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Abstract

Scaling inference compute has become a key
driver of advanced reasoning in large language
models (LLMs). A proven approach for
scaling inference compute is to generate long
chains-of-thought (CoTs), enabling models
to engage in structured reasoning strategies
such as backtracking and error correction.
Reinforcement learning (RL) has emerged as a
crucial method for developing these capabilities,
yet the conditions under which long CoTs emerge
remain unclear, and RL training requires careful
design choices. In this study, we systematically
investigate the underlying mechanics of long
CoT reasoning—examining the factors that
enable models to generate extended reasoning
trajectories. Through extensive supervised
fine-tuning (SFT) and RL experiments, we
identify three key findings: 1) while SFT is
not strictly necessary, it significantly simplifies
training and improves efficiency; 2) reasoning
capabilities tend to emerge with increased
training compute but are not guaranteed, making
reward shaping essential for stabilizing CoT
length growth; and 3) scaling verifiable reward
signals is critical for RL, and we find that
leveraging noisy, web-extracted solutions with
filtering mechanisms shows promising potential,
particularly in out-of-distribution (OOD) reason-
ing tasks such as STEM problem-solving. These
insights provide practical guidance for optimizing
training strategies to enhance long CoT reasoning
in LLMs. Our code is available at:
https://github.com/eddycmu/
demystify-long-cot.
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1. Introduction
Large language models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023; Chowdhery et al., 2023; Anthropic, 2023;
OpenAI, 2023) have demonstrated remarkable reasoning
in domains like mathematics (Cobbe et al., 2021) and pro-
gramming (Chen et al., 2021). A key technique for enabling
reasoning in LLMs is chain-of-thought (CoT) prompting
(Wei et al., 2022), which guides models to generate interme-
diate reasoning steps before arriving at a final answer.

Despite these advancements, LLMs still struggle with highly
complex reasoning tasks, such as mathematical competitions
(Hendrycks et al., 2021), PhD-level scientific QA (Rein
et al., 2024), and software engineering (Jimenez et al., 2024),
even with CoT. Recently, OpenAI’s o1 models (OpenAI,
2024) have demonstrated significant breakthroughs on these
tasks. A key distinguishing feature of these models is their
ability to scale up inference compute while refining CoT
strategies—such as recognizing and correcting mistakes,
breaking down difficult steps, and iterating on alternative
approaches—leading to substantially longer and more struc-
tured reasoning processes.

Several efforts have attempted to replicate the perfor-
mance of o1 models by training LLMs to generate long
CoTs (Qwen Team, 2024b; DeepSeek-AI, 2025; Kimi Team,
2025; Pan et al., 2025; Zeng et al., 2025). Most of these ap-
proaches rely on verifiable rewards, such as accuracy based
on ground-truth answers, to stabilize reinforcement learning
(RL) at scale. However, a comprehensive understanding of
how models learn and generate long CoTs remains limited.
In this work, we systematically investigate the underlying
mechanics of long CoT generation. Specifically, we explore:

1) Supervised fine-tuning (SFT) for long CoTs – the most
direct way to enable long CoT reasoning. We analyze its
scaling behavior and impact on RL, finding that long CoT
SFT allows models to reach higher performance and also
facilitates easier further RL improvements than short CoT.

2) Challenges in RL-driven CoT scaling – we observe that
RL does not always stably extend CoT length and complex-
ity. To address this, we introduce a cosine length-scaling re-
ward with a repetition penalty, which stabilizes CoT growth
while encouraging emergent reasoning behaviors such as
branching and backtracking.
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3) Scaling up verifiable signals for long CoT RL – Verifi-
able reward signals are essential for stabilizing long CoT
RL. However, scaling up them remains challenging due to
the limited availability of high-quality, verifiable data. To
address this, we explore the use of data containing noisy,
web-extracted solutions (Yue et al., 2024). While these
“silver” supervision signals introduce uncertainty, we find
that, with appropriate mixture in SFT and filtration in RL,
they show promise, especially in out-of-distribution (OOD)
reasoning scenarios such as STEM problem solving.

2. Problem Formulation
In this section, we define the notation, followed by an
overview of SFT and RL methods for eliciting long CoTs.

Research Aim

Our primary aim is to investigate the mechanics
of long chain-of-thought reasoning in LLMs. By
systematically analyzing the factors that influence
long CoT reasoning, we distill key insights from
rigorous ablations and offer practical takeaways for
enhancing and stabilizing long CoT performance.

2.1. Notation

Let x = (x1, x2, . . . , xn) be a query, and let y =
(y1, y2, . . . , ym) be the corresponding output sequence. We
consider a LLM parameterized by θ, which defines a condi-
tional distribution over output tokens: πθ(yt | x, y1:t−1).

We denote by CoT(y) ⊆ y the tokens in the generated
output that constitute the chain-of-thought, which is often a
reasoning trace or explanatory sequence. The final “answer”
can be a separate set of tokens or simply the last part of y.

In this work, we use the term long chain-of-thought (long
CoT) to describe an extended sequence of reasoning tokens
that not only exhibits a larger-than-usual token length but
also demonstrates more sophisticated behaviors such as:

1) Branching and Backtracking: The model systematically
explores multiple paths (branching) and reverts to earlier
points if a particular path proves wrong (backtracking).

2) Error Correction: The model detects inconsistencies
or mistakes in its intermediate steps and takes corrective
actions to restore coherence and accuracy.

2.2. Supervised Fine-Tuning (SFT)

A common practice is to initialize the policy πθ via
SFT (Lamb et al., 2016) on a dataset DSFT = {(xi, yi)}Ni=1,
where yi can be normal or long CoT reasoning tokens.

2.3. Reinforcement Learning (RL)

After optional SFT initialization, we frame the generation of
a long CoT as a Markov Decision-making Process (MDP)
and optimize its reward with reinforcement learning.

Reward Function. We define a scalar reward rt designed
to encourage correct and verifiable reasoning. We only
consider the outcome-based reward for the final answer
produced, and do not consider process-based reward for the
intermediate steps. We denote the term ranswer(y) to capture
the correctness of the final solution.

Policy Update. Policy gradient methods such as Proxi-
mal Policy Optimization (PPO) (Schulman et al., 2017) and
REINFORCE (Sutton & Barto, 2018) are employed to it-
eratively update θ. The resulting updates push the policy
to generate tokens that yield higher rewards, potentially
favoring longer or more complex reasoning traces.

2.4. Training Setup

We adopt Llama-3.1-8B (Meta, 2024) and Qwen2.5
-7B-Math (Qwen Team, 2024a) as the base models. For
both SFT and RL, we use the 7,500-sample prompt set of
MATH (Hendrycks et al., 2021) training split by default,
with which verifiable ground truth answers are provided. For
SFT when ground truth answers are available, we synthesize
responses by rejection sampling (Zelikman et al., 2022;
Dong et al., 2023; Yuan et al., 2023; Gulcehre et al., 2023;
Singh et al., 2023; Tong et al., 2024). Specifically, we first
sample a fixed number N of candidate responses per prompt
and then filter by only retaining ones with final answers
consistent with the corresponding ground truth answers. We
also discuss data like WebInstruct (Yue et al., 2024) that
is more diverse but without gold supervision signals like
ground truth answers in §5. We train the models with the
OpenRLHF framework (Hu et al., 2024).

2.5. Evaluation

We focus on four representative reasoning benchmarks:
MATH-500, AIME 2024, TheoremQA (Chen et al., 2023),
and MMLU-Pro-1k (Wang et al., 2024a). Given that our
training data is primarily in the mathematical domain, these
benchmarks provide a comprehensive framework for both
in-domain and out-of-domain evaluations. By default, we
evaluate the models using a temperature of t = 0.7, a top-p
value of 0.95, and a maximum output length of 16,384 to-
kens. Please refer to Appendix E.1 for further details on the
evaluation setup.

3. Impact of SFT for long CoT
In this section, we compare long CoT and short CoT as
different SFT data patterns and different RL initializations.

2



Demystifying Long Chain-of-Thought Reasoning

0.10.20.30.40.5 1 2 3 45 10
# of SFT Tokens (B)

45
50
55
60
65
70

A
cc

ur
ac

y 
(%

)

MATH-500 (Math I.D.)

0.10.20.30.40.5 1 2 3 45 10
# of SFT Tokens (B)

0
2
4
6
8

10

A
cc

ur
ac

y 
(%

)

AIME 2024 (Math O.O.D.)

0.10.20.30.40.5 1 2 3 45 10
# of SFT Tokens (B)

20

22

24

26

28

A
cc

ur
ac

y 
(%

)

TheoremQA (STEM)

0.10.20.30.40.5 1 2 3 45 10
# of SFT Tokens (B)

25

30

35

40

A
cc

ur
ac

y 
(%

)

MMLU-Pro (General)

Long CoT (QwQ-32B-Preview) Short CoT (Qwen2.5-Math-72B-Instruct)
CoT Type (Teacher Model)

SFT SFT+RL
Training Method

Figure 1. Scaling curves of post-training Llama-3.1-8B with long CoT and short CoTs. SFT with long CoTs can scale up to a higher
upper limit and has more potential to further improve with RL.

3.1. SFT Scaling

To compare long CoT with short CoT, the first step is to
equip the model with the corresponding behavior. The most
straightforward approach is to fine-tune the base model on
CoT data. Since short CoT is common, curating SFT data
for it is relatively simple via rejection sampling from ex-
isting models. However, how to obtain high-quality long
CoT data remains an open question. We begin by distilling
from the open-weight QwQ-32B-Preview (Qwen Team,
2024b) because it is cheaper and produce better perfor-
mance, which will be further discussed in §3.3.

Setup. To curate the SFT data, for long CoT, we distill
from QwQ-32B-Preview; for short CoT, we distill from
Qwen2.5-Math-72B-Instruct (Qwen Team, 2024a),
which is a short CoT model at the SOTA level in math rea-
soning. Specifically, for long CoT, we perform rejection
sampling with N ∈ {32, 64, 128, 192, 256} candidate sam-
ples, while for short CoT, we use N ∈ {32, 64, 128, 256}.
Here, we control SFT datasets with smaller N ’s as subsets
of ones with larger N ’s. In each case, the number of SFT
tokens is proportional to N . For fairness, we use the same
base model Llama-3.1-8B (Meta, 2024). Please refer to
Appendix E.3 for more details about the SFT setup.

Result. Dashed lines in Figure 1 show that as we scale up
the SFT tokens, long CoT SFT keeps improving models’
accuracies, while short CoT SFT saturates early at a lower
accuracy level. For example, on MATH-500, long CoT SFT
scales up to over 70% accuracy and still has not saturated
yet, while short CoT converges under 55% accuracy and
increasing SFT tokens from around 0.25B to around 1.5B
only improves the accuracy by about 3% absolutely.

Takeaway 3.1 for SFT Scaling Upper Limit

SFT with long CoT can scale up to a higher perfor-
mance upper limit than short CoT. (Figure 1)

3.2. SFT Initialization for RL

Since RL is reported to have a higher upper limit than SFT,
we compare long CoT and short CoT as different SFT ini-
tialization approaches for RL.

Setup. We initialize RL using SFT checkpoints from §3.1,
and train for four epochs, sampling four responses per
prompt. Our approach employs PPO (Schulman et al., 2017)
with a rule-based verifier from the MATH dataset, using its
training split as our RL prompt set. We adopt our cosine
length scaling reward with the repetition penalty, which will
be detailed in §4. Please refer to Appendix E.4 for more
details on the RL setups.

Result. The gap between solid and dashed lines in Figure 1
shows that models initialized with long CoT SFT can usu-
ally be further significantly improved by RL, while models
initialized with short CoT SFT see little gains from RL. For
example, on MATH-500, RL can improve long CoT SFT
models by over 3% absolutely, while short CoT SFT models
have almost the same accuracies before and after RL.

Takeaway 3.2 for SFT Initialization for RL

SFT with long CoTs makes further RL improvement
easier, while short CoTs do not. (Figure 1)

3.3. Sources of Long CoT SFT Data

To curate long CoT data, we compare two synthesis ap-
proaches: 1) Construct long CoT trajectories by prompting
short CoT models to generate primitive actions and sequen-
tially join them. 2) Distill long CoT trajectories from ex-
isting long CoT models that exhibit emergent long CoT
patterns.

Setup. To construct long CoT trajectories, we developed an
Action Prompting framework (Appendix E.8) which defined
the following primitive actions: clarify, decompose,
solution step, reflection, and answer. We em-
ployed multi-step prompting with a short CoT model (e.g.,
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Figure 2. Both fine-tuned Llama3.1-8B and Qwen2.5-Math-7B models trained under RL with the Classic Reward manifested
emergent CoT length scaling past the context window size, resulting in deterioration of Math-500 accuracy. The red points on the charts
correspond to the iteration where the accuracy dropped to near zero.

Qwen2.5-72B-Instruct) to sequence these actions,
while a stronger model, o1-mini-0912, generates reflec-
tion steps incorporating self-correction. For distilling long
CoT trajectories, we use QwQ-32-Preview as the teacher
model. In both approaches, we adopt the MATH training set
as the prompt set and apply rejection sampling. To ensure
fairness, we use the same base model (Llama-3.1-8B),
maintain approximately 200k SFT samples, and use the
same RL setup as in §3.2.

Result. Table 1 shows that distilled data with an emergent
long CoT pattern generalizes better than the constructed
pattern, and can be further significantly improved with RL,
while the constructed pattern cannot. Models trained with
the emergent long CoT pattern achieve significantly higher
accuracies on OOD benchmarks AIME 2024 and MMLU-
Pro-1k, improving by 15-50% relatively. Besides, on the
OOD benchmark TheoremQA, RL on the long CoT SFT
model significantly improve its accuracy by around 20%
relatively, while the short CoT model’s performance does
not change. This is also why we conduct most of our exper-
iments based on distilled long CoT trajectories.

Takeaway 3.3 for Long CoT Cold Start

SFT initialization matters: high-quality, emergent
long CoT pattern leads to significantly better gener-
alization and RL gains. (Table 1)

Table 1. Emergent long CoT patterns outperform constructed
ones. All the models here are fine-tuned from the base model
Llama-3.1-8B with the MATH training prompt set.

Training Long CoT MATH AIME Theo. MMLU
Method SFT Pattern 500 2024 QA Pro-1k

SFT Constructed 48.2 2.9 21.0 18.1
Emergent 54.1 3.5 21.8 32.0

SFT+RL Constructed 52.4 2.7 21.0 19.2
Emergent 59.4 4.0 25.2 34.6

4. Impact of Reward Design on Long CoT
This section examines reward function design, with a focus
on its influence on CoT length and model performance.

4.1. CoT Length Stability

Recent studies on long CoT (DeepSeek-AI, 2025; Kimi
Team, 2025; Hou et al., 2025) suggest that models naturally
improve in reasoning tasks with increased thinking time.
Our experiments confirm that models fine-tuned on long
CoT distilled from QwQ-32B-Preview tend to extend
CoT length under RL training, albeit sometimes unstably.
This instability, also noted by (Kimi Team, 2025; Hou et al.,
2025), has been addressed using techniques such as length
and repetition penalties to stabilize training.

Setup. We adopt the same RL setup as §3.2. We used a 16K
context window size with two different models fine-tuned on
long CoT data distilled from QwQ-32B-Preview using
the MATH train split. The models were Llama3.1-8B
and Qwen2.5-Math-7B. More details can be found in
Appendix E.5.1.

Results. We observed that both models increased their CoT
length as they scaled, eventually reaching the context win-
dow limit. This led to a decline in training accuracy due to
CoTs exceeding the allowable window size. Additionally,
different base models exhibited distinct scaling behaviors.
The weaker Llama-3.1-8B model showed greater fluctu-
ations in CoT length compared to Qwen-2.5-Math-7B,
as illustrated in Figure 2.

We also found that the rate at which CoTs exceeded the
context window was correlated with response length (Fig-
ure 2). This suggests that feedback from exceeding the
limit applied downward pressure on the overall trajectory
distribution rather than affecting only a few isolated CoTs.
Notably, a model might be penalized even without an ex-
plicit length-exceedance penalty due to reward or advantage
normalization, both of which are standard in RL frame-
works.
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Figure 3. The Classic and Cosine Reward functions. The Cosine
Reward varies with generation length.

Takeaway 4.1 for CoT Length Stability

CoT length does not always scale up in a stable
fashion. (Figure 2)

4.2. Active Scaling of CoT Length

We found that reward shaping can be used to stabilize emer-
gent length scaling. We designed a reward function to use
CoT length as an additional input and to observe a few order-
ing constraints. Firstly, correct CoTs receive higher rewards
than wrong CoTs. Secondly, shorter correct CoTs receive
higher rewards than longer correct CoTs, which incentivizes
the model to use inference compute efficiently. Thirdly,
shorter wrong CoTs should receive higher penalties than
longer wrong CoTs. This encourages the model to extend
its thinking time if it is less likely to get the correct answer.

We found it convenient to use a piecewise cosine function,
which is easy to tune and smooth. We refer to this reward
function as the Cosine Reward, visualized in Figure 3. This
is a sparse reward, only awarded once at the end of the
CoT based on the correctness of the answer. The formula of
CosFn can be found in equation 1 in the appendix.

R(C,Lgen) =


CosFn(Lgen, Lmax, r

c
0, r

c
L), if C = 1,

CosFn(Lgen, Lmax, r
w
0 , r

w
L ), if C = 0,

re, if Lgen = Lmax.

Hyperparameters:
rc0/r

w
0 : Reward (correct/wrong) for Lgen = 0,

rcL/r
w
L : Reward (correct/wrong) for Lgen = Lmax,

re : Exceed length penalty,
Inputs:

C : Correctness (0 or 1),
Lgen : Generation length.

Setup. We ran experiments with the Classic Reward and the
Cosine Reward. We used the Llama3.1-8B fine-tuned on
long CoT data distilled from QwQ-32B-Preview using
the MATH train split, as our starting point. For more details,
see Appendix E.5.2.
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Figure 4. Llama3.1-8B trained with length shaping using the
Cosine Reward exhibited more stable (a) training accuracy and
(b) response length. This stability led to improved performance
on downstream tasks (Figure 5). Red points on the charts indicate
iterations where training accuracy dropped to near zero.

Result. We found that the Cosine Reward significantly sta-
bilized the length scaling behavior of the models under RL,
thereby also stabilizing the training accuracy and improving
RL efficiency (Figure 4). We also observed improvements
in model performance on downstream tasks (Figure 5).

Takeaway 4.2 for Active Scaling of CoT Length

Reward shaping can be used to stabilize and control
CoT length while improving accuracy. (Figure 4, 5)

4.3. Length Scaling at Different Model Sizes

We evaluate the effectiveness of active scaling of CoT length
at different model sizes.

Setup. We ran experiments with the Classic Reward
and the Cosine Reward on both Qwen-2.5-32B and
Qwen-2.5-1.5B. To increase the diversity of scenarios,
we used the base variant of the 32B model without any
fine-tuning, but used the 1.5B model after fine-tuning on
long CoT data distilled from QwQ-32B-Preview using
the MATH train split. For more details on the training setup,
see Appendix E.5.3.

Result. We observed that the Cosine Reward stabilized the
length scaling under RL and improved the training accuracy
(Figure 6). It resulted in better performance on downstream
tasks at both model sizes (Table 2 and Figure 7).

Table 2. Qwen-2.5-32B trained under RL directly from the base
model without SFT. The three reward types used are the Classic
Reward, Cosine Reward, and the Cosine Reward with repetition
penalty. The scores are shown for steps 40 and 80.

Classic Cosine Cosine + Rep

Task 40 80 40 80 40 80

AIME 2024 15.0 16.9 18.5 20.4 19.2 20.6
MATH-500 78.8 79.6 81.1 81.9 80.1 81.8
TheoremQA 35.4 36.6 36.8 38.0 37.7 39.1
MMLU-Pro-1k 45.6 47.1 48.9 47.1 47.3 45.5

Average 43.7 45.1 46.3 46.9 46.1 46.8

5



Demystifying Long Chain-of-Thought Reasoning

0102030405060708090100
# of Iterations

54
56
58
60
62
64
66

A
cc

ur
ac

y 
(%

)

MATH-500 (Math I.D.)

0102030405060708090100
# of Iterations

2

4

6

8

A
cc

ur
ac

y 
(%

)

AIME 2024 (Math O.O.D.)

0102030405060708090100
# of Iterations

20
22
24
26
28
30

A
cc

ur
ac

y 
(%

)

TheoremQA (STEM)

0102030405060708090100
# of Iterations

30
32
34
36
38
40
42

A
cc

ur
ac

y 
(%

)

MMLU-Pro-1k (General)

Classic Cosine Length Scaling Cosine Length Scaling + Repetition Penalty
Reward Type

Figure 5. Performance of models trained with different reward functions on a variety of evaluation benchmarks.

Figure 6. Qwen-2.5-1.5B trained with length shaping using the Cosine Reward resulted in greater stability in response length and
better training accuracy.

Takeaway 4.3 for Length Scaling Different Model Sizes

Active length scaling is effective at different model
sizes. (Table 2 and Figure 7)

4.4. Cosine Reward Hyperparameters

The Cosine Reward hyperparameters can be tuned to shape
CoT length in different ways.

Setup. We set up RL experiments with the same model fine-
tuned on long CoT distilled from QwQ-32B-Preview,
but with different hyperparameters for the Cosine Reward
function. We tweaked the correct and wrong rewards
rc0, r

c
L, r

w
0 , r

w
L and observed their impact on the CoT lengths.

For more details, see Appendix E.5.4.

Result. We see from Figure 9 in the Appendix that if the
reward for a correct answer increases with CoT length (rc0 <
rcL), the CoT length increases explosively. We also see that
the lower the correct reward relative to the wrong reward,
the longer the CoT length. We interpret this as a kind of
trained risk aversion, where the ratio of the correct and
wrong rewards determines how confident the model has to
be about an answer for it to derive a positive expected value
from terminating its CoT with an answer.

Takeaway 4.4 for Cosine Reward Hyperparameters

The Cosine Reward can be tuned to incentivize dif-
ferent kinds of length scaling behaviors. (Figure
9)

4.5. Context Window Size

We know that longer contexts give a model more room to
explore, and with more training samples, the model even-
tually learns to utilize more of the context window. This
raises an interesting question – are more training samples
necessary to learn to utilize a larger context window?

Setup. We set up 3 experiments using the same start-
ing model fine-tuned on long CoT data distilled from
QwQ-32B-Preview with the MATH train split. We also
used the latter as our RL prompt set. Each ablation used
the Cosine Reward and repetition penalty with a different
context window size (4K, 8K, and 16K). For more details,
see Appendix E.5.5.

Result. We found that the model with a context window
size of 8K performed better than the model with 4K, as
expected. However, we observed performance was better
under 8K than 16K. Note that all three experiments used the
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Figure 7. Qwen-2.5-1.5B trained with length shaping using the Cosine Reward resulted in better performance on downstream tasks.

same number of training samples (Figure 8). We see this
as an indication that models need more training compute to
learn to fully utilize longer context window sizes, which is
consistent with the findings of (Hou et al., 2025).

Takeaway 4.5 for Context Window Size

Models might need more training samples to learn
to utilize larger context window sizes. (Figure 8)

4.6. Length Reward Hacking

We observed that with enough training compute, the model
started to show signs of reward hacking, where it increased
the lengths of its CoTs on hard questions using repetition
rather than learning to solve them. We also noted a fall
in the branching frequency of the model, which we esti-
mated by counting the number of times the pivot keyword
”alternatively,” appeared in the CoT (Figure 10).

We mitigated this by implementing a simple N -gram repe-
tition penalty (Algorithm 1). We observed that the penalty
was most effectively applied on repeated tokens, rather than
as a sparse reward for the entire trajectory. Similarly, we
found that discounting the repetition penalty when calculat-
ing the return was effective. Specific feedback about where
the repetition occurred presumably made it easier for the
model to learn not to do it (see more in §4.7).

Setup. We used the Llama3.1-8B model fine-tuned on
long CoT data distilled from QwQ-32B-Preview. We
ran two RL training runs, both using the Cosine Reward, but
with and without the repetition penalty. For more details,
please refer to Appendix E.5.6.

Result. The repetition penalty resulted in better downstream
task performance and also shorter CoTs, meaning there was
better utilization of inference compute (Figure 5).

Observation. Our experiments revealed a relationship be-
tween the repetition penalty, training accuracy, and the Co-
sine Reward. When training accuracy was low, the Cosine

Reward exerted greater upward pressure on CoT length,
leading to increased reward hacking through repetition. This,
in turn, required a stronger repetition penalty. Future work
could further investigate these interactions and explore dy-
namic tuning methods for better optimization.

Takeaway 4.6 for Length Reward Hacking

Length rewards will be hacked with enough com-
pute (Figure 10), but this can be mitigated using a
repetition penalty. (Figure 5)

4.7. Optimal Discount Factors

We hypothesized that applying the repetition penalty with
temporal locality (i.e., a low discount factor) would be most
effective, as it provides a stronger learning signal about
the specific offending tokens. However, we also observed
performance degradation when the discount factor for the
correctness (cosine) reward was too low.

To optimally tune both reward types, we modified the
GAE formula in PPO to accommodate multiple reward
types, each with its own discount factor γ: Ât =∑L

l=0

∑M
m γl

mrm,t+l−V (st). For simplicity, we set λ = 1,
which proved effective, though we did not extensively tune
this parameter.

Setup. We ran multiple RL experiments with
the same Llama3.1-8B model fine-tuned on
QwQ-32B-Preview distilled long CoT data. We
used the Cosine Reward and repetition penalty but with
different combinations of discount factors. For more details,
please see Appendix E.5.7.

Result. A lower discount factor is effective for the repetition
penalty. A higher discount factor is effective for the correct-
ness reward and the exceed length penalty, which allowed
the model attempts at finding a solution earlier in the CoT
to be adequately rewarded for a correct answer (Figure 6).

We observed a rather interesting phenomenon where de-
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Figure 8. Performance of models trained with different context window sizes. All experiments used the same number of training samples.

creasing the discount factor γ of the correctness (cosine)
reward increased the branching frequency in the model’s
CoT, making the model quickly give up on approaches that
did not seem to lead to a correct answer immediately (Fig-
ure 11, Extract in Appendix D). We hypothesize that this
short-term thinking was due to a relatively small number
of tokens preceding the correct answer receiving rewards,
which means stepping stones to the right answer are under-
valued. Such behavior degraded performance (Figure 6).
However, we think this qualitative result might be of poten-
tial interest to the research community, due to its similarity
to the relationship between behaviors like delayed gratifica-
tion and the distribution of rewards given to the biological
brain (Gao et al., 2021).

Takeaway 4.7 for Optimal Discount Factors

Different kinds of rewards and penalties have differ-
ent optimal discount factors. (Figure 6)

5. Scale up Verifiable Reward
Verifiable reward signals like ones based on ground-truth
answers are essential for stabilizing long CoT RL. However,
it is difficult to scale up such data due to the limited avail-
ability of high-quality human-annotated verifiable data. As
an attempt to counter this, we explore using other data that is
more available despite more noise, like QA pairs extracted
from web corpora. Specifically, we experiment with the
WebInstruct dataset (Yue et al., 2024). For efficiency, we
construct WebInstruct-462k, a deduplicated subset derived
via MinHash (Broder et al., 1998).

5.1. SFT with Noisy Verifiable Data

We first explore adding such diverse data to SFT. Intuitively,
despite less reliable supervision signals, diverse data might
facilitate the model’s exploration during RL.

Setup. We experiment with three setups, varying the pro-
portion of data without gold supervision signals: 0%, 100%,
and approximately 50%. We conduct long CoT SFT by
distilling from QwQ-32B-Preview. For data with gold

supervision signals (MATH), ground truth answers are used
for rejection sampling. In contrast, for data from WebIn-
struct without fully reliable supervision signals but with a
much larger scale, we sample one response per prompt from
the teacher model without filtration. For RL here, we adopt
the same setup as in §3.2, using the MATH training prompt
set.

Result. Table 3 shows that incorporating silver-supervised
data improves average performance. Adding WebInstruct
data to long CoT SFT yields a substantial 5–10% absolute
accuracy gain on MMLU-Pro-1k over using MATH alone.
Furthermore, mixing MATH and WebInstruct data achieves
the best average accuracy across benchmarks.

Table 3. Adding data with a silver supervision signal is beneficial.
“WebIT” is the abbreviation of WebInstruct.

Long CoT Training MATH AIME Theo. MMLU AVGSFT Data Method 500 2024 QA Pro-1k

100% MATH SFT 54.1 3.5 21.8 32.0 27.9
SFT + RL 59.4 4.0 25.2 34.6 30.8

100% WebIT SFT 41.2 0.8 21.9 41.1 26.3
SFT + RL 44.6 1.9 22.5 43.3 28.1

50% MATH SFT 53.6 4.4 23.5 41.7 30.8
+ 50% WebIT SFT + RL 57.3 3.8 25.1 42.0 32.1

Takeaway 5.1 for SFT with Noisy Verifiable Data

Adding noisy yet diverse data to SFT facilitates
balanced performance across different tasks. (Table
3)

5.2. Scale up RL with Noisy Verifiable Data

We compare two main approaches to obtain rewards from
noisy verifiable data: 1) the rule-based verifier that is usually
accurate but limited in answer forms; 2) the model-based
verifier capable of processing free-form responses but sus-
ceptible to hacking.

Setup. We implement the model-based verifier by
prompting Qwen2.5-Math-7B-Instruct with the
raw reference solution. To curate SFT data, we
prompt Llama-3.1-8B-Instruct to extract short-
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form answers and apply rejection sampling with
QwQ-32B-Preview. Specifically, we generate two re-
sponses per prompt from WebInstruct-462k and discard
cases where neither response aligns with the extracted ref-
erence answers. This process yields approximately 189k
responses across 115k unique prompts. We perform SFT
from Llama-3.1-8B on the filtered dataset as initializa-
tion for RL. We compare the two types of verifiers with two
prompt setups: (1) the 462k full set, which contains prompts
asking for free-form answers; (2) the 115k subset used in
SFT, which is filtered for prompts asking for short-form an-
swers by the rejection sampling process. Note that we adopt
different RL hyperparamters for these two prompt setups.
For further details on the model-based verifier, answer ex-
traction and RL hyperparameters, please refer to Appendix
E.6 & E.7 & E.5.8 respectively.

Table 4. Performance of RL with different verifiers on unfiltered
noisy verifiable data.

Verifier Type MATH AIME Theo. MMLU
500 2024 QA Pro-1k

SFT Initialization 46.6 1.0 23.0 28.3

Rule-Based 45.4 3.3 25.9 35.1
Model-Based 47.9 3.5 26.2 40.4

Table 5. Performance of RL with different verifiers on filtered
noisy veriable data. The “MATH Baseline” is the model trained
with SFT and RL on MATH only in Table 3.

Verifier Type MATH AIME Theo. MMLU
500 2024 QA Pro-1k

MATH Baseline 59.4 4.0 25.2 34.6

SFT Initialization 46.6 1.0 23.0 28.3

Rule-Based 49.3 2.7 27.8 43.5
Model-Based 47.7 2.3 26.4 42.2

Result. Table 4 & 5 show that, the model-based verifier
performs better on the unfiltered WebInstruct-462k prompt
set, while the rule-based verifier performs better on the
filtered 115k subset. The disadvantage of rule-based verifier
on unfiltered data might be caused by low training accuracy,
while the model-based verifier can achieve higher training
accuracy, as shown in Figure 13. Moreover, compared to the
model trained on human-annotated verifiable data (MATH),
leveraging noisy yet diverse verifiable data with rule-based
verifier after filtration significantly boosts performance on
OOD benchmarks, with absolute gains of up to 2.6% on
TheoremQA and 8.9% on MMLU-Pro-1k.

Takeaway 5.2 for RL with Noisy Verifiable Data

To utilize noisy verifiable data in RL, the model-
based verifier performs better on unfiltered data,
while the rule-based verifier performs better with
appropriate filtration for prompts. (Table 4 & 5)

6. Other Factors that Impact Long CoT
6.1. RL Infrastructure for long CoT is still in its infancy

We observe that open-source RL frameworks (e.g., Open-
RLHF (Hu et al., 2024) tend to orchestrate multiple systems
optimized for different training and inference workloads,
and that this often results in multiple copies of model pa-
rameters in memory. Also, algorithms like PPO alternate
between these workloads synchronously and sequentially.
These factors result in low hardware utilization, which is
particularly pronounced in the long CoT scenario due to
higher variance in CoT length resulting in stragglers dur-
ing inference (Kimi Team, 2025). We also ran into some
difficulties scaling up model size to 32B, and we decided
the number of GPUs required was too large to proceed. We
eagerly anticipate advances in the ML and systems area that
will undoubtedly accelerate research on long CoTs.

6.2. REINFORCE is more tricky to tune than PPO

We also explored REINFORCE++ (Hu, 2025) as a faster
alternative to PPO for scaling up data. However, we found it
to be significantly more unstable than PPO, leading to lower
training accuracies (Figure 14). As this instability may be
due to an untuned setup (Appendix E.5.9), we refrain from
making general claims about the algorithm. Instead, we
present this as an observation that may be useful to the
community.

7. Conclusion
In this work, we demystify long CoT reasoning in LLMs.
We show that long CoT in SFT raises the performance ceil-
ing and enhances subsequent RL improvements. To address
instability in CoT length scaling during RL, we introduce
a cosine length scaling reward with a repetition penalty.
Additionally, we explore the benefits of leveraging noisy
web-extracted data, showing that it improves both SFT and
RL when used with reference-guided rewards.
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A. Related Work
Complex reasoning and chain of thought prompting. Large Language Models (LLMs) have demonstrated remarkable
capabilities in various natural language processing tasks, including complex reasoning. A significant advancement in
improving LLM reasoning ability is the implementation of Chain of Thought (CoT) prompting (Wei et al., 2022). This
technique involves guiding models to generate intermediate reasoning steps, thereby improving their performance on tasks
that require logical deduction and multistep problem solving. Initial studies (Lambert et al., 2024; Wei et al., 2022; Longpre
et al., 2023; Yu et al., 2024) focused on short CoT, where models produce concise reasoning paths to arrive at solutions.
Although effective for straightforward problems, short CoT can be limiting when addressing more intricate tasks that
necessitate deeper deliberation. OpenAI’s o1 (OpenAI, 2024) series models were the first to introduce inference-time scaling
by increasing the length of the CoT reasoning process. This approach helps LLMs tackle complex problems by breaking
them into finer steps and reflecting during problem-solving, leading to more accurate and comprehensive solutions. In this
work, we explore long CoT by identifying key factors that enable models to exhibit this behavior, encouraging advanced
reasoning capabilities.

Reinforcement learning for LLM. Reinforcement Learning (RL) has proven effective in enhancing LLM performance
across domains. RL techniques, such as Reinforcement Learning from Human Feedback (RLHF), align model outputs
with human preferences, improving coherence (Ouyang et al., 2022). Recent studies (Kimi Team, 2025; DeepSeek-AI,
2025; Lambert et al., 2024) leverage RL to enable LLMs to explore reasoning paths autonomously for complex problems.
DeepSeek-R1 (DeepSeek-AI, 2025) achieves strong performance in mathematics, coding, and reasoning tasks without
relying on a trained reward model (Lightman et al., 2024; Wang et al., 2024b) or tree search (Feng et al., 2023; Snell et al.,
2024). Notably, this capability emerges even in base models without supervised fine-tuning, albeit at the cost of output
readability. Similarly, Kimi K1.5 (Kimi Team, 2025) enhances general reasoning with RL, focusing on multimodal reasoning
and controlling thought process length. These works highlight RL’s role in optimizing reasoning when intermediate steps
are hard to supervise, and only final outcomes are verifiable. Our research share a similar setup but with more detail on
disentangling how different model behaviors emerge under varying training conditions and initialization strategies.
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B. Figures and Tables
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Figure 9. (a) Tuning the hyperparameters of the Cosine Reward results in different length scaling behavior. Note that Reward A results in
some performance degradation on downstream tasks due to the model’s reduced ability to stop within the context window. (b) Reward A:
rc0 = 0, rcL = 10, rw0 = rwL = 0, (c) Reward B: rc0 = 6, rcL = 5, rw0 = −10, rwL = 0 (d) Reward C: rc0 = 10, rcL = 9, rw0 = −10, rwL =
0.
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Figure 10. CoT branching frequency, estimated by the keyword count of the pivot word ”alternatively,”, decreased under the Cosine
Reward with more training compute. We attributed this, along with increased repetition, to reward hacking.
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Figure 11. Branching frequency in CoT at different γc values. Lowering the discount factor increased branching frequency, causing the
model to abandon problem-solving approaches more quickly.
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Figure 12. Training response length of models trained with Cosine Reward with and without repetition penalty. We see that repetition
penalty reduced the length.
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Figure 13. Training accuracies of models using rule-based and LLM-based verifiers on filtered and unfiltered data.
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Table 6. Performance of model trained with different discount factors for the correctness (cosine) reward and repetition penalty. We see
that different reward types have different optimal values.

Correctness
Discount

Repetition
Discount

MATH
-500

AIME
2024

Theo.
QA

MMLU
-Pro-1k

SFT 50.4 3.5 20.6 32.4

1.000
1.000 55.7 5.0 25.7 34.5
0.999 58.0 4.6 26.0 36.5
0.99 57.8 3.8 24.5 33.3

0.999 0.999 53.5 2.1 19.5 30.7
0.99 55.2 1.7 18.5 32.0

0.99 0.99 47.9 0.2 15.6 25.5
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C. Algorithms and Formulas
C.1. Cosine Reward Formula

CosFn(t, T, ηmin, ηmax) = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

tπ

T
)) (1)

The formula above is commonly used as the learning rate schedule during gradient descent optimization. It was introduced
by (Loshchilov & Hutter, 2017).

C.2. N-gram Repetition Penalty

Algorithm 1 N-gram Repetition Penalty
1: Input:
2: s : sequence of tokens
3: l : sequence length
4: N : n-gram size
5: P : penalty value
6: m : maximum sequence length
7: Output: r ∈ Rm

8: seq ← s[1 : l] {Extract subsequence of length l}
9: ngrams← ∅ {Set of observed n-grams}

10: r ← 0⃗ ∈ Rm {Initialize reward vector}
11: for j ← 1 to |seq| −N + 1 do
12: ng ← (seq[j], seq[j + 1], ..., seq[j +N − 1]) {Current n-gram}
13: if ng ∈ ngrams then
14: for t← j to j +N − 1 do
15: r[t]← P {Apply penalty}
16: end for
17: end if
18: ngrams← ngrams ∪ {ng}
19: end for
20: Output: r
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D. Extracts

Short-Term Thinking (γc = 0.99)

But in this case, we saw that the fixed points don’t satisfy the equation

p(p(x)) = x.

Wait, maybe the solutions to p(p(x)) = x are not the fixed points of p, but something else.
Alternatively, perhaps I can consider that p(p(x)) = x implies that p is a bijection, but since p(x) is quadratic, it’s
not necessarily invertible over all real numbers.
Wait, but the problem says that p(p(x)) = x has four real solutions, so perhaps there are four values of x that satisfy
this equation.
Alternatively, perhaps I need to find the roots of

p(p(x))− x = 0,

and solve for x. But that seems complicated. Maybe there’s a better way.
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E. Experimental Setup
E.1. Evaluation Setup

Benchmarks Below are details of our evaluation benchmarks:

• MATH-500 (Hendrycks et al., 2021): an in-domain mathematical reasoning benchmark. MATH consists of 12,500
problems from American high school math competitions. For efficiency, we adopt MATH-500, a widely-used i.i.d.
subset of its test split.

• AIME 2024: an out-of-domain mathematical reasoning benchmark consisting of the 30 problems from American
Invitational Mathematics Examination (AIME) 2024.

• TheoremQA (Chen et al., 2023): an out-of-domain STEM reasoning benchmark consisting of 800 samples. It covers
350+ theorems spanning across Math, EE&CS, Physics and Finance.

• MMLU-Pro-1k (Wang et al., 2024a): an out-of-domain general reasoning benchmark. MMLU-Pro comprises over
12,000 questions from academic exams and textbooks, spanning 14 diverse domains including Biology, Business,
Chemistry, Computer Science, Economics, Engineering, Health, History, Law, Math, Philosophy, Physics, Psychology,
and Others. For efficiency, we adopt an 1,000-sample i.i.d. subset of its test split, called MMLU-Pro-1k. We tried to
keep the distribution identical to the original one. Figure 15 shows the distribution before/after the downsampling.
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Figure 15. MMLU-Pro test distribution before/after downsampling for the MMLU-Pro-1k subset. The subset is i.i.d. to the full set.

Statistical Metrics We calculate the average accuracy with at least 4 random seeds. To tame the variance caused by the
small size of AIME 2024, we sample 16 responses per prompt.

Implementation We adopt the vLLM library to accelerate the inference and SymEval1, an elaborate answer grader capable
of processing complex mathematical objects like matrices and functions, keeping consistent with the sampling and reward

1https://github.com/tongyx361/symeval
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implementation in our RL setup. Note that a few RL experiments are carried out with an earlier version of the grader,
causing nuanced performance differences.

E.2. Details about Distillation

To distill long CoT trajectories from QwQ-32B-Preview, we adopt the temperature t = 1.0, the top-p value of 0.95 and
the maximum output length of 8192 tokens. Our preliminary experiments show that 8192 tokens show almost the same
accuracy with QwQ-32B-Preview on MATH-500 as 16384 tokens, while costing significantly less time.

To distill short CoT trajectories from Qwen2.5-Math-72B-Instruct, we adopt the temperature t = 0.7, the top-p
value of 0.95 and the maximum output length of 4096 tokens, since Qwen2.5-Math-72B-Instruct has a context
limit of 4096 tokens and our preliminary experiments observe a non-negligible ratio of nonsense output when using t = 1.0.

Note the data is distilled with SGLang (Zheng et al., 2024) with an early version of our code.

When applying rejection sampling, we adopt the SymEval verifier as the grader.

E.3. Details abour SFT Setup

We use OpenRLHF (Hu et al., 2024) for our SFT experiments. By default, we adopt the SFT hyperparameters in Table 7.

For efficiency, we utilize Flash Attention 2 (Dao, 2024) and ZeRO (Rajbhandari et al., 2020) stage 1 based on the DeepSpeed
library (Rasley et al., 2020). We uniformly set the micro batch size as 1 since we don’t observe acceleration when increasing
it.

Table 7. SFT Hyperparameters
Batch Size Context Length LR Epochs

256 128K 5e-6 2

E.4. Details about RL Setup

We use OpenRLHF (Hu et al., 2024) for our RL experiments. When describing hyperparameters, we adopt the same naming
conventions as OpenRLHF.

By default, we adopt the PPO algorithm with our cosine length-scaling reward function based on the ruled

E.5. Experiment Hyperparameters

Note that the BS column below refers to both rollout batch size (the number of prompts used in a sampling-training
iteration) and train batch size (the number of samples used in a training update) because we adopt the same number
for these two hyperparameters in all our RL setups. Also, the Samples column refers to the number of samples per prompt.

E.5.1. DETAILS OF SECTION 4.1 (COT LENGTH STABILITY)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 8. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B Correct: +1 λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Qwen2.5-Math-7B Correct: +1 λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01
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E.5.2. DETAILS OF SECTION 4.2 (ACTIVE SCALING OF COT LENGTH)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 9. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B Correct: +1 λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Llama3.1-8B Correct: +1 λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 16 512 2 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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E.5.3. DETAILS OF SECTION 4.3 (LENGTH SCALING AT DIFFERENT MODEL SIZES)

SFT Data:

Qwen-2.5-32B: The base model was trained under RL without a SFT stage.

Qwen-2.5-1.5B: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 10. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Qwen-2.5-32B Correct: +1 λ = 1
γ = 1

∞ 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6

Constant after
10-step linear warmup

0.01

Qwen-2.5-32B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γc = 1

γp = 0.99
∞ 8 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

Constant after
10-step linear warmup

0.01

Qwen-2.5-32B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
∞ 8 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

Constant after
10-step linear warmup

0.01

Qwen-2.5-1.5B Correct: +1 λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6
Cosine with

3% step warmup

0.01

Qwen-2.5-1.5B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6
Cosine with

3% step warmup

0.01
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E.5.4. DETAILS OF SECTION 4.4 (COSINE REWARD HYPERPARAMETERS)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 11. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = 0

rcL = +10
rw0 = 0
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +6
rcL = +5
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +10
rcL = +9
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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E.5.5. DETAILS OF SECTION 4.5 (CONTEXT WINDOW SIZE)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 12. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 2048
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 6144
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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E.5.6. DETAILS OF SECTION 4.6 (LENGTH REWARD HACKING)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 13. Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 16 512 2 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

E.5.7. DETAILS OF SECTION 4.7 (OPTIMAL DISCOUNT FACTORS)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.
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Table 14. Hyperparameters
Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1
γp = 1

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.999
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.999
γp = 0.999

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.999
γp = 0.99

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.99
γp = 0.99

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01
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E.5.8. DETAILS OF SECTION 5.2 ( RL WITH NOISY VERIFIABLE DATA)

SFT Data: 115k instances of filtered long CoT data distilled from QwQ-32B-Preview with WebInstruct.

Table 15. Hyperparameters

Base Model RL Prompt Set
Verifier Rewards GAE Episodes

Instances Samples BS Epochs Context Length LR
KL

Llama3.1-8B
Unfiltered

(30k sampled)
Symeval

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

Llama3.1-8B
Unfiltered

(30k sampled)
LLM-as-a-judge

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

Llama3.1-8B Filtered (115k)
Symeval

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
115k 8 512 1 Prompt: 2048

Gen: 14336

Actor: 1e-6
Critic: 4.5e-6

KL: 0.01

Llama3.1-8B Filtered (115k)
LLM-as-a-judge

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
115k 8 512 1 Prompt: 2048

Gen: 14336

Actor: 1e-6
Critic: 4.5e-6

KL: 0.01

E.5.9. DETAILS OF SECTION 6.2 (REINFORCE IS MORE TRICKY TO TUNE THAN PPO)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 16. Hyperparameters

Base Model Rewards Gamma Episodes Samples BS Epochs Context Length LR KL Clip

Llama3.1-8B Correct: +1 γ = 1
8

(stopped early) 8 512 1 Prompt: 2048
Gen: 14336 5e-7 0.01 0.1
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E.6. Implementation of the Model-Based Verifier

We used Qwen2.5-7B-Instruct as our model-based verifier. It was provided with both the reference answer and the
suffix of the long CoT. We truncated the long CoT to avoid confusing the verifier. We used the following prompt.

Prompt Template for Model-Based Verifier

Given the following last 20 lines of the LLM response to a math question
and the reference solution to that question, evaluate if the LLM response is correct

based only on the LLM’s final answer.

LLM response (last 20 lines):
...
{out}

Reference solution:
{ref}

Explain your thought process step-by-step before responding with ‘Judgement: <
correct/wrong/not_found>‘

E.7. Implementation of Short-Form Answer Extraction

We use the Llama-3.1-8B-Instruct model to extract short-form answer from QA pairs in WebInstruct, with the
following prompt template:

Prompt Template for Short-Form Answer Extraction

Problem: {Problem}

Solution: {Solution}

Based on the Problem and the Solution, extract a short final answer that is easy to
check.

Provide the short final answer in the format of "The final answer is $$
\boxed{...}
$$"
- If the answer is a mathematical object, write it in LaTeX, e.g., "The final answer

is $$
\boxed{\frac{1}{2}}
$$"
- If the answer is a boolean, write it as "True" or "False", e.g., "The final answer

is $$
\boxed{True}
$$"
- If the Problem can’t be answered in a short form, respond with "" like "The final

answer is $$
\boxed{}
$$"

For generation parameters, we use temperature t = 0 (greedy decoding) and set the maximum output length as 512 tokens.

After generation, we simply extract the short-form answer from within the \boxed{...}.

E.8. Action Prompting Framework

We studied the publicly released CoTs of o1-preview and identified that its thoughts could be categorized into a few
types of actions (listed below). To construct long CoTs, we designed prompts for each of these actions and implemented
a multi-step prompting framework to sequence them. The framework ceded control flow of the CoT to the LLM, with
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the LLM making branching or looping decisions while the framework acted more passively as a state machine reacting to
the LLM outputs. The framework took care of the boilerplate around constructing the CoT with an append-only log and
managed all of the orchestration.

• clarify: Making some observations about the problem in order to identify an approach to solve it.

• decompose: Breaking the current problem down into smaller and easier sub-problems to solve.

• solution step: Computing a single step in the solution. In the context of math, this could be doing some arithmetic
or symbolic manipulation.

• reflection: Evaluating the current approach and partial solution to see if any mistakes were made, any sub-goals
were achieved, or if alternative approaches should be considered instead. Note that we used a strong teacher model
o1-mini for the reflection action as that one was a more difficult prompt to respond to correctly as it requires
self-correction.

• answer: Responding with a final answer and terminating the CoT.

E.8.1. CONTROL FLOW

Simplified description of the interaction between the framework and LLM.

Algorithm 2 Action Prompting State Machine
1: Input: prompt
2: Output: chain of thought sequence
3: chain of thought← [prompt] {Initialize singleton chain of thought sequence from prompt}
4: state← “clarify”
5: while True do
6: if state = “clarify” then
7: output← prompt action clarify()
8: (state, thought)← parse(output)
9: chain of thought.append(thought)

10: else if state = “decompose” then
11: output← prompt action decompose()
12: (state, thought)← parse(output)
13: chain of thought.append(thought)
14: else if state = “solution step” then
15: output← prompt action solution step()
16: (state, thought)← parse(output)
17: chain of thought.append(thought)
18: else if state = “reflection” then
19: output← prompt action reflection()
20: (state, thought)← parse(output)
21: chain of thought.append(thought)
22: else if state = “answer” then
23: output← prompt action reflection()
24: (state, thought)← parse(output)
25: chain of thought.append(thought)
26: return chain of thought {Terminate after answer action}
27: end if
28: end while
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E.8.2. ACTION PROMPTING TEMPLATES

Action: Clarify

You are a very talented mathematics professor.
In a few sentences, VERY CONCISELY rephrase the problem to clarify its meaning and

explicitly state what needs to be solved. Highlight any assumptions, constraints
and potential misinterpretations.

Do NOT attempt to solve the problem yet -- you are just clarifying the problem in
your mind.

<problem>
{goal}
</problem>

Answer in the following format:

<clarification>
Problem clarification as instructed above
</clarification>
<goal>
Summarize the problem into a single statement describing the goal, e.g. Find the

value of the variable w.
</goal>
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Action: Decompose

You are a talented mathematics professor.
You already have a partial solution to a problem.
In a single sentence, propose candidates for the next subgoal as the next step of

the partial solution that will help you make progress towards the current goal.
Do not repeat any subgoal, we don’t want any infinite loops!
Do not suggest using a computer or software tools.

<current goal>
{current_goal}
</current goal>
<parent goal>
{parent_goal}
</parent goal>
<partial solution>
{solution}
</partial solution>

Format your answer as follows:

<thinking>
step-by-step thinking of what the next possible subgoal should be, as well as some

other alternatives that might also work
remember, we want to solve the parent goal WITHOUT repeating the subgoals that are

already DONE.
do not suggest verification or checking.
{parent_goal}
</thinking>
<sentence>
single sentence describing the subgoal
phrase it as if you were thinking to yourself and are considering this as a

hypothesis (don’t express too much certainty)
</sentence>
<sentence>
single sentence describing an *ALTERNATIVE* subgoal, without repeating previous ones
start off with "Alternatively,"
</sentence>
<sentence>
single sentence describing an *ALTERNATIVE* subgoal, without repeating previous ones
start off with "Alternatively,"
</sentence>
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Action: Solution Step

You are an extremely PEDANTIC mathematics professor who loves to nitpick.
You already have a partial solution to a problem. Your task is to solve *only* the

current goal.
You should include symbols and numbers in every sentence if possible.

<current goal>
{current_goal}
</current goal>
<partial solution>
{solution}
</partial solution>

BE VERY CONCISE. Include calculations and equations in your response if possible,
and make sure to solve them instead of just describing them.

DO NOT SOLVE THE WHOLE QUESTION, JUST THE CURRENT GOAL: {current_goal}
Do not repeat any calculations that were already in this prior step:
{prior_step}
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Action: Reflection

You are a talented mathematics professor.
You already have a partial solution to a math problem.
Verify whether the current subgoal has been achieved.

<current goal>
{current_goal}
</current goal>
{parent_goal}
<partial solution>
{solution}
</partial solution>

Format your answer as follows:

<verification>
Come up with a quick, simple and easy calculation to double check that the solution

is correct.
This calculation should not re-compute the solution in the same way, as that would

defeat the purpose of double-checking.
Use one of the following strategies:
- An easier, alternative method to arrive at the answer
- Substituting specific values into equations and checking for consistency
- Working backwards from the answer to derive the given inputs and then checking for

consistency
Be consise. Do not suggest using a computer.
At the end of your verification, restate the answer from the current solution. Do

not calculate it if it hasn’t been solved.
Phrase it as if you are reflecting as you solve the problem.
</verification>
<current_goal_achieved>
true or false, depending on whether the solution is correct and the current goal has

been achieved: {current_goal}
</current_goal_achieved>
<parent_goal_achieved>
true or false, depending on whether the parent goal has been achieved:
{parent_goal.target}
</parent_goal_achieved>
<new_goal>
If the solution is not correct or the current goal has not been achieved, suggest an

alternative current goal here in a single sentence.
Start off with "Alternatively,"
Your goal should be sufficiently different from subgoals that have been solved or

that have timed out:
{parent_goal_tree}
</new_goal>

Action: Answer

Extract the final answer, making sure to obey the formatting instructions.
Solution:
{solution}

Formatting instructions:
{format}
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