

Figure 1: EB-TCε0 algorithm with fixed or IDS proportions.

2.1 Anytime Top Two sampling rule
We start by sampling each arm once. At time n > K, a Top Two sampling rule defines a leader
Bn ∈ [K] and a challenger Cn ̸= Bn. It then chooses the arm to pull among them. For the
leader/challenger pair, we consider the Empirical Best (EB) leader BEB

n = ı̂n and, given a slack
ε0 > 0, the Transportation Cost (TCε0 ) challenger

CTCε0
n ∈ argmin

i ̸=BEB
n

µn,BEB
n
− µn,i + ε0√

1/Nn,BEB
n
+ 1/Nn,i

. (2)

The algorithm then needs to choose between Bn and Cn. In order to do so, we use a so-called
tracking procedure [15]. We define one tracking procedure per pair of leader/challenger (i, j) ∈ [K]2

such that i ̸= j, hence we have K(K − 1) independent tracking procedures. For each pair (i, j) of
leader and challenger, the associated tracking procedure will ensure that the proportion of times the
algorithm pulled the leader i remains close to a target average proportion β̄n(i, j) ∈ (0, 1). At each
round n, only one tracking rule is considered, i.e. the one of the pair (i, j) = (Bn, Cn).

We define two variants of the algorithm that differ in the way they set the proportions β̄n(i, j).
Fixed proportions set β̄n(i, j) = β for all (n, i, j) ∈ N × [K]2, where β ∈ (0, 1) is
fixed beforehand. Information-Directed Selection (IDS) [40] defines βn(i, j) = Nn,j/(Nn,i +
Nn,j) and sets β̄n(i, j) := Tn(i, j)

−1
∑

t∈[n−1] 1 ((Bt, Ct) = (i, j))βt(i, j) where Tn(i, j) :=∑
t∈[n−1] 1 ((Bt, Ct) = (i, j)) is the selection count of arms (i, j) as leader/challenger.

Let N i
n,j :=

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j), It = j) be the number of pulls of arm j at rounds in

which i was the leader. We set In = Cn if NBn

n,Cn
≤ (1 − β̄n+1(Bn, Cn))Tn+1(Bn, Cn) and

In = Bn otherwise. Using Theorem 6 in [12] for each tracking procedure (i.e. each pair (i, j)) yields
Lemma 2 (proved in Appendix H).

Lemma 2. For all n > K, i ∈ [K], j ̸= i, we have −1/2 ≤ N i
n,j − (1− β̄n(i, j))Tn(i, j) ≤ 1.

The TCε0 challenger seeks to minimize an empirical version of a quantity that appears in the lower
bound for ε0-BAI (Lemma 1). As such, it is a natural extension of the TC challenger used in the T3C
algorithm [36] for ε0 = 0. In earlier works on Top Two methods [34, 32, 36], the choice between
leader and challenger is randomized: given a fixed proportion β ∈ (0, 1), set In = Bn with probability
β, otherwise In = Cn. [20] replaced randomization by tracking, and [40] proposed IDS to define
adaptive proportions βn(Bn, Cn) ∈ (0, 1). In this work we study both fixed proportions with β = 1/2
and adaptive proportions with IDS. Empirically, we observe slightly better performances when using
IDS (e.g. Figure 7 in Appendix J.2.1). While [20] tracked the leader with K procedures, we consider
K(K − 1) independent tracking procedures depending on the current leader/challenger pair.

Choosing ε0 [21] shows that EB-TC (i.e. EB-TCε0 with slack ε0 = 0) suffers from poor empirical
performance for moderate δ in BAI (see Appendix D.3 in [21] for a detailed discussion). Therefore,
the choice of the slack ε0 > 0 is critical since it acts as a regularizer which naturally induces sufficient
exploration. By setting ε0 too small, the EB-TCε0 algorithm will become as greedy as EB-TC and
perform poorly. Having ε0 too large will flatten differences between sub-optimal arms, hence it will
behave more uniformly. We observe from the theoretical guarantees and from our experiments that it
is best to take ε0 = ε for ε-BAI, but the empirical performance is only degrading slowly for ε0 > ε.
Taking ε0 < ε leads to very poor performance. We discuss this trade-off in more details in our
experiments (e.g. Figures 5, 6 and 7 in Appendix J.2.1). When tackling BAI, the limitation of EB-TC
can be solved by adding an implicit exploration mechanism in the choice of the leader/challenger
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pair. For the choice of leader, we can use randomization (TS leader [34, 32, 36]) or optimism (UCB
leader [20]). For the choice of the challenger, we can use randomization (RS challenger [34]) or
penalization (TCI challenger [21], KKT challenger [40] or EI challenger [32]).

Anytime sampling rule EB-TCε0 is independent of a budget of samples T or a confidence pa-
rameter δ. This anytime sampling rule can be regarded as a stream of empirical means/counts
(µn, Nn)n>K (which could trigger stopping) and a stream of recommendations ı̂n = i⋆(µn). These
streams can be used by agents with different kinds of objectives. The fixed-confidence setting couples
it with a stopping rule to be (ε, δ)-PAC. It can also be used to get an ε-good recommendation with
large probability at any given time n.

2.2 Stopping rule for fixed-confidence ε-best-arm identification
In addition to the sampling and recommendation rules, the fixed-confidence setting requires a stopping
rule. Given an error/confidence pair, the GLRε stopping rule [15] prescribes to stop at the time

τε,δ = inf

{
n > K | min

i ̸=ı̂n

µn,̂ın − µn,i + ε√
1/Nn,̂ın + 1/Nn,i

≥
√
2c(n− 1, δ)

}
with ı̂n = i⋆(µn) , (3)

where c : N×(0, 1) → R+ is a threshold function. Lemma 3 gives a threshold ensuring that the GLRε

stopping rule is (ε, δ)-PAC for all ε ≥ 0 and δ ∈ (0, 1), independently of the sampling rule.

Lemma 3 ([27]). Let ε ≥ 0 and δ ∈ (0, 1). Given any sampling rule, using the threshold

c(n, δ) = 2CG(log((K − 1)/δ)/2) + 4 log(4 + log(n/2)) (4)

with the stopping rule (3) with error/confidence pair (ε, δ) yields a (ε, δ)-PAC algorithm for sub-
Gaussian distributions. The function CG is defined in (23). It satisfies CG(x) ≈ x+ log(x).

3 Fixed-confidence theoretical guarantees
To study ε-BAI in the fixed-confidence setting, we couple EB-TCε0 with the GLRε stopping rule (3)
using error ε ≥ 0, confidence δ ∈ (0, 1) and threshold (4). The resulting algorithm is (ε, δ)-PAC
by Lemma 3. We derive upper bounds on the expected sample complexity Eν [τε,δ] both in the
asymptotic regime of δ → 0 (Theorem 1) and for finite confidence when ε = ε0 (Theorem 2).

Theorem 1. Let ε ≥ 0, ε0 > 0 and (β, δ) ∈ (0, 1)2. Combined with GLRε stopping (3), the EB-TCε0
algorithm is (ε, δ)-PAC and it satisfies that, for all ν ∈ DK with mean µ such that |i⋆(µ)| = 1,

[IDS] lim sup
δ→0

Eν [τε,δ]

log(1/δ)
≤ Tε0(µ)Dε,ε0(µ) and [fixed β] lim sup

δ→0

Eν [τε,δ]

log(1/δ)
≤ Tε0,β(µ)Dε,ε0(µ),

where Dε,ε0(µ) = (1 + maxi ̸=i⋆(ε0 − ε)/(µ⋆ − µi + ε))2.

While Theorem 1 holds for all sub-Gaussian distributions, it is particularly interesting for Gaussian
ones, in light of Lemma 1. When choosing ε = ε0 (i.e. Dε0,ε0(µ) = 1), Theorem 1 shows that EB-
TCε0 is asymptotically optimal for Gaussian bandits when using IDS proportions and asymptotically
β-optimal when using fixed proportions β. We also note that Theorem 1 is not conflicting with the
lower bound of Lemma 1, as shown in Lemma 11 in Appendix C. Empirically we observe that the
empirical stopping time can be drastically worse when taking ε0 < ε, and close to the optimal one
when ε0 > ε (Figures 5, 6 and 7 in Appendix J.2.1).

Until recently [40], proving asymptotic optimality of Top Two algorithms with adaptive choice β
was an open problem in BAI. In this work, we prove that their choice of IDS proportions also yield
asymptotically optimal algorithms for ε-BAI. While the proof of Theorem 1 assumes the existence of
a unique best arm, it holds for instances having sub-optimal arms with the same mean. This is an
improvement compared to existing asymptotic guarantees on Top Two algorithms which rely on the
assumption that the means of all arms are different [32, 36, 21]. The improvement is possible thanks
to the regularization induced by the slack ε0 > 0.

While asymptotic optimality in the ε-BAI setting was already achieved for various algorithms
(e.g. ε-Track-and-Stop (TaS) [16], Sticky TaS [10] or LεBAI [19]), none of them obtained non-
asymptotic guarantees. Despite their theoretical interest, asymptotic results provide no guarantee on
the performance for moderate δ. Furthermore, asymptotic results on Top Two algorithms require a
unique best arm regardless of the considered error ε: reaching asymptotic (β-)optimality implicitly
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means that the algorithm eventually allocates samples in an optimal way that depends on the identity
of the unique best arm, and that requires the unique best arm to be identified. As our focus is ε-BAI,
our guarantees should only require that one of the ε-good arms is identified and should hold for
instances having multiple best arms. The upper bound should scale with ε−2

0 instead of ∆−2
min when

∆min is small. Theorem 2 satisfies these requirements.

Theorem 2. Let δ ∈ (0, 1) and ε0 > 0. Combined with GLRε0 stopping (3), the EB-TCε0 algorithm
with fixed β = 1/2 is (ε0, δ)-PAC and satisfies that, for all ν ∈ DK with mean µ,

Eν [τε0,δ] ≤ inf
ε̃∈[0,ε0]

max {Tµ,ε0(δ, ε̃) + 1, Sµ,ε0(ε̃)}+ 2K2 ,

where Tµ,ε0(δ, ε̃) and Sµ,ε0(ε̃) are defined by

Tµ,ε0(δ, ε̃) = sup{n | n− 1 ≤ 2(1 + γ)2
∑

i∈Iε̃(µ)

Tε0,1/2(µ, i)(
√
c(n− 1, δ) +

√
4 log n)2} ,

Sµ,ε0(ε̃) = h1

(
16(1 + γ−1)

aµ,ε0(ε̃)
Hµ,ε0(ε̃),

(1 + γ−1)K2

aµ,ε0(ε̃)
+ 1

)
,

aµ,ε0(ε̃) =
mini∈Iε̃(µ) Tε0,1/2(µ, i)∑

i∈Iε̃(µ)
Tε0,1/2(µ, i)

min
i∈Iε̃(µ),j ̸=i

wε0,1/2(µ, i)j ,

where γ ∈ (0, 1/2] is an analysis parameter and h1(y, z) ≈ z+ y log(z+ y log(y)) as in Lemma 51.
Tε0,1/2(µ, i) and wε0,1/2(µ, i) are defined in (1) and

Hµ,ε0(ε̃) :=
2|i⋆(µ)|
∆µ(ε̃)2

+ (|Iε̃(µ) \ i⋆(µ)|)Cµ,ε0(ε̃)
2 +

∑
i/∈Iε̃(µ)

max{Cµ,ε0(ε̃),
√
2∆−1

i }2 , (5)

with ∆µ(ε̃) = mink/∈Iε̃(µ) ∆k and Cµ,ε0(ε̃) = max{2∆µ(ε̃)
−1 − ε−1

0 , ε−1
0 }.

The upper bound on Eν [τε0,δ] involves a δ-dependent term Tµ,ε0(δ, ε̃) and a δ-independent term
Sµ,ε0(ε̃). The choice of ε̃ influences the compromise between those, and the infimum over ε̃ means
that our algorithm benefits from the best possible trade-off. In the asymptotic regime, we take ε̃ = 0
and γ → 0 and we obtain limδ→0 Eν [τε0,δ]/ log(1/δ) ≤ 2|i⋆(µ)|Tε0,1/2(µ). When |i⋆(µ)| = 1, we
recover the asymptotic result of Theorem 1 up to a multiplicative factor 2. For multiple best arms, the
asymptotic sample complexity is at most a factor 2|i⋆(µ)| from the β-optimal one.

Given a finite confidence, the dominant term will be Sµ,ε0(ε̃). For ε̃ = 0, we show that Hµ,ε0(0) =
O(Kmin{∆min, ε0}−2), hence we should consider ε̃ > 0 to avoid the dependency in ∆min. For
ε̃ = ε0, there exists instances such that maxi∈Iε0

(µ) Tε0,1/2(µ, i) is arbitrarily large, hence Sµ,ε0(ε0)

will be very large as well. The best trade-off is attained in the interior of the interval (0, ε0). For
ε̃ = ε0/2, Lemma 10 shows that Tε0,1/2(µ, i) = O(K/ε20) for all i ∈ Iε0/2(µ) and Hµ,ε0(ε0/2) =

O(K/ε20). Therefore, we obtain an upper bound O(|Iε0/2(µ)|Kε
−2
0 log ε−1

0 ).

Likewise, Lemma 10 shows that minj ̸=i wε0,1/2(µ, i)j ≥ (16(K − 2) + 2)−1 for all i ∈ Iε0/2(µ).
While the dependency in aµ,ε0(ε0/2) is milder in ε-BAI than in BAI (as it is bounded away from
0), we can improve it by using a refined analysis (see Appendix E). Introduced in [20], this method
allows to clip minj ̸=i wε0,1/2(µ, i)j by a fixed value x ∈ [0, (K − 1)−1] for all i ∈ Iε̃(µ).

Comparison with existing upper bounds The LUCB algorithm [24] has a structure similar to
a Top Two algorithm, with the differences that LUCB samples both the leader and the challenger
and that it stops when the gap between the UCB and LCB indices is smaller than ε0. As LUCB
satisfies Eµ[τε0,δ] ≤ 292Hε0(µ) log(Hε0(µ)/δ) + 16 where Hε0(µ) =

∑
i(max{∆i, ε0/2})−2, it

enjoys better scaling than EB-TCε0 for finite confidence. However, since the empirical allocation of
LUCB is not converging towards wε0,1/2(µ), it is not asymptotically 1/2-optimal. While LUCB has
better moderate confidence guarantees, there is no hope to prove anytime performance bounds since
LUCB indices depends on δ. In contrast, EB-TCε0 enjoys such guarantees (see Section 4).

Key technical tool for the non-asymptotic analysis We want to ensure that EB-TCε0 eventually
selects only ε-good arms as leader, for any error ε ≥ 0. Our proof strategy is to show that if the
leader is not an ε-good arm and empirical means do not deviate too much from the true means, then
either the current leader or the current challenger was selected as leader or challenger less than a
given quantity. We obtain a bound on the total number of times that can happen.
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Lemma 4. Let δ ∈ (0, 1] and n > K. Let Tn(i) :=
∑

j ̸=i(Tn(i, j) + Tn(j, i)) be the number of
times arm i was selected in the leader/challenger pair. Assume there exists a sequence of events
(At(n, δ))n≥t>K and positive reals (Di(n, δ))i∈[K] such that, for all t ∈ {K + 1, . . . , n}, under the
event At(n, δ),

∃it ∈ [K], Tt(it) ≤ Dit(n, δ) and Tt+1(it) = Tt(it) + 1 . (6)
Then, we have

∑n
t=K+1 1 (At(n, δ)) ≤

∑
i∈[K]Di(n, δ).

To control the deviation of the empirical means and empirical gaps to their true value, we use
a sequence of concentration events (En,δ)n>T defined in Lemma 45 (Appendix G.2) such that
Pν(E∁

n,δ) ≤ K2δn−s where s ≥ 0 and δ ∈ (0, 1]. For the EB-TCε0 algorithm with fixed β = 1/2,
we prove that, under En,δ, {BEB

t /∈ Iε(µ)} is a “bad” event satisfying the assumption of Lemma 4.
This yields Lemma 5, which essentially says that the leader is an ε-good arm except for a logarithmic
number of rounds.

Lemma 5. Let δ ∈ (0, 1], n > K and ε ≥ 0. Under the event En,δ , we have∑
i∈Iε(µ)

∑
j

Tn(i, j) ≥ n− 1− 8Hµ,ε0(ε)f2(n, δ)− 3K2 ,

where f2(n, δ) = log(1/δ) + (2 + s) log n and Hµ,ε0(ε) is defined in (5).

Noticeably, Lemma 5 holds for any ε ≥ 0 even when there are multiple best arms. As ex-
pected the number of times the leader is not among the ε0-good arms depends on Hµ,ε0(ε0) =
O(K/ε20). The number of times the leader is not among the best arms depends on Hµ,ε0(0) =
O(K(min{∆min, ε0})−2).

Time-varying slack Theorem 1 shows the asymptotic optimality of the EB-TCε0 algorithm with
IDS for ε0-BAI (where ε0 > 0). To obtain optimality for BAI, we consider time-varying slacks (εn)n,
where (εn)n is decreasing, εn > 0 and εn →+∞ 0. A direct adaptation of our asymptotic analysis
on Eν [τ0,δ] (see Appendix D), regardless of the choice of (εn)n, one can show that using GLR0

stopping, the EB-TC(εn)n algorithm with IDS is (0, δ)-PAC and is asymptotically optimal in BAI. Its
empirical performance is however very sensitive to the choice of (εn)n (Appendix J.2.3).

4 Beyond fixed-confidence guarantees
Could an algorithm analyzed in the fixed-confidence setting be used for the fixed-budget or even
anytime setting? This question is especially natural for EB-TCε0 , which does not depend on the
confidence parameter δ. Yet its answer is not obvious, as it is known that algorithms that have optimal
asymptotic guarantees in the fixed-confidence setting can be sub-optimal in terms of error probability.
Indeed [28] prove in their Appendix C that for any asymptotically optimal (exact) BAI algorithm,
there exists instances in which the error probability cannot decay exponentially with the horizon,
which makes them worse than the (minimax optimal) uniform sampling strategy [5].

Their argument also applies to β-optimal algorithms, hence to EB-TC0 with β = 1/2. However,
whenever ε0 is positive, Theorem 3 reveals that the error probability of EB-TCε0 always decays
exponentially, which redeems the use of optimal fixed-confidence algorithms for a relaxed BAI
problem in the anytime setting. Going further, this result provides an anytime bound on the probability
to recommend an arm that is not ε-optimal, for any error ε ≥ 0. This bound involves instance-
dependent complexities depending solely on the gaps in µ. To state it, we define Cµ := |{µi | i ∈
[K]}| as the number of distinct arm means in µ and let Cµ(i) := {k ∈ [K] | µ⋆ − µk = ∆i} be the
set of arms having mean gap ∆i where the gaps are sorted by increasing order 0 = ∆1 < ∆2 <
· · · < ∆Cµ

. For all ε ≥ 0, let iµ(ε) = i if ε ∈ [∆i,∆i+1) (with the convention ∆Cµ+1 = +∞).
Theorem 3 shows that the exponential decrease of Pν (̂ın /∈ Iε(µ)) is linear.

Theorem 3. (see Theorem 6 in Appendix F) Let ε0 > 0. The EB-TCε0 algorithm with fixed
proportions β = 1/2 satisfies that, for all ν ∈ DK with mean µ, for all ε ≥ 0, for all n > 5K2/2,

Pν (̂ın /∈ Iε(µ)) ≤ K2e2(2 + log n)2 exp

(
−p
(

n− 5K2/2

8Hiµ(ε)(µ, ε0)

))
.

where p(x) = x − log x and (Hi(µ, ε0))i∈[Cµ−1] are such that H1(µ, ε0) = K(2∆−1
min + 3ε−1

0 )2

and K/∆−2
i+1 ≤ Hi(µ, ε0) ≤ Kminj∈[i] max{2∆−1

j+1, 2
∆j/ε0+1
∆i+1−∆j

+ 3ε−1
0 }2 for all i > 1.

7



This bound can be compared with the following uniform ε-error bound of the strategy using uniform
sampling and recommending the empirical best arm:

P
(
ı̂Un /∈ Iε(µ)

)
≤

∑
i/∈Iε(µ)

exp

(
−∆2

i ⌊n/K⌋
4

)
≤ K exp

(
− n−K

4K∆−2
iµ(ε)+1

)

Recalling that the quantity Hi(µ, ε0) in Theorem 3 is always bounded from below by 2K∆−1
i+1, we

get that our upper bound is larger than the probability of error of the uniform strategy, but the two
should be quite close. For example for ε = 0, we have

Pν (̂ın /∈ i⋆(µ))≤ exp

(
−Θ

(
n

K(∆−1
min + ε−1

0 )2

))
, Pν

(
ı̂Un /∈ i⋆(µ)

)
≤ exp

(
−Θ

(
n

K∆−2
min

))
.

Even if they provide a nice sanity-check for the use of a sampling rule with optimal fixed-confidence
guarantees for ε0-BAI in the anytime regime, we acknowledge that these guarantees are far from
optimal. Indeed, the work of [41] provides tighter anytime uniform ε-error probability bounds for
two algorithms: an anytime version of Sequential Halving [25] using a doubling trick (called DSH),
and an algorithm called Bracketting Sequential Halving, that is designed to tackle a very large
number of arms. Their upper bounds are of the form Pν (̂ın /∈ Iε(µ)) ≤ exp (−Θ(n/H(ε))) with
H(ε) = 1

g(ε/2) maxi≥g(ε)+1
i

∆2
i

where g(ε) = |{i ∈ [K] | µi ≥ µ⋆ − ε}|. Therefore, they can be

much smaller than K∆−2
iµ(ε)+1.

The BUCB algorithm of [26] is also analyzed for any level of error ε, but in a different fashion. The
authors provide bounds on its (ε, δ)-unverifiable sample complexity, defined as the expectation of
the smallest stopping time τ̃ satisfying P(∀t ≥ τ̃ , ı̂n ∈ Iε(µ)) ≥ 1 − δ. This notion is different
from the sample complexity we use in this paper, which is sometimes called verifiable since it is the
time at which the algorithm can guarantee that its error probability is less than δ. Interestingly, to
prove Theorem 3 we first prove a bound on the unverifiable sample complexity of EB-TCε0 which
is valid for all (ε, δ), neither of which are parameters of the algorithm. More precisely, we prove
that Pν

(
∀n > Uiµ(ε),δ(µ, ε0), ı̂n ∈ Iε(µ)

)
≥ 1 − δ for Ui,δ(µ, ε0) =δ→0 8Hi(µ, ε0) log(1/δ) +

O(log log(1/δ)). As this statement is valid for all δ ∈ (0, 1), applying it for each n to δn such that
Uiµ(ε),δn(µ, ε0) = n, we obtain Theorem 3. We remark that such a trick cannot be applied to BUCB
to get uniform ε-error bounds for any time, as the algorithm does depend on δ.

Simple regret As already noted by [41], uniform ε-error bounds easily yield simple regret bounds.
We state in Corollary 1 the one obtained for EB-TCε0 . As a motivation to derive simple regret bounds,
we observe that they readily translate to bounds on the cumulative regret for an agent observing the
stream of recommendations (̂ın) and playing arm ı̂n. An exponentially decaying simple regret leads
to a constant cumulative regret in this decoupled exploration/exploitation setting [2, 33].

Corollary 1. Let ε0 > 0. Let p(x) and (Hi(µ, ε0))i∈[Cµ−1] be defined as in Theorem 3. The EB-TCε0

algorithm with fixed β = 1/2 satisfies that, for all ν ∈ DK with mean µ, for all n > 5K2/2,

Eν [µ⋆ − µı̂n ] ≤ K2e2(2 + log n)2
∑

i∈[Cµ−1]

(∆i+1 −∆i) exp

(
−p
(
n− 5K2/2

8Hi(µ, ε0)

))
.

Following the discussion above, this bound is not expected to be state-of-the-art, it rather justifies
that EB-TCε0 with ε0 > 0 is not too much worse than the uniform sampling strategy. Yet, as we shall
see in our experiments, the practical story is different. In Section 5, we compare the simple regret of
EB-TCε0 to that of DSH in synthetic experiments with a moderate number of arms, revealing the
superior performance of EB-TCε0 .

5 Experiments
We assess the performance of the EB-TCε0 algorithm on Gaussian instances both in terms of its
empirical stopping time and its empirical simple regret, and we show that it perform favorably
compared to existing algorithms in both settings. For the sake of space, we only show the results for
large sets of arms and for a specific instance with |i⋆(µ)| = 2.
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Figure 2: (a) Empirical stopping time on “α = 0.3” instances for varying K and stopping rule (3)
using (ε, δ) = (0.1, 0.01). The BAI algorithms T3C, EB-TCI and TTUCB are modified to be ε-BAI
ones. (b) Empirical simple regret on instance µ = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2), in which EB-TCε0
with slack ε0 = 0.1 and fixed β = 1/2 is used.

Empirical stopping time We study the impact of large sets of arms (up to K = 1000) in ε-BAI
for (ε, δ) = (0.1, 0.01) on the “α = 0.3” scenario of [18] which sets µi = 1− ((i− 1)/(K − 1))α

for all i ∈ [K]. EB-TCε0 with IDS and slack ε0 = ε is compared to existing ε-BAI algorithms
having low computational cost. This precludes algorithms such as ε-Track-and-Stop (TaS) [16],
Sticky TaS [10] or ε-BAI adaptation of FWS [39] and DKM [11]. In Appendix J.2.2, we compare
EB-TCε to those algorithms on benchmarks with smaller number of arms. We show that EB-TCε

performs on par with ε-TaS and ε-FWS, but outperforms ε-DKM. As Top Two benchmarks with fixed
β = 1/2, we consider T3C [36], EB-TCI [21] and TTUCB [20]. To provide a fair comparison, we
adapt them to tackle ε-BAI by using the stopping rule (3) and by adapting their sampling rule to use
the TCε challenger from (2) (with a penalization logNn,i for EB-TCI). We use the heuristic threshold
c(n, δ) = log((1+ log n)/δ). While it is too small to ensure the (ε, δ)-PAC property, it still yields an
empirical error which is several orders of magnitude lower than δ. Finally, we compare with LUCB
[24] and uniform sampling. For a fair comparison, LUCB uses

√
2c(n− 1, δ)/Nn,i as bonus, which

is also too small to yield valid confidence intervals. Our results are averaged over 100 runs, and the
standard deviations are displayed. In Figure 2(a), we see that EB-TCε performs on par with the ε-T3C
heuristic, and significantly outperforms the other algorithms. While the scaling in K of ε-EB-TCI
and LUCB appears to be close to the one of EB-TCε, ε-TTUCB and uniform sampling obtain a worse
one. Figure 2(a) also reveals that the regularization ensured by the TCε challenger is sufficient to
ensure enough exploration, hence other exploration mechanisms are superfluous (TS/UCB leader or
TCI challenger).

Anytime empirical simple regret The EB-TCε0 algorithm with fixed β = 1/2 and ε0 = 0.1 is
compared to existing algorithms on the instance µ = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2) from [16], which
has two best arms. As benchmark, we consider Doubling Successive Reject (DSR) and Doubling
Sequential Halving (DSH), which are adaptations of the elimination based algorithms SR [1] and
SH [25]. SR eliminates one arm with the worst empirical mean at the end of each phase, and SH
eliminated half of them but drops past observations between each phase. These doubling-based
algorithms have empirical error decreasing by steps: they change their recommendation only before
they restart. In Figure 2(b), we plot the average of the simple regret over 10000 runs and the
standard deviation of that average (which is too small to see clearly). We observe that EB-TCε0
outperforms uniform sampling, as well as DSR and DSH, which both perform worse due to the
dropped observations. The favorable performance of EB-TCε0 is confirmed on other instances
from [16], and for “two-groups” instances with varying |i⋆(µ)| (see Figures 10 and 12).

Supplementary experiments Extensive experiments and implementation details are available in
Appendix J. In Appendix J.2.1, we compare the performance of EB-TCε0 with different slacks ε0
for IDS and fixed β = 1/2. In Appendix J.2.2, we demonstrate the good empirical performance of
EB-TCε0 compared to state-of-the art methods in the fixed-confidence ε-BAI setting, compared to
DSR and DSH for the empirical simple regret, and compared to SR and SH for the probability of
0-error in the fixed-budget setting (Figure 13). We consider a wide range of instances: random ones,
benchmarks from the literature [18, 16] and “two-groups” instances with varying |i⋆(µ)|.
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6 Perspectives
We have proposed the EB-TCε0 algorithm, which is easy to understand and implement. EB-TCε0 is
the first algorithm to be simultaneously asymptotically optimal in the fixed-confidence ε0-BAI setting
(Theorem 1), have finite-confidence guarantees (Theorem 2), and have also anytime guarantees on the
probability of error at any level ε (Theorem 3), hence on the simple regret (Corollary 1). Furthermore,
we have demonstrated that the EB-TCε0 algorithm achieves superior performance compared to other
algorithms, in benchmarks where the number of arms is moderate to large. In future work, we will
investigate its possible adaptation to the data-poor regime of [41] in which the number of arms is so
large that any algorithm sampling each arm once is doomed to failure.

While our results hold for general sub-Gaussian distributions, the EB-TCε0 algorithm with IDS
and slack ε0 > 0 only achieves asymptotic optimality for ε0-BAI with Gaussian bandits. Even
though IDS has been introduced by [40] for general single-parameter exponential families, it is still
an open problem to show asymptotic optimality for distributions other than Gaussians. While our
non-asymptotic guarantees on Eν [τε0,δ] and Eν [µ⋆ − µı̂n ] were obtained for the EB-TCε0 algorithm
with fixed β = 1/2, we observed empirically better performance when using IDS. Deriving similar
(or better) non-asymptotic guarantees for IDS is an interesting avenue for future work.

Finally, the EB-TCε0 algorithm is a promising method to tackle structured bandits. Despite the exis-
tence of heuristics for settings such as Top-k identification [40], it is still an open problem to efficiently
adapt Top Two approaches to cope for other structures such as ε-BAI in linear bandits.
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A Outline

The appendices are organized as follows:

• Notation are summarized in Appendix B.

• In Appendix C, we show how the characteristic times and optimal allocations for ε-BAI can
be reduced to the ones of a BAI problem with modified instances (Lemma 9).

• The asymptotic upper bound on the expected sample complexity of the EB-TCε0 algorithm
when combined with the stopping rule (4) is proven in Appendix D (Theorem 1).

• The non-asymptotic upper bound on the expected sample complexity of the EB-TCε0
algorithm when combined with the stopping rule (4) is proven in Appendix E (Theorem 5).

• The upper bound on the probability of error and on the simple regret of the EB-TCε0
algorithm is proven in Appendix F (Theorem 6), as well as the upper bound on its unverifiable
expected sample complexity (Theorem 7).

• Appendix G gathers concentration results used for the calibration of the stopping rule
(Lemma 3) and to control the empirical means and gaps.

• Appendix H gathers existing and new technical results which are used for our proofs.

• In Appendix I, we discuss the multiplicative notion of ε-goodness, propose the EB-TCm
ε0 al-

gorithm and show asymptotic guarantees on the expected sample complexity when combined
with the appropriate GLR stopping rule (Theorem 8).

• Implementation details and additional experiments are presented in Appendix J.

Table 1: Notation for the setting.

Notation Type Description

K N Number of arms
νi D Sub-Gaussian distribution of arm i ∈ [K]
ν DK Vector of sub-Gaussian distributions, ν := (νi)i∈[K]

µi R Mean of arm i ∈ [K]
µ RK Vector of means, µ := (µi)i∈[K]

µ⋆ R Largest mean, µ⋆ := maxi∈[K] µi

∆i R+ Gap of arm i, ∆i := µ⋆ − µi

i⋆(µ) [K] Best arms, i⋆(µ) := argmaxi∈[K] µi

ε R+ Additive error of ε-good arms
Iε(µ) [K] ε-Good arms, Iε(µ) := {i ∈ [K] | ∆i ≤ ε}

Tε(µ), Tε,β(µ), Tε,β(µ, i) R⋆
+ Asymptotic (β-)characteristic time for ε-BAI

wε(µ), wε,β(µ), wε,β(µ, i) △K Asymptotic (β-)optimal allocation for ε-BAI
Cµ [K] Number of equivalence classes, Cµ := |{µi | i ∈ [K]}|
Cµ(i) [K] Equivalence class, Cµ(i) := {k ∈ [K] | µ⋆ − µk = ∆i}

B Notation

We recall some commonly used notation: the set of integers [n] := {1, · · · , n}, the complement
X∁ and interior X̊ of a set X , the indicator function 1 (X) of an event, the probability Pν and the
expectation Eν under distribution ν, Landau’s notation o, O, Ω and Θ, the (K − 1)-dimensional
probability simplex △K :=

{
w ∈ RK

+ | w ≥ 0,
∑

i∈[K] wi = 1
}

. The functions CG and gG are

defined in (23), W−1 in Lemma 49, h1 in Lemma 51, ζ is the Riemann ζ function. While Table 1
gathers problem-specific notation, Table 2 groups notation for the algorithms.
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Table 2: Notation for algorithms.

Notation Type Description

Bn, B
EB
n [K] (EB) Leader at time n

Cn, C
TCε0
n [K] (TCε0 ) Challenger at time n

In [K] Arm sampled at time n
Xn,In R Sample observed at the end of time n, i.e. Xn,In ∼ νIn
Fn History before time n, i.e. Fn := σ(I1, X1,I1 , · · · , In, Xn,In)
ı̂n [K] Arm recommended before time n
τε,δ N Sample complexity (stopping time)
c(n, δ) N× (0, 1) → R⋆

+ Stopping threshold function
Nn,i N Number of pulls of arm i before time n
µn,i I Empirical mean of arm i before time n

Tn(i, j) N Counts of (Bt, Ct) = (i, j) before time n
Tn(i) N Counts of i ∈ {Bt, Ct} before time n
N i

n,j N Counts of (Bt, Ct, It) = (i, j, j) before time n
β (0, 1) Fixed proportion

βn(i, j) (0, 1) IDS proportions
β̄n(i, j) (0, 1) Averaged IDS proportions

C Characteristic Times
In Appendix C, we first recall properties satisfied by the (β-)characteristic times and (β-)optimal
allocation for the BAI setting with Gaussian bandits. Then, we show how a ε-BAI problem can be
reduced to a BAI one on a modified (and easier) instance.

BAI setting Let ν ∈ DK with mean µ ∈ RK . The (β-)characteristic times for the fixed-confidence
BAI setting with Gaussian bandits N (µ, 1) are defined as

T ⋆(µ) = min
β∈(0,1)

T ⋆
β (µ) with 2T ⋆

β (µ)
−1 = max

w∈△K ,wi⋆=β
min
i⋆ ̸=i

(µi⋆ − µi)
2

1/β + 1/wi
, (7)

see [15, 34] for example. Let us denote by w⋆
β(µ) and w⋆(µ) their maximizer, which we will refer

to as (β-)optimal allocations. Note that (T ⋆(µ), T ⋆
β (µ)) = (T0(µ), T0,β(µ)) and (w⋆(µ), w⋆

β(µ)) =

(w0(µ), w0,β(µ)).

We recall in the following some fundamental results on those quantities (β-)characteristic times and
(β-)optimal allocations. Lemma 6 proves that the (β-)optimal allocations are unique, have strictly
positive elements, and shows a worst-case inequality T ⋆

1/2(µ) ≤ 2T ⋆(µ). Lemma 6 also holds for any
single-parameter exponential family of distributions and for the non-parametric family of bounded
distributions [21].

Lemma 6 ([15, 34, 21]). If i⋆(µ) is a singleton and β ∈ (0, 1), then w⋆(µ) and w⋆
β(µ) are singletons,

i.e. the optimal allocations are unique, and w⋆(µ)i > 0 and w⋆
β(µ)i > 0 for all i ∈ [K]. Moreover,

we have T ⋆
1/2(µ) ≤ 2T ⋆(µ) and with β⋆ = w⋆

i⋆(µ). Additionally, we have H(µ) ≤ T ⋆(µ) ≤ 2H(µ)

where H(µ) = 2
∑

i∈[K] ∆
−2
i where ∆i⋆ = ∆min.

For Gaussian bandits, Lemma 7 shows that the (β-)characteristic times and (β-)optimal allocations can
be obtained by solving a simpler optimization problem, which is amenable to faster implementation
(e.g. Newton’s iterates). It also provides upper and lower bound on the optimal allocation of the best
arm, and gives hints that a tighter worst-case inequality T ⋆

1/2(µ) ≤ rKT
⋆(µ) might hold.

Lemma 7 ([3, 20]). Assume that i⋆(µ) = {i⋆}. Let r(µ) and rβ(µ) be the solution of ψµ(r) = 0
and φµ,β(r) = 0 with, for all r ∈ (1/mini ̸=i⋆(µi⋆ − µi)

2,+∞),

ψµ(r) =
∑
i̸=i⋆

1

(r(µi⋆ − µi)2 − 1)
2 − 1 and φµ,β(r) =

∑
i ̸=i⋆

1

r(µi⋆ − µi)2 − 1
− 1− β

β
,
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Then, ψµ and φµ,β are convex and decreasing. Moreover,

T ⋆(µ) =
2r(µ)

1 +
∑

i ̸=i⋆
1

r(µ)(µi⋆−µi)2−1

and T ⋆
β (µ) =

2rβ(µ)

β
.

Additionally, for all i ̸= i⋆, we have βw⋆
β(µ)

−1
i = βT ⋆

β (µ)(µi⋆ − µi)
2/2 − 1. For K = 2,

w⋆(µ) = (0.5, 0.5) and T ⋆(µ) = T ⋆
1/2(µ) = 8(µ1 − µ2)

2. For K ≥ 3, we have

1/(
√
K − 1 + 1) ≤ w⋆(µ)i⋆ ≤ 1/2 .

Let rK = 2K/(1 +
√
K − 1)2, j⋆ ∈ argminj ̸=i⋆ µi⋆ − µj and x ∈ RK−2 such that xj =

µi⋆−µj

µi⋆−µj⋆
.

Then, we have T ⋆
1/2(µ)/T

⋆(µ) = Ω(x) (i.e. independent of µi⋆ and µi⋆ − µj⋆ ) and

Ω(1K−2) = rK and ∇xΩ(1K−2) = 0K−2 .

Lemma 8 gathers necessary conditions on the (β-)optimal allocations at the equilibrium such as
equality of the transportation costs, and a link between the squared allocation which was refered to as
overall balance in [40].

Lemma 8 ([3, 40]). Assume that i⋆(µ) = {i⋆} and β ∈ (0, 1). Then, for all i ̸= i⋆,

2T ⋆(µ)−1 =
(µi⋆ − µi)

2

1/w⋆(µ)i⋆ + 1/w⋆(µ)i
and 2T ⋆

β (µ)
−1 =

(µi⋆ − µi)
2

1/β + 1/w⋆
β(µ)i

.

Moreover, we have
w⋆(µ)2i⋆ =

∑
i ̸=i⋆

w⋆(µ)2i .

Reduction of an ε-BAI problem to a BAI problem Lemma 9 gives a reduction of a ε-BAI problem
to a BAI one on a modified instance, which is easier. Thanks to Lemma 9, it is possible to leverage
existing results on T ⋆(µ), T ⋆

β (µ), w
⋆(µ), w⋆

β(µ) (such as Lemmas 6, 7 and 8) in order to study Tε(µ),
Tε,β(µ), Tε,β(µ, i), wε(µ), wε,β(µ) and wε,β(µ, i).

Lemma 9. Let µ ∈ RK , ε ≥ 0 and ε̃ ∈ [0, ε] and β ∈ (0, 1). For all i ∈ Iε̃(µ), we define µε(i) as
µε(i)j = µj − ε for all j ̸= i and µε(i)i = µi. Then, for all i ∈ Iε̃(µ), Tε,β(µ, i) = T ⋆

β (µε(i)) and
wε,β(µ, i) = w⋆

β(µε(i)). Moreover, for all i⋆ ∈ i⋆(µ),

Tε(µ) = T ⋆(µε(i
⋆)) and Tε,β(µ) = T ⋆

β (µε(i
⋆)) .

Moreover, we have wε(µ) =
⋃

i⋆∈i⋆(µ) w
⋆(µε(i

⋆)) and wε,β(µ) =
⋃

i⋆∈i⋆(µ) w
⋆
β(µε(i

⋆)).

Proof. For ε = 0, the result is direct by definition. Let ε > 0 and ε̃ ∈ [0, ε]. The first part
is obtained by definition of T ⋆

ε,β(µ, i), w
⋆
ε,β(µ, i). Let i⋆ ∈ i⋆(µ) and µε(i

⋆) defined as above,

hence i⋆(µε(i
⋆)) = {i⋆}. For all i ∈ Iε(µ) \ i⋆(µ), let us denote by λ(i

⋆,i)
ε the instance such that

λ
(i⋆,i)
ε,i = µi and λ(i

⋆,i)
ε,j = µj − ε for all j ̸= i. If µi⋆ − µi = ε then i⋆(λ(i

⋆,i)
ε ) = {i} ∪ i⋆(µ) \ {i⋆},

otherwise i⋆(λ(i
⋆,i)

ε ) = {i}. We consider the permutation σ that swaps arm i with arm i⋆. By
symmetry, we have T ⋆(λ

(i⋆,i)
ε ) = T ⋆(σ(λ

(i⋆,i)
ε )). Moreover, we have that the gaps of σ(λ(i

⋆,i)
ε ) are

all strictly smaller than the gaps of µε since ε ≥ ∆i > 0. Therefore, Lemma 11 of Barrier et al
(2022) yields that T ⋆(σ(λ

(i⋆,i)
ε )) > T ⋆(µε). We have proved that

∀i⋆ ∈ i⋆(µ), T ⋆(µε(i
⋆)) < min

i∈Iε(µ)\i⋆(µ)
T ⋆(λ(i

⋆,i)
ε ) .

By symmetry T ⋆(µε(i
⋆)) is constant for all i⋆ ∈ i⋆(µ), hence we have shown that

∀i⋆ ∈ i⋆(µ), Tε(µ) = T ⋆(µε(i
⋆)) .

It also shows that wε(µ) =
⋃

i⋆∈i⋆(µ) w
⋆(µε(i

⋆)). The same reasoning yields the result for Tε,β(µ)
and wε,β(µ).
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ε-BAI problems cannot be arbitrarily difficult Lemma 10 shows that, for all i ∈ Iε/2(µ),
Tε,1/2(µ, i) cannot be arbitrarily large and minj ̸=i wε0,1/2(µ, i)j cannot be arbitrarily small. The
proof relies on Lemma 9 and existing results for BAI.

Lemma 10. Let ε > 0 and µ ∈ RK . Then, for all i ∈ Iε/2(µ), we have Tε,1/2(µ, i) ≤ 32K/ε2 and
minj ̸=i wε,1/2(µ, i)j ≥ (16(K − 2) + 2)−1.

Proof. Let i ∈ Iε/2(µ), hence µi ≥ µ⋆ − ε/2. Let µε(i) as in Lemma 9 which satisfies that
i⋆(µε(i)) = {i}. Let ∆i,j = µi − µj and ∆i,i = µi −maxj ̸=i µj . Then, we have

Tε,1/2(µ, i) = T ⋆
1/2(µε(i)) ≤ 2T ⋆(µε(i)) ≤ 8

∑
j∈[K]

(∆i,j + ε)−2 ≤ 8
∑
j∈[K]

(∆j + ε/2)−2 ,

where we used Lemma 6 for the two first inequality and i ∈ Iε/2(µ) for the last one. Since ∆j ≥ 0,
we conclude that Tε,β(µ, i) ≤ 32K/ε2. Moreover, using Lemma 6, we have

Tε,1/2(µ, i) = T ⋆
1/2(µε(i)) ≥ T ⋆(µε(i)) ≥ 2

∑
j∈[K]

(∆i,j + ε)−2 .

Likewise, using Lemma 9 and Lemma 7, we obtain that, for all j ̸= i,

wε,1/2(µ)
−1
j /2 = w⋆

1/2(µε(i))
−1
j /2 = T ⋆

1/2(µε(i))(µi − µj + ε)2/4− 1

≤ 2
∑

k/∈{i,j}

(
µi − µj + ε

µi − µk + ε

)2

+ 1

where the last inequality uses what we proved above. When µk ≤ µj , the ratio is smaller than one.
When µk > µj , we have µ⋆ ≥ µk > µj ≥ µ⋆ − ε/2, hence µk − µj ≤ ε/2 and

µi − µj + ε

µi − µk + ε
≤ 1 +

ε/2

µ⋆ − µk + ε/2
≤ 2 .

Therefore, we obtain wε,1/2(µ)
−1
j /2 ≤ 8(K − 2) + 1, which concludes the result.

Lemma 11 links the characteristic times for ε-BAI where ε ∈ {ε0, ε1}.

Lemma 11. Let µ ∈ RK such that |i⋆(µ)| = 1. Let ε0 > ε1. Then, for all β ∈ (0, 1), we have

Tε0(µ)(∆min+ε0)
2 ≥ Tε1(µ)(∆min+ε1)

2 and Tε0,β(µ)(∆min+ε0)
2 ≥ Tε1,β(µ)(∆min+ε1)

2.

Let ε0 < ε1. Then,
Tε0(µ)(∆max+ε0)

2 ≥ Tε1(µ)(∆max+ε1)
2 and Tε0,β(µ)(∆max+ε0)

2 ≥ Tε1,β(µ)(∆max+ε1)
2.

Proof. Let i⋆(µ) = {i⋆}. Let ε0 > ε1. Using Lemma 9, we have

2Tε(µ)
−1(∆min + ε)−2 = max

w∈△K

min
j ̸=i⋆

∆̃j(ε)
2

1/wi⋆ + 1/wj
with ∆̃j(ε) =

µ⋆ − µj + ε

∆min + ε
.

To conclude the first part of the first result, a sufficient condition is to show that ∆̃j(ε1) ≥ ∆̃j(ε0)
for all j ̸= i⋆. Direct manipulations show that, for all j ̸= i⋆,

∆̃j(ε1) ≥ ∆̃j(ε0) ⇐⇒ 1− ε0 − ε1
µ⋆ − µj + ε0

≥ 1− ε0 − ε1
∆min + ε0

⇐⇒ µ⋆ − µj ≥ ∆min ,

hence the result holds. The same proof can be used to obtain the second part of the first result.

Let ε0 < ε1. Using Lemma 9, we have

2Tε(µ)
−1(∆max + ε)−2 = max

w∈△K

min
j ̸=i⋆

∆̄j(ε)
2

1/wi⋆ + 1/wj
with ∆̄j(ε) =

µ⋆ − µj + ε

∆max + ε
.

To conclude the first part of the second result, a sufficient condition is to show that ∆̄j(ε1) ≥ ∆̄j(ε0)
for all j ̸= i⋆. Direct manipulations show that, for all j ̸= i⋆,

∆̄j(ε1) ≥ ∆̄j(ε0) ⇐⇒ 1 +
ε1 − ε0

µ⋆ − µj + ε0
≥ 1 +

ε1 − ε0
∆max + ε0

⇐⇒ µ⋆ − µj ≤ ∆max ,

hence the result holds. The same proof can be used to obtain the second part of the second result.

16



D Asymptotic analysis
Let ε0 > 0, β ∈ (0, 1) and δ ∈ (0, 1). In this section, we provide an asymptotic analysis of
EB-TCε0 slack ε0 > 0 combined with the stopping rule (3) with parameters (ε0, δ). First, we
detail IDS proportions in Appendix D.1. Then, we sketch the proof for fixed proportions β in
Appendix D.2.

In the following, we consider a sub-Gaussian bandit with distribution ν ∈ DK having mean parameter
µ ∈ RK with a unique best arm, i.e. i⋆(µ) = {i⋆}. We restate Theorem 1 below.

Theorem 4 (Theorem 1). Let ε0 > 0, ε1 ≥ 0 and δ ∈ (0, 1). Using the threshold (4) in the stopping
rule (3) with slack ε1, the EB-TCε0 algorithm is (ε1, δ)-PAC. For IDS proportions, it satisfies that,
for all ν ∈ DK such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε1,δ]

log(1/δ)
≤ Tε0(µ)

(
1 + max

i ̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.

Let β ∈ (0, 1). For fixed proportions β, it satisfies that, for all ν ∈ DK such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε1,δ]

log(1/δ)
≤ Tε0,β(µ)

(
1 + max

i ̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.

Theorem 1 provides asymptotic upper bound on the expected sample complexity of the EB-TCε0
algorithm when combined with the stopping rule (3). When ε1 = ε0 and for Gaussian distributions,
combining Lemma 1 and Theorem 1 shows that the EB-TCε0 algorithm is asymptotically optimal
for ε0-BAI when using IDS proportions and asymptotically β-optimal for ε0-BAI when using fixed
proportions β. Until recently [40], proving asymptotic optimality of Top Two algorithms with
adaptive choice β was an open problem in the BAI literature. Our work extends their analysis to
tackle the ε-BAI setting. Compared to previous work, we removed the assumption that sub-optimal
arms should have distinct means.

Considering ε1 ̸= ε0 can be interesting when the practitioner decides to tackle ε-BAI with an error ε
which is different from the slack ε0 used by the EB-TCε0 algorithm. Those situations occur when the
practitioner is observing the data collected by the EB-TCε0 algorithm without having control over it.
Theorem 1 show that the resulting sequential hypothesis testing has still asymptotic guarantees on the
expected sample complexity. Quite naturally, those guarantees are not asymptotically optimal even
for Gaussian distributions. The sub-optimality multiplicative gap of IDS proportions (that is, the ratio
of the upper bound in Theorem 1 and the characteristic time for ε1-BAI, Tε1(µ)) is

Tε0(µ)

Tε1(µ)

(∆min + ε0)
2

(∆min + ε1)2
≥ 1 when ε0 > ε1 , otherwise

Tε0(µ)

Tε1(µ)

(∆max + ε0)
2

(∆max + ε1)2
≥ 1 ,

where the inequalities comes from Lemma 11 and justify that there is no contradiction with the
asymptotic lower bound on the expected sample complexity (Lemma 1). The same reasoning applies
to fixed proportions β by replacing Tε(µ) by Tε,β(µ).

Concentration result For both proofs, we use the following concentration result of the empirical
mean for sub-Gaussian observations (Lemma 12). This is a standard tool for the asymptotic analysis
of Top Two algorithms (e.g. Lemma 3 in [32], Lemma 5 in [36] or Lemma 14 in [21]), hence we
omit the proof.

Lemma 12. There exists a sub-Gaussian random variableWµ such that almost surely, for all i ∈ [K]
and all n such that Nn,i ≥ 1,

|µn,i − µi| ≤Wµ

√
log(e+Nn,i)

Nn,i
.

In particular, any random variable which is polynomial in Wµ has a finite expectation.

D.1 IDS proportions
Using Lemma 9, the optimal allocation for ε0-BAI are defined as

wε0(µ) := argmax
w∈△K

min
i̸=i⋆

(µi⋆ − µi + ε0)
2

1/wi⋆ + 1/wi
.
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Since |i⋆(µ)| = 1, let µε0 = µε0(i
⋆) where µε(i

⋆) as in Lemma 9. Since we have Tε0(µ) = T ⋆(µε0)
andwε0(µ) = w⋆(µε0), Lemma 6 and 8 yield thatwε0(µ) = {w⋆} is a singleton with unique element
denotes by w⋆ which satisfies that mini∈[K] w

⋆
i > 0,

∑
i̸=i⋆

(
w⋆

i

w⋆
i⋆

)2

= 1 , (8)

and

∀i ∈ [K] \ {i⋆}, (µi⋆ − µi + ε0)
2

1/w⋆
i⋆ + 1/w⋆

i

= 2Tε0(µ)
−1 . (9)

[40] refers to (8) as the overall balance equation. The key novelty of their analysis is to show that
asymptotically the empirical proportions satisfy the same equation, referred to as the empirical overall
balance, when using IDS proportions with sampling to choose among the leader and the challenger.
The key novelty in our work lies in proving that the empirical overall balance equation is also satisfied
when using IDS proportions with K(K − 1) tracking procedures to select between the leader and the
challenger (see Appendix D.1.2).

Convergence time We follow an asymptotic analysis similar to the ones used in [32, 36, 21] with
the improvement from [40]. Let γ > 0. Let us define the convergence time Tε0,γ , which is a random
variable quantifies the number of samples required for the empirical allocations (Nn,i/Nn,i⋆)i ̸=i⋆ to
be γ-close to (w⋆

i /w
⋆
i⋆)i ̸=i⋆ :

Tε0,γ := inf

{
T ≥ 1 | ∀n ≥ T, max

i ̸=i⋆

∣∣∣∣ Nn,i

Nn,i⋆
− w⋆

i

w⋆
i⋆

∣∣∣∣ ≤ γ

}
. (10)

Lemma 13 gives a sufficient condition to prove Theorem 1 for IDS proportions. The case ε0 = ε1 is
a direct consequence of combining Theorem 13 and Proposition 14 in [40]. The proof is inspired by
existing methods, e.g. Theorem 2 in [21] or Theorem 3 in [32].

Lemma 13. Let ε0 > 0, ε1 ≥ 0 and δ ∈ (0, 1). Assume that there exists γ1(µ) > 0 such that for
all γ ∈ (0, γ1(µ)], Eν [Tε0,γ ] < +∞. Using the threshold (4) in the stopping rule (3) with slack ε1
yields an algorithm such that, for all ν ∈ DK such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε1,δ]

log (1/δ)
≤ Tε0(µ)

(
1 + max

i̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.

Proof. Let γ > 0. Let us define by

T̃γ,ε0 := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn

n− 1
− w⋆

∥∥∥∥
∞

≤ γ

}
.

Using that ∑
i̸=i⋆

w⋆
i

w⋆
i⋆

=
1

w⋆
i⋆

− 1 and
∑
i ̸=i⋆

Nn,i

Nn,i⋆
=
n− 1

Nn,i⋆
− 1 ,

it is direct to see that for all n ≥ Tγ∣∣∣∣Nn,i⋆

n− 1
− w⋆

i⋆

∣∣∣∣ = ∣∣∣∣n− 1

Nn,i⋆
− 1

w⋆
i⋆

∣∣∣∣ Nn,i⋆

n− 1
w⋆

i⋆ ≤
∣∣∣∣n− 1

Nn,i⋆
− 1

w⋆
i⋆

∣∣∣∣ ≤ γ(K − 1) ,∣∣∣∣ Nn,i

n− 1
− w⋆

i

∣∣∣∣ = w⋆
i⋆

∣∣∣∣ Nn,i

n− 1

(
1

w⋆
i⋆

− n− 1

Nn,i⋆

)
+

Nn,i

Nn,i⋆
− w⋆

i

w⋆
i⋆

∣∣∣∣
≤
∣∣∣∣ 1

w⋆
i⋆

− n− 1

Nn,i⋆

∣∣∣∣+ ∣∣∣∣ Nn,i

Nn,i⋆
− w⋆

i

w⋆
i⋆

∣∣∣∣ ≤ γK .

Therefore, for all γ ∈ (0, γ1(µ)/K], Eν [T̃γ,ε0 ] < +∞.

Let µε0 as in Lemma 9. Since we have Tε0(µ) = T ⋆(µε0) and wε0(µ) = w⋆(µε0), we can leverage
existing results from the BAI literature, e.g. Theorem 2 in [21] or Theorem 3 in [32]. The sole
criterion on the stopping threshold is to be asymptotically tight (Definition 1).
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Definition 1. A threshold c : N × (0, 1] → R+ is said to be asymptotically tight if there exists
α ∈ [0, 1), δ0 ∈ (0, 1], functions f, T̄ : (0, 1] → R+ and C independent of δ satisfying: (1) for all
δ ∈ (0, δ0] and n ≥ T̄ (δ), then c(n, δ) ≤ f(δ) + Cnα, (2) lim supδ→0 f(δ)/ log(1/δ) ≤ 1 and (3)
lim supδ→0 T̄ (δ)/ log(1/δ) = 0.

Since CG defined in (23) satisfies CG ≈ x+ log(x), it is direct to see that

c(n, δ) = 2CG
(
1

2
log

(
K − 1

δ

))
+ 4 log

(
4 + log

n

2

)
is asymptotically tight, e.g. by taking (α, δ0, C) = (1/2, 1, 4), f(δ) = 2CG

(
1
2 log

(
K−1
δ

))
and

T̄ (δ) = 1.

Based on continuity arguments and using that Eν [Tε0,γ ] < +∞, the proof of Theorem 2 in [21]
yields that

lim sup
δ→0

Eν [τδ]

log (1/δ)
≤
(
min
i ̸=i⋆

(µi⋆ − µi + ε1)
2

2 (1/w⋆
i⋆ + 1/w⋆

i )

)−1

= Tε0(µ)max
i ̸=i⋆

(
µi⋆ − µi + ε0
µi⋆ − µi + ε1

)2

,

where the equality uses the condition at the equilibrium (9). This concludes the proof.

Using Lemma 13, the proof of Theorem 1 for IDS proportions boils down to showing that Eν [Tε0,γ ] <
+∞. As in [32, 36, 21, 40], the proof is divided in several steps. First, we show that all the arms
are sufficient explored for n large enough (Appendix D.1.1). Second, we prove that the empirical
overall balance equation approximately holds for n large enough (Appendix D.1.2). Finally, we
show convergence of the empirical ratio of proportions towards the ratio of optimal allocation, i.e.
Eν [Tε0,γ ] < +∞ (Appendix D.1.3).

D.1.1 Sufficient exploration
To upper bound the expected convergence time, as prior work we first establish sufficient exploration.
Given an arbitrary threshold L ∈ R∗

+, we define the sampled enough set and its arms with highest
mean (when not empty) as

SL
n := {i ∈ [K] | Nn,i ≥ L} and I⋆

n := argmax
i∈SL

n

µi . (11)

In all generality I⋆
n is a set, yet we obtain I⋆

n = {i⋆} as soon as i⋆ ∈ SL
n . We define the highly and

the mildly under-sampled sets

UL
n := {i ∈ [K] | Nn,i <

√
L} and V L

n := {i ∈ [K] | Nn,i < L3/4} . (12)

[21] identifies the properties that the leader and the challenger should satisfy to ensure sufficient
exploration. We improve on their analysis by removing the need for the distinct means assumption,
and supporting IDS instead of a fixed allocation β.

Lemma 14 shows that the transportation cost is strictly positive and increases linearly. Compared to
previous results, the key improvement lies in the fact that the lower bound holds for (i, j) ∈ I⋆

n × SL
n

instead of (i, j) ∈ I⋆
n ×

(
SL
n \ I⋆

n

)
. This is due to the ε0 regularization, which removes the need to

assume that the means are distinct.

Lemma 14. Let SL
n and I⋆

n as in (11). There exists L0 with Eµ[(L0)
α] < +∞ for all α > 0 such

that if L ≥ L0, for all n such that SL
n ̸= ∅, for all (i, j) ∈ I⋆

n × SL
n such that i ̸= j, we have

µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≥
√
L
ε0

2
√
2
.

Proof. Using Lemma 12 and min{Nn,i, Nn,j} ≥ L, we obtain

µn,i − µn,j ≥ µi − µj −Wµ

(√
log(e+Nn,i)

Nn,i
+

√
log(e+Nn,j)

Nn,j

)

≥ −2Wµ

√
log(e+ L)

L
≥ −ε0

2
,
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where the last inequality is obtained for L ≥ L0 = L1 − e which is defined as

L1 = sup
{
x | x < 16W 2

µ log(x)/ε20 + e
}
≤ h1

(
16Wµ/ε

2
0, e
)
.

The last inequality is obtained by using Lemma 51, and we recall that h1 is defined in Lemma 51.
Since h1 (x, e) ∼x→+∞ x log x, we have Eµ[(L0)

α] < +∞ for all α > 0 by using Lemma 12
(polynomial in Wµ). Then, we have

µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≥ ε0/2√
1/Nn,i + 1/Nn,j

≥
√
L
ε0

2
√
2
.

Lemma 15 gives an upper bound on the transportation costs between a sampled enough arm and an
under-sampled one.

Lemma 15. Let SL
n as in (11). There exists L1 with Eµ[(L1)

α] < +∞ for all α > 0 such that for
all L ≥ L1 and all n ∈ N,

∀(i, j) ∈ SL
n × SL

n ,
µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≤
√
L(D1 + 4Wµ) ,

whereD1 > 0 is a problem dependent constant andWµ is the random variables defined in Lemma 12.

Proof. Using Lemma 12 and Nn,i ≥ L ≥ Nn,j ≥ 1, we obtain

µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≤
√
Nn,j |µn,i − µn,j + ε0|

≤
√
L

(
|µi − µj + ε0|+Wµ

(√
log(e+Nn,i)

Nn,i
+

√
log(e+Nn,j)

Nn,j

))
≤

√
L
(
|µi − µj + ε0|+ 2Wµ

√
log(e+ 1)

)
≤

√
L(D1 + 4Wµ) ,

for D1 = maxi̸=j |µi − µj + ε0|.

Lemma 16 shows the desired property for the EB leader. Since it corresponds to Lemma 17 in [21],
we omit the proof.

Lemma 16 (Lemma 17 in [21]). There exists L2 with Eν [(L2)
α] < +∞ for all α > 0 such that if

L ≥ L2, for all n (at most polynomial in L) such that SL
n ̸= ∅, BEB

n ∈ SL
n implies BEB

n ∈ I⋆
n.

Lemma 17 show that the desired property for the TC challenger. Compared to existing result, we
improve by remove the assumption that all arms have distinct means thanks to the regularization
ε0 > 0.

Lemma 17. There exists L3 with Eν [L3] < +∞ such that if L ≥ L3, for all n (at most polynomial
in L) such that UL

n ̸= ∅, BEB
n /∈ V L

n implies CTCε0
n ∈ V L

n .

Proof. In the following, we consider UL
n ̸= ∅ (hence V L

n ̸= ∅) and BEB
n /∈ V L

n . Let J ⋆
n =

argmax
i∈V L

n
µi and L2 as in Lemma 16. Then, for L ≥ L

4/3
2 , we have BEB

n ∈ J ⋆
n .

Let L0 and (L1, D1) as in Lemmas 14 and 15. Then, for all L ≥ max{L4/3
0 , L

4/3
2 , L2

1},

BEB
n ∈ J ⋆

n ,

∀(i, j) ∈ J ⋆
n × V L

n , s.t. i ̸= j,
µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≥ L3/8 ε0

2
√
2
,

∀(i, j) ∈ UL
n × UL

n ,
µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

≤ L1/4(D1 + 4Wµ) .
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Since J ⋆
n ⊆ V L

n ⊆ UL
n , for all L ≥ L3 := max{L4/3

0 , L
4/3
2 , L2

1,
(

2
√
2

ε0
(D1 + 4Wµ)

)8
+1} we have

∀(i, k, j) ∈ J ⋆
n × UL

n × V L
n , s.t. i ̸= j,

µn,i − µn,j + ε0√
1/Nn,i + 1/Nn,j

>
µn,i − µn,k + ε0√
1/Nn,i + 1/Nn,k

.

As BEB
n ∈ J ⋆

n , the definition CTCε0
n yields that CTCε0

n ∈ V L
n . Otherwise the above strict inequality

would wield a contradiction. Using Lemma 12, we show

EF [L3] ≤ EF

(2
√
2

ε0
(D1 + 4Wµ)

)8

+ 1

+EF [(L0)
4/3] +EF [(L2)

4/3] +EF [(L1)
2] < +∞ ,

hence this concludes the proof.

Lemma 18 shows that all arms are sufficiently explored and that the leader is the unique best arm for
n large enough.

Lemma 18. There exist N1 with Eν [N1] < +∞ such that for all n ≥ N1 and all i ∈ [K],
Nn,i ≥

√
n/K and BEB

n = i⋆.

Proof. Let L2 and L3 as in Lemmas 16 and 17. Therefore, for L ≥ L4 := max{L3, L
4/3
2 }, for all n

such that UL
n ̸= ∅, BEB

n ∈ V L
n or CTCε0

n ∈ V L
n . We have Eν [L4] < +∞. There exists a deterministic

L5 such that for all L ≥ L5, ⌊L⌋ ≥ KL3/4. Let L ≥ max{L5, L4}.

Suppose towards contradiction that UL
⌊KL⌋ is not empty. Then, for any 1 ≤ t ≤ ⌊KL⌋, UL

t and
V L
t are non empty as well. Using the pigeonhole principle, there exists some i ∈ [K] such that
N⌊L⌋,i ≥ L3/4. Thus, we have

∣∣∣V L
⌊L⌋

∣∣∣ ≤ K − 1. Our goal is to show that
∣∣∣V L

⌊2L⌋

∣∣∣ ≤ K − 2. A

sufficient condition is that one arm in V L
⌊L⌋ is pulled at least L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

If we have
⌊2L⌋−1∑
t=⌊L⌋

1
(
{BEB

t , CTCε0
t } ⊆ V L

t

)
≥ KL3/4 ,

then, using that V L
t ⊆ V L

⌊L⌋, we obtain

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

⌊L⌋

)
≥

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

t

)
≥

⌊2L⌋−1∑
t=⌊L⌋

1
(
{BEB

t , CTCε0
t } ⊆ V L

t

)
≥ KL3/4 ,

Therefore, there exists i ∈ V L
⌊L⌋ which is sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

In the following, we assume that
⌊2L⌋−1∑
t=⌊L⌋

1
(
{BEB

t , CTCε0
t } ⊆ V L

t

)
< KL3/4 ,

Since BEB
t ∈ V L

t or CTCε0
t ∈ V L

t , we have
⌊2L⌋−1∑
t=⌊L⌋

(
1
(
BEB

t ∈ V L
t , C

TCε0
t /∈ V L

t

)
+ 1

(
BEB

t /∈ V L
t , C

TCε0
t ∈ V L

t

))
> ⌊2L⌋ − ⌊L⌋ −KL3/4 .

Therefore, we have

Case 1:
⌊2L⌋−1∑
t=⌊L⌋

1
(
BEB

t ∈ V L
t , C

TCε0
t /∈ V L

t

)
>
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 ,

or Case 2:
⌊2L⌋−1∑
t=⌊L⌋

1
(
BEB

t /∈ V L
t , C

TCε0
t ∈ V L

t

)
>
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 .
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Since βt(i, j) = Nt,j/(Nt,j +Nt,i), we obtain

1/2 ≤
{
βt(B

EB
t , CTCε0

t ) if BEB
t ∈ V L

t , C
TCε0
t /∈ V L

t

1− βt(B
EB
t , CTCε0

t ) if BEB
t /∈ V L

t , C
TCε0
t ∈ V L

t

.

This lower bound will be crucial to argue that the challenger is sampled enough in case 2 and the
leader is sampled enough in case 1.

Case 1. Using Lemma 46 and the above, we obtain

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

⌊L⌋

)
≥
∑

i∈V L
⌊L⌋

∑
j ̸=i

⌊2L⌋−1∑
t=⌊L⌋

1
(
It = i, (BEB

t , CTCε0
t ) = (i, j)

)

≥
∑

i∈V L
⌊L⌋

∑
j ̸=i

⌊2L⌋−1∑
t=⌊L⌋

βt(i, j)1
(
(BEB

t , CTCε0
t ) = (i, j)

)
−K2

≥
⌊2L⌋−1∑
t=⌊L⌋

βt(B
EB
t , CTCε0

t )1
(
BEB

t ∈ V L
t , C

TCε0
t /∈ V L

t

)
−K2

≥
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/4−K2 ≥ KL3/4 ,

where the last inequality is obtained for L ≥ L6 + 1 with

L6 = sup
{
L ∈ N |

(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/4−K2 < KL3/4

}
.

Therefore, there exists i ∈ V L
⌊L⌋ which is sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

Case 2. Using Lemma 46 and the above, we obtain

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

⌊L⌋

)
≥

∑
j∈V L

⌊L⌋

∑
i ̸=j

⌊2L⌋−1∑
t=⌊L⌋

1
(
It = j, (BEB

t , CTCε0
t ) = (i, j)

)

≥
∑

j∈V L
⌊L⌋

∑
i ̸=j

⌊2L⌋−1∑
t=⌊L⌋

(1− βt(i, j))1
(
(BEB

t , CTCε0
t ) = (i, j)

)
−K2

≥
⌊2L⌋−1∑
t=⌊L⌋

(1− βt(B
EB
t , CTCε0

t ))1
(
BEB

t /∈ V L
t , C

TCε0
t ∈ V L

t

)
−K2

≥
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/4−K2 ≥ KL3/4 ,

where the last inequality is obtained for L ≥ L6 + 1. Therefore, there exists i ∈ V L
⌊L⌋ which is

sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

Summary. We have shown
∣∣∣V L

⌊2L⌋

∣∣∣ ≤ K − 2. By induction, for any 1 ≤ k ≤ K, we have
∣∣∣V L

⌊kL⌋

∣∣∣ ≤
K − k, and finally UL

⌊KL⌋ = ∅ for all L ≥ L7 := max{L5, L4, L6 + 1}. Defining N0 = KL7, we

have Eν [N0] < +∞. For all n ≥ N0, we let L = n/K, hence we have Un/K
n = UL

⌊KL⌋ = ∅. This
concludes the proof of sufficient exploration.

Leader is best arm. Using Lemma 12, we obtain that for all n ≥ N0,

∀i ̸= i⋆, µn,i ≤ µi +Wµ

√
log(e+Nn,i)

Nn,i
≤ µi +Wµ

√
log(e+

√
n/K)√

n/K
,

µn,i⋆ ≤ µi⋆ −Wµ

√
log(e+Nn,i⋆)

Nn,i⋆
≤ µi⋆ −Wµ

√
log(e+

√
n/K)√

n/K
.
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Therefore, we have BEB
n = i⋆ for all n ≥ N1 := max{N0,K(X0 − e)2 + 1} where

X0 = sup

{
x > 1 | x <

16W 2
µ

mini̸=i⋆(µi⋆ − µi)2
log(x) + e

}
≤ h1

(
16W 2

µ

mini ̸=i⋆(µi⋆ − µi)2
, e

)
,

where the last inequality is obtained by using Lemma 51 with h1 defined therein. Since
h1(x, e) ∼x→+∞ x log x, we have

Eν [N1] < Eν [N0] + Eν [K(X0 − e)2 + 1] < +∞ .

This concludes the proof.

D.1.2 Empirical overall balance
As in [40], the key to obtain asymptotic optimality is to show that the empirical proportion satisfy
the empirical overall balance equation. Compared to them, the novelty of Lemma 19 is that we use
IDS proportions with K(K − 1) tracking procedures to select between the leader and the challenger
instead of sampling.

Lemma 19. Let γ > 0. There exists N2 with Eν [N2] < +∞ such that for all n ≥ N2∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2
∣∣∣∣∣∣ ≤ γ .

Proof. Let N1 as in Lemma 18. Then, we have for all n > N1

Nn,i⋆

n− 1
=
N i⋆

n,i⋆

n− 1
+

∑
i̸=i⋆ N

i
N1,i⋆

n− 1
,

Nn,i

n− 1
=

N i⋆

n,i

n− 1
+

∑
j ̸=i⋆ N

j
N1,i

n− 1
,

(1− β̄n(i
⋆, j))

Tn(i
⋆, j)

n− 1
=

1

n− 1

n−1∑
t=N1

1 (Ct = j) (1− βt(i
⋆, j)) + (1− β̄N1

(i⋆, j))
TN1

(i⋆, j)

n− 1
,

∑
j ̸=i⋆

β̄n(i
⋆, j)

Tn(i
⋆, j)

n− 1
=

1

n− 1

n−1∑
t=N1

βt(i
⋆, Ct) +

∑
j ̸=i⋆

β̄N1(i
⋆, j)

TN1
(i⋆, j)

n− 1

Chaining the inequalities with Lemma 46, we obtain that

− K

n− 1
≤ Nn,i⋆

n− 1
− 1

n− 1

n−1∑
t=N1

βt(i
⋆, Ct) ≤

2N1 +K

n− 1
,

− 1

n− 1
≤ Nn,i

n− 1
− 1

n− 1

n−1∑
t=N1

1 (Ct = j) (1− βt(i
⋆, j)) ≤ 2N1 + 1

n− 1
.

Using that a2 − b2 = (a− b)(a+ b) ≤ 2(a− b) for (a, b) ∈ (0, 1)2, we obtain

− 2
K

n− 1
≤
(
Nn,i⋆

n− 1

)2

−

(
1

n− 1

n−1∑
t=N1

βt(i
⋆, Ct)

)2

≤ 2
2N1 +K

n− 1
,

− 2
1

n− 1
≤
(
Nn,i

n− 1

)2

−

(
1

n− 1

n−1∑
t=N1

1 (Ct = j) (1− βt(i
⋆, j))

)2

≤ 2
2N1 + 1

n− 1
.

For all n > N1, let us denote by

Gn =

(
n−1∑
t=N1

βt(i
⋆, Ct)

)2

−
∑
j ̸=i⋆

(
n−1∑
t=N1

1 (Ct = j) (1− βt(i
⋆, j))

)2

.

Therefore, we have

−4K
N1 + 1

n− 1
≤
(
Nn,i⋆

n− 1

)2

−
∑
i̸=i⋆

(
Nn,i

n− 1

)2

− Gn

(n− 1)2
≤ 4

N1 +K

n− 1
.
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Direct manipulations yield that

1

2
(Gn+1 −Gn) = βn(i

⋆, Cn)

n−1∑
t=N1

βt(i
⋆, Ct)− (1− βn(i

⋆, Cn))

n−1∑
t=N1

1 (Ct = Cn) (1− βt(i
⋆, Cn))

+ βn(i
⋆, Cn)− 1/2 .

Therefore, we obtain by using the above inequalities that
1

2
(Gn+1 −Gn) ≤ βn(i

⋆, Cn)Nn,i⋆ − (1− βn(i
⋆, Cn))Nn,Cn + 2N1 +K + 3/2

= 2N1 +K + 3/2 ,

1

2
(Gn+1 −Gn) ≥ βn(i

⋆, Cn)Nn,i⋆ − (1− βn(i
⋆, Cn))Nn,Cn

− 2N1 −K − 3/2

= −2N1 −K − 3/2 ,

where we used that βn(i⋆, Cn)Nn,i⋆ = (1 − βn(i
⋆, Cn))Nn,Cn since βn(i⋆, Cn) =

Nn,Cn

Nn,i⋆+Nn,Cn
.

Summing those inequalities, we obtain

Gn =

n−1∑
t=N1+1

(Gt+1 −Gt) +GN1+1 ≤ (4N1 + 2K + 3)(n− 1−N1) + 1

≥ −(4N1 + 2K + 3)(n− 1−N1)− 1 ,

where we used that GN1+1 = 2βN1
(i⋆, CN1

) − 1 ∈ [−1, 1]. Combining everything together, we
have shown that(

Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2

≤ 4
N1 +K

n− 1
+

(4N1 + 2K + 3)(n− 1−N1) + 1

(n− 1)2

≥ −4K
N1 + 1

n− 1
− (4N1 + 2K + 3)(n− 1−N1) + 1

(n− 1)2
.

Therefore, we have shown the desired results for n ≥ N2 defined as

N2 = inf

{
n > 2 | 4K

N1 + 1

n− 1
+

(4N1 + 2K + 3)(n− 1−N1) + 1

(n− 1)2
≤ γ

}
,

which satisfies Eν [N2] < +∞ since it is a linear function of N1.

As in [40], using Lemma 19 allows to bound the empirical proportion allocated to the unique best
arm Nn,i⋆/(n− 1) away from 0 (Lemma 20).

Lemma 20. There exists N3 with Eν [N3] < +∞ such that for all n ≥ N3

1

4
√
2(K − 1)

≤ Nn,i⋆

n− 1
≤ 3

4
.

Proof. Let N2 as in Lemma 19 for γ = 1/2. Using Lemma 19, we obtain Nn,i⋆

n−1 ≤ 3
4 since

1/2 ≥
(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2

≥
(
Nn,i⋆

n− 1

)2

−
(
1− Nn,i⋆

n− 1

)2

= 2
Nn,i⋆

n− 1
− 1 .

Let Ñ2 as in Lemma 19 for γ = 1
32(K−1) . Similarly by using Lemma 19, we obtain Nn,i⋆

n−1 ≥
1

4
√

2(K−1)
since(

Nn,i⋆

n− 1

)2

≥ − 1

32(K − 1)
+
∑
i ̸=i⋆

(
Nn,i

n− 1

)2

≥ − 1

32(K − 1)
+

1

K − 1

(
1− Nn,i⋆

n− 1

)2

≥ 1

32(K − 1)
.

Taking N3 = max{N2, Ñ2} yields the result.
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Lemma 21 is a rescaled version of the empirical overall balance equation which is proven by simply
combining Lemma 19 and Lemma 20.

Lemma 21. Let γ > 0. There exists N4 with Eν [N4] < +∞ such that for all n ≥ N4∣∣∣∣∣∣1−
∑
i ̸=i⋆

(
Nn,i

Nn,i⋆

)2
∣∣∣∣∣∣ ≤ γ .

Proof. Let N2 as in Lemma 19 for γ
32(K−1) . Let N3 as in Lemma 20. Direct manipulation shows

that, for all n ≥ N4 = max{N2, N3},∣∣∣∣∣∣1−
∑
i̸=i⋆

(
Nn,i

Nn,i⋆

)2
∣∣∣∣∣∣ =

(
n− 1

Nn,i⋆

)2
∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2

−
∑
i̸=i⋆

(
Nn,i

n− 1

)2
∣∣∣∣∣∣ ≤ 32(K − 1)

γ

32(K − 1)
= γ .

This concludes the result.

D.1.3 Convergence towards optimal ratio of allocation
As in [40], we show that a challenger will not be sampled next when the ratio of its empirical propor-
tion compared to the one of i⋆ overshoots the ratio of the optimal allocations (Lemma 22).

Lemma 22. Let γ > 0. There exists N5 with Eν [N5] < +∞ such that for all n ≥ N5 and all i ̸= i⋆,

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ =⇒ CTCε0
n ̸= i .

Proof. Let γ > 0. Let i ̸= i⋆ such that

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ .

Suppose towards contradiction that

∀j ̸= i⋆,
Nn,j

Nn,i⋆
>

w⋆
j

w⋆
i⋆
.

Let γ̃ > 0. Let N4 as in Lemma 21 for γ̃. then using Lemma 21 and 8 yields that, for all n ≥ N4,

γ̃ ≥
∑
j ̸=i⋆

(
Nn,j

Nn,i⋆

)2

− 1 ≥
(
w⋆

i

w⋆
i⋆

+ γ

)2

−
(
w⋆

i

w⋆
i⋆

)2

= γ

(
γ + 2

w⋆
i

w⋆
i⋆

)
.

Therefore, we have a contradiction if we take γ̃ small enough (e.g. γ̃ < γ2), hence we have shown
that, for all n ≥ N4,

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ =⇒ ∃j /∈ {i⋆, i}, Nn,j

Nn,i⋆
≤

w⋆
j

w⋆
i⋆
.

Let N1 as in Lemma 18. Using that BEB
n = i⋆ for all n ≥ N1 and the definition of CTCε0

n , we known
that

µn,i⋆ − µn,i + ε0√
1/Nn,i⋆ + 1/Nn,i

>
µn,i⋆ − µn,j + ε0√
1/Nn,i⋆ + 1/Nn,j

=⇒ CTCε0
n ̸= i .

To conclude the proof, it is sufficient to show that the ratio of the two quantities is strictly larger than
one. For all n ≥ max{N1, N4}, we obtain

µn,i⋆ − µn,i + ε0
µn,i⋆ − µn,j + ε0

√
1 +Nn,i⋆/Nn,j

1 +Nn,i⋆/Nn,i
≥ µn,i⋆ − µn,i + ε0
µn,i⋆ − µn,j + ε0

√
1 + w⋆

i⋆/w
⋆
j

1 + (w⋆
i /w

⋆
i⋆ + γ)

−1 .
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Let γ̃ > 0. Using Lemmas 12 and 18, we have, for all n ≥ N1 and all k ̸= i⋆,∣∣∣∣µn,i⋆ − µn,k + ε0
µi⋆ − µk + ε0

− 1

∣∣∣∣ ≤ Wµ

µi⋆ − µk + ε0

(√
log(e+Nn,k)

Nn,k
+

√
log(e+Nn,i⋆)

Nn,i⋆

)

≤ 2Wµ

mink ̸=i⋆(µi⋆ − µk + ε0)

√
log(e+

√
n/K)√

n/K
≤ γ̃

for all n ≥ N6 = K(X0 − e)2 + 1 which is defined as

X0 = sup

{
x ≥ 1 | x <

4W 2
µ

γ̃2 mink ̸=i⋆(µi⋆ − µk + ε0)2
log x+ e

}

≤ h1

(
4W 2

µ

γ̃2 mink ̸=i⋆(µi⋆ − µk + ε0)2
, e

)
.

where the last inequality is obtained by using Lemma 51 with h1 defined therein. Since
h1(x, y) ∼x→+∞ x log x, we have Eν [N6] < +∞ since it polynomial in Wµ (by using Lemma 12).
Let κ > 0. We have shown that, for all n ≥ max{N1, N4, N6},

µn,i⋆ − µn,i + ε0
µn,i⋆ − µn,j + ε0

√
1 +Nn,i⋆/Nn,j

1 +Nn,i⋆/Nn,i
≥ µi⋆ − µi + ε0
µi⋆ − µj + ε0

√
1 + w⋆

i⋆/w
⋆
j

1 + (w⋆
i /w

⋆
i⋆ + γ)

−1

1− γ̃

1 + γ̃

=

√
1 + w⋆

i⋆/w
⋆
i

1 + (w⋆
i /w

⋆
i⋆ + γ)

−1

1− γ̃

1 + γ̃
.

where the equality uses that the transportation costs are equal at the equilibrium, i.e. (9). Taking γ̃
small enough, we have that shown that, for all n ≥ max{N1, N4, N6},

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ =⇒ µn,i⋆ − µn,i + ε0
µn,i⋆ − µn,j + ε0

√
1 +Nn,i⋆/Nn,j

1 +Nn,i⋆/Nn,i
> 1 =⇒ CTCε0

n ̸= i .

This concludes the proof.

Lemma 23 shows no sub-optimal arm is overshooting the ratio of its optimal allocation for n large
enough.

Lemma 23. Let γ > 0. There exists N6 with Eν [N6] < +∞ such that for all n ≥ N6 and all i ̸= i⋆,

Nn,i

Nn,i⋆
≤ w⋆

i

w⋆
i⋆

+ γ .

Proof. Let γ > 0. Let N1 as in Lemma 18. Let N3 and N5 as in Lem-
mas 20 and 22. Let M ≥ max{N3, N5, N1} and n > M . Let tn,i(γ) =

max
{
M,max

{
t ∈ {M, · · · , n− 1} | Nt,i

Nt,i⋆
<

w⋆
i

w⋆
i⋆

+ γ/2
}}

for all i ̸= i⋆. In particular, using
Lemma 22, for all n > M

∀t > tn,i(γ),
Nt,i

Nt,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ/2 hence i ̸= CTCε0
t ,

and

Ntn,i(γ),i ≤ max

{
M,

(
w⋆

i

w⋆
i⋆

+ γ/2

)
Ntn,i(γ),i⋆

}
Then, we have for all n ≥M ,

Nn,i = Ntn,i(γ),i + 1
(
i = Itn,i(γ)

)
+

n−1∑
t=tn,i(γ)+1

1
(
i = It = CTCε0

t

)
≤ max

{
M,

(
w⋆

i

w⋆
i⋆

+ γ/2

)
Ntn,i(γ),i⋆

}
+ 1 .

26



Using that Ntn,i(γ),i⋆ ≤ Nn,i⋆ , Nn,i⋆ ≥ n−1

4
√

2(K−1)
(Lemma 20) and max{a, b} ≤ a+ b, we obtain

that

Nn,i

Nn,i⋆
≤

4(M + 1)
√
2(K − 1)

n− 1
+
w⋆

i

w⋆
i⋆

+ γ/2 ≤ w⋆
i

w⋆
i⋆

+ γ ,

where the last inequality holds for n ≥ N7 = 8(M + 1)
√
2(K − 1)/γ + 1. Taking N6 =

max{N3, N5, N1, N7} yields the result since Eν [N6] < +∞.

Finally, Lemma 24 shows that the sufficient condition (see Lemma 13) to obtain the asymptotic upper
bound on the expected sample complexity is satisfied.

Lemma 24. Let ε0 > 0, γ > 0 and Tε0,γ as in (10). Under the EB-TCε0 sampling rule with IDS
proportions, we have Eν [Tε0,γ ] < +∞.

Proof. Let γ > 0 and γ̃. Let N4 and N6 as in Lemmas 21 and 23 for γ̃. Then, using Lemmas 21
and 23, we have for all n ≥ max{N4, N6},(

Nn,i

Nn,i⋆

)2

≥ 1−
∑

j /∈{i,i⋆}

(
Nn,j

Nn,i⋆

)2

− γ̃

≥ 1−
∑

j /∈{i,i⋆}

(
w⋆

j

w⋆
i⋆

+ γ̃

)2

− γ̃

=

(
w⋆

i

w⋆
i⋆

)2

−

(K − 2)γ̃ + 2
∑

j /∈{i,i⋆}

w⋆
j

w⋆
i⋆

+ 1

 γ̃

where the equality uses (9). Therefore, we have shown that for all n ≥ max{N4, N6},

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

√√√√√1−
(
w⋆

i⋆

w⋆
i

)2
(K − 2)γ̃ + 2

∑
j /∈{i,i⋆}

w⋆
j

w⋆
i⋆

+ 1

 γ̃ ≥ w⋆
i

w⋆
i⋆

− γ ,

where the last inequality holds for γ̃ small enough as a function of γ and w⋆. Therefore, we obtained

max
i̸=i⋆

∣∣∣∣ Nn,i

Nn,i⋆
− w⋆

i

w⋆
i⋆

∣∣∣∣ ≤ γ ,

which concludes the proof, i.e. Eν [Tγ ] < +∞.

Combining Lemmas 13 and 24 concludes the first part of Theorem 1, i.e.

lim sup
δ→0

Eν [τε1,δ]

log(1/δ)
≤ Tε0(µ)

(
1 + max

i ̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.

D.2 Fixed proportions
Using Lemma 9, the β-optimal allocation for ε0-BAI are defined as

wε0,β(µ) := argmax
w∈△K ,wi⋆=β

min
i ̸=i⋆

(µi⋆ − µi + ε0)
2

1/β + 1/wi
.

Since |i⋆(µ)| = 1, let µε0 = µε0(i
⋆) where µε(i

⋆) as in Lemma 9. Since we have Tε0,β(µ) =
T ⋆
β (µε0) and wε0,β(µ) = w⋆

β(µε0), Lemma 6 and 8 yield that wε0,β(µ) = {w⋆
β} is a singleton with

unique element denotes by w⋆
β which satisfies that mini∈[K] w

⋆
β,i > 0 and

∀i ∈ [K] \ {i⋆}, (µi⋆ − µi + ε0)
2

1/β + 1/w⋆
β,i

= 2Tε0,β(µ)
−1 . (13)

When considering fixed proportions β, the proof strategy is the same as in Appendix D.1. The sole
difference lies in the fact that the empirical allocation of the unique best arm is converging towards a
fixed β.
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Convergence time Let γ > 0. Let us define the convergence time Tε0,β,γ , which is a random
variable quantifies the number of samples required for the empirical allocations Nn to be γ-close to
w⋆

β :

Tε0,β,γ := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn

n− 1
− w⋆

β

∥∥∥∥
∞

≤ γ

}
. (14)

Lemma 25 gives a sufficient condition for asymptotic β-optimality. The case ε0 = ε1 is a direct
consequence of existing methods, e.g. Theorem 2 in [21] or Theorem 3 in [32].

Lemma 25. Let ε0 > 0, ε1 ≥ 0 and δ ∈ (0, 1). Assume that there exists γ1(µ) > 0 such that for
all γ ∈ (0, γ1(µ)], Eν [Tε0,β,γ ] < +∞. Using the threshold (4) in the stopping rule (3) with slack ε1
yields an algorithm such that, for all ν ∈ DK such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε1,δ]

log (1/δ)
≤ Tε0,β(µ)

(
1 + max

i̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.

Proof. The proof is the same of the ones of Lemma 13. The sole difference is that we have w⋆
β,i⋆ = β

by definition.

Sufficient exploration Lemma 26 shows that all arms are sufficiently explored and that the leader
is the unique best arm for n large enough.

Lemma 26. There exist N1 with Eν [N1] < +∞ such that for all n ≥ N1 and all i ∈ [K],
Nn,i ≥

√
n/K and BEB

n = i⋆.

Proof. Since Lemmas 16 and 17 holds, we can use the intermediate results of Lemma 18. It is direct
to see that the proof can be conducted similarly by noting that, for all i ̸= j,

min{βt(i, j), 1− βt(i, j)} = min{β, 1− β} > 0 .

Convergence towards optimal allocation Combining Lemma 26 with the proof of Lemma F.8 in
[20] yields Lemma 27.

Lemma 27. Let γ > 0. There exists N2 with Eµ[N2] < +∞ such that for all n ≥ N2,∣∣∣∣Nn,i⋆

n− 1
− β

∣∣∣∣ ≤ γ .

Combining Lemmas 26 and 27 with the proof of Lemma F.9 in [20] yields Lemma 28.

Lemma 28. Let γ > 0. There exists N5 with Eν [N5] < +∞ such that for all n ≥ N5 and all i ̸= i⋆,

Nn,i

n− 1
≥ w⋆

β,i + γ =⇒ CTCε0
n ̸= i .

Combining Lemmas 27 and 28 with the proof of Lemma F.10 in [20] yields Lemma 29.

Lemma 29. Let γ > 0. There exists N6 with Eν [N6] < +∞ such that for all n ≥ N6,∥∥∥∥ Nn

n− 1
− w⋆

β

∥∥∥∥
∞

≤ γ .

Lemma 30 is a direct corollary of Lemma 29.

Lemma 30. Let ε0 > 0, β ∈ (0, 1), γ > 0 and Tε0,β,γ as in (14). Under the EB-TCε0 sampling rule
with fixed proportions β, we have Eν [Tε0,β,γ ] < +∞.

Combining Lemmas 25 and 30 concludes the second part of Theorem 1, i.e.

lim sup
δ→0

Eν [τε1,δ]

log(1/δ)
≤ Tε0,β(µ)

(
1 + max

i ̸=i⋆

ε0 − ε1
µi⋆ − µi + ε1

)2

.
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E Non-asymptotic analysis
Let ε0 > 0, β ∈ (0, 1) and δ ∈ (0, 1). In this section, we provide a non-asymptotic analysis of
EB-TCε0 with fixed proportions β and slack ε0 > 0 when combined with the stopping rule (3) with
parameters (ε0, δ). In practice, we will mostly be interested in the case β = 1/2. First, we prove
Lemma 5 in Appendix E.1. Then, we detail the proof of Theorem 2 in Appendix E.2.

In the following, we consider a sub-Gaussian bandit with distribution ν ∈ DK having mean parameter
µ ∈ RK . In particular, our analysis holds when several arms have the largest mean µ⋆.

E.1 Proof of Lemma 5
Let s ≥ 0. For all n > K and δ ∈ (0, 1], let En,δ = E1

n,δ ∩ E2
n,δ with (E1

n,δ)n>K and (E2
n,δ)n>K as

in (24) and (25), i.e.

E1
n,δ =

{
∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f1(n, δ)

Nt,k

}
,

E2
n,δ =

{
∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,

|(µt,i − µt,k)− (µi − µk)|√
1/Nt,i + 1/Nt,k

<
√

2f2(n, δ)

}
,

where f2(x, δ) = log(1/δ) + (1 + s) log(x) and f2(x, δ) = log(1/δ) + (2 + s) log(x).

Lemma 31 shows that when there are arms with strictly higher true mean than the one of the leader,
then at least one of those arms is undersampled.

Lemma 31. Under E1
n,δ , for all t ∈ [n] \ [K] let BEB

t = k. Then,

∀i ̸= k, 1 (µi > µk)min{Nt,k, Nt,i} ≤ 8f1(n, δ)

(µi − µk)2
.

Proof. Under E1
n,δ , for all t ∈ [n] \ [K], let BEB

t = k. Then, for all i ̸= k, we have

µi −

√
2f1(n, δ)

min{Nt,k, Nt,i}
≤ µi −

√
2f1(n, δ)

Nt,i
≤ µt,i ≤ µt,k ≤ µk +

√
2f1(n, δ)

Nt,k

≤ µk +

√
2f1(n, δ)

min{Nt,k, Nt,i}
.

Re-ordering the above equations for i such that µi > µk yields the result.

Lemma 32. Let ε ≥ 0, ∆µ(ε) = mink/∈Iε(µ) ∆k and Cµ,ε0(ε) = max{2∆µ(ε)
−1 − ε−1

0 , ε−1
0 }2.

Let Aε0,ε,i = 2/∆µ(ε)
2 for all i ∈ i⋆(µ), Aε0,ε,i = Cµ,ε0(ε) for all i ∈ Iε(µ) \ i⋆(µ), otherwise

Aε0,ε,i = max{Cµ,ε0(ε), 2/∆
2
i }. For all n > K, under event En,δ, for all t ∈ [n] \ [K] such that

BEB
t /∈ Iε(µ), there exists it ∈ [K] such that

Tt(it) ≤
4f2(n, δ)

min{β, 1− β}
Aε0,ε,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

Proof. Let ∆i = µ⋆ − µi and ∆max = maxi∈[K] ∆i. When ε ≥ ∆max, we have Iε(µ)∁ = ∅, hence
the above result holds trivially since the event BEB

t /∈ Iε(µ) cannot happen. Let ε ∈ [0,∆max), i.e.
Iε(µ)∁ ̸= ∅. We will consider in two distinct cases since

{Bt /∈ Iε(µ)} = {Bt /∈ Iε(µ), Ct ∈ i⋆(µ)} ∪ {Bt /∈ Iε(µ), Ct /∈ i⋆(µ)} .

Case 1. Let t ∈ [n] \ [K] such that (BEB
t , CTCε0

t ) = (i, j) with i /∈ Iε(µ) and j ∈ i⋆(µ). Using
Lemmas 46 and 31, we obtain

min{β, 1− β} (min{Tt(i), Tt(j)} − 3(K − 1)/2) ≤ min{Nt,i, Nt,j} ≤ 8f1(n, δ)

∆2
i

≤ 8f2(n, δ)

∆2
i

,
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which can be rewritten as

min{Tt(i), Tt(j)} ≤ 8f2(n, δ)

min{β, 1− β}∆2
i

+ 3(K − 1)/2 .

Let us define ∆µ(ε) = mink/∈Iε(µ) ∆k, and

∀i /∈ Iε(µ), Dε,i = 2/∆2
i and ∀i ∈ i⋆(µ), Dε,i = 2/∆µ(ε)

2 .

The above shows that there exists kt ∈ Iε(µ)∁ ∪ i⋆(µ) such that

Tt(kt) ≤
4f2(n, δ)

min{β, 1− β}
Dε,kt

+ 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Case 2. Let t ∈ [n] \ [K] such that (BEB
t , CTCε0

t ) = (i, j) with i /∈ Iε(µ) and j /∈ i⋆(µ). Let
i0 ∈ i⋆(µ). Using the TC challenger, we obtain

ε0 −∆i√
1/Nt,i + 1/Nt,i0

+
√
2f2(n, δ) ≥

µt,i − µt,i0 + ε0√
1/Nt,i + 1/Nt,i0

≥ µt,i − µt,j + ε0√
1/Nt,i + 1/Nt,j

≥ ε0

√
min{Nt,i, Nt,j}/2 .

Using Lemma 31, we obtain
1

1/Nt,i + 1/Nt,i0

≤ min{Nt,i, Nt,i0} ≤ 8f1(n, δ)

∆2
i

≤ 8f2(n, δ)

∆2
i

.

By distinguishing between ε0 > ∆i and ε0 ≤ ∆i and using that ∆i > 0, we have
ε0 −∆i√

1/Nt,i + 1/Nt,i0

+
√
2f2(n, δ) ≤ max{2ε0/∆i − 1, 1}

√
2f2(n, δ) .

Using Lemma 46 to lower bound min{Nt,i, Nt,j} and reordering, we have shown that

min{Tt(i), Tt(j)} ≤ max

{(
2

∆i
− 1

ε0

)2

,
1

ε20

}
4f2(n, δ)

min{β, 1− β}
+ 3(K − 1)/2 .

Let us define Cµ,ε0(ε) = max{2∆µ(ε)
−1 − ε−1

0 , ε−1
0 }2. The above shows that, there exists kt /∈

i⋆(µ) such that

Tt(kt) ≤
4f2(n, δ)

min{β, 1− β}
Cµ,ε0(ε) + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Summary. Let us define (Aε0,ε,i)i∈[K] as in the statement of Lemma 32. Under En,δ , we have show
that, when Bt /∈ Iε(µ), there exists it ∈ [K] such that

Tt(kt) ≤
4f2(n, δ)

min{β, 1− β}
Aε,ε0,it + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1} .

For all n > K, under event En,δ, combining Lemma 4 and 32 for At(n, δ) = {BEB
t /∈ Iε(µ)} and

Di(n, δ) =
4f2(n,δ)

min{β,1−β}Aε0,ε,i + 3(K − 1)/2 yields that
n∑

t=K+1

1
(
BEB

t /∈ Iε(µ)
)
≤ 4f2(n, δ)

min{β, 1− β}
Hµ,ε0(ε) + 3K(K − 1)/2 .

where we used that
∑

i∈[K]Aε0,ε,i = Hµ,ε0(ε) where Hµ,ε0(ε) is defined in (5). To conclude the
proof of Lemma 5, we use that

n∑
t=K+1

1
(
BEB

t /∈ Iε(µ)
)
= n− 1−

∑
i∈Iε(µ)

∑
j

Tn(i, j) .

Let f̃1(n, δ) and f̃2(n, δ) defined as in (26) and (28). Using Lemma 50, we have f̃1(n, δ) ≤ f̃2(n, δ).
Therefore, it is direct to see that Lemma 33 can be proven with the same proof as for Lemma 5
based on the concentration event Ẽn,δ = Ẽ1

n,δ ∩ Ẽ2
n,δ with (Ẽ1

n,δ)n>K and (Ẽ2
n,δ)n>K as in (27)

and (29).
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Lemma 33. Let δ ∈ (0, 1], ε ≥ 0 and Hµ,ε0(ε) as in (5). For all n > K, under the event Ẽn,δ ,∑
i∈Iε(µ)

∑
j

Tn(i, j) ≥ n− 1−
(

4Hµ,ε0(ε)

min{β, 1− β}
f̃2(n, δ) + 3K(K − 1)/2

)
.

E.2 Proof of Theorem 2
Let s > 1. For all n > K, let En = E1

n,1 ∩ E2
n,1 with (E1

n,δ)n>K and (E2
n,δ)n>K as in (24) and (25).

Using Lemma 45, we know that
∑

n>K Pν(E∁
n) ≤

K(K+1)
2 ζ(s).

Let ε0 > 0, ε1 ≥ ε0 and δ ∈ (0, 1). Since ε1 ≥ ε0, and using the definition of the stopping rule (3),
it is direct to see that Eν [τε1,δ] ≤ Eν [τε0,δ].

Suppose that we have constructed a time T (δ) > K be such that for n ≥ T (δ), En ⊂ {τε0,δ ≤ n}
Then, Lemma 47 yields

Eν [τε0,δ] ≤ T (δ) +
K(K + 1)

2
ζ(s) .

We will construct an infinite number of times {T (δ, u)}u∈U such that the above property holds, hence
taking the infimum yields

Eν [τε0,δ] ≤ inf
u∈U

T (δ, u) +
K(K + 1)

2
ζ(s) .

This proof strategy is the one used to prove Theorem 5. Theorem 2 is a corollary of Theorem 5. Note
that the notation of both theorems differ slightly since we provide a shorter statement in the main
content. The key difference lies in the refined analysis used to clip minj ̸=i wε0,1/2(µ, i)j by a fixed
value x ∈ [0, (K − 1)−1] for all i ∈ Iε(µ).
Theorem 5. Let ε0 > 0, ε1 ≥ ε0 and δ ∈ (0, 1). Using the threshold (4) in the stopping rule (3)
with error ε1, the EB-TCε0 algorithm with fixed proportions β = 1/2 is (ε1, δ)-PAC and satisfies
that, for all ν ∈ DK , Eν [τε1,δ] ≤ Eν [τε0,δ] and

Eν [τε0,δ] ≤ inf
(ε,x)∈[0,ε0]×[0,(K−1)−1]

max {Tµ,ε0(δ, ε, x) + 1, Sµ,ε0(ε, x)}+ ζ(s)
K(K + 1)

2
,

where

Tµ,ε0(δ, ε, x) = sup

{
n | n− 1 ≤

2(1 + γ)2
∑

i∈Iε(µ)
Tε0,1/2(µ, i)

(1− x)dµ,ε0
(ε,x)(√

c(n− 1, δ) +
√

(2 + s) log n
)2}

,

Sµ,ε0(ε, x) = h1

(
4(2 + s)(1 + γ−1)

aµ,ε0(ε, x)vµ,ε0(ε)
Hµ,ε0(ε),

(1 + γ−1)(3K2/4 + 1)

aµ,ε0(ε, x)vµ,ε0(ε)
+ 1

)
,

vµ,ε0(ε) =
mini∈Iε(µ) Tε0,1/2(µ, i)∑

i∈Iε(µ)
Tε0,1/2(µ, i)

aµ,ε0(ε, x) = min
i∈Iε(µ)

(1− x)dµ,ε0
(x,i) max{min

j ̸=i
wε0,1/2(µ, i)j , x/2} ,

dµ,ε0(ε, x) = max
i∈Iε(µ)

dµ,ε0(x, i) with dµ,ε0(x, i) = |{j ̸= i | wε0,1/2(µ, i)j < x/2}| ,

where γ ∈ (0, 1/2] and s > 1 are analysis parameters. Tε0,1/2(µ, i) and wε0,1/2(µ, i) are defined
in (1), Hµ,ε0(ε) in (5), ζ is the Riemann ζ function and h1(z, y) = zW−1 (log(z) + y/z) is defined
in Lemma 51 and satisfies that h1(z, y) ≈ x log(z) + y + log(log(z) + y/z).

Proof. Let ε ∈ [0, ε0] be an analysis parameter, and Iε = |Iε(µ)|. Let v ∈ △̊Iε defined as

∀i ∈ Iε(µ), vi =
Tε0,1/2(µ, i)∑

j∈Iε(µ)
Tε0,1/2(µ, j)

, hence min
i∈Iε(µ)

vi = vµ,ε0(ε) .

The main technical result on which our proof relies on is Lemma 34, which we will prove afterwards.
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Lemma 34. There exist D0 > 0 and Tµ > 0 such that for all n ≥ Tµ such that En ∩ {n < τε1,δ}
holds true, there exists i0 ∈ Iε(µ) and t ≤ n with BEB

t = i0, which satisfies

1/N i0
t,i0

+ 1/N i0

t,C
TCε0
t

≤ D0

vi0(n− 1)

(
1/β + 1/w⋆

β(i0)CTCε0
t

)
. (15)

Before proving Lemma 34, we show how it can be used to conclude. Based on Lemma 34, letD0 > 0,
Tµ > 0, n > Tµ such that En ∩ {n < τε1,δ} holds true, i0 and t ≤ n such that as BEB

t = i0 and

1/N i0
t,i0

+ 1/N i0

t,C
TCε0
t

≤ D0

vi0(n− 1)

(
1/β + 1/w⋆

β(i0)CTCε0
t

)
.

Using the stopping rule (3) with error ε0, t ≤ n < τε1,δ, BEB
t = ı̂t = i0 and the definition of the

TCε0challenger in (2) with slack ε0, we obtain√
2c(n− 1, δ) ≥ min

i̸=i0

µt,i0 − µt,i + ε0√
1/Nt,i0 + 1/Nt,i

≥
µi0 − µ

C
TCε0
t

+ ε0√
1/Nt,i0 + 1/N

t,C
TCε0
t

−
√
2(2 + s) log n

≥

√√√√√ 1/β + w⋆
β(i0)

−1

C
TCε0
t

1/N i0
t,i0

+ 1/N i0

t,C
TCε0
t

√
2Tε0,β(µ, i0)

−1 −
√
2(2 + s) log n

≥
√

2(n− 1)

D0

∑
i∈Iε(µ)

Tε0,β(µ, i)
−
√

2(2 + s) log n .

The third inequality is obtained since En holds. The fourth inequality is obtained since N i0
t,i ≥ N i0

t,i

for all i ∈ [K] and by using Lemmas 8 and 9. The last inequality is obtained by Lemma 34 and using
the definition of vi0 .

Let’s define T (δ,D0) := sup{n > K | n − 1 < D0

∑
i∈Iε(µ)

Tε0,β(µ, i)(
√
c(n− 1, δ) +√

(2 + s) log n)2}. Therefore, we have En ∩ {n < τε0,δ} = ∅ (i.e. En ⊂ {τε0,δ ≤ n}) for all
n ≥ max{T (δ,D0), Tµ + 1}. This concludes the construction.

To conclude the proof, we will show that Lemma 34 for many choices of D0 and Tµ.

Vanilla Proof of Lemma 34. Let gε(n) =
4Hµ,ε0 (ε)

min{β,1−β} (2 + s) log n + 3K(K − 1)/2. Using
Lemma 5, under the event En, ∑

i∈Iε(µ)

∑
j

Tn(i, j) ≥ n− 1− gε(n) .

Therefore, the pigeonhole principle yields that there exists i0 ∈ Iε(µ) such that∑
j

Tn(i0, j) ≥ vi0(n− 1− gε(n)) .

The crux of the problem is to relate N i0
t,Ct

/(t− 1) and w⋆
β(i0)CTCε0

t
. To do so, we use the approach of

[20] that builds on the idea behind the proof for APT from [30]: consider an arm being over-sampled
and study the last time this arm was pulled.

By the pigeonhole principle, at time n, there is an index k1 ̸= i0 such that

N i0
n,k1

≥
w⋆

β(i0)k1

1− β

∑
j ̸=i0

N i0
n,j , (16)

and we take such k1. Let t1 := sup {t < n | (Bt, Ct) = (i0, k1)} be the last time at which i0 was the
leader and k1 was the challenger. If It1 = Bt1 then N i0

t1,k1
= N i0

n,k1
, otherwise N i0

t1,k1
= N i0

n,k1
− 1.
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In both cases, we haveN i0
t1,k1

≥ N i0
n,k1

−1. Combined with the above and using thatw⋆
β(i0)k1 ≤ 1−β

and vi0 ≤ 1, we obtain

N i0
t1,k1

≥ N i0
n,k1

− 1 ≥
w⋆

β(i0)k1

1− β

∑
j ̸=i0

N i0
n,j − 1

≥ w⋆
β(i0)k1

∑
j ̸=i0

Tn(i0, j)−
K − 1

2(1− β)

− 1

≥ w⋆
β(i0)k1

vi0(n− 1)− (1− β)vi0gε(n)−
K + 1

2
≥ w⋆

β(i0)k1vi0(n− 1)− hε(n) ,

with hε(n) =
4(1− β)Hµ,ε0(ε)

min{β, 1− β}
f2(n) + (1− β)3K(K − 1)/2 +

K + 1

2
.

Let wi0,− > 0 be a lower bound on w⋆
β(i0)k1 , e.g. wi0,− = mini ̸=i0 w

⋆
β(i0)i. For instances µ such

that w⋆
β(i0)k1

is small, the equation (16) can be satisfied at the very beginning, hence t1 might be
sublinear in n. Due to the missing link between t1 and n, we use the following inequality

1/N i0
t1,i0

+ 1/N i0
t1,k1

≤ 1

vi0(n− 1)

(
1/β +

vi0(n− 1)

N i0
t1,k1

)(
N i0

t1,k1

N i0
t1,i0

+ 1

)
,

which is a suboptimal step which artificially introduces 1/β.

Let γ ∈ (0, 1/2]. It remains to control both terms. First, we obtain

1/β +
vi0(n− 1)

N i0
t1,k1

≤ 1/β +
1

w⋆
β(i0)k1

− hε(n)
vi0 (n−1)

≤ (1 + γ)
(
1/β + 1/w⋆

β(i0)k1

)
,

for all n > C1(wi0,−, vµ,ε0(ε)). The last inequality is obtained by definition of

C1(w, v) := sup

{
n ≥ 1 | n− 1 <

hε(n)

wv

(
1 + γ−1

)}
, (17)

which ensures that, for all n > C1(wi0,−, vµ,ε0(ε)), the last condition of the equivalence

w⋆
β(i0)k1 −

hε(n)

vi0(n− 1)
≥ (1 + γ)−1w⋆

β(i0)k1
⇐⇒ n− 1 ≥ hε(n)

vi0w
⋆
β(i0)k1

(
1 + γ−1

)
is satisfied since w⋆

β(i0)k1
≥ wi0,−, vi0 ≥ vµ,ε0(ε) and n > C1(wi0,−, vµ,ε0(ε)).

Second, using Lemma 46, we can show that

N i0
t1,i0

≥ Tt1(i0, k1)−N i0
t1,k1

≥ βTt1(i0, k1)− 1 ≥ β

1− β
N i0

t1,k1
− 1

1− β
.

Then, re-ordering the above and using that N i0
t1,k1

≥ w⋆
β(i0)k1vi0(n− 1)− hε(n), we obtain

N i0
t1,k1

N i0
t1,i0

+ 1 ≤

 β

1− β
− 1

(1− β)
(
w⋆

β(i0)k1
vi0(n− 1)− hε(n)

)
−1

+ 1 ≤ (1 + γ)/β ,

for all n > C2(wi0,−, vµ,ε0(ε)). The last inequality is obtained by definition of

C2(w, v) := sup

{
n ∈ N⋆ | n− 1 <

1

wv

(
hε(n) +

γ + 1− β

βγ

)}
, (18)

which ensures that, for all n > C2(wi0,−, vµ,ε0(ε)), the last condition of the equivalence β

1− β
− 1

(1− β)
(
w⋆

β(i0)k1
vi0(n− 1)− hε(n)

)
−1

+ 1 ≤ (1 + γ)/β

⇐⇒ 1

w⋆
β(i0)k1

vi0(n− 1)− hε(n)
≤ βγ

γ + 1− β

⇐⇒ n− 1 ≥ 1

w⋆
β(i0)k1vi0

(
hε(n) +

γ + 1− β

βγ

)
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is satisfied since w⋆
β(i0)k1 ≥ wi0,−, vi0 ≥ vµ,ε0(ε) and n > C2(wi0,−, vµ,ε0(ε)).

Let Tµ ≥ maxk∈[2] Ck(mini∈Iε(µ) wi,−, vµ,ε0(ε)) and D0 = (1 + γ)2/β. In summary, we have
shown that for all n > Tµ, there exists i0 ∈ Iε(µ) and t1 ≤ n with Bt1 = i0 and such that (15)
holds.

For β = 1/2, using that K ≥ 2, 1 < 1 + γ−1 and 5/2 + γ−1 ≤ 3(1 + γ−1)/2 (since γ ∈ (0, 1/2]),
we obtain that

max
i∈[2]

Ci(w, v) ≤ sup

{
n ≥ 1 | n− 1 <

1 + γ−1

wv

(
4(2 + s)Hµ,ε0(ε) log n+ 3K2/4 + 1

)}
< h1

(
4(2 + s)(1 + γ−1)

wv
Hµ,ε0(ε),

(1 + γ−1)(3K2/4 + 1)

wv
+ 1

)
,

where the last inequality uses Lemma 51 and h1(x, y) defined therein.

Using wi0,− = mini ̸=i0 w
⋆
β(i0)i and β = 1/2, the first part of Theorem 5 (i.e. x = 0) is obtained by

taking the infimum over (ε, x) ∈ [0, ε0]× {0}.

Refined Proof of Lemma 34. When considering large K or instances with unbalanced β-optimal
allocation, mini0∈Iε(µ) mini ̸=i0 w

⋆
β(i0)i can become arbitrarily small, hence a dependence in its

inverse is undesired. Thanks to the refined analysis from [20], we can clip it with a value of our
choosing which is away from zero.

Let x ∈ (0, 1/(K − 1)] be an allocation threshold and dµ(x, i) := |{j ∈ [K] \ {i} | w⋆
β(i)j <

(1− β)x}| for all i ∈ Iε(µ). The equation (16) is only informative when (1) w⋆
β(i0)k1 ≥ (1− β)x

or (2) w⋆
β(i0)k1 < (1 − β)x and N i0

n,k1
≥ x

∑
j ̸=i0

N i0
n,j . The problematic case occurs when (3)

w⋆
β(i0)k1 < (1− β)x and N i0

n,k1
< x

∑
j ̸=i0

N i0
n,j .

When w⋆
β(i0)k1

≥ (1− β)x, we can use the above computations by considering wi0,− = max{(1−
β)x, mini ̸=i0 w

⋆
β(i0)i}.

When w⋆
β(i0)k1 < (1− β)x and N i0

n,k1
≥ x

∑
j ̸=i0

N i0
n,j , the above proof can be conducted by using

(1− β)x instead of w⋆
β(i0)k1

since we will obtain that

N i0
t1,k1

≥ (1− β)xvi0(n− 1)− hε(n) and 1/β +
1

(1− β)x
≤ 1/β + 1/w⋆

β(i0)k1
.

Then, we can likewise consider wi0,− = max{(1− β)x, mini ̸=i0 w
⋆
β(i0)i} to conclude.

When w⋆
β(i0)k1

< (1− β)x and N i0
n,k1

< x
∑

j ̸=i0
N i0

n,j , as in (16), the pigeonhole principle yields
that there exists k2 ∈ [K] \ {i0, k1} such that

N i0
n,k2

≥
w⋆

β(i0)k2

1− β − w⋆
β(i0)k1

∑
j /∈{i0,k1}

N i0
n,j ≥

(1− x)w⋆
β(i0)k2

1− β

∑
j ̸=i0

N i0
n,j .

Based on k2 the same dichotomy as for k1 happens: either we can conclude the proof when we are in
case 1 or 2 or we cannot since we are in case 3. If case 3 occurs also for k2, i.e. w⋆

β(i0)k2
< (1−β)x

and N i0
n,k2

< x
∑

j /∈{i0,k1}N
i0
n,j , we should also ignore it since it is non informative and construct a

third arm k3.

The main idea is then to peel off arms that are not informative, till we find an informative one. By
induction, we construct a sequence (ka)a∈[d] of such arms, where kd is the first arm for which either
(1) w⋆

β(i0)kd
≥ (1 − β)x or (2) w⋆

β(i0)kd
< (1 − β)x and N i0

n,kd
≥ x

∑
j /∈{i0}∪{ka}a∈[d−1]

N i0
n,j

holds. This means that for all a ∈ [d− 1], we have w⋆
β(i0)ka

< (1− β)x and

N i0
n,ka

< x
∑

j /∈{i0}∪{kb}b∈[a−1]

N i0
n,j .

Using the pigeonhole principle for i ∈ [K] \
(
{i0} ∪ {ka}a∈[d−1]

)
yields that kd satisfies

N i0
n,kd

≥
w⋆

β(i0)kd

1− β −
∑

a∈[d−1] w
⋆
β(i0)ka

∑
j /∈{i0}∪{kb}b∈[a−1]

N i0
n,j ,
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Using a simple recurrence on the arms {ka}a∈[d−1], we obtain that∑
j /∈{i0}∪{kb}b∈[a−1]

N i0
n,j ≥ (1− x)d−1

∑
j ̸=i0

N i0
n,j .

Let td := sup {t < n | (Bt, Ct) = (i0, kd)}. Since the arm kd satisfies case 1 or case 2, we can
conclude similarly as above with an extra multiplicative factor (1− x)d−1.

To remove the dependency in the random variable d, we consider the worst case scenario where
{ka}a∈[d−1] = {i ∈ [K] \ {i0} | w⋆

β(i0)i < (1− β)x}, i.e. d− 1 ≤ dµ(x, i0). In words, it means
that we had to enumerate over all arms with small allocation, such that case 2 didn’t hold, before
finding an arm with large allocation, i.e. satisfying case 1. Let dµ,ε(x) = maxi∈Iε(µ) dµ(x, i). Using
that

(1− x)d−1 ≥ (1− x)dµ(x,i0) ≥ (1− x)dµ,ε(x) ,

wi0,− = (1− x)dµ(x,i0) max{(1− β)x, min
i ̸=i0

w⋆
β(i0)i} ,

we can conclude the proof by taking Tµ ≥ maxk∈[2] Ck(mini∈Iε(µ) wi,−, vµ,ε0(ε)) and D0 =
(1+γ)2

β(1−x)dµ,ε(x) . In other words, we have shown that n > Tµ, there exists i0 ∈ Iε(µ) and td ≤ n with
Btd = i0 and such that (15) holds. Using β = 1/2, the second part of Theorem 5 is obtained by
taking the infimum over (ε, x) ∈ [0, ε0]× (0, 1/(K − 1)].

E.2.1 Consequence of tighter concentration
It is direct to see that the proof of Theorem 5 will also work when using the concentration event
Ẽn = Ẽ1

n,1 ∩ Ẽ2
n,1 with (Ẽ1

n,δ)n>K and (Ẽ2
n,δ)n>K as in (27) and (29). Let us define

f̃1(n) =
1

2
W−1(2s log n+ 2 log(2 + log n) + 2) ,

f̃2(n) =W−1 (s log n+ 2 log (2 + log n) + 2) .

Using Lemma 50, we know that f̃1(n) ≤ f̃2(n). Then, we will be able to show

Eν [τδ] ≤ inf
(ε,x)∈[0,ε0]×[0,1/(K−1)]

max
{
T̃µ,ε0(δ, ε, x) + 1, S̃µ,ε0(ε, x)

}
+ ζ(s)K(K + 1)/2 ,

where

T̃µ,ε0(δ, ε, x) = sup

{
n | n− 1 ≤

2(1 + γ)2
∑

i∈Iε(µ)
Tε0,1/2(µ, i)

(1− x)dµ,ε0
(ε,x)(√

c(n− 1, δ) +

√
f̃2(n)

)2
}
,

S̃µ,ε0(ε, x) = h̃1

(
4(1 + γ−1)

aµ,ε0(ε, x)vµ,ε0(ε)
Hµ,ε0(ε),

(1 + γ−1)(3K2/4 + 1)

aµ,ε0(ε, x)vµ,ε0(ε)
+ 1

)
,

with h̃1(z, y) > sup
{
n ≥ 1 | n < zf̃2(n) + y

}
. Using Lemma 49, we obtain that

n ≥ zf̃2(n) + y ⇐⇒ n− y

z
− log(n− y) ≥ s log n+ 2 log (2 + log n) + 2− log z

⇐=
n

z(1 + s)
− log

n

z(1 + s)
≥ log(1 + s) +

s

s+ 1
log z +

1

1 + s
(2 log (2 + log n) + 2 +

y

z
) .

Therefore, we can consider h̃1(z, y) ≥ z(1 + s)h2(z, y) with

h2(z, y) = sup

{
x | x− log x− 2

1 + s
log(log x+ 2 + log(z(1 + s))) < C(z, y)

}
where C(z, y) = y

(1+s)z + s
s+1 log z + log(1 + s) + 2

1+s . Therefore, we will obtain a mulitplicative
factor (1 + s) instead of (2 + s) in front of Hµ,ε0(ε). This improvement is rather mild, hence we
don’t elaborate on it further.
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F Probability of error and simple regret
Let ε0 > 0 and β ∈ (0, 1). In Appendix F, we provide an analysis on the probability of error and
the simple regret of EB-TCε0 with fixed proportions β and slack ε0 > 0 (Theorem 6 proved in
Appendix F.1). In Appendix F.2, we provide an upper bound on the unverifiable expected sample
complexity of EB-TCε0 (Theorem 7). Then, by using Theorem 6, we prove that the policy pulling
arm ı̂n at time n has a constant induced regret (Corollary 2 proved in Appendix F.3). In practice, we
will mostly be interested in the case β = 1/2.

Theorem 3 and Corollary 1 is a corollary of Theorem 6 up to some additional computations on the
complexities (Hi(µ, ε0))i∈[Cµ−1], which we will detail below. Theorem 6 provides upper bound
on Pν (̂ın /∈ Iε(µ)) holding for any time n and any error ε ≥ 0, and upper bound on Eν [µ⋆ − µı̂n ]
holding for any time n.

Theorem 6. Let ε0 > 0. For all ε ≥ 0, let iµ(ε) = i if ε ∈ [∆i,∆i+1) and i ∈ [Cµ − 1], otherwise
iµ(ε) = Cµ. For all i ∈ [Cµ − 1], let Ci(ε0) = 2∆−1

i − ε−1
0 and Ci,j(ε0) = 2

∆j/ε0+1
∆i−∆j

+3ε−1
0 . For

all i ∈ [Cµ − 1], let Hi(µ, ε0) := minj∈[i] max{H̄i,j(µ, ε0), H̃i,j(µ, ε0)} where

H̄i,j(µ, ε0) := |i⋆(µ)|max
{√

2∆−1
j+1, Ci+1,j(ε0)

}2

+max {Cj+1(ε0), Ci+1,j(ε0)}2
 j∑

k=2

|Cµ(k)|+
Cµ∑

k=i+1

|Cµ(k)|


+

i∑
k=j+1

|Cµ(k)|max
{
Cj+1(ε0), Ci+1,j(ε0),

√
2∆−1

k

}2

,

H̃i,j(µ, ε0) :=
2|i⋆(µ)|
∆2

j+1

+max
{
Cj+1(ε0), ε

−1
0

}2 j∑
k=2

|Cµ(k)|+
2
∑j

k=1 |Cµ(k)|
(∆i+1 −∆j)2

+

Cµ∑
k=j+1

|Cµ(k)|max
{
Cj+1(ε0), ε

−1
0 ,

√
2∆−1

k

}2

.

The EB-TCε0 algorithm with fixed proportions β = 1/2 satisfies that, for all ν ∈ DK and all n ≥ Dµ,
if the algorithm has not stopped yet, then

∀ε ≥ 0, Pν (̂ın /∈ Iε(µ)) ≤ 1 (ε < ∆max)
K(K + 1)

2
e2(2 + log n)2p

(
n− 5K2/2

8Hiµ(ε)(µ, ε0)

)
,

Eν [µ⋆ − µı̂n ] ≤
K(K + 1)

2
e2(2 + log n)2

∑
i∈[Cµ−1]

(∆i+1 −∆i)p

(
n− 5K2/2

8Hi(µ, ε0)

)
.

where p(x) = x exp(−x) and Dµ = 8H1(µ, ε0)h2
(
8H1(µ, ε0), 5K

2/2, 2 + log (K(K + 1)/2)
)
+

5K2/2 with h2 defined in Lemma 51.

Hardness of BAI We have C2(ε0) = 2∆−1
min − ε−1

0 and C2,1(ε0) = 2∆−1
min + 3ε−1

0 . Then, we
obtain H1(µ, ε0) = H̄1,1(µ, ε0) = K(2∆−1

min + 3ε−1
0 )2 since

H̃1,1(µ, ε0) = 4|i⋆(µ)|∆−2
min +

Cµ∑
k=2

|Cµ(k)|max
{
C2(ε0), ε

−1
0 ,

√
2∆−1

k

}2

.

This corresponds to the complexity of the two-groups instances which are defined as D∆ :={
ν ∈ DK | Cµ = 2,∆2 = ∆

}
where ∆ > 0. More importantly, it corresponds to the complexity of

identifying one of the best arms, i.e. taking ε = 0 yields

Pν (̂ın /∈ i⋆(µ)) ≤ K(K + 1)

2
e2(2 + log n)2p

(
n− 5K2/2

8K(2∆−1
min + 3ε−1

0 )2

)
.

36



Hardness of ε-BAI Let i > 1 and j ∈ [i]. We have Ci+1,j(ε0) = 2
∆j/ε0+1
∆i+1−∆j

+ 3ε−1
0 , Cj+1(ε0) =

2∆−1
j+1 − ε−1

0 ≤ 2∆−1
j+1 and

√
2∆−1

k ≤ 2∆−1
j+1 for all k ≥ j + 1. Direct manipulations show that,

for all i > 1 and all j ∈ [i], we have

max{H̄i,j(µ, ε0), H̃i,j(µ, ε0)} ≤ Kmax

{
2∆−1

j+1, 2
∆j/ε0 + 1

∆i+1 −∆j
+ 3ε−1

0

}2

.

Therefore, we have

Hi(µ, ε0) ≤ Kmin
j∈[i]

max

{
2∆−1

j+1, 2
∆j/ε0 + 1

∆i+1 −∆j
+ 3ε−1

0

}2

.

Taking j = 1 and then j = 2, we see that, for all i > 1,

Hi(µ, ε0) ≤ Kmax
{
2∆−1

min, 3ε
−1
0 + 2∆−1

i+1

}2
< H1(µ, ε0) ,

Hi(µ, ε0) ≤ Kmax

{
2∆−1

3 , 2
∆min/ε0 + 1

∆i+1 −∆min
+ 3ε−1

0

}2

≤ Kmax

{
2
∆min/ε0 + 1

∆3 −∆min
+ 3ε−1

0

}2

,

where the last inequality uses that ∆3 ≤ ∆i+1 for all i > 1.

Similarly, we can derive a lower bound on Hi(µ, ε0) by noting that Hi(µ, ε0) ≥ minj∈[i] H̄i,j(µ, ε0).
For all j ∈ [i], we have that

√
2∆−1

j+1 ≥
√
2∆−1

i+1, Cj+1(ε0) ≥ 2∆−1
i+1 − ε−1

0 and Ci+1,j(ε0) ≥
2∆−1

i+1 + 3ε−1
0 , hence we obtain

Hi(µ, ε0) ≥ min
j∈[i]

H̄i,j(µ, ε0) ≥ 2K∆−2
i+1 .

Three-groups instances The three-groups instances are defined as D∆,Λ :={
ν ∈ DK | Cµ = 3,∆2 = ∆,∆3 = Λ

}
where ∆ > 0 and Λ > ∆. Above results yield

H2(µ, ε0) ≤ K

(
2
∆/ε0 + 1

Λ−∆
+ 3ε−1

0

)2

= O
(

K

min{Λ−∆, ε0}2

)
.

F.1 Proof of Theorem 6
In the following, we consider a sub-Gaussian bandit with distribution ν ∈ RK having mean parameter
µ ∈ RK . In particular, our analysis holds when several arms have the largest mean µ⋆.

Let ∆max = maxi∈[K] µ⋆ − µi. Let ε1 be an analysis parameter (i.e. not the error parameter from
the stopping rule (3)). When ε1 ≥ ∆max, we have Iε1(µ)∁ = ∅, hence Pν (̂ın /∈ Iε1(µ)) = 0. In the
following, we consider ε1 ∈ [0,∆max).

For all n > K and δ ∈ (0, 1), let Ẽn,δ = Ẽ1
n,δ ∩ Ẽ2

n,δ with (Ẽ1
n,δ)n>K and (Ẽ2

n,δ)n>K as in (27)
and (29) for s = 0, i.e.

Ẽ1
n,δ =

∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f̃1(n, δ)

Nt,k

 ,

Ẽ2
n,δ =

{
∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,

|(µt,i − µt,k)− (µi − µk)|√
1/Nt,i + 1/Nt,k

<

√
2f̃2(n, δ)

}
,

where

f̃1(n, δ) =
1

2
W−1(2 log(1/δ) + 2 log(2 + log n) + 2) ,

f̃2(n, δ) =W−1 (log (1/δ) + 2 log (2 + log n) + 2) .

Using Lemma 50, we know that f̃1(n, δ) ≤ f̃2(n, δ). Using Lemmas 42 and 44, we obtain that
Pν(Ẽ∁

n,δ) ≤
K(K+1)

2 δ.
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Suppose that we have constructed a time Tε1(δ) > K such that Ẽn,δ ⊆ {ı̂n ∈ Iε1(µ)} for n > Tε1(δ).
Then, using Lemma 48, we obtain

Pν (̂ın /∈ Iε1(µ)) ≤
K(K + 1)

2
inf{δ | n > Tε1(δ)} .

We will construct an infinite number of times {Tε1(δ, ε)}ε∈[0,ε1] such that the above property holds,
hence taking the infimum yields

Pν (̂ın /∈ Iε1(µ)) ≤
K(K + 1)

2
inf{δ | n > inf

ε∈[0,ε1]
Tε1(δ, ε)} .

This proof strategy is the one used to prove Theorem 6.

Let ε ∈ [0, ε1]. Since ı̂n = BEB
n , our goal is to construct a time Tε1(δ, ε) such that

∀n > Tε1(δ, ε), Ẽn,δ ∩ {BEB
n /∈ Iε1(µ)} = ∅ .

Error due to undersampled arms Let us denote by Uε,ε1,t(n, δ) the set of undersampled arms
which are not ε1-good, i.e.

Uε,ε1,t(n, δ) := Iε1(µ)∁ ∩
{
i | Nt,i ≤ 4Cε,if̃2(n, δ)

}
with Cε,i :=

2

mink∈Iε(µ)(∆i −∆k)2
.

Lemma 35 shows that, for n large enough, a necessary condition for an error to occur is to have an
undersampled leader.

Lemma 35. Let ε1 > 0 and ε ∈ [0, ε1]. Let Hµ,ε0(ε) as in Lemma 5 and define

H̃ε,ε1(µ, ε0) := Hµ,ε0(ε) +
2|Iε(µ)|

min(i,j)∈Iε(µ)×Iε1
(µ)∁(∆j −∆i)2

. (19)

Let us define

Sε,ε1,ε0,µ(δ) = sup

{
n | n ≤ 4H̃ε,ε1(µ, ε0)

min{β, 1− β}
f̃2(n, δ) + (3/2 + 1/β)K2

}
.

For all n > Sε,ε1,ε0,µ(δ), under the event Ẽn,δ, we have BEB
n /∈ Iε1(µ) implies that BEB

n ∈
Uε,ε1,n(n, δ).

Proof. Let |Iε(µ)| = Iε and gε,ε0(n, δ) =
4Hµ,ε0

(ε)

min{β,1−β} f̃2(n, δ) + 3K(K − 1)/2. Using Lemma 5
and the pigeonhole principle, there exists i0 ∈ Iε(µ) such that∑

j

Tn(i0, j) ≥ (n− 1− gε,ε0(n, δ)) /Iε .

Therefore, we have

Nn,i0 ≥ β
∑
j

Tn(i0, j)− (K − 1) ≥ β (n− 1− gε,ε0(n, δ)) /Iε − (K − 1) .

Let Sε,ε1,ε0,µ(δ) defined as in the statement of Lemma 35. Direct manipulations shows that

Sε,ε1,ε0,µ(δ) ≥ sup

{
n | n− 1 ≤ gε,ε0(n, δ) +

Iε
β

(
4f̃2(n, δ) max

i/∈Iε1
(µ)
Cε,i +K − 1

)}
.

Therefore, we have Nn,i0 > 4f̃2(n, δ)maxi/∈Iε1
(µ) Cε,i for all n > Sε,ε1,ε0,µ(δ).

Let n > Sε,ε1,ε0,µ(δ). Suppose that BEB
n = i /∈ Iε1(µ). Using Lemma 31, under the event Ẽn,δ , we

obtain that

min{Nn,i, Nn,i0} ≤ 8f̃1(n, δ)

(µi0 − µi)2
≤ 4Cε,if̃2(n, δ) .

Suppose towards contradiction that min{Nn,i, Nn,i0} = Nn,i0 , then we have Nn,i0 ≤ 4Cε,if̃2(n, δ).
This is a direct contradiction with Nn,i0 > 4f̃2(n, δ)maxi/∈Iε1

(µ) Cε,i since n > Sε,ε1,ε0,µ(δ).
Therefore, we have shown that min{Nn,i, Nn,i0} = Nn,i, hence i ∈ Uε,ε1,n(n, δ). This concludes
the proof.
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No remaining undersampled arms Lemma 36 shows that, if there are still undersampled arms
which are not ε1-good, then either the leader or the challenger was not often selected as leader or
challenger.

Lemma 36. Let ε1 ≥ 0 and ε ∈ [0, ε1]. Let ∆µ(ε) = mink/∈Iε(µ) ∆k,
Cµ,ε0(ε, ε1) = 2maxj /∈Iε1

(µ)
∆j/ε0+1

mink∈Iε(µ)(∆j−∆k)
+ ε−1

0 and Cµ,ε0(ε) = 2/∆µ(ε) −
ε−1
0 . Let Aε,ε1,ε0,i = max{2/∆µ(ε)

2, Cµ,ε0(ε, ε1)
2} for all i ∈ i⋆(µ), Aε,ε1,ε0,i =

max{Cµ,ε0(ε)
2, Cµ,ε0(ε, ε1)

2} for all i ∈ (Iε(µ) \ i⋆(µ)) ∪ ([K] \ Iε1(µ)), and otherwise
Aε,ε1,ε0,i = max{Cµ,ε0(ε)

2, Cµ,ε0(ε, ε1)
2, 2/∆2

i } for all i ∈ Iε1(µ) \ Iε(µ). For all n > K,
under event Ẽn,δ , for all t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅, there exists it ∈ [K] such that

Tt(it) ≤
4f̃2(n, δ)

min{β, 1− β}
Aε,ε1,ε0,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

Proof. We will be interested in three distinct cases since

{Uε,ε1,t(n, δ) ̸= ∅} =
{
Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } ≠ ∅

}
∪
{
Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } = ∅, BEB

t /∈ Iε(µ)
}

∪
{
Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } = ∅, BEB

t ∈ Iε(µ)
}
,

Case 1. Let t ∈ [n] \ [K] such that {BEB
t , CTC

t } ∩ Uε,ε1,t(n, δ) ̸= ∅. Let kt ∈ {BEB
t , CTC

t } ∩
Uε,ε1,t(n, δ). For this kt /∈ Iε1(µ), we have Tt+1(kt) = Tt(kt) + 1 and, by combining Lemma 31
and Nt,kt

≤ 4Cε,kt
f̃2(n, δ), we obtain that

Tt(kt) ≤
Nt,kt

min{β, 1− β}
+

3(K − 1)

2
≤ 4f̃2(n, δ)

min{β, 1− β}
Cε,kt + 3(K − 1)/2 .

Case 2. Let t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB
t , CTC

t } = ∅ and
BEB

t /∈ Iε(µ). Let ∆µ(ε) and Cµ,ε0(ε) defined as in the statement of Lemma 36. Let Dε0,ε,i =
2/∆µ(ε)

2 for all i ∈ i⋆(µ), Dε0,ε,i = Cµ,ε0(ε) for all i ∈ Iε(µ) \ i⋆(µ), otherwise Dε0,ε,i =
max{Cµ,ε0(ε), 2/∆

2
i }. Using Lemma 32, there exists kt ∈ [K] such that

Tt(kt) ≤
4f̃2(n, δ)

min{β, 1− β}
Dε,ε0,kt

+ 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Case 3. Let t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB
t , CTC

t } = ∅ and BEB
t ∈

Iε(µ). Let j0 ∈ Uε,ε1,t(n, δ) \ {BEB
t , CTC

t }, which is possible since Uε,ε1,t(n, δ)∩ {BEB
t , CTC

t } = ∅
and Uε,ε1,t(n, δ) ̸= ∅. Let us denote by (BEB

t , CTC
t ) = (i, j) with i ∈ Iε(µ) and j ̸= j0. Using the

TC challenger, under the event En,δ , we obtain

µi − µj0 + ε0√
1/Nt,i + 1/Nt,j0

+

√
2f̃2(n, δ) ≥

µt,i − µt,j0 + ε0√
1/Nt,i + 1/Nt,j0

≥ µt,i − µt,j + ε0√
1/Nt,i + 1/Nt,j

≥ ε0

√
min{Nt,i, Nt,j}/2 .

Since µi − µj0 + ε0 ≥ ε0 > 0, we have

µi − µj0 + ε0√
1/Nt,i + 1/Nt,j0

≤
√
Nt,j0(µi − µj0 + ε0) +

√
2f̃2(n, δ)

≤
(
2

µi − µj0 + ε0
mink∈Iε(µ)(µk − µj0)

+ 1

)√
2f̃2(n, δ) .

Using Lemma 31 to lower bound min{Nt,i, Nt,j} and µi − µj0 ≤ ∆j0 for all i ∈ Iε(µ), direct
manipulation yields that

min{Tt(i), Tt(j)} ≤ 4f̃2(n, δ)

min{β, 1− β}
Cµ,ε0(ε, ε1)

2 + 3(K − 1)/2 .
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where Cµ,ε0(ε, ε1) is defined as in the statement of Lemma 36. It is direct to see that Cµ,ε0(ε, ε1)
2 ≥

max{1/ε20,maxi/∈Iε1 (µ)
Cε,i} and Cε,i ≥ 2/∆2

i for all i /∈ Iε1(µ). The above shows that there
exists kt ∈ [K] such that

Tt(kt) ≤
4f̃2(n, δ)

min{β, 1− β}
Cµ,ε0(ε, ε1)

2 + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Summary. Let us define (Aε,ε1,ε0,i)i∈[K] as in the statement of Lemma 36. Under Ẽn,δ, we have
show that, when Uε,ε1,t(n, δ) ̸= ∅, there exists it ∈ [K] such that

Tt(it) ≤
4f̃2(n, δ)

min{β, 1− β}
Aε,ε1,ε0,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

Lemma 37 shows that, for n large enough, there is no undersampled arms which are not ε1-
good.

Lemma 37. Let ε1 ≥ 0 and ε ∈ [0, ε1]. Let ∆µ(ε), Cµ,ε0(ε, ε1) and Cµ,ε0(ε) as in Lemma 36 and

H̄ε,ε1(µ, ε0) := |i⋆(µ)|max{
√
2∆µ(ε)

−1, Cµ,ε0(ε, ε1)}2

+ |(Iε(µ) \ i⋆(µ)) ∪ ([K] \ Iε1(µ))|max{Cµ,ε0(ε), Cµ,ε0(ε, ε1)}2

+
∑

i∈Iε1 (µ)\Iε(µ)

max{Cµ,ε0(ε), Cµ,ε0(ε, ε1),
√
2∆−1

i }2 . (20)

Let us define

Tε,ε1,ε0,µ(δ) = sup

{
n | n ≤ 4H̄ε,ε1(µ, ε0)

min{β, 1− β}
f̃2(n, δ) + 3K2/2

}
.

For all n > Tε,ε1,ε0,µ(δ), under the event Ẽn,δ , we have Uε,ε1,n(n, δ) = ∅.

Proof. For all n > K, under event Ẽn,δ , combining Lemma 4 and 36 forAt(n, δ) = {Uε,ε1,t(n, δ) ̸=
∅} and Di(n, δ) =

4f̃2(n,δ)
min{β,1−β}Aε,ε1,ε0,i + 3(K − 1)/2 yields that

n∑
t=K+1

1 (Uε,ε1,t(n, δ) ̸= ∅) ≤ 4f̃2(n, δ)

min{β, 1− β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 .

where we used that
∑

i∈[K]Aε,ε1,ε0,i = H̄ε,ε1(µ, ε0) where H̄ε,ε1(µ, ε0) is defined in (20).

For all i /∈ Iε1(µ), let us define
ti(n, δ) = max {t ∈ [n] \ [K] | i ∈ Uε,ε1,t(n, δ)} .

By definition, for all i /∈ Iε1(µ), we have i ∈ Uε,ε1,t(n, δ) for all t ∈ (K, ti(n, δ)] and i /∈
Uε,ε1,t(n, δ) for all t ∈ (ti(n, δ), n]. Therefore, for all t ∈ (K,maxi/∈Iε1

(µ) ti(n, δ)], we have
Uε,ε1,t(n, δ) ̸= ∅ and Uε,ε1,t(n, δ) = ∅ for all t > maxi/∈Iε1

(µ) ti(n, δ), hence

max
i/∈Iε1

(µ)
(ti(n, δ)−K) =

n∑
t=K+1

1 (Uε,ε1,t(n, δ) ̸= ∅)

≤ 4f̃2(n, δ)

min{β, 1− β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 .

Let Tε,ε1,ε0,µ(δ) defined as in the statement of Lemma 37. Direct manipulations show that

Tε,ε1,ε0,µ(δ) ≥ sup

{
n | n−K ≤ 4f̃2(n, δ)

min{β, 1− β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2

}
.

Let n > Tε,ε1,ε0,µ(δ). Then, we have

n−K >
4f̃2(n, δ)

min{β, 1− β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 ≥ max

i/∈Iε1 (µ)
(ti(n, δ)−K) ,

hence n > maxi/∈Iε1
(µ) ti(n, δ). This conclude the proof that Uε,ε1,n(n, δ) = ∅.
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Upper bound probability of error Let Sε,ε1,ε0,µ(δ) and Tε,ε1,ε0,µ(δ) as in Lemmas 35 and 37.
For β = 1/2, direct manipulations show that max{Sε,ε1,ε0,µ(δ), Tε,ε1,ε0,µ(δ)} ≤ Eε,ε1,ε0,µ(δ)
with

Eε,ε1,ε0,µ(δ) := sup
{
n | n ≤ 8max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)}f̃2(n, δ) + 5K2/2

}
Combining Lemmas 35 and 37, for all n > Eε,ε1,ε0,µ(δ), we proved that

Ẽn,δ ∩ {ı̂n /∈ Iε1(µ)} = Ẽn,δ ∩ {BEB
n /∈ Iε1(µ)} ⊆ Ẽn,δ ∩ {Uε,ε1,n(n, δ) ̸= ∅} = ∅ ,

hence {ı̂n /∈ Iε1(µ)} ⊆ Ẽ∁
n,δ .

Using Lemma 48, Pν(Ẽ∁
n,δ) ≤ K(K + 1)δ/2 and taking the infimum over ε ∈ [0, ε1], yields

Pν (̂ın /∈ Iε1(µ)) ≤
K(K + 1)

2
inf{δ | n > Eε1,ε0,µ(δ)} .

where we used Lemma 52 and infε∈[0,ε1]Eε,ε1,ε0,µ(δ) = Eε1,ε0,µ(δ) with

Eε1,ε0,µ(δ) := sup

{
n | n ≤ 8 inf

ε∈[0,ε1]
max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)}f̃2(n, δ) + 5K2/2

}
.

Using Lemma 52, we obtain that

Pν (̂ın /∈ Iε1(µ)) ≤ 1
(
ε1 < ∆Cµ

) K(K + 1)

2
e2(2 + log n)2

p

(
n− 5K2/2

8 infε∈[0,ε1] max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)}

)
,

where p(x) = x exp(−x).

More explicit complexity In order to obtain a more interpretable result, we notice that the depen-
dence in (ε, ε1) of H̄ε,ε1(µ, ε0) and H̃ε,ε1(µ, ε0) is only with respect to its position in the ordered
means. In the following, we will replace the dependency in (ε, ε1) by a dependency in such in-
dices.

Let µ ∈ RK . Let us denote by Cµ := |{µi | i ∈ [K]}| the number of different arm means in µ. For
all i ∈ [Cµ], we denote the set of arms having mean gap ∆i by Cµ(i) := {k ∈ [K] | µ⋆ − µk = ∆i}
where the gaps are sorted by increasing order

0 = ∆1 < ∆2 < · · · < ∆Cµ
.

In particular, we have Cµ(1) = i⋆(µ) and ∆Cµ
= ∆max. Let us denote by

∀ε > 0, iµ(ε) :=

{
i if ε ∈ [∆i,∆i+1) with i ∈ [1, Cµ − 1]

Cµ if ε ≥ ∆Cµ

. (21)

It is direct to see that iµ(ε) = max{i ∈ [Cµ], Cµ(i) ⊂ Iε(µ)} for all ε > 0. For all i ∈ [Cµ − 1], let
us define Hi(µ, ε0) = minj∈[i] max{H̄i,j(µ, ε0), H̃i,j(µ, ε0)} with H̄i,j(µ, ε0) and H̃i,j(µ, ε0) as
in Theorem 6. Let ε1 ≥ 0 and ε ∈ [0, ε1]. Then, we have by direct manipulations that

inf
ε∈[0,ε1]

max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)} = Hiµ(ε1)(µ, ε0) ,

since H̄ε,ε1(µ, ε0) = H̄iµ(ε1),iµ(ε)(µ, ε0) and H̃ε,ε1(µ, ε0) = H̃iµ(ε1),iµ(ε)(µ, ε0). This concludes
the first part of Theorem 6, i.e.

Pν (̂ın /∈ Iε1(µ)) ≤ 1 (ε1 < ∆max)
K(K + 1)

2
e2(2 + log n)2p

(
n− 5K2/2

8Hiµ(ε1)(µ, ε0)

)
.
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Simple regret Since µ⋆ − µı̂n is a positive random variable, we obtain that

Eν [µ⋆ − µı̂n ] =

∫ +∞

ε1=0

Pν(µ⋆ − µı̂n > ε1)d ε1 =

∫ +∞

ε1=0

Pν (̂ın /∈ Iε1(µ))d ε1 .

As a function of ε, our upper bound on Pν (̂ın /∈ Iε1(µ)) is piecewise constant on [∆i,∆i+1) for all
i ∈ [Cµ − 1] and has null value for ε1 ≥ ∆max. Our upper is informative, i.e. smaller than 1, for all
n ≥ Dµ where

Dµ = 8H1(µ, ε0)h2
(
8H1(µ, ε0), 5K

2/2, 2 + log (K(K + 1)/2)
)
+ 5K2/2

> sup
{
x | x < 8H1(µ, ε0)W−1 (2 log (2 + log x) + 2 + log (K(K + 1)/2)) + 5K2/2

}
,

where the inequality is obtained by using Lemma 51, and h2 is defined therein. Therefore, we obtain
that, for all n ≥ Dµ,

Eν [µ⋆ − µı̂n ] ≤
K(K + 1)

2
e2(2 + log n)2

∑
i∈[Cµ−1]

(∆i+1 −∆i)p

(
n− 5K2/2

8Hi(µ, ε0)

)
,

which concludes the second part of Theorem 6.

F.2 Unverifiable sample complexity
The (ε, δ)-unverifiable sample complexity is defined as the expectation of the smallest stopping time
τ̃ satisfying P(∀t ≥ τ̃ , ı̂n ∈ Iε(µ)) ≥ 1− δ. Theorem 7 gives an upper bound on the unverifiable
expected sample complexity of the EB-TCε0 algorithm with fixed proportions β = 1/2.

Theorem 7. Let ε0 > 0 and δ ∈ (0, 1). The EB-TCε0 algorithm with fixed proportions β = 1/2
satisfies that, for all ν ∈ DK with mean µ, for all ε ≥ 0,

Pν

(
∀n > Uiµ(ε),δ(µ, ε0), ı̂n ∈ Iε(µ)

)
≥ 1− δ .

The times Uiµ(ε),δ(µ, ε0) are the (ε, δ)-unverifiable sample complexity of EB-TCε0 defined as

∀i ∈ [Cµ−1], Ui,δ(µ, ε0) = h2
(
log(1/δ), 8Hi(µ, ε0), 8Hi(µ, ε0) log (K(K + 1)/2) + 5K2/2

)
,

(22)
with (Hi(µ, ε0))i∈[Cµ−1] defined in Theorem 6. The function h2(log(1/δ), A,B) =

2AW−1(
1
2 log(1/δ) + B

2A + log(2A)) satisfies that h2(log(1/δ), A,B) =δ→0 A log(1/δ) +
O(log log(1/δ)).

Proof. In Appendix F.1, we consider the concentration event Ẽn,δ that involved tighter concentration
results with thresholds f̃1(n, δ) and f̃2(n, δ). Let n > K and δ ∈ (0, 1). It is direct to see that the
same argument holds for the concentration events En,δ = E1

n,δ ∩E2
n,δ with (E1

n,δ)n>K and (E2
n,δ)n>K

as in (24) and (25) for s = 0, i.e.

E1
n,δ =

{
∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f1(n, δ)

Nt,k

}
,

E2
n,δ =

{
∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,

|(µt,i − µt,k)− (µi − µk)|√
1/Nt,i + 1/Nt,k

<
√

2f2(n, δ)

}
,

where f1(n, δ) = log(1/δ) + log n + log (K(K + 1)/2) and f2(n, δ) = log(1/δ) + 2 log n +
log (K(K + 1)/2), which satisfy f1(n, δ) ≤ f2(n, δ). Using Lemmas 40 and 41, we obtain that
Pν(E∁

n,δ) ≤ δ.

In the following, we use the notation on the gaps introduced in Appendix F.1, the complexities
(Hi(µ, ε0))i∈[Cµ−1] defined in Theorem 6 and the function iµ(ε) defined in (21). To prove Theorem 6,
we obtain as an intermediary step that: for all n > Eε1,ε0,µ(δ), {ı̂n /∈ Iε1(µ)} ⊆ E∁

n,δ , where

Eε1,ε0,µ(δ) := sup

{
n | n ≤ 8 inf

ε∈[0,ε1]
max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)}f2(n, δ) + 5K2/2

}
= sup

{
n | n ≤ 8Hiµ(ε1)f2(n, δ) + 5K2/2

}
,
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where the equality holds by using the rewriting of the complexities done in the end of Appendix F.1.

Let A = 8Hiµ(ε1) and B = 8Hiµ(ε1) log (K(K + 1)/2) + 5K2/2. Using a proof similar to
Lemma 51, applying Lemma 49 yields that

n > Eε1,ε0,µ(δ) ⇐⇒ n > 2A log n+A log(1/δ) +B

⇐⇒ n

2A
− log

( n

2A

)
>

1

2
log(1/δ) +

B

2A
+ log(2A)

⇐⇒ n > 2AW−1

(
1

2
log(1/δ) +

B

2A
+ log(2A)

)
,

Let us define h2(log(1/δ), A,B) = 2AW−1

(
1
2 log(1/δ) +

B
2A + log(2A)

)
and, for all i ∈ [Cµ−1],

we define
Ui,δ(µ, ε0) = h2

(
log(1/δ), 8Hi(µ, ε0), 8Hi(µ, ε0) log (K(K + 1)/2) + 5K2/2

)
.

Therefore, we have shown that, for all ε1 ≥ 0,

{∃n > Uiµ(ε1),δ(µ, ε0), ı̂n /∈ Iε1(µ)} ⊆ E∁
n,δ

Using that Pν(E∁
n,δ) ≤ δ, we can conclude that, for all ε1 ≥ 0,

Pν

(
∀n > Uiµ(ε1),δ(µ, ε0), ı̂n ∈ Iε1(µ)

)
≥ 1− δ .

F.3 Cumulative regret of induced policy
Given a stream of recommendations (̂ın)n>K , an external agent aiming at minimizing its cumulative
regret can simply pull the arm ı̂n at time n. Since the EB-TCa algorithm has anytime guarantees on the
simple regret of this recommendation, the regret of the induced policy is constant (Corollary 2).

Corollary 2. Let ε0 > 0. Let (̂ın)n>K be the recommendations of the EB-TCε0 algorithm with fixed
proportions β = 1/2. An agent pulling ı̂n at time n has constant induced regret, i.e.

∀ν ∈ DK , ∀T > K,

T∑
n=K+1

Eν [µ⋆ − µı̂n ] = O

(
K3∆max

min{∆min, ε0}2

(
log

K

min{∆min, ε0}2

)2
)
.

Proof. Using that H1(µ, ε0) = maxi∈[Cµ−1]Hi(µ, ε0), a direct upper bound based on Corollary 1
yields that, for all n ≥ Dµ,

Eν [µ⋆ − µı̂n ] ≤
K(K + 1)

2
e2(2 + log n)2∆max

n− 5K2/2

8H1(µ, ε0)
exp

(
−n− 5K2/2

8H1(µ, ε0)

)
.

Let c > 0. Let f(c, x) = (c+ log(x))2x exp(−x) for all x ≥ 1. Let A > 0, B > 0. By integration,
for all C ≥ A+B, we obtain

T∑
n=C

f(c, (n−B)/A) ≤ A

∫ +∞

1

f(c, x)dx = A
(
c2 + 2cC1 + C2

)
.

where Cα =
∫ +∞
1

log(x)α exp(−x)dx < +∞ for all α ≥ 0. For n ≥ 5K2, we have n ≤ 2(n −
5K2/2). Recall that Dµ = 8H1(µ, ε0)h2

(
8H1(µ, ε0), 5K

2/2, 2 + log (K(K + 1)/2)
)
+ 5K2/2

with h2 defined in Lemma 51. For all n < 5K2/2+Dµ, we have trivially that Eν [µ⋆−µı̂n ] ≤ ∆max.
Therefore, we obtain

T∑
n=K+1

Eν [µ⋆ − µı̂n ] ≤ (5K2/2 +Dµ)∆max +
K(K + 1)

2
e2∆max

T∑
n=5K2+8H1(µ,ε0)

f

(
2 + log (16H1(µ, ε0)) ,

n− 5K2/2

8H1(µ, ε0)

)

≤ (5K2/2 +Dµ)∆max +
K(K + 1)

2
e2∆max

8H1(µ, ε0)
(
(2 + log (16H1(µ, ε0)))

2
+ 2C1 (2 + log (16H1(µ, ε0))) + C2

)
.
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Studying the function h2(x, y, z), it is direct to see that h2(x, y, z) =x→+∞ o(log(x)α) for all α > 0,
hence ∆maxDµ is dominated by the other term. Therefore, by studying the dominating term when
min{∆min, ε0} → 0, our upper bound scales as

O
(
K2∆maxH1(µ, ε0)(logH1(µ, ε0))

2
)
= O

(
K3∆max

min{∆min, ε0}2

(
log

K

min{∆min, ε0}2

)2
)
,

where we used that H1(µ, ε0) = K(2∆−1
min + 3ε−1

0 )2 = O
(

K
min{∆min,ε0}2

)
.

The idea of decoupling exploration and exploitation when minimizing the regret in the multi-armed
bandits literature was introduced by [2]. At each round, the agent is allowed to choose one arm to
explore and one arm to exploit at every round. While the agent suffers the loss from the exploited arm,
it observes the one of the explored arm without cost. In the stochastic regime for instances having a
unique best arm, the Decoupled-Tsallis-INF algorithm [33] achieves a constant regret O(K/∆min).
Therefore, in this setting, our constant regret in Corollary 2 does have the best achievable scaling in
K and ∆min.

Beyond synchronized policy When the external agent plays ı̂n at time n, it is said to be synchro-
nized with the recommendation rule. In all generality, one could pull arm ı̂L(n) at time n, where
L : N → N is a non-decreasing function, and obtain similar guarantees as Corollary 2. The agent can
be slower than the recommendation rule (e.g. offline hyper-parameter optimization) hence L can be
rapidly increasing, e.g. L(n) = Bn+K where B > 1. The recommendation rule can be slower than
the agent (e.g. pulling the same arm multiple times) hence L can be piecewise constant with small
steps, e.g. L(n) = ⌈n/B⌉ +K. The communication between the agent and the recommendation
rule can happen infrequently (e.g. paying to access the recommendation) hence L can be piecewise
constant with large steps, e.g. L(n) = (⌈n/B⌉)α +K where α > 1.

G Concentration results
The proof of Lemma 3 is given in Appendix G.1. Appendix G.2 gathers concentration results to
control the empirical means and gaps.

G.1 Proof of Lemma 3
Proving that a GLR stopping rule ensures the algorithm to be (ε1, δ)-PAC is done by leveraging
concentration results. In particular, we build upon Theorem 9 of [27] which is restated below. While
Theorem 9 was only stated for Gaussian distributions, it is direct to notice that the result also holds
for sub-Gaussian distributions with variance proxy σ2 = 1 (as the authors mentioned).

Lemma 38 (Theorem 9 of [27]). Consider a sub-Gaussian bandit ν with means µ ∈ RK . Let
S ⊆ [K] and x > 0.

Pν

[
∃n ∈ N,

∑
k∈S

Nn,k

2
(µn,k − µk)

2 >
∑
k∈S

2 log (4 + log (Nn,k)) + |S|CG
(
x

|S|

)]
≤ e−x

where CG is defined in [27] by CG(x) = minλ∈]1/2,1]
gG(λ)+x

λ and

gG(λ) = 2λ− 2λ log(4λ) + log ζ(2λ)− 1

2
log(1− λ) , (23)

where ζ is the Riemann ζ function and CG(x) ≈ x+ log(x).

Since ı̂n = i⋆(µn), standard manipulations yield that for all i ̸= ı̂n

(µn,̂ın − µn,i + ε1)
2

1/Nn,̂ın + 1/Nn,i
= inf

u∈R

(
Nn,̂ın(µn,̂ın − u)2 +Nn,i(µn,i − u− ε1)

2
)

= inf
y≥x+ε1

(
Nn,̂ın(µn,̂ın − x)2 +Nn,i(µn,i − y)2

)
.
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Let i⋆ = i⋆(µ). Using the stopping rule (3) and the above manipulations, we obtain

Pν

(
τε1,δ < +∞, ı̂τε1,δ

/∈ Iε1(µ)
)

≤ Pν (∃n ∈ N, ∃i /∈ Iε1(µ), i = i⋆(µn),

min
k ̸=i

inf
y≥x+ε1

(
Nn,̂ın(µn,̂ın − x)2 +Nn,i(µn,i − y)2

)
≥ 2c(n− 1, δ)

)
≤ Pν (∃n ∈ N, ∃i /∈ Iε1(µ), i = i⋆(µn),

Nn,i

2
(µn,i − µi)

2 +
Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
≤

∑
i/∈Iε1 (µ)

Pν

(
∃n ∈ N,

Nn,i

2
(µn,i − µi)

2 +
Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
,

where the second inequality is obtained with (k, x, y) = (i⋆, µi, µi⋆) since i /∈ Iε1(µ), and the third
by union bound. By concavity of x 7→ log(4 + log(x)) and Nn,i⋆ +Nn,i ≤

∑
k∈[K]Nn,k = n− 1,

we obtain

∀i /∈ Iε1(µ), log(4 + logNn,i⋆) + log(4 + logNn,i) ≤ 2 log(4 + log((n− 1)/2))

Combining the above with Lemma 38 for all i /∈ Iε1(µ) and using that |Iε1(µ)| ≤ K − 1, we
obtain

Pν (τδ < +∞, ı̂τδ /∈ Iε1(µ)) ≤
∑

i/∈Iε1
(µ)

δ

K − 1
≤ δ .

G.2 Sequence of concentration events
Lemma 39 is a standard concentration result for sub-Gaussian distribution, hence we omit the
proof.

Lemma 39. Let X be an observation from a sub-Gaussian distribution with mean 0 and variance
proxy σ2. Then, for all δ ∈ (0, 1],

PX

(
|X| ≥ σ

√
2 log(1/δ)

)
≤ δ .

Lemma 40 gives a sequence of concentration events under which the empirical means are close to
their true values.

Lemma 40. Let δ ∈ (0, 1] and s ≥ 0. For all n > K, let f1(x, δ) = log(1/δ) + (1 + s) log x and

E1
n,δ :=

{
∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f1(n, δ)

Nt,k

}
. (24)

Then, for all n > K, Pν((E1
n,δ)

∁) ≤ Kδ
ns .

Proof. Let (Xs)s∈[n] be i.i.d. observations from one sub-Gaussian distribution with mean 0 and
variance proxy σ2 = 1. Then, 1

m

∑m
i=1Xi is sub-Gaussian with mean 0 and variance proxy

σ2 = 1/m. By union bound over [K] and over m ∈ [n], we obtain

Pν

(
∃k ∈ [K],∃t ≤ n, |µt,k − µk| ≥

√
2f1(n, δ)

Nt,k

)

≤
∑

k∈[K]

∑
m∈[n]

P

∣∣∣∣∣∣ 1m
∑
s∈[m]

Xs

∣∣∣∣∣∣ ≥
√

2f1(n, δ)

m


≤ δ

∑
k∈[K]

∑
m∈[n]

n−(1+s) = Kδn−s ,

where we used that µt,k − µk = 1
Nt,k

∑t
s=1 1 (Is = k)Xs,k and concentration results for sub-

Gaussian observations (Lemma 39).
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Lemma 41 gives a sequence of concentration events under which the empirical gaps are close to their
true values.

Lemma 41. Let δ ∈ (0, 1] and s ≥ 0. For all n > K, let f2(x, δ) = log(1/δ) + (2 + s) log(x) and

E2
n,δ :=

{
∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,

|(µt,i − µt,k)− (µi − µk)|√
1/Nt,i + 1/Nt,k

<
√

2f2(n, δ)

}
. (25)

Then, for all n > K, Pν((E2
n,δ)

∁) ≤ K(K−1)δ
2ns .

Proof. Let (Xs)s∈[n] and (Ys)s∈[n] be two streams of i.i.d. observations from two sub-Gaussian
distributions with mean 0 and variance proxy σ2 = 1. Then, 1

m1

∑m1

i=1Xi − 1
m2

∑m2

i=1 Yi is sub-
Gaussian with mean 0 and variance proxy σ2 = 1

m1
+ 1

m2
. By union bound , we obtain

Pν

(
∃(i, k) ∈ [K]2 s.t. i ̸= k, ∃t ≤ n,

∣∣∣∣∣ (µt,i − µt,k)− (µi − µk)√
1/Nt,i + 1/Nt,k

∣∣∣∣∣ ≤√2f2(n, δ)

)

≤
∑

(i,k)∈[K]2,i̸=k

∑
(m1,m2)∈[n]2

P

(∣∣∣∣∣ 1

m1

m1∑
i=1

Xi −
1

m2

m2∑
i=1

Yi

∣∣∣∣∣ ≤ −
√
2f2(n, δ) (1/m1 + 1/m2)

)

≤ δ
∑

(i,k)∈[K]2,i̸=k

∑
(m1,m2)∈[n]2

n−(2+s) =
K(K − 1)

2
δn−s ,

where we used that (µt,i⋆ − µi⋆) − (µt,k − µk) = 1
Nt,i⋆

∑t
s=1 1 (Is = i⋆)Xs,i⋆ −

1
Nt,k

∑t
s=1 1 (Is = k)Xs,k and concentration results for sub-Gaussian observations (Lemma 39).

Tighter concentration Lemma 42 provides concentration results on the empirical means, which
are tighter than the one obtained in Lemma 40.

Lemma 42. Let δ ∈ (0, 1] and s ≥ 0. Let W−1 defined in Lemma 49. For all n > K, let

f̃1(n, δ) =
1

2
W−1(2 log(1/δ) + 2s log n+ 2 log(2 + log n) + 2) , (26)

and

Ẽ1
n,δ =

∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f̃1(n, δ)

Nt,k

 . (27)

Then, for all n > K, Pν((Ẽ1
n,δ)

∁) ≤ Kδ
ns .

Proof. Let (Xs)s∈[n] be i.i.d. observations from one sub-Gaussian distribution with mean 0 and
variance proxy σ2 = 1. Let St =

∑
s∈[t]Xs. To derived concentration result, we use peeling.

Let η > 0, γ > 0 and D = ⌈ log(n)
log(1+η)⌉. For all i ∈ [D], let Ni = (1 + η)i−1. For all i ∈ [D], we

define the family of priors fNi,γ(x) =
√

γNi

2π exp
(
−x2γNi

2

)
with weights wi =

1
D and process

M(t) =
∑
i∈[D]

wi

∫
fNi,γ(x) exp

(
xSt −

1

2
x2t

)
dx ,

which satisfies M(0) = 1. It is direct to see that M(t) = exp
(
xSt − 1

2x
2t
)

is a non-negative
supermartingale since sub-Gaussian distributions with mean 0 and variance proxy σ2 = 1 satisfy

∀λ ∈ R, EX [exp(sX)] ≤ exp(λ2/2) .

By Tonelli’s theorem, then M(t) is also a non-negative supermartingale of unit initial value.
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Let i ∈ [D] and consider t ∈ [Ni, Ni+1). For all x,

fNi,γ(x) ≥
√
Ni

t
ft,γ(x) ≥

1√
1 + η

ft,γ(x)

Direct computations shows that∫
ft,γ(x) exp

(
xSt −

1

2
x2t

)
dx =

1√
1 + γ−1

exp

(
S2
t

2(1 + γ)t

)
.

Minoring M(t) by one of the positive term of its sum, we obtain

M(t) ≥ 1

D

1√
(1 + γ−1)(1 + η)

exp

(
S2
t

2(1 + γ)t

)
,

Using Ville’s maximal inequality for non-negative supermartingale, we have that with probability
greater than 1 − δ, logM(t) ≤ log (1/δ). Therefore, with probability greater than 1 − δ, for all
i ∈ [D] and t ∈ [Ni, Ni+1),

S2
t

t
≤ (1 + γ)

(
2 log (1/δ) + 2 logD + log(1 + γ−1) + log(1 + η)

)
.

Since this upper bound is independent of t, we can optimize it and choose γ as in Lemma 43.

Lemma 43 (Lemma A.3 in [9]). For a, b ≥ 1, the minimal value of f(η) = (1 + η)(a+ log(b+ 1
η ))

is attained at η⋆ such that f(η⋆) ≤ 1− b+W−1(a+ b). If b = 1, then there is equality.

Therefore, with probability greater than 1− δ, for all i ∈ [D] and t ∈ [Ni, Ni+1),

S2
t

t
≤W−1 (1 + 2 log (1/δ) + 2 logD + log(1 + η))

≤W−1 (1 + 2 log (1/δ) + 2 log (log(1 + η) + log n)− 2 log log(1 + η) + log(1 + η))

=W−1 (2 log (1/δ) + 2 log (2 + log n) + 3− 2 log 2)

The second inequality is obtained since D ≤ 1+ logn
log(1+η) . The last equality is obtained for the choice

η⋆ = e2 − 1, which minimizes η 7→ log(1 + η)− 2 log(log(1 + η)). Since [n] ⊆
⋃

i∈[D][Ni, Ni+1)

and Nt,k(µt,k − µk) =
∑

s∈[Nt,k]
Xs,k (unit-variance), this yields

P

(
∃m ≤ n,

∣∣∣∣∣ 1m
m∑
s=1

Xs

∣∣∣∣∣ ≥
√

1

m
W−1 (2 log(1/δ) + 2 log(2 + log(n)) + 3− 2 log 2)

)
≤ δ .

Since 3− 2 log 2 ≤ 2 and W−1 is increasing, taking δn−s yields

Pν

(
∃t ≤ n,

√
Nt,k |µt,k − µk| ≥

√
2f̃1(n, δ)

)
≤ δn−s .

Doing a union bound over arms yields the result.

Lemma 44 provides concentration results on the empirical gaps, which are tighter than the ones
obtained in Lemma 41.

Lemma 44. Let δ ∈ (0, 1] and s ≥ 0. Let W−1 defined in Lemma 49. For all n > K, let

f̃2(n, δ) =W−1 (log (1/δ) + s log n+ 2 log (2 + log n) + 2) , (28)

and

Ẽ2
n,δ :=

{
∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,

|(µt,i − µt,k)− (µi − µk)|√
1/Nt,i + 1/Nt,k

<

√
2f̃2(n, δ)

}
. (29)

Then, for all n > K, Pν((Ẽ2
n,δ)

∁) ≤ K(K−1)
2

δ
ns .
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Proof. Without loss of generality, we show the result for arms (i, k) = (1, 2). Let (Xs)s∈[n] and
(Ys)s∈[n] be i.i.d. observations from two sub-Gaussian distribution with mean 0 and variance proxy
σ2 = 1. Let St,k =

∑
s∈[t] 1 (Is = k)Xs for all k ∈ {1, 2}. To derived concentration result, we use

peeling as in Lemma 42.

Let η > 0, γ > 0 and D = ⌈ log(n)
log(1+η)⌉. For all i ∈ [D], let Ni = (1 + η)i−1. For all i ∈ [D], we

define the family of priors fNi,γ(x) =
√

γNi

2π exp
(
−x2γNi

2

)
with weights wi =

1
D and process

∀k ∈ {1, 2}, Mk(t) =
∑
i∈[D]

wi

∫
fNi,γ(x) exp

(
xSt,k − 1

2
x2Nt,k

)
dx ,

which satisfies Mk(0) = 1 for all k ∈ {1, 2}. As in the proof of Lemma 42, we obtain that M1(t)
and M2(t) are non-negative supermartingale such that

∀k ∈ {1, 2}, Mk(t) ≥
1

D

1√
(1 + γ−1)(1 + η)

exp

(
S2
t,k

2(1 + γ)Nt,k

)
.

where we used (i1, i2) ∈ [D]2 and consider Nt,k ∈ [Nik , Nik+1) for all k ∈ {1, 2}. Let us define
M(t) =M1(t1)M2(t2). Then, we have that M(t) is a non-negative supermartingale such that

M(t) ≥ 1

D2

1

(1 + γ−1)(1 + η)
exp

 1

2(1 + γ)

∑
k∈{1,2}

S2
t,k

Nt,k


Using Ville’s maximal inequality for non-negative supermartingale, we have that with probability
greater than 1 − δ, logM(t) ≤ log (1/δ). Therefore, with probability greater than 1 − δ, for all
(i1, i2) ∈ [D]2 and Nt,k ∈ [Nik , Nik+1) for all k ∈ {1, 2},∑

k∈{1,2}

S2
t,k

Nt,k
≤ 2(1 + γ)

(
log (1/δ) + 2 logD + log(1 + γ−1) + log(1 + η)

)
.

Since this upper bound is independent of t, we can optimize it and choose γ as in Lemma 43.

Therefore, with probability greater than 1− δ, for all (i1, i2) ∈ [D]2 and Nt,k ∈ [Nik , Nik+1) for all
k ∈ {1, 2}, ∑

k∈{1,2}

S2
t,k

Nt,k
≤ 2W−1 (log (1/δ) + 2 logD + log(1 + η) + 1)

≤ 2W−1 (log (1/δ) + 2 log (2 + log n) + 2)

The second inequality is obtained as in Lemma 42 by using that D ≤ 1 + logn
log(1+η) , W−1 increasing,

taking η⋆ = e2 − 1 and using 3− 2 log 2 ≤ 2.

Since [n] ⊆
⋃

i∈[D][Ni, Ni+1), Nt,k ≤ n and Nt,k(µt,k − µk) = St,k (unit-variance), this yields

P

∃t ≤ n,
∑

k∈{1,2}

Nt,k

2
(µt,k − µk)

2 ≥W−1 (log (1/δ) + 2 log (2 + log n) + 2)

 ≤ δ .

Let C(n, δ) :=W−1 (log (1/δ) + 2 log (2 + log n) + 2). In the following, we consider that we are
under the event,

En,δ(1, 2) :=

∀t ≤ n,
∑

k∈{1,2}

Nt,k

2
(µt,k − µk)

2 < C(n, δ)

 ,

which has probability at least 1− δ. Since it satisfies the above constraint, the quantity µt,1 − µ1 −
(µt,2 − µ2) is upper bounded by

max
x∈R2

{µt,1 − µt,2 − x1 + x2} subject to
∑

k∈{1,2}

Nt,1

2
(µt,k − xk)

2 ≤ C(n, δ) .
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Introducing a Lagrange multiplier α, the above optimization problem is equivalent to

min
α≥0

max
x∈R2

µt,1 − µt,2 − x1 + x2 + α

C(n, δ)− ∑
k∈{1,2}

Nt,k

2
(µt,k − xk)

2

 .

Solving for x by cancelling the derivative yields that x1 = µt,1 − 1
αNt,1

and x2 = µt,2 +
1

αNt,2
.

Therefore, we obtain as solution

min
α≥0

αC(n, δ) + 1

2α

∑
k∈{1,2}

1

Nt,k

 =

√√√√2C(n, δ)
∑

k∈{1,2}

1

Nt,k
,

where the last equality is obtained by solving the optimization since the derivative is null at α⋆ =√∑
k∈{1,2}

1
2C(n,δ)Nt,k

. By symmetry, we obtain the same result to upper bound µt,2−µ2− (µt,1−
µ1). Therefore, under En,δ(1, 2), we have shown that

|µt,1 − µ1 − (µt,2 − µ2)|
1/Nt,1 + 1/Nt,2

≤
√
2W−1 (log (1/δ) + 2 log (2 + log n) + 2) .

The same argument as above can be applied for all (i, k) ∈ [K]2 such that i ̸= k. A direct union
bound yields

Pν((Ẽ2
n,δ)

∁) ≤
∑

(i,k)∈[K]2,i̸=k

Pν

(
En,δn−s(i, k)∁

)
≤ K(K − 1)

2

δ

ns
,

where we used the inclusion proven above for (n, δ/ns). This concludes the proof.

Global events Lemma 45 combines the above sequences of concentration events.

Lemma 45. Let s > 1. Let (E1
n,δ)n>K and (E2

n,δ)n>K as in (24) and (25). Let (Ẽ1
n,δ)n>K and

(Ẽ2
n,δ)n>K as in (27) and (29). Let us define En,δ := E1

n,δ ∩ E2
n,δ and Ẽn,δ := Ẽ1

n,δ ∩ Ẽ2
n,δ for all

n > K. Then,∑
n>K

Pν(E∁
n,δ) ≤

K(K + 1)

2
ζ(s)δ and

∑
n>K

Pν(Ẽ∁
n,δ) ≤

K(K + 1)

2
ζ(s)δ .

Proof. It is direct to see that∑
n>K

Pν(E∁
n,δ) ≤

∑
n>K

Kδ

ns
+
∑
n>K

K(K − 1)δ

2ns
=
K(K + 1)

2
ζ(s)δ .

The same proof can be applied to upper bound
∑

n>K Pν(Ẽ∁
n,δ).

H Technicalities
Appendix H gathers existing and new technical results which are used for our proofs.

Key technical result Lemma 4 is the key technical ingredient on which our proofs rely on. It builds
on a sequence of “bad” events such that, under each “bad” event, either the leader or the challenger
was not often selected as leader or challenger, and shows that the number of times those “bad” events
occur is small.

Lemma (Lemma 4). Let δ ∈ (0, 1] and n > K. Let (At,δ(n, δ))n≥t>K be a sequence of events and
(Di(n, δ))i∈[K] be positive thresholds satisfying that, for all t ∈ [n] \ [K], under the event At,δ(n, δ),

∃it ∈ [K], Tt(it) ≤ Dit(n, δ) and Tt+1(it) = Tt(it) + 1 .

Then, we have
∑n

t=K+1 1 (At,δ(n, δ)) ≤
∑

i∈[K]Di(n, δ).
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Proof. Using the inclusion of events given by the assumption on (At,δ(n, δ))n≥t>K , we obtain
n∑

t=K+1

1 (At,δ(n, δ)) ≤
n∑

t=K+1

1 (∃kt ∈ [K], Tt(kt) ≤ Dkt
(n, δ), Tt+1(kt) = Tt(kt) + 1)

≤
∑
i∈[K]

n∑
t=K+1

1 (Tt(i) ≤ Di(n, δ), Tt+1(i) = Tt(i) + 1) ≤
∑
i∈[K]

Di(n, δ) .

The second inequality is obtained by union bound. The third inequality is direct since the number
of times one can increase by one a quantity that is positive and bounded by Di(n, δ) is at most
Di(n, δ).

Tracking Lemma 46 provide general results for the K(K − 1) tracking procedures both for IDS
and fixed proportions, which includes the ones of Lemma 2. The main theoretical argument behind
those results is based on applying Theorem 6 in [12].

Lemma 46. For all n > K, i ∈ [K], j ̸= i, we have

−1/2 ≤ N i
n,j−(1−β̄n(i, j))Tn(i, j) ≤ 1 i.e. −1 ≤ (Tn(i, j)−N i

n,j)−β̄n(i, j)Tn(i, j) ≤ 1/2

and

N i
n,i − (K − 1)/2

maxj ̸=i β̄n(i, j)
≤
∑
j ̸=i

Tn(i, j) ≤
N i

n,i +K − 1

minj ̸=i β̄n(i, j)
.

Let β ∈ (0, 1). For fixed proportions β, we have

Nn,i ≥ min{β, 1− β}
(
Tn(i)−

3(K − 1)

2

)
.

Proof. We have K(K − 1) independent two-arms C-Tracking between the challenger and the leader.
Theorem 6 in [12] yields the result. The second inequality is a simple re-ordering.

To obtain the second part, direct manipulations yield that∑
j ̸=i

Tn(i, j) ≤
∑
j ̸=i

Tn(i, j)−N i
n,j + 1

β̄n(i, j)
≤
∑

j ̸=i(Tn(i, j)−N i
n,j) +K − 1

minj ̸=i β̄n(i, j)
,

which allows to conclude since N i
n,i =

∑
j ̸=i(Tn(i, j) − N i

n,j). The lower bound is obtained
similarly.

The third is a direct consequence of the first part since

Nn,i =
∑
j ̸=i

(Tn(i, j)−N i
n,j) +

∑
j ̸=i

N j
n,i ≤ β

∑
j ̸=i

Tn(i, j) + (1− β)
∑
j ̸=i

Tn(j, i) + 3(K − 1)/2

≥ β
∑
j ̸=i

Tn(i, j) + (1− β)
∑
j ̸=i

Tn(j, i)− 3(K − 1)/2 .

Having shown

max
i∈[K]

∣∣∣∣∣∣Nn,i −

β∑
j ̸=i

Tn(i, j) + (1− β)
∑
j ̸=i

Tn(j, i)

∣∣∣∣∣∣ ≤ 3(K − 1)/2 ,

it is direct to conclude.

Methodology Lemma 47 is a standard result to upper bound the expected sample complexity of an
algorithm, e.g. see Lemma 1 in [11]. This is a key method extensively used in the literature.

Lemma 47. Let (En)n>K be a sequence of events and T (δ) > K be such that for n ≥ T (δ),
En ⊆ {τδ ≤ n}. Then, Eν [τδ] ≤ T (δ) +

∑
n>K Pν(E∁

n).
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Proof. Since the random variable τδ is positive and {τδ > n} ⊆ E∁
n for all n ≥ T (δ), we have

Eν [τδ] =
∑
n≥0

Pν(τδ > n) ≤ T (δ) +
∑

n≥T (δ)

Pν(E∁
n) ,

which concludes the proof by adding positive terms.

Lemma 48 is a key method to upper bound the probability of error of an algorithm.

Lemma 48. Let ε ≥ 0 and (En,δ)n>K,δ∈(0,1) be a sequence of events such that Pν(E∁
n,δ) ≤ Cδ with

C > 0. Suppose that Tε(δ) > K is such that for n > Tε(δ), En,δ ⊆ {ı̂n ∈ Iε(µ)}. Then,

Pν (̂ın /∈ Iε(µ)) ≤ C inf{δ | n > Tε(δ)} .

Proof. Using the assumption, we have Pν (̂ın /∈ Iε(µ)) ≤ Pν(E∁
n,δ) ≤ Cδ for all n > Tε(δ). Taking

the infimum yields the result.

Inversion results Lemma 49 gathers properties on the function W−1, which is used in the literature
to obtain concentration results.

Lemma 49 ([22]). Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch
of the Lambert W function. The function W−1 is increasing on (1,+∞) and strictly concave on

(1,+∞). In particular, W
′
−1(x) =

(
1− 1

W−1(x)

)−1

for all x > 1. Then, for all y ≥ 1 and x ≥ 1,

W−1(y) ≤ x ⇐⇒ y ≤ x− log(x) .

Moreover, for all x > 1,

x+ log(x) ≤W−1(x) ≤ x+ log(x) + min

{
1

2
,

1√
x

}
.

Lemma 50 provides an ordering on the thresholds for tighter concentration results. It leverages
properties of W−1.

Lemma 50. Let s ≥ 0. Let W−1 defined in Lemma 49. For all δ ∈ (0, 1] and n ≥ 1, let us denote by

f̃1(n, δ) =
1

2
W−1(2 log(1/δ) + 2s log n+ 2 log(2 + log n) + 2) ,

f̃2(n, δ) =W−1 (log (1/δ) + s log n+ 2 log (2 + log n) + 2) .

Then, we have f̃1(n, δ) ≤ f̃2(n, δ).

Proof. Let a > 0 and b ≥ 1. Let us define f(x) = 1
xW−1(ax+ b). Using Lemma 49, we have

f ′(x) = − 1

x2

(
W−1(ax+ b)− ax

1−W−1(ax+ b)−1

)
.

Therefore, we obtain f ′(x) ≤ 0 if and only if W−1(ax+ b) ≥ ax+1. Since W−1(ax+ b) ≥ ax+ b
and b ≥ 1, the function f(x) is decreasing for all x ≥ 1. Therefore, 1

2W−1(2x+ b) ≤W−1(a+ b).
Applying this result with a = log (1/δ) + s log n and b = 2 log(2 + log n) + 2 ≥ 1 for all n ≥ 1,
we obtain f̃1(n, δ) ≤ f̃2(n, δ).

Lemma 51 is an inversion result to upper bound a time which is implicitly defined. It is a direct
consequence of Lemma 49.

Lemma 51. Let W−1 defined in Lemma 49. Let A > 0, B > 0 such that B/A+ logA > 1 and

C(A,B) = sup {x | x < A log x+B} ,
C(A,B,D) = sup

{
x | x < AW−1 (2 log (2 + log x) +D) +B

}
.

Then, C(A,B) < h1(A,B) with h1(z, y) = zW−1 (y/z + log z) and C(A,B) < Ah2(A,B,D) +
B where

h2(x, y, z) = inf {u | u− log u− 2 log (2 + log(xu+ y)) ≥ z} .
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Proof. Since B/A+ logA > 1, we have C(A,B) ≥ A, hence
C(A,B) = sup {x | x < A log(x) +B} = sup {x ≥ A | x < A log(x) +B} .

Using Lemma 49 yields that

x ≥ A log x+B ⇐⇒ x

A
− log

( x
A

)
≥ B

A
+ logA ⇐⇒ x ≥ AW−1

(
B

A
+ logA

)
.

By changing the variable, we obtain
C(A,B,D) = B +A sup

{
y | y < W−1 (2 log (2 + log(Ay +B)) +D)

}
Likewise, Lemma 49 yields that
y ≥W−1 (2 log (2 + log(Ay +B)) +D) ⇐⇒ y − log y − 2 log (2 + log(Ay +B)) ≥ D .

Lemma 52 is an inversion result to upper bound a probability which is implicitly defined based on
times that are implicitly defined.

Lemma 52. Let W−1 defined in Lemma 49. Let A > 0, B > 0, C > 0, E > 0, α > 0, β > 0 and
DA,B,C(δ) = sup {x | x ≤ A(log(1/δ) + C log x) +B} ,

DA,B,C,E,α,β(δ) = sup

{
x | x ≤ A

α
W−1 (α (log(1/δ) + C log(β + log x) + E)) +B

}
.

Then,

inf{δ | x > DA,B,C(δ)} ≤ xC exp

(
−x−B

A

)
,

inf{δ | x > DA,B,C,E,α,β(δ)} ≤ eE
(
α
x−B

A

)1/α

(β + log x)C exp

(
−x−B

A

)
.

Proof. Direct manipulations yield that

x > DA,B,C(δ) ⇐⇒ x > A(log(1/δ) + C log x) +B ⇐⇒ δ < xC exp

(
−x−B

A

)
.

Likewise, using Lemma 49, we obtain

x > DA,B,C,E,α,β(δ) ⇐⇒ α
x−B

A
> W−1 (α (log(1/δ) + C log(β + log x) + E))

⇐⇒ x−B

A
− 1

α
log

(
α
x−B

A

)
> log(1/δ) + C log(β + log x) + E

⇐⇒ δ < eE
(
α
x−B

A

)1/α

(β + log x)C exp

(
−x−B

A

)
.

I Multiplicative setting
Let ν ∈ DK with mean parameters µ ∈ (R⋆

+)
K . Compared to the additive setting, we only

consider strictly positive mean parameters. In many applications, this assumption is natural. In other
applications, there is a known lower bound on the value of the true mean parameters, hence we can
simply translate the problem by adding this lower bound. We also note that the problem of identifying
which arms are above the threshold 0 is the thresholding bandit problem, which has been extensively
studied in the literature. Overall, while this assumption might seem restrictive, we think it is rather
mild. Since the means are strictly positive, the multiplicative error ε has also to be positive and
strictly smaller than 1. Given a multiplicative error ε ∈ [0, 1), the set of multiplicative ε-good arms
are denoted by Imul

ε (µ) := {i ∈ [K] | ∆i ≤ µ⋆ε}. We will refer to this problem as multiplicative
ε-BAI.

First, we discuss the characteristic times involved in the fixed-confidence multiplicative ε-BAI
(Appendix I.1). Second, for ε0 ∈ (0, 1), we present the EB-TCm

ε0 with IDS or fixed β proportions
(Appendix I.2). Finally, we prove that EB-TCm

ε0 is asymptotically (resp. β-)optimal when using IDS
(resp. fixed β) when combined with the appropriate GLR stopping rule (Appendix I.3).
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I.1 Characteristic times
Let ν ∈ DK with mean parameters µ ∈ (R⋆

+)
K . We assume in the following that there exists

a unique best arm, i.e. i⋆(µ) = {i⋆}. Let ε ∈ [0, 1). The (β-)characteristic times for the fixed
confidence multiplicative ε-BAI setting with Gaussian bandits N (µ, 1) are defined as Tmul

ε (µ) =
mini∈Imul

ε (µ),β∈(0,1) T
mul
ε,β (µ, i) and Tmul

ε,β (µ) = mini∈Imul
ε (µ) T

mul
ε,β (µ, i) where

2Tmul
ε,β (µ)−1(µ, i) = max

w∈△K ,wi=β
min
j ̸=i

(µi − (1− ε)µj)
2

1/β + (1− ε)2/wj
, (30)

We denote by wmul
ε (µ, i) and wmul

ε,β (µ, i) their maximizer, which we refer to as the (β-)optimal
allocation for multiplicative ε-BAI.

Even though the multiplicative ε-BAI is less studied, it is direct to see that it has similar properties as
T0(µ). Due to the factor (1− ε)2 in the denominator, it is not possible to simply use a reduction to a
BAI problem as we did for the additive ε-BAI problem (see Lemma 9). Since the properties listed
in Appendix C are obtained by studying the optimization problem defining T0(µ), we will have the
same properties for Tmul

ε (µ) by accounting for the extra multiplicative factor (1− ε)2. We list here
the properties on which our proof relies:

• Tmul
ε (µ) = minβ∈(0,1) T

mul
ε,β (µ, i⋆) and Tmul

ε,β (µ) = Tmul
ε,β (µ, i⋆), meaning the unique best

arm corresponds to the arm which is the easiest to verify multiplicative ε-BAI.

• wmul
ε (µ) = {wmul

ε } and wmul
ε,β (µ) = {wmul

ε,β }, meaning there is a unique (β-)optimal alloca-
tion which satisfies mini∈[K](w

mul
ε )i > 0 and mini∈[K](w

mul
ε,β )i > 0.

• There is equality at the equilibrium of the transportation costs, meaning for all i ̸= i⋆

(µi⋆ − (1− ε)µi)
2

(wmul
ε )−1

i⋆ + (1− ε)2(wmul
ε )−1

i

= 2Tmul
ε (µ)−1 and

(µi⋆ − (1− ε)µi)
2

β−1 + (1− ε)2(wmul
ε,β )−1

i

= 2Tmul
ε,β (µ)−1 ,

(31)

and the multiplicative overall balance equation is satisfied∑
i ̸=i⋆

(
(wmul

ε )i
(wmul

ε )i⋆

)2

= (1− ε0)
2 . (32)

For the sake of space, we omit the proofs and defer the reader to Appendix C for ideas on how to
prove them.

I.2 Anytime Top Two algorithm
Let ε0 ∈ (0, 1). The EB-TCm

ε0 algorithm, detailed in Figure 3, has the same structure as EB-TCε0 .
There are two differences. First, the IDS proportions are βn(i, j) = Nn,j/((1− ε0)

2Nn,i +Nn,j)
when considering multiplicative ε-BAI. Second, the challenger will be based on transportation costs
for multiplicative ε-BAI, namely

C
TCm

ε0
n ∈ argmin

i ̸=BEB
n

µn,BEB
n
− (1− ε0)µn,i√

1/Nn,BEB
n
+ (1− ε0)2/Nn,i

. (33)

Stopping rule for fixed-confidence multiplicative ε-BAI Similarly, the fixed-confidence setting
requires a stopping rule, which will be different since we tackle multiplicative ε-BAI. Given an
error/confidence pair (ε, δ) ∈ [0, 1)× (0, 1), the GLRm

ε stopping rule [15] prescribes to stop at the
time

τmul
ε,δ = inf

{
n > K | min

i ̸=ı̂n

µn,̂ın − (1− ε)µn,i√
1/Nn,̂ın + (1− ε)2/Nn,i

≥
√
2c(n− 1, δ)

}
, (34)

where c : N× (0, 1) → R+ is a threshold function. Lemma 53 gives a threshold ensuring that the
GLRm

ε stopping rule is (ε, δ)-PAC for all ε ∈ [0, 1) and δ ∈ (0, 1), independently of the sampling
rule.
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Figure 3: EB-TCm
ε0 algorithm with fixed or IDS proportions.

1: Input: slack ε0 ∈ (0, 1), proportion β ∈ (0, 1) (only for fixed proportions).

2: Set ı̂n ∈ argmaxi∈[K] µn,i, BEB
n = ı̂n and C

TCm
ε0

n ∈ argmaxi ̸=BEB
n

µn,BEB
n

−(1−ε0)µn,i√
1/Nn,BEB

n
+(1−ε0)2/Nn,i

.

3: Set [fixed] β̄n+1(i, j) = β or [IDS] βn(i, j) = Nn,j/((1 − ε0)
2Nn,i + Nn,j) and update

β̄n+1(i, j).

4: Set In = C
TCm

ε0
n if NBEB

n

n,C
TCm

ε0
n

≤ (1 − β̄n+1(B
EB
n , C

TCm
ε0

n ))Tn+1(B
EB
n , C

TCm
ε0

n ), otherwise set

In = BEB
n .

5: Output: next arm to sample In and next recommendation ı̂n.

Lemma 53. Let ε ∈ [0, 1) and δ ∈ (0, 1). Given any sampling rule, using the threshold (4) with the
stopping rule (34) with error/confidence pair (ε, δ) yields a (ε, δ)-PAC algorithm for sub-Gaussian
distributions.

Proof. The proof of Lemma 53 is actually almost identical to the one of Lemma 3. The only change
is at the beginning of the proof. Since ı̂n = i⋆(µn), standard manipulations yield that for all i ̸= ı̂n

(µn,̂ın − (1− ε)µn,i)
2

1/Nn,̂ın + (1− ε)2/Nn,i
= inf

u∈R

{
Nn,̂ın(µn,̂ın − u)2 +Nn,i(µn,i − u/(1− ε))2

}
= inf

y≥x/(1−ε)

{
Nn,̂ın(µn,̂ın − x)2 +Nn,i(µn,i − y)2

}
.

Let i⋆ = i⋆(µ). Using the stopping rule (34) and the above manipulations, we obtain

Pν

(
τmul
ε,δ < +∞, ı̂τmul

ε,δ
/∈ Imul

ε (µ)
)

≤ Pν

(
∃n ∈ N, ∃i /∈ Imul

ε (µ), i = i⋆(µn),

min
k ̸=i

inf
y≥x/(1−ε)

(
Nn,̂ın(µn,̂ın − x)2 +Nn,i(µn,i − y)2

)
≥ 2c(n− 1, δ)

)
≤ Pν

(
∃n ∈ N, ∃i /∈ Imul

ε (µ), i = i⋆(µn),

Nn,i

2
(µn,i − µi)

2 +
Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
≤

∑
i/∈Imul

ε (µ)

Pν

(
∃n ∈ N,

Nn,i

2
(µn,i − µi)

2 +
Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
,

where the second inequality is obtained with (k, x, y) = (i⋆, µi, µi⋆) since i /∈ Imul
ε (µ), and the

third by union bound. Then, we can conclude as in Appendix G.1 that

Pν

(
τmul
ε,δ < +∞, ı̂τmul

ε,δ
/∈ Imul

ε (µ)
)
≤ δ .

Asymptotic expected sample complexity While Theorem 8 holds for all sub-Gaussian distri-
butions, it is particularly interesting for Gaussian ones, in light of Lemma 1. It shows that, for
multiplicative ε-BAI, EB-TCm

ε0 is asymptotically optimal for Gaussian bandits when using IDS
proportions and asymptotically β-optimal when using fixed proportions β.

Theorem 8. Let ε0 ∈ (0, 1), β ∈ (0, 1) and δ ∈ (0, 1). Using the threshold (4) in the stopping
rule (34) with error/confidence (ε0, δ), the EB-TCm

ε0 algorithm is (ε0, δ)-PAC and it satisfies that, for
all ν ∈ DK such that |i⋆(µ)| = 1,

[IDS] lim sup
δ→0

Eν [τε0,δ]

log(1/δ)
≤ Tmul

ε0 (µ) and [fixed β] lim sup
δ→0

Eν [τε0,δ]

log(1/δ)
≤ Tmul

ε0,β(µ) .
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I.3 Proof of Theorem 8
The proof is very similar to the one of Theorem 1, hence we will only highlight key differences. We
defer the reader to Appendix D for a detailed discussion on the proof method and intuition on the
different steps of the proof, see also [36, 21, 40].

In the following, we consider a slack ε0 for EB-TCm
ε0 which matches the error ε considered by

the GLRm
ε stopping rule (34), i.e. ε0 = ε. For conciseness, we denote w⋆ = wmul

ε and w⋆
β =

wmul
ε,β .

Let γ > 0. Let us define the convergence times Tε0,γ and Tε0,β,γ as in (10) and (14), i.e.

Tε0,γ := inf

{
T ≥ 1 | ∀n ≥ T, max

i ̸=i⋆

∣∣∣∣ Nn,i

Nn,i⋆
− w⋆

i

w⋆
i⋆

∣∣∣∣ ≤ γ

}
,

Tε0,β,γ := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn

n− 1
− w⋆

β

∥∥∥∥
∞

≤ γ

}
.

Lemma 54 gives a sufficient condition for asymptotic optimality and asymptotic β-optimality. The
proof is the same as for Lemmas 13 and 25, hence we omit it.

Lemma 54. Let ε0 ∈ (0, 1) and δ ∈ (0, 1). Assume that there exists γ1(µ) > 0 such that for all
γ ∈ (0, γ1(µ)], Eν [Tε0,γ ] < +∞. Using the threshold (4) in the stopping rule (3) with error ε0
yields an algorithm such that, for all ν ∈ DK such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε0,δ]

log (1/δ)
≤ Tmul

ε0 (µ) .

Assume that there exists γ1(µ) > 0 such that for all γ ∈ (0, γ1(µ)], Eν [Tε0,β,γ ] < +∞. Using the
threshold (4) in the stopping rule (3) with error ε0 yields an algorithm such that, for all ν ∈ DK

such that |i⋆(µ)| = 1,

lim sup
δ→0

Eν [τε0,δ]

log (1/δ)
≤ Tmul

ε0,β(µ) .

I.3.1 Sufficient exploration
Lemma 55 shows that the transportation cost is strictly positive and increases linearly, it bares
similarity with Lemma 14.

Lemma 55. Let SL
n and I⋆

n as in (11). There exists L0 with Eµ[(L0)
α] < +∞ for all α > 0 such

that if L ≥ L0, for all n such that SL
n ̸= ∅, for all (i, j) ∈ I⋆

n × SL
n such that i ̸= j, we have

µn,i − (1− ε0)µn,j√
1/Nn,i + (1− ε0)2/Nn,j

≥
√
LDµ ,

where Dµ > 0 is a problem dependent constant.

Proof. Using Lemma 12 and min{Nn,i, Nn,j} ≥ L, we obtain

µn,i − (1− ε0)µn,j ≥ µi − (1− ε0)µj −Wµ

(√
log(e+Nn,i)

Nn,i
+ (1− ε0)

√
log(e+Nn,j)

Nn,j

)

≥ ε0 min
i∈[K]

µi − (2− ε0)Wµ

√
log(e+ L)

L
≥ ε0 min

i∈[K]
µi/2 ,

where the last inequality is obtained for L ≥ L0 = L1 − e which is defined as

L1 = sup

{
x | x <

4(2− ε0)
2W 2

µ

ε20 mini∈[K] µ
2
i

log(x) + e

}
< h1

(
4(2− ε0)

2W 2
µ

ε20 mini∈[K] µ
2
i

, e

)
,

The last inequality is obtained by using Lemma 51, and we recall that h1 is defined in Lemma 51.
Since h1 (x, e) ∼x→+∞ x log x, we have Eµ[(L0)

α] < +∞ for all α > 0 by using Lemma 12
(polynomial in Wµ). Then, we have

µn,i − (1− ε0)µn,j√
1/Nn,i + (1− ε0)2/Nn,j

≥
ε0 mini∈[K] µi/2√

1/Nn,i + (1− ε0)2/Nn,j

≥
√
L

ε0 mini∈[K] µi

2
√

1 + (1− ε0)2
.
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Setting Dµ =
ε0 mini∈[K] µi

2
√

1+(1−ε0)2
yields the result.

Lemma 56 gives an upper bound on the transportation costs between a sampled enough arm and an
under-sampled one it bares similarity with Lemma 15.

Lemma 56. Let SL
n as in (11). There exists L1 with Eµ[(L1)

α] < +∞ for all α > 0 such that for
all L ≥ L1 and all n ∈ N,

∀(i, j) ∈ SL
n × SL

n ,
µn,i − (1− ε0)µn,j√

1/Nn,i + (1− ε0)2/Nn,j

≤
√
L

1− ε0
(D1 + 4Wµ) ,

whereD1 > 0 is a problem dependent constant andWµ is the random variables defined in Lemma 12.

Proof. Using Lemma 12 and Nn,i ≥ L ≥ Nn,j ≥ 1, we obtain

µn,i − (1− ε0)µn,j√
1/Nn,i + (1− ε0)2/Nn,j

≤
√
Nn,j

1− ε0
|µn,i − (1− ε0)µn,j |

≤
√
L

1− ε0

(
|µi − (1− ε0)µj |+Wµ

(√
log(e+Nn,i)

Nn,i
+ (1− ε0)

√
log(e+Nn,j)

Nn,j

))

≤
√
L

1− ε0

(
|µi − (1− ε0)µj |+ (2− ε0)Wµ

√
log(e+ 1)

)
≤

√
L

1− ε0
(D1 + 4Wµ) ,

for D1 = maxi̸=j |µi − (1− ε0)µj |.

Lemma 57 show that the desired property for the TC challenger, we omit the proof since it is the
same as for Lemma 17.

Lemma 57. There exists L1 with Eν [L3] < +∞ such that if L ≥ L3, for all n (at most polynomial

in L) such that UL
n ̸= ∅, BEB

n /∈ V L
n implies C

TCm
ε0

n ∈ V L
n .

Combining Lemma 16 and Lemma 57 yields Lemma 58. Importantly, Lemma 58 holds for the
EB-TCε0 algorithm with fixed proportions β ∈ (0, 1) and IDS proportions. Since the proof is the
same as for Lemmas 18 and 26, we omit it.

Lemma 58. There exist N1 with Eν [N1] < +∞ such that for all n ≥ N1 and all i ∈ [K],
Nn,i ≥

√
n/K and BEB

n = i⋆.

I.3.2 Empirical overall balance
As in [40], the key to obtain asymptotic optimality is to show that the empirical proportion satisfy
the empirical overall balance equation. Compared to them, the novelty of Lemma 59 is that we use
IDS proportions with K(K − 1) tracking procedures to select between the leader and the challenger
instead of sampling. The proof of Lemma 59 is highly similar to the one of Lemma 19.

Lemma 59. Let γ > 0. There exists N2 with Eν [N2] < +∞ such that for all n ≥ N2∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
1

1− ε0

Nn,i

n− 1

)2
∣∣∣∣∣∣ ≤ γ .

Proof. Let N1 as in Lemma 58. We proceed as in Lemma 19. Let us define

Gn =

(
n−1∑
t=N1

βt(i
⋆, Ct)

)2

−
∑
j ̸=i⋆

(
1

1− ε0

n−1∑
t=N1

1 (Ct = j) (1− βt(i
⋆, j))

)2

,

Direct manipulations yield that

1

2
(Gn+1 −Gn) = βn(i

⋆, Cn)

n−1∑
t=N1

βt(i
⋆, Ct)−

1− βn(i
⋆, Cn)

(1− ε0)2

n−1∑
t=N1

1 (Ct = Cn) (1− βt(i
⋆, Cn))

+ βn(i
⋆, Cn)

2 − 1

(1− ε0)2
(1− βn(i

⋆, Cn))
2 .
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Using that βn(i⋆, Cn)Nn,i⋆ = (1− βn(i
⋆, Cn))Nn,Cn/(1− ε0)

2 since βn(i⋆, Cn) = Nn,Cn/((1−
ε0)

2Nn,i⋆ +Nn,Cn
) and the inequalities proven in Lemma 19, we can exhibit deterministic constants

A,B > 0 (depending on K and ε0) such that
|Gn+1 −Gn| ≤ AN1 +B hence |Gn| ≤ (n− 1−N1)(AN1 +B) + (1− ε0)

2 .

where the second inequality is obtained by telescopic sum (as in Lemma 19) and using that GN1+1 =
βN1(i

⋆, CN1)
2 − (1− βN1(i

⋆, CN1))
2/(1− ε0)

2.

As in Lemma 19, it is possible to exhibit deterministic constants C,D > 0 (depending on K and ε0)
such that ∣∣∣∣∣∣

(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
1

1− ε0

Nn,i

n− 1

)2

− Gn

(n− 1)2

∣∣∣∣∣∣ ≤ CN1 +D

n− 1
.

Combining both results, we can show∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
1

1− ε0

Nn,i

n− 1

)2
∣∣∣∣∣∣ ≤ (A+ C)N1 +B +D

n− 1
+

(1− ε0)
2

(n− 1)2
.

Therefore, we have shown the desired result for n ≥ N2 defined as

N2 = inf

{
n > 2 | (A+ C)N1 +B +D

n− 1
+

(1− ε0)
2

(n− 1)2
≤ γ

}
,

which satisfies Eν [N2] < +∞ since it is a linear function of N1.

As in [40], using Lemma 59 allows to bound the empirical proportion allocated to the unique best
arm Nn,i⋆/(n− 1) away from 0 (Lemma 60).

Lemma 60. There exists N3 with Eν [N3] < +∞ such that for all n ≥ N3

cL ≤ Nn,i⋆

n− 1
≤ cU where cU =

√
(1− ε0)2/2 + 1

(1− ε0)2 + 1
and cL =

1− cU

(1− ε0)
√
2(K − 1)

.

Proof. Let N2 as in Lemma 59 for γ
(1−ε0)4

. Using Lemma 59, we obtain for all n ≥ N2

γ ≥ (1− ε0)
2

(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2

≥ (1− ε0)
2

(
Nn,i⋆

n− 1

)2

−
(
1− Nn,i⋆

n− 1

)2

=
(
(1− ε0)

2 − 1
)(Nn,i⋆

n− 1

)2

+ 2
Nn,i⋆

n− 1
− 1

≥
(
(1− ε0)

2 + 1
)(Nn,i⋆

n− 1

)2

− 1 .

where we used that Nn,i⋆

n−1 ≤ 1. Taking γ = (1− ε0)
2/2 yields the upper bound.

Let Ñ2 as in Lemma 59 for γ
(K−1)(1−ε0)2

. Using Lemma 59, we obtain for all n ≥ max{N2, Ñ2}

−γ ≤ (K − 1)(1− ε0)
2

(
Nn,i⋆

n− 1

)2

− (K − 1)
∑
i ̸=i⋆

(
Nn,i

n− 1

)2

≤ (K − 1)(1− ε0)
2

(
Nn,i⋆

n− 1

)2

−
(
1− Nn,i⋆

n− 1

)2

≤ (K − 1)(1− ε0)
2

(
Nn,i⋆

n− 1

)2

− (1− cU )
2

Taking γ = (1− cU )
2
/2 yields the lower bound. Note that

cL ≤ cU ⇐⇒ 1 ≤ (1− ε0)
2/2 + 1

(1− ε0)2 + 1

(
2(K − 1)(1− ε0)

2 + 2
√
2(K − 1)(1− ε0) + 1

)
,

where the last condition is trivially true. Taking N3 = max{N2, Ñ2} yields the result.
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Lemma 61 is a rescaled version of the empirical overall balance equation which is proven by simply
combining Lemma 59 and Lemma 60.

Lemma 61. Let γ > 0. There exists N4 with Eν [N4] < +∞ such that for all n ≥ N4∣∣∣∣∣∣(1− ε0)
2 −

∑
i̸=i⋆

(
Nn,i

Nn,i⋆

)2
∣∣∣∣∣∣ ≤ γ .

Proof. Let N3 and cL as in Lemma 60. Let N2 as in Lemma 59 for γc2L/(1 − ε0)
2. Direct

manipulation shows that, for all n ≥ N4 = max{N2, N3},∣∣∣∣∣∣1−
∑
i ̸=i⋆

(
1

1− ε0

Nn,i

Nn,i⋆

)2
∣∣∣∣∣∣ =

(
n− 1

Nn,i⋆

)2
∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2

−
∑
i ̸=i⋆

(
1

1− ε0

Nn,i

n− 1

)2
∣∣∣∣∣∣

≤ 1

c2L
γc2L =

γ

(1− ε0)2
.

This concludes the result.

I.3.3 Convergence towards optimal allocation
As in [40], we show that a challenger will not be sampled next when the ratio of its empirical propor-
tion compared to the one of i⋆ overshoots the ratio of the optimal allocations (Lemma 62).

Lemma 62. Let γ > 0. There exists N5 with Eν [N5] < +∞ such that for all n ≥ N5 and all i ̸= i⋆,

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ =⇒ C
TCm

ε0
n ̸= i .

Proof. Let γ > 0. Let i ̸= i⋆ such that

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ .

Let N4 as in Lemma 61. As in Lemma 22, we can show for all n ≥ N4

∃j /∈ {i⋆, i}, Nn,j

Nn,i⋆
≤

w⋆
j

w⋆
i⋆
.

Let N1 as in Lemma 18. Using that BEB
n = i⋆ for all n ≥ N1 and the definition of C

TCm
ε0

n , we known
that

µn,i⋆ − (1− ε0)µn,i√
1/Nn,i⋆ + (1− ε0)2/Nn,i

>
µn,i⋆ − (1− ε0)µn,j√

1/Nn,i⋆ + (1− ε0)2/Nn,j

=⇒ C
TCm

ε0
n ̸= i .

To conclude the proof, it is sufficient to show that the ratio of the two quantities is strictly larger than
one. For all n ≥ max{N1, N4}, we obtain

µn,i⋆ − (1− ε0)µn,i

µn,i⋆ − (1− ε0)µn,j

√
1 + (1− ε0)2Nn,i⋆/Nn,j

1 + (1− ε0)2Nn,i⋆/Nn,i

≥ µn,i⋆ − (1− ε0)µn,i

µn,i⋆ − (1− ε0)µn,j

√
1 + (1− ε0)2w⋆

i⋆/w
⋆
j

1 + (1− ε0)2 (w⋆
i /w

⋆
i⋆ + γ)

−1 .

Let γ̃ > 0. Using Lemmas 12 and 18, we have, for all n ≥ N1 and all k ̸= i⋆,∣∣∣∣µn,i⋆ − (1− ε0)µn,k

µi⋆ − (1− ε0)µk
− 1

∣∣∣∣ ≤ Wµ

(
(1− ε0)

√
log(e+Nn,k)

Nn,k
+
√

log(e+Nn,i⋆ )

Nn,i⋆

)
µi⋆ − (1− ε0)µk

≤ (2− ε0)Wµ

mink ̸=i⋆(µi⋆ − (1− ε0)µk)

√
log(e+

√
n/K)√

n/K
≤ γ̃

58



for all n ≥ N6 = K(X0 − e)2 + 1 which is defined as

X0 = sup

{
x ≥ 1 | x <

(2− ε0)
2W 2

µ

γ̃2 mink ̸=i⋆(µi⋆ − (1− ε0)µk)2
log x+ e

}

< h1

(
(2− ε0)

2W 2
µ

γ̃2 mink ̸=i⋆(µi⋆ − (1− ε0)µk)2
, e

)
.

where the last inequality is obtained by using Lemma 51 with h1 defined therein. Since
h1(x, y) ∼x→+∞ x log x, we have Eν [N6] < +∞ since it polynomial in Wµ (by using Lemma 12).
Let κ > 0. We have shown that, for all n ≥ max{N1, N4, N6},

µn,i⋆ − (1− ε0)µn,i

µn,i⋆ − (1− ε0)µn,j

√
1 + (1− ε0)2Nn,i⋆/Nn,j

1 + (1− ε0)2Nn,i⋆/Nn,i

≥ µi⋆ − (1− ε0)µi

µi⋆ − (1− ε0)µj

√
1 + (1− ε0)2w⋆

i⋆/w
⋆
j

1 + (1− ε0)2 (w⋆
i /w

⋆
i⋆ + γ)

−1

1− γ̃

1 + γ̃

=

√
1 + (1− ε0)2w⋆

i⋆/w
⋆
i

1 + (1− ε0)2 (w⋆
i /w

⋆
i⋆ + γ)

−1

1− γ̃

1 + γ̃
.

where the equality uses that the transportation costs are equal at the equilibrium, i.e. (31). Taking γ̃
small enough, we have that shown that, for all n ≥ max{N1, N4, N6},

Nn,i

Nn,i⋆
≥ w⋆

i

w⋆
i⋆

+ γ =⇒ µn,i⋆ − (1− ε0)µn,i

µn,i⋆ − (1− ε0)µn,j

√
1 + (1− ε0)2Nn,i⋆/Nn,j

1 + (1− ε0)2Nn,i⋆/Nn,i
> 1 ,

hence C
TCm

ε0
n ̸= i. This concludes the proof.

Lemma 63 is obtained with the same proof as Lemma 23.

Lemma 63. Let γ > 0. There exists N6 with Eν [N6] < +∞ such that for all n ≥ N6 and all i ̸= i⋆,

Nn,i

Nn,i⋆
≤ w⋆

i

w⋆
i⋆

+ γ .

Lemma 64 is obtained with the same proof as Lemma 24.

Lemma 64. Let ε0 ∈ (0, 1), γ > 0 and Tε0,γ introduced before (adaptation of (10)). Under the
EB-TCm

ε0 sampling rule with IDS proportions, we have Eν [Tε0,γ ] < +∞.

Combining Lemmas 54 and 64 yields the first of Theorem 8.

I.3.4 Convergence towards β-optimal allocation
Combining Lemmas 58 and 27 with the proof of Lemma F.9 in [20] yields Lemma 65.

Lemma 65. Let γ > 0. There exists N5 with Eν [N5] < +∞ such that for all n ≥ N5 and all i ̸= i⋆,

Nn,i

n− 1
≥ w⋆

β,i + γ =⇒ C
TCm

ε0
n ̸= i .

Lemma 66 is obtained with the same proof as Lemmas 29 and 30.

Lemma 66. Let ε0 ∈ (0, 1), β ∈ (0, 1), γ > 0 and Tε0,β,γ introduced before (adaptation of (14)).
Under the EB-TCm

ε0 sampling rule with fixed proportions β, we have Eν [Tε0,β,γ ] < +∞.

Combining Lemmas 54 and 66 yields the second part of Theorem 8.

J Implementation details and additional experiments
After presenting the implementations details in Appendix J.1, we display supplementary experiments
in Appendix J.2.
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J.1 Implementation details
Top Two sampling rules Given a fixed β, most Top Two algorithms use randomization to select
In ∈ {Bn, Cn}, namely they sample Bn with probability β, otherwise sample Cn. Instead of
randomization, TTUCB [20] uses K tracking procedures to select In ∈ {Bn, Cn}. Namely, they
choose In = Bn if NBn

n,Bn
≤ β

∑
i ̸=Bn

Tn+1(Bn, i), and In = Cn otherwise. In comparison,
EB-TCε0 relies on K(K − 1) tracking procedures both for fixed proportion β and IDS proportions
[40]. In [40], they consider IDS proportions to define βn adaptively. For Gaussian with known
homoscedastic variance, their update mechanism is

βn =
Nn,BndKL(µn,Bn , un(Bn, Cn))

Nn,Bn
dKL(µn,Bn

, un(Bn, Cn)) +Nn,Cn
dKL(µn,Cn

, un(Bn, Cn))
=

Nn,Cn

Nn,Bn
+Nn,Cn

,

where the second equality is obtained by direct computations which uses that

un(i, j) = inf
x∈R

[Nn,idKL(µn,i, x) +Nn,jdKL(µn,j , x)] =
Nn,iµn,i +Nn,jµn,j

Nn,i +Nn,j
.

[8] proposed a new methodology called Balancing Optimal Large Deviations (BOLD) to select
In ∈ {Bn, Cn} adaptively. While their approach aims at minimizing the probability of incorrect
selection (i.e. fixed-budget setting), it is possible to adapt their idea to minimize the expected
sample complexity (i.e. fixed-confidence setting) by “swapping” the arguments of the KL divergence.
Namely, the BOLD procedure can be rewritten in our setting as selecting In = Bn if∑

i ̸=Bn

dKL(µn,Bn
, un(Bn, i))

dKL(µn,i, un(Bn, i))
> 1 ,

and In = Cn otherwise. For Gaussian with known homoscedastic variance, their approach recovers
the heuristic “adaptive Welch divergence” algorithm of proposed in [37], i.e. In = Bn if N2

n,Bn
<∑

i ̸=Bn
N2

n,i, and In = Cn otherwise. The analysis of [8] is focused on asymptotic guarantees in
probability. It is an interesting direction for future research to show that the BOLD procedure also
yields asymptotically optimal algorithms.

TTTS [34] uses a TS (Thompson Sampling) leader and a RS (Re-Sampling) challenger based on a sam-
pler Πn. For Gaussian bandits, the sampler Πn is the posterior distribution×i∈[K]

N (µn,i, 1/Nn,i)

given the improper prior Π1 = (N (0,+∞))K . The TS leader is BTS
n ∈ argmaxi∈[K] θi where

θ ∼ Πn. The RS challenger samples vector of realizations θ ∈ Πn until Bn /∈ argmaxi∈[K] θi, then
it is defined as CRS

n argmaxi∈[K] θi for this specific vector of realization. When the posterior Πn

and the leader Bn have almost converged towards the Dirac distribution on µ and the best arm i⋆(µ)
respectively, the event Bn /∈ argmaxi∈[K] θi becomes very rare. The experiments in [21] reveals
that computing the RS challenger can require more than millions of re-sampling steps. Therefore, the
RS challenger can become computationally intractable even for Gaussian distribution where sampling
from Πn can be done more efficiently.

T3C [36] combines the TS leader and the TC challenger. EB-TCI [21] combines the EB leader with
the TCI challenger defined as

CTCI
n = argmin

i ̸=Bn

1 (µn,Bn
> µn,i)

(µn,Bn
− µn,i)

2

2(1/Nn,Bn
+ 1/Nn,i)

+ log(Nn,i) .

TTUCB [20] combined the TC challenger with a UCB leader which is defined as

BUCB
n = argmax

i∈[K]

{µn,i +
√
g(n)/Nn,i} ,

where
√
g(n)/Nn,i is a bonus coping for uncertainty. TS-KKT [40] uses the TS leader and a

challenger based on transportation costs with a different penalization than the one used in [21],
namely

Cn) ∈ argmin
i ̸=Bn

{
(µn,Bn − µn,i)

2

2(1/Nn,Bn
+ 1/Nn,i)

− ρ

n
log (1/Nn,Bn + 1/Nn,i)

}
,

where ρ is a parameter that needs to be selected beforehand. The authors highlight that the choice of
ρ has an important impact on the empirical performance.
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While the above Top Two algorithms are BAI algorithms, we can adapt them straightforwardly to
tackle the ε-BAI setting by (1) using the stopping rule as in (3) and (2) using transportation costs for
ε-BAI, i.e. the ones in (2). The modification (1) is inspired by [19] and the modification (2) by [22].
As an example, the modified TCI challenger can be written as

CTCI
n = argmin

i ̸=Bn

1 (µn,Bn > µn,i)
(µn,Bn

− µn,i + ε)2

2(1/Nn,Bn + 1/Nn,i)
+ log(Nn,i) .

Fixed-confidence BAI algorithms At each time n, Track-and-Stop (TaS) [15] computes the
optimal allocation for the current empirical mean, wn = w⋆(µn). Given wn ∈ △K , it uses a
tracking procedure to obtain an arm In to sample. On top of this tracking a forced exploration
is used to enforce convergence towards the optimal allocation for the true unknown parameters.
The optimization problem defining w⋆(µ) can be rewritten as solving an equation ψµ(r) = 0,
where

∀r ∈ (1/min
i ̸=i⋆

(µi⋆ − µi)
2,+∞), ψµ(r) =

∑
i ̸=i⋆

1

(r(µi⋆ − µi)2 − 1)
2 − 1

The function ψµ is decreasing, and satisfies limr→+∞ ψµ(r) = −1 and
limy→1/mini̸=i⋆ (µi⋆−µi)2 Fµ(y) = +∞. For the practical implementation of the optimal al-
location, we use the approach of [15] and perform binary searches to compute the unique solution of
ψµ(r) = 0. A faster implementation based on Newton’s iterates was proposed by [3] after proving
that ψµ is convex. While this improvement holds only for Gaussian distributions, the binary searches
can be used for more general distributions. Similarly, one can adapt TaS to tackle ε-BAI as done in
[16], i.e. by tracking wn = wε(µn). Using Lemma 9, it is direct to see that one can use the same
implementation to compute it efficiently.

DKM [11] view T ⋆(µ)−1 as a min-max game between the learner and the nature, and design saddle-
point algorithms to solve it sequentially. At each time n, a learner outputs an allocation wn, which is
used by the nature to compute the worst alternative mean parameter λn. Then, the learner is updated
based on optimistic gains based on λn. Similarly, one can adapt DKM to tackle ε-BAI by using a
modified alternative mean parameter. This coincides with the LεBAI algorithm [19] when used on
unstructured multi-armed bandits.

FWS [39] alternates between forced exploration and Frank-Wolfe (FW) updates. Similarly, FWS can
be adapted to tackle ε-BAI

LUCB [24] samples and stops based on upper/lower confidence indices for a bonus function g. For
Gaussian distributions, it rewrites for all i ∈ [K] as

Un,i = µn,i +

√
2c(n− 1, δ)

Nn,i
and Ln,i = µn,i −

√
2c(n− 1, δ)

Nn,i
.

At each time n, it samples ı̂n and argmaxi ̸=ı̂n Un,i. For ε-BAI, LUCB stops when Ln,̂ın + ε ≥
maxi̸=ı̂n Un,i.

Fixed-budget BAI algorithms We consider Successive Reject (SR) [1] and Sequential Halving
(SH) [25]. SR eliminates one arm with the worst empirical mean at the end of each phase, and SH
eliminated half of them but drops past observations between each phase. Within each phase, both
algorithms use a round-robin uniform sampling rule on the remaining active arms. It is possible
to convert the fixed-budget SH algorithm into an anytime algorithm by using the doubling trick. It
considers a sequences of algorithms that are run with increasing budgets (Tk)k≥1, with Tk+1 = 2Tk
and T1 = 2K⌈log2K⌉, and recommend the answer outputted by the last instance that has finished
to run. It is well know that the “cost” of doubling is to have a multiplicative factor 4 in front of the
hardness constant. The first two-factor is due to the fact that we forget half the observations. The
second two-factor is due to the fact that we use the recommendation from the last instance of SH that
has finished. The doubling version of SR and SH are named Doubling SR (DSR) and Doubling SH
(DSH).

Reproducibility Our code is implemented in Julia 1.9.0, and the plots are generated with the
StatsPlots.jl package. Other dependencies are listed in the Readme.md. The Readme.md
file also provides detailed julia instructions to reproduce our experiments, as well as a script.sh
to run them all at once. The general structure of the code (and some functions) is taken from the
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tidnabbil library. This library was created by [11], see https://bitbucket.org/wmkoolen/
tidnabbil. No license were available on the repository, but we obtained the authorization from
the authors. Our experiments are conducted on an institutional cluster with 4 Intel Xeon Gold 5218R
CPU with 20 cores per CPU and an x86_64 architecture.

J.2 Supplementary experiments
For the sake of space, we only presented a small subset of our experiments in Section 5, hence we
provide additional empirical evidence below. In Appendix J.2.1, we assess the impact of the choice
of the slack ε0 on the empirical performance of EB-TCε0 with IDS or with fixed proportion β = 1/2.
Appendix J.2.2 complements Section 5 by providing more comparison between EB-TCε0 and existing
algorithms. In Appendix J.2.3, we study the BAI problem and show the empirical performance of
the EB-TC(εn)n>K

with fixed proportion β = 1/2 and using varying slack parameters (εn)n>K (as
described in Sections 3 and 4). As in Section 5, we consider δ = 0.01 and use the heuristic threshold
c(n, δ) = log((1 + log n)/δ), which yields an empirical error which is several orders of magnitude
lower than δ.

J.2.1 Numerical simulations on EB-TCε0

Appendix J.2.1 is meant to be a sensitivity analysis of the EB-TCε0 algorithm. It will allow us to
numerically substantiate our recommendation to the practitioner on how to set the slack ε0, and why
using IDS yields better empirical performance. For slacks ε0 ∈ {0.15, 0.1, 0.05}, we will consider
the EB-TCε0 algorithms with IDS proportions and fixed proportions β = 1/2.

Figure 4: Empirical stopping time with stopping rule (3) using (ε, δ) = (0.1, 0.01) on (a)“sparse”
instances“, (b) α = 0.3” instances and (c) “α = 0.6” instances. “c-” denotes fixed β = 1/2, without
refers to IDS.

Large sets of arms First, we evaluate the impact of larger number of arms (up to K = 1000). The
“α = 0.6” scenario of [18] sets µi = 1− ((i− 1)/(K − 1))α for all i ∈ [K]. The “sparse” scenario
of [18] sets µ1 = 1/4 and µi = 0 otherwise. We average on 100 runs, and the standard deviations
are displayed.

In Figure 4, we see that all instances of EB-TCε0 with IDs or fixed β = 1/2 have the same scaling
with the dimension K. Figure 4 also reveals that using IDS instead of fixed β = 1/2 consistently
yields smaller empirical stopping time. Therefore, IDS should be preferred to choosing fixed β = 1/2.
Finally, Figure 4 shows that better empirical performance are obtained when using a slack ε0 which
matches the error ε, i.e. choosing ε0 = ε to tackle ε-BAI. While choosing ε0 > ε only slightly damage
the empirical performance, taking ε0 < ε is clearly detrimental to the empirical performance.
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Figure 5: Empirical stopping time on random instances with stopping rule (3) using (left) (ε, δ) =
(0.05, 0.01) and (right) (ε, δ) = (0.1, 0.01) with (top) K = 5, (middle) K = 10 and (bottom)
K = 20. “c-” denotes fixed β = 1/2, without refers to IDS.

Random instances We further investigate the phenomenon described above on random instances.
For ε ∈ {0.05, 0.1}, we assess the performance on 1000 random Gaussian instances with K = 5
(resp. K = 10 and K = 10) such that µ1 = 1, µi ∼ U([1 − ε, 1]) for i ∈ {2} (resp. i ∈ {2, 3}
and i ∈ {2, 3, 4}) and µi ∼ U([0, 1 − ε)) for i ≥ 3 (resp. i ≥ 4 and i ≥ 6), hence Iε(µ) = [2]
(resp. Iε(µ) = [3] and Iε(µ) = [5]). We display the boxplots of the empirical stopping time on 1000
runs.

In Figure 5, the tendencies glimpsed by inspecting Figure 4 are more apparent. Figure 5 shows
that better empirical performance are obtained when using a slack ε0 which matches the error ε, i.e.
choosing ε0 = ε to tackle ε-BAI. We also see that the empirical gain of taking ε0 = ε is increasing
with the dimension K. Figure 5 shows that ε0 > ε slightly damage the empirical performance: the
larger the missmatch ε0 − ε is, the worse the performances are. Moreover, Figure 5 highlights how
choosing ε0 < ε is highly detrimental to the empirical performance. Finally, we see that there is
a mild advantage in using IDS over fixed β = 1/2. Note that the mild empirical gain of adaptive
proportions is a known phenomenon which was studied empirically in [20], and larger gains can
be observed for “two-groups” instances. Intuitively, the characteristic times Tε(µ) and Tε,1/2(µ)
are very close to each other on average, and the difference is the largest when all the sub-optimal
arms have the same mean. Therefore, on average, using IDS has mild gain compared to using fixed
β = 1/2. This worst-case scenario of the “two-groups” instances is studied in Figure 7.
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Table 3: Specific instances from [16] with corresponding ε.

ε Instance |Iε(µ)| Arms

1 2 3 4 5 6

0.1 µ1 1 0.7 0.55 0.5 0.4 0.2 -
0.15 µ2 3 0.8 0.75 0.7 0.6 0.5 0.4
0.1 µ3 3 0.6 0.6 0.55 0.45 0.3 0.2

Specific instances We continue the experimental validation of our the phenomenon described above
by considering the three specific instances from the experimental section of [16] which are described
in Table 3. Instance µ3 corresponds to the specific instances studied in Section 5. It is particularly
interesting since it has two best arms, a third ε-good arm which is equally distant from ε than the
bad arm with largest mean, and has two additional bad arms. Instance µ2 has also three ε-good arms,
which are equally spaced, and three bad arms. Instance µ1 has only one ε-good arm, and four bad
arms. We display the boxplots of the empirical stopping time on 1000 runs, and the empirical simple
regret on 10000 runs (with associated standard deviation).

Figure 6: (Left) Empirical stopping time for the stopping rule (3) using δ = 0.01 and (right) empirical
simple regret on instances (top) µ1 with ε = 0.1, (middle) µ2 with ε = 0.15 and (bottom) µ3 with
ε = 0.1. “c-” denotes fixed β = 1/2, without refers to IDS.

The left column of Figure 6 confirms our previous observations: taking ε = ε0 yields the best perfor-
mance, taking ε0 > ε slightly damage performance and taking ε0 < ε highly damage performance.
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Figure 6(middle left) shows that the the larger the missmatch ε− ε0 is, the worse the performances
are.

The right column of Figure 6 reveals that the choice of ε0 has few impact on the empirical simple
regret, at least for reasonably chosen ε0. Likewise, there is few differences between IDS proportions
and fixed β = 1/2. The good empirical performance of IDS proportions as regards the simple regret
hints that EB-TCε0 with IDS has (most likely) similar theoretical guarantees as the ones obtained in
Section 4 for EB-TCε0 with fixed β = 1/2 (Theorem 3 and Corollary 1). This is an interesting open
problem that we leave for future work.

Two-groups instances We conclude our sensitivity analysis on EB-TCε0 by considering the “two-
groups” instances µ ∈ {0.6, 0.4}10 for varying number of best arms, i.e. |i⋆(µ)| ∈ [8]. Our aim is to
assess the impact of having multiple best arms on the empirical stopping time. We average on 1000
runs, and the standard deviations are displayed.

Figure 7: Empirical stopping time with stopping rule (3) using (ε, δ) = (0.1, 0.01) on instances
µ ∈ {0.6, 0.4}10 for varying |i⋆(µ)|. “c-” denotes fixed β = 1/2, without refers to IDS.

On this specific instances where the number of arms is fixed, it would be intuitive to think that the
problem is easier when there are more best arms. However, this is actually the opposite since there
less bad arms (which were easy to detect) and more good arms which need to be estimated well
enough. While Figure 7 shows how poor the performances are when taking ε0 < ε, it also shows that
the impact of having multiple best arms is rather mild for slacks ε0 ≥ ε. We will see in Figure 12
that EB-TCε0 is the most resilient algorithm with respect to multiple arms, meaning that its slope is
the smallest.

“Two-groups“ instances are interesting since they are the instances for which the ratio Tε,1/2(µ)/Tε(µ)
is the largest. Using Lemma 9 and the theoretical results of [20] (see their Lemma C.6), we conjecture
that Tε,1/2(µ) ≤ rKTε(µ) with rK = 2K/(1 +

√
K − 1)2 and that the equality occurs for “two-

groups” instances. Since r10 = 5/4, using fixed β = 1/2 should be roughly 25% slower than using
IDS. While Figure 7 confirms that using IDS yields better empirical performance than using fixed
β = 1/2, the empirical ratio between their performance is lower than the one suggested by the
theory.

Table 4: Comparison between the original sampling rule and the modified sampling rule for BAI
algorithms when combined with the GLRε stopping rule (3) using (ε, δ) = (0.1, 0.01). We display
the empirical stopping time (and standard deviation) on random instances with K ∈ {5, 10, 20}.

K T3C ε-T3C EB-TCI ε-EB-TCI

5 9138 (±7988) 2259 (±1243) 22505 (±66624) 2290 (±1202)
10 17418 (±9726) 3793 (±1524) 58086 (±135655) 3975 (±1509)
20 30771 (±13038) 6631 (±1992) 115861 (±195797) 6905 (±1879)
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J.2.2 Comparison with modified BAI algorithms
Appendix J.2.2 is meant to provide further empirical evidence that EB-TCε0 outperforms its com-
petitors on different tasks and for different types of instances. Overall, we will use the same instances
as used in Appendix J.2.1 since they provide a wide range of interesting problems. Throughout this
section, we will be using EB-TCε0 with slack ε0 = 0.1. While IDS proportions are used for the exper-
iments on the empirical stopping time, we use fixed β = 1/2 for the empirical simple regret.

Figure 8: Empirical stopping time on (a) “α = 0.6” instances and (b) “sparse” instances for varying
K and stopping rule (3) using (ε, δ) = (0.1, 0.01). The BAI algorithms T3C, EB-TCI and TTUCB
are modified to be ε-BAI ones.

Figure 9: Empirical stopping time on random instances with stopping rule (3) using (left) (ε, δ) =
(0.05, 0.01) and (right) (ε, δ) = (0.1, 0.01) with (top) K = 5, (middle) K = 10 and (bottom)
K = 20. The BAI algorithms T3C, EB-TCI, TTUCB, TaS, FWS, DKM are modified for ε-BAI.
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As benchmarks we consider modified BAI which are tailored to tackle ε-BAI, and we combine them
with the GLRε stopping rule. One can still wonder whether the unmodified sampling rule would
perform well for ε-BAI when combined with the GLRε stopping rule. While we could hope that
modifying the stopping rule is enough, our experiments reveal that it is not the case. If we don’t adapt
the sampling rule as well, Table 4 shows that the empirical stopping time can be more than ten times
larger than their modified version.

Large sets of arms To complement Figure 2(a), we consider the “α = 0.6” instances and “sparse”
instances for varying K. We average on 100 runs, and the standard deviations are displayed.

Figure 8 confirms the observations made in Figure 2(a). We see that EB-TCε performs on par with
the ε-T3C, and outperforms the other algorithms. It also highlights that the regularization ensured by
the TCε challenger is sufficient to ensure enough exploration. As a consequence, other exploration
mechanism are superfluous when using Top Two algorithms for ε-BAI (e.g. using TS/UCB leader or
TCI challenger).

Random instances For ε ∈ {0.05, 0.1}, we assess the performance on 1000 random Gaussian
instances withK ∈ {5, 10, 20} as described above. We display the boxplots of the empirical stopping
time on 1000 runs.

Figure 9 confirms that EB-TCε0 performs on par with the state-of-the-art ε-BAI algorithms and
greatly outperform ε-DKM, LUCB and uniform sampling. Interestingly, for larger sets of arms
(K = 20), EB-TCε0 appears to be more robust than its competitors, closely followed by ε-T3C
and ε-EB-TCI. The performance ε-TTUCB, ε-TaS and ε-FWS is slighlty worse, while the one of
ε-DKM is greatly impacted. LUCB seems relatively robust to larger sets of arms, but it is still
significantly worse than EB-TCε0 . It is even the best when considering slack ε0 = ε in the bottom
row of Figure 9. The slightly worse (but still competitive) empirical performance of EB-TCε0 in
the top row of Figure 9 is explained by the slack ε0 = 0.1 which differs from the error ε = 0.05
considered in the GLRε stopping rule.

Specific instances To complement Figure 2(b), we consider the two other instances from Table 3.
We display the boxplots of the empirical stopping time on 1000 runs, and the empirical simple regret
on 10000 runs (with associated standard deviation).

The left column of Figure 10 validates the previous conclusions as regards the good empirical
performance of EB-TCε0 compare to existing ε-BAI algorithms. We also see that it seems to perform
even better when there are multiple ε-good arms and multiple best arms, i.e. |i⋆(µ)| > 1. The
right column of Figure 10 corroborates the observations made in Figure 2(b): EB-TCε0 outperforms
uniform sampling, as well as DSR and DSH.

Two groups We consider the “two-groups” instances µ ∈ {0.6, 0.4}10 for varying number of best
arms, i.e. |i⋆(µ)| ∈ [8]. We average on 1000 runs, and the standard deviations are displayed.

Figure 11 reveals that EB-TCε0 is the most robust to increased number of best arms, i.e. its slope is
the smallest. The good performance of EB-TCε0 is closely followed by other Top Two algorithms.
This confirms that additional regularization mechanisms (e.g. TS/UCB leader or TCI challenger) are
superfluous since the TCε challenger is enough to ensure sufficient exploration. ε-TaS and ε-FWS
have slightly worse slope, and the one of ε-DKM seems to become less steep after a large initial
increase. The highest slope is achieved by LUCB. Quite surprisingly, uniform sampling seems to
reach a plateau after which it is scaling better than EB-TCε0 (in terms of slope), while still having
worse empirical performance. It would be interesting to quantify theoretically the good scaling of
EB-TCε0 with respect to increased number of best arms.
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Figure 10: (Left) Empirical stopping time for the stopping rule (3) using δ = 0.01 and (right)
empirical simple regret on instances (top) µ1 with ε = 0.1, (middle) µ2 with ε = 0.15 and (bottom)
µ3 with ε = 0.1. The BAI algorithms T3C, EB-TCI, TTUCB, TaS, FWS, DKM are modified to be
ε-BAI ones.

Figure 11: Empirical stopping time with stopping rule (3) using (ε, δ) = (0.1, 0.01) on instances
µ ∈ {0.6, 0.4}10 for varying |i⋆(µ)|. The BAI algorithms T3C, EB-TCI, TTUCB, TaS, FWS, DKM
are modified to be ε-BAI ones.
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Figure 12: Empirical simple regret on instances µ ∈ {0.6, 0.4}10 for |i⋆(µ)| ∈ [6], i.e. (top left)
|i⋆(µ)| = 1 and (bottom right) |i⋆(µ)| = 6.

Figure 12 provides additional empirical validation that EB-TCε0 outperforms uniform sampling
as well as DSR and DSH in terms of empirical simple regret. While the empirical stopping time
increased with the number of best arms, Figure 12 confirms the intuition that the problem gets easier
with respect to the simple regret. First, the range of empirical simple regret becomes smaller with
increased number of best arms. This was expected as we have more chances to recommend one of the
best arms at early stage even though this recommendation is close to random. Second, we observe a
steeper decrease of the empirical simple regret with increased number of best arms. Likewise, this
is a natural phenomenon since the collected data will reveal that there multiple good options very
fast.

Quite surprisingly, EB-TCε0 is still better than DSH when the number of best arms increases. To
understand why it is surprising, we recall that the exponential decrease of DSH’s probability of error
is linear with a rate proportional to a hardness constant HDSH(µ). By definition, HDSH(µ) gets small
when there are multiple best arms, hence we would expect to observe lower empirical simple regret
(i.e. a “speed-up”). In contrast, our hardness constant H1(µ, ε0) = K(2∆−1

min + 3ε−1
0 )2 does not

enjoy such property. Therefore, we would expect that DSH will outperform EB-TCε0 when the
number of best arms increases. Theoretically proving that EB-TCε0 has a better scaling than the one
given in Theorem 3 is still an open problem. Solving it would allow to better understand its good
empirical performance on this task.

Fixed-budget performance In addition, we compare the performance of EB-TCε0 with ε0 and
β = 1/2 to the one of SR and SH. Since SR and SH are fixed-budget algorithms, we ran a different
instance for each budget T . Therefore, this comparison gives an unfair advantage to the fixed-budget
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algorithms which fully leverage the knowledge of T but have no theoretical guarantees at time n ̸= T
(even at time T ± 1). As a result, the empirical performances of SR and SH are better than the ones
of DSR and DSH. We consider the instances from Table 3, as well as “two-groups” instances.

Figure 13: (Left) Empirical simple regret and (right) empirical error on instances (top to bottom) µ3 =
(0.6, 0.6, 0.55, 0.45, 0.3, 0.2), µ2 = (0.8, 0.75, 0.7, 0.6, 0.5, 0.4), µ1 = (0.7, 0.55, 0.5, 0.4, 0.2) and
µ ∈ {0.6, 0.4}10 with |i⋆(µ)| ∈ {1, 3}. Average over 200 runs. We ran a different instance of SR
and SH for each budget T .
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Overall, according to Figure 13, EB-TCε0 seems to perform on par with SR and SH in all instances
considered, and to outperform SH for some instances. In our experiments, we consider SH in which
the samples are dropped between each phase, as analyzed theoretically in [1]. This loss of information
explains why SR has better empirical performance than SH. To the best of our knowledge, there is no
theoretical analysis for the heuristic SH where all the samples are preserved, even though it has better
empirical performance.

J.2.3 Varying slack parameter
In Appendix J.2.3, we study the BAI problem. Those experiments have two goals: (1) sensitivity
analysis of EB-TC(εn)n described in Section 3 and (2) performance assessment of EB-TCε0 on
BAI problems. We consider fixed proportions β = 1/2, and use ε0 = 0.1 for EB-TCε0 . For
the rate of decrease of (εn)n, we will be considering two archetypal choices: (a) polynomial by
taking εn = n−α/2 and (b) polylogarithmic by taking εn = log(n)−α/2. We compare empirically
those two rates of decrease for different choices of α, namely α ∈ {0.05, 0.1, 0.5}. To tackle
BAI, we consider the GLR0 stopping rule (3) with (ε, δ) = (0, 0.01) and the heuristic threshold
c(n, δ) = log((1 + log n)/δ). Even though this choice is not sufficient to prove (0, δ)-PAC, it yields
an empirical error which is several orders of magnitude lower than δ. As benchmark, we use the
unmodified BAI algorithms.

Random instances We assess the performance on 1000 random Gaussian instances with K ∈
{5, 10, 20} such that µ1 = 1 and µi ∼ U([0.5, 08]) for i ̸= 1. We display the boxplots of the
empirical stopping time on 1000 runs.

Figure 14: Empirical stopping time for the stopping rule (3) using (ε, δ) = (0, 0.01) on random
instances with (a) K = 5, (b) K = 10 and (c) K = 20. “l” denotes εn = log(n)−α/2, “p” denotes
εn = n−α/2. “a··” refers to α ∈ {0.5, 0.1, 0.05}.

The most stricking feature of Figure 14 is that it reveals how poor the performance of EB-TC(εn)n

can be for many choices of (εn)n. For the considered α, we observe that polynomial decrease is
always bad since it yields roughly the same empirical performance as uniform sampling. This can be
explained by the fact that this decrease is too fast, hence EB-TC(εn)n will ressemble EB-TC0 which
is know to have poor empirical performance [21]. For the considered α, we see that polylogarithmic
decrease is often bad, except for α = 0.5. In that case, it performs on par with TaS, slightly worse
than standard Top Two algorithms for BAI and better than LUCB and uniform sampling. This can
be explained by the fact that EB-TC(εn)n is similar to uniform sampling when the decrease is too
slow. The above sensitivity analysis truly shows how difficult it is to choose (εn)n beforehand. The
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best “trade-off” between a slow decrease (yet not too slow) highly depends on the complexity of the
unknown instance. While EB-TC(εn)n reaches asymptotic optimality for BAI, we recommend the
practitioner to use other Top Two algorithms which enjoy the same theoretical guarantees and better
empirical performance. When one needs to have a deterministic algorithms, EB-TCI seems to be the
best. Without the deterministic constraint, T3C has great performance.

In Figure 14, we also see that, when combined with the GLR0 stopping rule, EB-TCε0 has good
empirical performance for BAI. It outperforms EB-TC(εn)n , performs on par with TaS and is only
slightly worse than standard Top Two algorithms for BAI. Experiments conducted in Appendix J.2.1
already provide experimentally confirmation that EB-TCε0 has still good empirical performance on
ε-BAI problems when ε0 ≥ ε. Theoretically, Theorem 1 provide some intuition on why this is true.
It shows that the gap between the asymptotic lower bound T0(µ) and the asymptotic upper bound of
EB-TCε0 is bounded by

Tε0,1/2(µ)

T0(µ)

(
1 +

ε0
∆min

)2

≤ 4

∑
i ̸=i⋆(∆i + ε0)

−2∑
i ̸=i⋆ ∆

−2
i

(
1 +

ε0
∆min

)2

≈
{
4 if ε0 ≫ ∆min

4 if ε0 ≪ ∆min
,

where we used Lemmas 6, 9 and 7.

Specific instances We consider the two instances µ1 and µ2 from Table 3 with ε = 0. Since most
theoretical guarantees on BAI algorithms assume that there is a unique best arm, we don’t study µ3.
We display the boxplots of the empirical stopping time on 1000 runs.

Figure 15: Empirical stopping time for the stopping rule (3) using (ε, δ) = (0, 0.01) on instances (a)
µ1 and (b) µ2. “l” denotes εn = log(n)−α/2, “p” denotes εn = n−α/2.

Figure 15 confirms the empirical observations from Figure 14. Overall, EB-TC(εn)n performs poorly
and EB-TCε0 has good empirical performance for BAI.
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