
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERINF: UNLEASHING THE HYPERPOWER OF
SCHULZ’S METHOD FOR DATA INFLUENCE
ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Influence functions provide a principled method to assess the contribution of in-
dividual training samples to a specific target. Yet, their high computational costs
limit their applications on large-scale models and datasets. Existing methods pro-
posed for influence function approximation have significantly reduced the compu-
tational overheads. However, they mostly suffer from inaccurate estimation due
to the lack of strong convergence guarantees from the algorithm. The family of
hyperpower methods1 are well-known for their rigorous convergence guarantees
on matrix inverse approximation, while the matrix multiplication operation can
involve intractable memory and computation costs on large-scale models. We
propose HYPERINF, an efficient and accurate influence function approximation
method which leverages the hyperpower method, specifically Schulz’s iterative
algorithm. To deal with the computation-intensive matrix multiplication, we in-
corporate the generalized fisher information (GFIM) as a low-rank approximation
of the Hessian matrix, which reduces the memory and computation overheads to
constant costs independent of ranks on LoRA-tuned models. We first demon-
strate the superior accuracy and stability of HYPERINF compared to other base-
lines through a synthetic convergence simulation for matrix inversion. We fur-
ther validate the efficacy of HYPERINF through extensive real-world data attri-
bution tasks, including mislabeled data detection and data selection for LLM and
VLM fine-tuning. On LoRA-tuned models, HYPERINF achieves superior down-
stream performance with minimal memory and computational overhead, while
other baselines suffer from significant degradation. Our codebase is available at
https://anonymous.4open.science/r/HyperINF-B702.

1 INTRODUCTION

Large foundation models have demonstrated remarkable capabilities on a great variety of tasks
across language, vision and audio modalities (Touvron et al., 2023; Liu et al., 2023a; OpenAI et al.,
2024; Bai et al., 2023). Recently, extensive data-centric studies illustrate that training data plays
an essential role in the model’s downstream performance (Hoffmann et al., 2022; Gao et al., 2020;
Penedo et al., 2023; Wang et al., 2018; Gunasekar et al., 2023; Lee et al., 2023; Longpre et al.,
2023b). Therefore, the community calls for an efficient and effective data attribution method which
identifies the most beneficial training samples without introducing large computation overheads on
large-scale models and data pools. As one of the most principled data attribution methods, influ-
ence function quantifies the impact of each training sample on model’s prediction on a validation
set (Hampel, 1974; Koh & Liang, 2020). Despite the efficacy of influence function and its vari-
ants (Kwon et al., 2024; Koh & Liang, 2020; Pruthi et al., 2020; Guo et al., 2021; Wang et al.,
2019b; Kong et al., 2021), the Hessian inverse operation involved in the formulation introduces
intractable memory and computation costs, which hinders its wide application on large models.

To mitigate the computation overheads, a series of methods are proposed to estimate the values
of influence function with lower costs. Agarwal et al. (2017) proposed LISSA, which iteratively
estimates the value of the Hessian-vector product. However, the convergence of the algorithm is not
guaranteed, which could largely diverge from the correct value after several iterations. Recently,
Kwon et al. (2024) introduced DATAINF as a closed-form approximation of the Hessian matrix,

1A hyperpower method is defined as a function Φ(A,X) on matrices A and X , where A−1 is the targeted
matrix inverse (Petković, 1995).
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Table 1: Complexity Comparison between Exact (Gaussian Elimination), LiSSA, DataInf and Hy-
perINF. Computational and memory complexities are obtained on a LoRA-tuned model with di-
mension d ∈ N and rank r ∈ N. Assume the dimension of the LoRA matrices is identical across L
different layers.

Complexity Exact (Gaussian Elimination) LiSSA DataInf HyperINF w. GFIM HyperINF w. FIM

H−1 Computation O(r2d2L+ r3d3L) - O(rdL) O(d3L) O(r3d3L)

H−1g Computation O(r2d2L+ r3d3L) O(r2d2L) O(rdL+ r2d2L) O(d3L+ rd2L) O(r3d3L+ r2d2L)

Memory O(r2d2) O(r2d2) O(rd) O(d2) O(r2d2)

which further reduces the complexity. However, the error bound of the method is quadratic to the
scale of the matrix Kwon et al. (2024), which is vulnerable to downstream performance degradation.

To further improve the accuracy of hessian-inverse estimation, the hyperpower method is consid-
ered a promising alternative with rigorous convergence guarantees (Garnett et al., 1971; Behera
et al., 2024). However, the hyperpower method iteratively applies matrix multiplication operation,
which introduces intractable memory and computation costs, especially on large-scale networks.
To improve the influence function estimation accuracy within tractable computations, we thereby
introduce HYPERINF as a novel approximation method by incorporating the hyperpower method,
specifically Schulz’s iterative algorithm (Petković, 1995). To address the costs from matrix multi-
plication, we use the generalized fisher information matrix (GFIM) (Hu & Li, 2024) as a low-rank
approximation of the Hessian matrix, with a theoretical proof. Specifically, on LoRA-tuned models,
the memory and computational costs are reduced to a constant value which is independent of the
LoRA ranks. We show that HYPERINF with GFIM demonstrates superior accuracy benefit from
rigorous convergence guarantee while incurring low computational overheads compared to other
baseline methods. From extensive experiments on LLM and VLM, HYPERINF can effectively iden-
tify the most helpful and mislabelled data points, which improves the data attribution interpretability
and finetuning efficiency.

Our Contributions. We summarize our main contributions as follows:

• We leverage the generalized fisher information matrix (GFIM) to derive a novel low-rank
formulation of influence function Equation 5, which largely improve the efficiency of in-
fluence function computations on large-scale models;

• We demonstrate that the Schulz’s method (Equation 7) significantly improves stability and
accuracy of the approximation of hessian inversion, which further yields more accurate
influence scores for large-scale data attribution;

• We propose HYPERINF as an accurate and efficient influence functions approximation
method by applying GFIM and the Schulz’s method. We further verify the empirical effi-
ciency and effectiveness of HYPERINF across a range of extensive experiments, including
mislabeled data detection (§ 4), data selection for LLM fine-tuning (§ 5.2), and instruct-
tuning data selection for VLM pretraining (§ 5.3).

2 PRELIMINARIES

We first revisit the influence function formulation with two existing approximation methods LISSA
and DATAINF.

Setup. The data attribution problem aims to assess each data point in the training set Dtrain =
{(xi, yi)}ni=1 according to their impact to the model’s performance on a targeted validation set
Dval = {(xval

i , yval
i )}mi=1. Given a model f parameterized by θ, the loss function on the ith

sample {(xi, yi)} is denoted as ℓ(yi, fθ(xi)). We assume the loss function is differentiable and
strongly convex, the gradient on the ith sample can be represented as ∇θℓi := ∇θℓ(yi, fθ(xi))
with respect to θ. The empirical risk minimizer on the entire training set is denoted as θ⋆ =
argminθ∈Θ

1
n

∑n
i=1 ℓ(yi, fθ(xi)).

Influence Functions. The influence function quantifies how fast the model parameters would
change corresponding to the up-weight of a specific data point. Following Koh & Liang (2020),

2
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Figure 1: Convergence test of HYPERINF, LISSA and DATAINF. We construct M =
1
N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate the inverse hessian-vector prod-

uct M−1v, where si ∈ Rd, v ∈ Rd are randomly generated from standard normal distribution. Only
HYPERINF can converge to a low error rate with increasing matrix dimension and sample size while
the approximation error from LISSA and DATAINF significantly diverge from the target values. For
LISSA, it does converge but only in limited circumstances (e.g. when N is large). We include the
results with other distributions in Appendix H.

given an infinitesimally small ϵ > 0, we upweigh the contribution of the kth datapoint (xk, yk)
by increasing its portion in the loss function: θ(k)(ϵ) := argminθ∈Θ

1
n

∑n
i=1 ℓ (yi, fθ(xi)) +

ϵℓ (yk, fθ(xk)). Assume the loss function ℓ(y, fθ(x)) is twice-differentiable and strongly convex in
θ, the influence of the kth data sample (xk, yk) ∈ Dtrain on θ⋆ is defined as the derivative of θ(k)(ϵ)
at ε = 0:

Iθ⋆ (xk, yk) :=
dθ(k)

dε

∣∣∣∣
ε=0

= −H (θ⋆)
−1∇θℓk (1)

where H(θ) := ∇2
θ

(
1
n

∑n
i=1 ℓ(yi, fθ(xi))

)
is the Hessian matrix of the empirical loss computed

on the flattened gradient vectors (Koh & Liang, 2020; Kwon et al., 2024).

We further score the contribution from each training sample according to model’s performance on
the validation set Dval. For simplicity, we define I (xk, yk) := −v⊤H(θ⋆)−1∇θℓk as the influence
from the kth datapoint (xk, yk) ∈ Dtrain on Dval, where v = 1

m

∑m
i=1∇θℓ(y

val
i , fθ(x

val
i ))|θ=θ⋆ ,

representing the gradient on the validation set, the datapoints assigned with largest negative values2

of influence function would lead to the sharpest drop of validation losses, which contribute the most
to the training process. In contrast, the datapoints with largest positive values could be the toxic
samples which sabotage the model training.

LISSA. Agarwal et al. (2017) proposed an iterative method to compute the inverse Hessian vector
product H(θ⋆)−1v. For v0 = v, LISSA recursively computes the following iteration: vj = v +
(I − H(θ⋆))vj−1. Agarwal et al. (2017) proved that vj converges to H(θ⋆)−1v as j increases,
when H(θ⋆) ⪯ I . In practice, it is often assumed that LISSA converges to H(θ⋆)−1v after several
reasonable numbers of iterations, and applies the approximation vj ≈ H(θ⋆)−1v to compute the
influence function I (xk, yk) = −v⊤

j ∇θℓk. However, some works have shown that the stability and
convergence from the iterative update are questionable (Basu et al., 2021; Ko et al., 2024).

2We refer largest negative values here as negative scores with the largest absolute value.
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DATAINF. Kwon et al. (2024) proposed a closed-form approximation of the Hessian inverse,
which greatly improves the computation efficiency. Firstly, following George et al. (2021), when
applying the negative log-likelihood loss function ℓ(y, fθ(x)) = − log p(y|fθ(x)), the second-order
Hessian is equivalent to the Fisher Information Matrix (FIM) in expectation (Bartlett, 1953), which
only involves first-order computations. Consequently, Kwon et al. (2024) approximate the Hessian
inverse leveraging the Sherman-Morrison formula 3:

H (θ)
−1 ≈ 1

nλ

n∑
i=1

(
Id −

∇θℓi∇θℓ
⊤
i

λ+∇θℓ⊤i ∇θℓi

)
(2)

where G(θ) := 1
n

∑n
i=1∇θℓi∇θℓ

⊤
i stands for the Fisher Information Matrix (FIM). While the com-

putation complexity of Equation 24 is reduced to O(d), in compromise, the reverse-order operation
Equation 23 incurs aO(d2) error (Kwon et al., 2024). When applying to large-scale models, it could
risk a large approximation error.

3 HYPERINF: EFFICIENT AND ACCURATE DATA INFLUENCE
APPROXIMATION VIA THE HYPERPOWER METHOD

We introduce HYPERINF as an accurate yet efficient approximation method for influence function,
which leverages generalized Fisher Information Matrix (GFIM) proposed by Yang et al. (2022)
and Hu & Li (2024), and Schulz’s hyperpower method (Petković, 1995). We begin by providing
a theoretical proof of Hessian matrix approximation for large models using GFIM, followed by a
demonstration of Schulz’s iteration for approximation of the matrix inverse.

3.1 LARGE-SCALE HESSIAN APPROXIMATION USING GENERALIZED FISHER INFORMATION

The second-order gradients often incur intensive computations and instability on large-scale net-
works. Therefore, we conduct several approximations on Hessian matrix when applying Equation 1
on LoRA-tuned models.

Block-wise Diagonal Approximation. In deep transformer-structured networks, the Hessian ma-
trix is observed to be approximately block-wise diagonal according to (Zhang et al., 2024a;b). We,
therefore, apply a block-wise diagonal approximation on the Hessian inverse in Equation 1. Given
a neural network as a compositional function fθ(x) = fθL

◦ · · · ◦ fθ1
(x) where for l ∈ [L],

we compute the hessian inverse on each parameter block which yields a sparse estimation as
diag(H1(θ)

−1, . . . ,HL(θ)
−1) (Grosse et al., 2023b).

Connection between Generalized Fisher Information and Hessian Matrix. Suppose that we
train the model to minimize the negative log-likelihood objective: ℓ(y, fθ(x)) = − log p(y | fθ(x))
for all (x, y) ∈ X ×Y , where p(·) is the probability density function and X ,Y are input and output
space, respectively. According to Bartlett’s second identity (Bartlett, 1953), the second momentum
of first-order gradient (i.e. Fisher Information Matrix) is equivalent to the second-order gradient
matrix (Hessian) in expectation:

EX,Y∼p(X),p(Y |fθ(X)

[
∇2

θℓ(Y, fθ(X))
]

(3)

= EX,Y∼p(X),p(Y |fθ(X)

[
∇θℓ(Y, fθ(X)) (∇θℓ(Y, fθ(X)))

⊤
]
.

Since Equation 3 replaces the second-order gradient with stable and tractable first-order gradients,
the Fisher Information Matrix (FIM) is widely adopted as a valid approximation of Hessian matrix
in deep networks (Grosse et al., 2023a; Kwon et al., 2024; Barshan et al., 2020). We further extend
the Generalized Fisher Information Matrix (GFIM) (Hu & Li, 2024) to yield a low-rank formulation
of influence function. With some idealized assumptions, we claim the Lemma 3.1 following the
insights from Yang et al. (2022) and Hu & Li (2024).
Lemma 3.1. Given the matrix-form gradient on a parameter block θ as g = g(θ;x, y) ∈ Rd×r,
which can be flattened to a vector by vec(g) ∈ R1×rd. Let ⊗ denotes the Kronecker product, Ir
denotes r × r identity matrix. Assume that each column of the sample gradient g = g(θ;x, y) ∈
Rd×r is independent and identically distributed random vector with zero mean under the distribution
p(y | x,θ) for any θ. We have:

E
[
vec(g) vec(g)⊤

]
= E

[
Ir ⊗

(
1

r
gg⊤

)]
.

3For simplicity, we denote ℓi := ℓ (yi, fθ(xi))
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In addition (Equation 3), it holds:

E

[
Ir ⊗

1

r
gg⊤

]
= E[H(vec(θ))].

Following Lemma Theorem 3.1, we further estimate a hessian-gradient product using GFIM, cor-
responding to the (H(θ⋆)−1∇θℓk) term in Equation 1. Given an invertible matrix A, we have
(Ir ⊗ A)−1 = Ir ⊗ A−1. Therefore, denote the GFIM matrix as G(θ) ≜ (gg⊤) ∈ Rd×d for any
matrix v ∈ Rd×r, it holds that:

H(vec(θ))−1vec(v) ≈
[
Ir ⊗ (

1

r
gg⊤)−1

]
vec(v) = vec(G(θ)−1v). (4)

Consider a LoRA-tuned model with LoRA dimension d and rank r. We assume that each column
in one LoRA block ∆W ∈ Rd×r, corresponding to each rank, is i.i.d. distributed with zero mean.
In the ideal case that the model is trained to converge with E(−∇θ log p(y|x,θ)) = 0, the zero-
mean assumption on the columns of gradient matrices could stand. Thus, we apply Equation 4 to
approximate the original Hessian-gradient product. To further guarantee that G(θ) is invertible, we
add a damping factor λId to the GFIM matrix following Martens (2010).

We eliminate the constant in Equation 4 then derive the final formula of HYPERINF influence score.
On a specific datapoint {xk, yk} ∈ Dtrain, denote the unflattened gradient on a parameter block θ as
gk(θ), we compute:

IHYPERINF (xk, yk) := −g⊤
v (G(θ⋆) + λId)

−1gk(θ), (5)

where gv =
1

m

m∑
i=1

∇θℓ(y
val
i , fθ(x

val
i ))|θ=θ⋆ ∈ Rd×r, representing the average unflattened gradi-

ent on θ on the validation set.

3.2 MATRIX INVERSE APPROXIMATION WITH SCHULZ’S METHOD

Schulz’s method (Petković, 1995). To compute the inverse of one matrix A, the hyperpower
iterative family of matrix iteration methods has attracted the attention of many researchers due to its
rigorous convergence guarantee (Altman, 1960; Garnett III et al., 1971; Bazán & Boos, 2018):

Xt+1 = Xt(I + Tt + T 2
t + ...+ T p−1

t ), Tt = I −AXt (6)

The iterative approach requires p matrix-matrix multiplications per iteration and has an order of
convergence p (Bazán & Boos, 2018). When choosing p = 2, it yields the Schulz iteration, which
can also regarded as a by-product of the Newton method applied to the non-linear equation f(X) =
A−X−1:

Xt+1 = Xt +XtYt, Yt = I −AXt (7)

It is proved by Ben-Israel & Cohen (1966) and Petković (1995) that with a proper initialization,
Schulz’s method would converge to A−1 in the order of convergence at least p = 2. We provide
the complete proof of convergence in Appendix C. Compared to other conventional matrix inverse
algorithms (e.g. gaussian elimination, conjugate gradient, GMRES), Schulz’s method demonstrates
superior accuracy in terms of error rate and significant efficiency gains from the GPU acceleration
on matrix multiplications. We include more details in Appendix G. With the convergence test on
matrix inversion (section 4), we show that starting from a small identity matrix or random gaussian
initialization, Equation 7 could converge to a desirable error rate in finite steps (t¡20). We provide
the pseudo-code in Algorithm 1.

Summary. We hereby provide the holistic view of the HYPERINF algorithm for influence func-
tion estimation. Firstly, we compute the generalized fisher information G(θ) on all tunable pa-
rameter blocks (LoRA blocks on LoRA-tuned models); Secondly, we compute the inverse of the
damped GFIM (G(θ) + λId) with Schulz’s iterations (Equation 7); Last, we compute the influence
score with cached validation gradient v and the unflattened gradient on each training sample, i.e.
IHYPERINF (xk, yk) (Equation 5). We provide the detailed pseudo-code in the Appendix (Algo. 2).
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Complexity Analysis. Compared to the original influence function formulation in Equation 1, the
generalized fisher information matrix G(θ⋆) ∈ Rd×d reduces the memory complexity from O(r2d2)
to O(d2). On computation complexity of Hessian-gradient product, the matrix multiplication be-
tween (G(θ⋆) + λId)

−1 ∈ Rd×d and gk ∈ Rd×r only requires O(rd2) FLOPS, instead of O(r2d2)
with flattened gradient vectors. Specifically, with LoRA rank r = 16, HYPERINF only requires
0.39% memory complexity and 6.25% computations comparing to original Hessian-vector product
operations. We include the complexity comparison to other existing approximation methods in Ta-
ble 1, where HYPERINF with GFIM showcases outstanding memory and computation efficiencies.
In addition, we report the time costs for Hessian inverse-vector product in subsection D.1, where
HYPERINF demonstrates superior efficiency on GPU. It underscores the superior compatibility of
HYPERINF with modern GPU computations.

Algorithm 1 Matrix Inverse Approximation via Schulz’s Iterations

Require: A matrix A needed to be computed for its inverse, an initial guess X0 ≈ A−1, a maximum
iteration number Niter.
for t ∈ [Niter] do

Iteratively update Xt = Xt−1(2I −AXt−1)
end for
return The final approximation A−1 ← XNiter

4 SYNTHETIC CONVERGENCE TEST OF MATRIX INVERSE APPROXIMATION

Setup. We first examine the accuracy and stability of Schulz’s algorithm on matrix inverse ap-
proximation by a convergence test. Specifically, to simulate the FIM matrix in the influence function
A = (G(θ⋆) + λId) on a training set with scale |Dtrain| = N and model with number of parameters
as d, we construct M = 1

N

∑N
i=1 sis

⊤
i + λI ∈ Rd×d by randomly generating si ∈ Rd. We then

compute the exact value of M−1 ∈ Rd×d and the approximated value M̃−1 using DATAINF and
Schulz’s algorithm. For LISSA, since it directly approximates the inverted matrix-vector product,
we randomly generate another vector v ∈ Rd and compute the exact value of the matrix-vector prod-
uct Q = M−1v ∈ Rd as the target. We denote the approximated value from LISSA as Q̃. For all the
methods, we measure the error as the Frobenius norm of the matrix ∥Q− Q̃∥F , where Q̃=M̃−1v for
DATAINF and HYPERINF. We run the convergence test across various d ∈ {512, 1024, 2048, 4096}
and N ∈ {200, 800, 6400, 12800}, emulating different scales of model and amount of data samples
respectively. In all settings, the dampling factor λ is set as 0.01. The initialization for iterative
methods is set as X0 = 5e−4Id. We provide more results with matrices from various distributions
in Appendix H, which demonstrates the similar pattern as in Figure 1.

HYPERINF solves matrix-inversion approximation with great convergence performance. We
present the results from the synthetic experiments in Figure 1, where HYPERINF with Schulz’s
algorithm demonstrates a remarkable accuracy and stability compared to the other two methods.
Specifically, on high-dimensional matrices M with large d, both LISSA and DATAINF tend to di-
verge with increasing approximation errors. For LISSA, the error would not converge but explode
exponentially according to the number of iterations. Even when applying on a small dimension
of matrix with N = 200, LISSA is not able to give an accurate approximation with a large error
rate ∼ 105. This might comes from the sensitivity of LISSA algorithm to the initialization condi-
tions, which could be hard to tune when apply on large-scale models. In comparison, HYPERINF
with Schulz’s algorithm could always converge to a low error rate within finite iterations across all
scales of d and N . It implies that our proposed HYPERINF could consistently achieve a satisfying
accuracy on large-scale models and datasets, while both LISSA and DATAINF could significantly
diverge from the exact value.

5 INFLUENCE FUNCTION APPROXIMATION ON LARGE-SCALE MODELS

In this section, we further apply HYPERINF on influence function approximation on large-scale
foundation models and demonstrate its effectiveness on various data attribution tasks. We compare
HYPERINF with two existing baseline methods LISSA (Agarwal et al., 2017) and DATAINF (Kwon
et al., 2024), as well as the Hessian-free method TRACIN, which replaces the second-order term
H−1 in Equation 1 with the identity matrix Id (Pruthi et al., 2020). Across all mislabeled data
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Figure 2: Mislabeled Data Detection across the GLUE Benchmark with rank r = 16 for
rsLoRA finetuning. HYPERINF significantly improve the detection rate (rt) according to the in-
spection rate (p) above all baselines, while LISSA performs barely better than the random guess.
The dotted lines denote the detection rates from Random Guess and Oracle, which is the best pos-
sible accuracy at each inspection rate. For each method, we run the experiments with 3 random
seeds and report the detection rate with 95% confidence intervals.

detection, data selection for LLM fintuning and VLM pretraining, HYPERINF shows promising
performance compared to all baseline methods.
5.1 MISLABELED DATA DETECTION

We first apply HYPERINF on the mislabeled data detection task following (Koh & Liang, 2020;
Yang et al., 2024; Kwon et al., 2024). We construct a corrupted dataset by flipping the label of 20%
randomly sampled data points, which is considered as the mislabeled subset. After fine-tuning the
model on the corrupted training dataset, we rank all data points according to their influence scores
from HYPERINF, LISSA and DATAINF respectively and then identify the top-p% samples with the
highest scores as the mislabeled ones. We define p as the inspection rate. Denote the real mislabeled
subset as Dmis and the identified top-p% percentage subset using influence function as D̃(p), the
detection ratio rt(p) can then be measured as the recall between Dmis and D̃(p):

rt(p) =
|Dmis ∩ D̃(p)|
|Dmis|

∈ [0,min(p/20, 1.0)] (8)

We assess the mislabeled data detection accuracy according to the detection ratio rt with respect
to the inspection rate p. We run the experiments across six tasks in the GLUE benchmark (Wang
et al., 2019a) with the Roberta-large model. We finetune the pretrained Roberta-large
checkpoint on each corrupted training set using rsLoRA (Kalajdzievski, 2023), a rank-stabilized
variant of LoRA (Hu et al., 2021). We provide more implementation details, ablations with various
LoRA ranks r and complexity analysis in Appendix D.

Results. According to Figure 2, HYPERINF outperforms all baselines on 5 out of 6 tasks with
better accuracy and less variance. On SST2, the accuracy of HYPERINF is comparable to DATAINF
and TRACIN method while the variance is largely reduced when applying HYPERINF. In contrast,
we find that LISSA does not perform well on the mislabeled data detection task: on most of the
tasks, the rt-p curve approaches linear or horizontal, which indicates LISSA is barely better than
the random guess in identifying toxic data points. Additionally, with the low-rank formulation from
GFIM, HYPERINF achieves a remarkable efficiency comparable to all the other baselines using
GPU computing (subsection D.1).

Comparison between HYPERINF with GFIM and FIM. It is worth noting that HYPERINF
with GFIM does not lead to performance degradation compared to FIM. According to Figure 5, HY-
PERINF with GFIM could consistently achieve comparable or better performance than HYPERINF
with FIM, while being (1/r)3 more efficient in computation and (1/r)2 in memory (Table 1).
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5.2 DATA SELECTION FOR LLM FINETUNING

We further manifest the effectiveness of HYPERINF on data selection tasks for LLM finetuning
(Pruthi et al., 2020; Kwon et al., 2024; Xia et al., 2024; Albalak et al., 2024). Given a downstream
task, we aim to select the high-quality and most relevant data points from the training set which
yields a better accuracy on the held-out test set. Specifically, we fine-tune a pretrained Llama2-7B4

checkpoint (Touvron et al., 2023) on four reasoning tasks: QASC (Khot et al., 2020), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020) and LogiQA (Liu et al., 2020). We consider both
sparse (LoRA) and dense finetuning strategies. When applying LoRA, we start with a warmup run
on the training set for 1 epoch to prevent using gradients from randomly initialized LoRA modules.
We apply LoRA with rank r = 64. We compute influence scores from HYPERINF, DATAINF,
LISSA and TRACIN and select the top-k% (k = 5, 20) datapoints with the lowest (i.e. largest neg-
ative) scores respectively. We continually train the model after warmup run using the selected data
points. For dense finetuning, we use the gradients from the last transformer block to compute influ-
ence scores, which is observed to be the most influential layer within the autoregressive language
model architecture (Men et al., 2024). We report the accuracy of the finetuned model evaluated on
the held-out test set. We include more implementation details in Appendix E. The model is tuned
for N = 5 (resp. N = 3 ) epochs on LoRA (resp. dense) finetuning. We also compare to training
the model on the full dataset for N = 1 epoch.

Results on LoRA finetuning. According to Table 2, HYPERINF achieves the best performance
comparing to other baselines. Notably, with 5% finetuning datapoints selected by HYPERINF, the
reasoning accuracy outperforms the train with the full dataset, which requires 20× data samples and
4× FLOPs. With 20% HYPERINF-selected data points, HYPERINF greatly improves the accuracy
by 2.0% above the random selection baseline.

Results on dense finetuning. Although the theoretical analysis in Theorem 3.1 is inspired by LoRA
finetuning context, we show that data selection by HYPERINF also significantly benefits dense fine-
tuning. According to Table 3, with 5%, 20%, 40% selected data points, HYPERINF consistently
improves the reasoning accuracy across all tasks above the random baseline. In contrast, all three
baselines could lead to degradation when selecting a small portion of data points (5, 20%). Com-
pared to training on the full dataset (1 epoch), using 40% HYPERINF-selected samples improves
the average accuracy by 12.9%, which also performs other baselines by a large margin.

Table 2: Evaluation accuracies (%) for LLM data selection with LoRA finetuning. The best re-
sults are Bolded and the second-best are Underlined. On average, HYPERINF shows the larger
improvements as k increases and performs better than all other baselines. The ↑ (↓) indicates the
improvement (degradation) compared to the Random baseline.

Method (LoRA) (k%) Random DATAINF LISSA TRACIN HYPERINF

5% 14.0 12.7 10.6 12 12.9
QASC 20% 16.2 18.7 16.7 16.3 19.7

100% 14.1 - - - -

5% 89.4 88.9 88.5 88.5 89.6
HellaSwag 20% 88.7 89.8 89.5 89.3 89.7

100% 91.7 - - - -

5% 51.3 53.7 52.9 52.9 54.1
PIQA 20% 52.6 52.7 55.6 54.8 56.0

100% 50.6 - - - -

5% 27.0 28.7 25.4 24.8 28.0
LogiQA 20% 26.8 27.0 25.6 27.0 27.0

100% 27.6 - - - -

5% 45.4 46.0(0.6↑) 44.4(1.0↓) 44.6(0.8↓) 46.2(0.8↑)
Average 20% 46.1 47.1(1.0↑) 46.9(0.8↑) 46.9(0.8↑) 48.1(2.0↑)

100% 46.0 - - - -

4https://huggingface.co/meta-llama/Llama-2-7b-hf
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5.3 DATA SELECTION FOR VLM PRETRAINING

Inspired by the promising performance of HYPERINF on large-scale models and datasets, we further
consider to apply it on multimodal instruct-tuning data selection for Vision-Language Model (VLM)
pretraining (Liu et al., 2023c; Bai et al., 2023; Chen et al., 2023; Karamcheti et al., 2024).

Following LLaVa (Liu et al., 2023c), we adopt the commonly used VLM architecture which con-
sists of three components: a vision backbone Vϕ, a projector Fψ and a language backbone LMθ.
Both the vision and language backbones are pre-trained, while the projector is randomly initial-
ized. We follow the auto-regressive training paradigm of vision-language models using multimodal
instruct-tuning datasets represented as (ximg,xtext) ∈ Dvlm. In our experiments, we apply CLIP
ViT-Large (Radford et al., 2021) with a patch size of 14 and input resolution of 336px as the
vision backbone and Llama2-7B (Touvron et al., 2023) as the language backbone. For the projec-
tor Fψ , we initialize a two-layer GELU-MLP (Hendrycks & Gimpel, 2023). Along the suggested
setting from Karamcheti et al. (2024), we freeze the vision backbone Vϕ throughout the entire train-
ing process while only tuning the projector Fψ and the language backbone LMθ. We provide more
implementation details in Appendix F.1.

Setup. We adopt the two-phase pretraining scheme following LLaVa (Liu et al., 2023c). In the
alignment phase, we tune the projector Fψ and LoRA modules of the language backbone on a
separate alignment dataset (Karamcheti et al., 2024). For the second instruct-tuning phase, we select
the most influential data samples from a large generic multimodal instruct-tuning dataset consisting
of 665K datapoints (Karamcheti et al., 2024). We compute the influence score utilizing the gradients
from the projector and LoRA modules then select the top-k% (k = 5%, 20%) subset with the lowest
(i.e. largest negative) scores. We train the VLM on the selected instruct-tuning subsets for one
epoch and evaluate the model’s performance on four cross-modal reasoning tasks: VQAv2 (Goyal
et al., 2017), GQA (Hudson & Manning, 2019), POPE (Li et al., 2023) and Text-VQA (Singh et al.,
2019). We provide more details on the dataset and implementation in Appendix F.2 and F.3.

Results. We present the downstream accuracies across four reasoning tasks in Table 4. On aver-
age, HYPERINF consistently outperforms all the other data selection methods and achieves a 2.3%
improvement above the random baseline with 20% selected subset. In contrast, with 5% selected
data points, LISSA shows a large (8%) performance degradation because of the lack of accurate
second-order information.
Table 3: Evaluation accuracies (%) for LLM data selection with dense finetuning. The best results
are Bolded and the second-best are Underlined. On average, HYPERINF could outperform the
Random baseline while the other methods fail when the selection ratio k is small. The ↑ (↓) indicates
the improvement (degradation) compared to the Random baseline.

Method (dense) (k%) Random DATAINF LISSA TRACIN HYPERINF

5% 11.3 12.5 11.2 11.4 14.3
QASC 20% 13.3 22.2 11.7 11.0 15.0

40% 18.1 35.6 13.2 40.1 56.1
100% 11.9 - - - -

5% 71.5 70.8 70.6 72.5 81.3
HellaSwag 20% 84.7 82.8 83.8 82.6 83.2

40% 86.0 87.8 89.0 88.9 87.0
100% 92.4 - - - -

5% 46.5 42.3 48.7 47.8 53.2
PIQA 20% 53.2 55.0 52.8 57.3 57.0

40% 55.0 60.8 60.9 57.1 58.0
100% 51.0 - - - -

5% 25.5 25.0 27.2 25.4 28.3
LogiQA 20% 28.6 22.3 26.4 27.4 30.2

40% 30.6 28.2 34.3 33.2 40.1
100% 27.0 - - - -

5% 38.7 37.6(1.1↓) 39.4(0.7↑) 39.3(0.6↑) 44.3(5.6↑)
Average 20% 44.9 45.6(0.7↑) 43.7(1.2↓) 44.6(0.3↓) 46.4(1.5↑)

40% 47.4 53.1(5.7↑) 49.4(2.0↑) 54.8(7.4↑) 60.3(12.9↑)
100% 45.6 - - - -

Skip alignment in training, not data selection. (Karamcheti et al., 2024) illustrated from extensive
empirical experiments that we can skip the alignment phase in VLM pretraining to achieve compa-
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rable performance as the two-phase training. To explore whether it applies to data selection, we
directly apply HYPERINF, DATAINF, LISSA and TRACIN before alignment. Since the projector
gradients are randomly initialized before the alignment phase, we only use the gradients from the
last transformer block in language backbone to compute the influence scores. According to F.4,
while the HYPERINF could still bring slight improvement (0.25 − 1%) above random baseline, all
the other three methods suffer from a significant degradation (> 5% ↓) on the accuracy. We hypoth-
esise that the alignment phase is crucial to learning about the connection between the feature spaces
of language and vision backbones, which is indispensable information for VLM pretraining data
selection. Therefore, we suggest the practitioners apply data selection after the alignment phase.

Table 4: Downstream evaluation accuracies (%) from VLM instruct-tuning data selection experi-
ments (after cross-modal alignment on Projector and LoRA layers). The best results are Bolded
and the second-best are Underlined. Projector+LoRA means the gradient from both the Projector
and LoRA are used to compute approximated scores. Methods with > 5% accuracy degradation are
marked in Red.

Method (Projector+LoRA) (k%) Random DATAINF LISSA TRACIN HYPERINF

VQAv2 5% 60.2 60.7 53.2 59.2 60.3
20% 64.5 64.7 65.1 66.4 67.3

GQA 5% 42.2 42.5 35.9 43.6 45.5
20% 45.5 45.1 46.3 49.8 50.5

POPE 5% 72.2 76.9 57.9 78.9 80.6
20% 83.4 84.0 82.6 84.2 84.5

TextVQA 5% 32.0 32.0 27.4 26.2 26.4
20% 35.8 35.9 34.3 31.7 36.1

Average 5% 51.6 53.0(1.4↑) 43.6(8.0↓) 51.9(0.3↑) 53.2(1.6↑)
20% 57.3 57.4(0.1↑) 57.0(0.3↓) 58.0(0.7↑) 59.6(2.3↑)

6 RELATED WORKS

Gradient-based Data Attribution Methods. Assessing the importance of each datapoint based
on the model’s performance is a widely studied problem. Traditional methods based on Sharpley-
value and LOO (leave-one-out) mechanism often need to train numerous models to get a reliable
score, which limits their application on large models nor datasets (Ghorbani & Zou, 2019; Jia et al.,
2020; Kwon & Zou, 2022; Wang & Jia, 2023). In comparison, by tracing the gradient information
from the model, one can value the contribution of each datapoint along the optimization process.
Various methods are proposed to assess the data influence tracing first-order gradient (Pruthi et al.,
2020). However, those methods risk biasing towards dimensions with larger gradient scales and
the uncertainty from stochasticity (Pooladzandi et al., 2022). This could be mitigated by influence
function-based methods (Koh & Liang, 2020; Kwon et al., 2024; Agarwal et al., 2017), which lever-
age the second-order curvature information to balance the uncertainty of the first-order gradients.

Data Selection for Foundation Models. High-quality datapoints are shown to improve the base
LLM’s performance dramatically. Increasing datapoint’s quality and diversity can effectively induce
the instruction-following ability for large language models (Cao et al., 2024; Chen et al., 2024; Du
et al., 2023; Li et al., 2024; Liu et al., 2024). Furthermore, researches on both task-based traditional
NLP tasks and open-ended instruction tuning datasets have demonstrated its effectiveness (Longpre
et al., 2023a; Zhou et al., 2023; Xu et al., 2023; Wei et al., 2021).

7 CONCLUSION

In this work, we propose HYPERINF as an efficient approximation of influence function with ac-
curate second-order information, which leverage generalized fisher information and the Schulz’s
algorithm. From a convergence test on matrix inversion, we demonstrate the superior accuracy and
stability of the Schulz’s algorithm comparing to other methods. We further illustrate HYPERINF’s
efficacy in a range of data attribution applications, including mislabel data detection, data selection
for LLM finetuning and VLM pretraining. Remarkably, HYPERINF consistently outperforms all the
other baselines, which proves the benefit from an accurate estimation of second-order information.
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A DERIVATIONS OF INFLUENCE FUNCTION AND ITS VARIANTS

A.1 INFLUENCE FUNCTION

We provide the proof for Influence Function based on the work of Koh & Liang (2020). We have θ⋆
denoted as the minimizer for the empirical risk:

R(θ) :=
1

n

n∑
i=1

ℓ(yi, fθ(xi)) (9)

We also assume that the R is twice-differentiable and strongly convex in θ, therefore:

H(θ) := ∇2
θ
R(θ) = ∇2

θ

(
1

n

n∑
i=1

ℓ(yi, fθ(xi))

)
(10)

exists and is positive definite. Then upweighing the contribution of the kth datapoint, we have:

θ(k)(ϵ) := argmin
θ∈Θ

1

n

n∑
i=1

ℓ (yi, fθ(xi)) + ϵℓ (yk, fθ(xk)) (11)

= argmin
θ∈Θ

R(θ) + ϵℓ(xk,θ) (12)

Define the change of the parameter ∆ϵ := θ(k)(ϵ)− θ⋆ and notice that θ⋆ does not depend on ϵ, the
quantity we want to compute in Equation 1 can be re-written as:

dθ(k)

dε
=

d∆ϵ

dε
(13)

From previous definition, θ(k)(ϵ) is the minimizer for Equation 12, therefore we have the first-order
optimality condition:

∇θR(θ(k)(ϵ)) + ϵ∇θℓ(xk,θ
(k)(ϵ)) = 0 (14)

We then perform the first-order Taylor expansion of the left-hand side since θ(k)(ϵ)→ θ⋆ as ε→ 0:

0 ≈ [∇θR(θ⋆) + ϵ∇θℓ(xk,θ
⋆)] + [∇2

θR(θ⋆) + ϵ∇2
θℓ(xk,θ

⋆)]∆ϵ (15)
We can further obtain:

∆ϵ ≈ −[∇2
θR(θ⋆) + ϵ∇2

θℓ(xk,θ
⋆)]−1[∇θR(θ⋆) + ϵ∇θℓ(xk,θ

⋆)] (16)
Because θ⋆ is the minimizer for R(θ), we plus ∇θR(θ⋆) = 0 and drop the ϵ-term in the first term
of the right-hand side in Equation 16:

∆ϵ ≈ −[∇2
θR(θ⋆)]−1∇θℓ(xk,θ

⋆)ϵ (17)
Lastly, combining Equation 10 and Equation 13 we can get:

dθ(k)

dε

∣∣∣∣
ε=0

= −H (θ⋆)
−1∇θℓk (18)

A.2 INFLUENCE FUNCTION ON VALIDATION LOSS

In particular, the influence of the upweighing datapoint (xk, yk) on the loss at a validation datapoint
(xval
j , yval

j ) also has a closed-form formula:

Ixval
j ,y

val
j
(xk, yk) :=

dℓ(xval
j ,θ(k)(ϵ))

dε

∣∣∣∣∣
ε=0

(19)

= ∇θℓ(x
val
j ,θ⋆)⊤

dθ(k)

dε

∣∣∣∣
ε=0

(20)

= −∇θℓ(x
val
j ,θ⋆)⊤H (θ⋆)

−1∇θℓk (21)
Therefore, when we want to evaluate the influence on the whole validation dataset, we can get a
similar formula:

I(xk, yk) = −

(
1

m

m∑
i=1

∇θℓ(y
val
i , fθ(x

val
i ))|θ=θ∗

)⊤

H (θ⋆)
−1∇θℓk (22)
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A.3 FULL DERIVATION OF DATAINF

Kwon et al. (2024) proposed a closed-form approximation of the Hessian inverse, which greatly
improves the computation efficiency. Firstly, following George et al. (2021), when applying the
negative log-likelihood loss function ℓ(y, fθ(x)) = − log p(y|fθ(x)), the second-order Hessian is
equivalent to the Fisher Information Matrix (FIM) in expectation (Bartlett, 1953), which only in-
volves first-order computations. Consequently, Kwon et al. (2024) approximate the Hessian inverse
leveraging the Sherman-Morrison formula 5:

H (θ)
−1 ≈

(
1

n

n∑
i=1

∇2
θℓi + λId

)−1

≈ (G(θ) + λId)
−1 → Approximation with FIM

≈ 1

n

n∑
i=1

(
∇θℓi∇θℓ

⊤
i + λId

)−1 → Reverse the order of summation and inverse (23)

≈ 1

nλ

n∑
i=1

(
Id −

∇θℓi∇θℓ
⊤
i

λ+∇θℓ⊤i ∇θℓi

)
→ Sherman-Morrison formula (24)

where G(θ) := 1
n

∑n
i=1∇θℓi∇θℓ

⊤
i stands for the Fisher Information Matrix (FIM). While the com-

putation complexity of Equation 24 is reduced to O(d), in compromise, the reverse-order operation
Equation 23 incurs aO(d2) error (Kwon et al., 2024). When applying to large-scale models, it could
risk a large approximation error.

5For simplicity, we denote ℓi := ℓ (yi, fθ(xi))
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B PSEUDO CODE FOR HYPERINF

We provide the complete pseudo algorithm using HYPERINF in Algorithm (2) to compute influence
function for each datapoint in training set Dtrain according to the impact on the validation set Dval.

Algorithm 2 Influence Score computed by HYPERINF

Require: A training dataset D(train) = {(xi, yi)}ni=1, a validation dataset D(val) =

{(x(val)
i , y(val)

i )}mi=1, an objective function ℓ, a deep neural network fθ(x) = fθL◦fθL−1
◦...◦fθ1(x),

where θ = {θ1, ..., θL} and θl ∈ Rdl for l ∈ [L], HYPERINF’s initial guess X0,l for l ∈ [L], HY-
PERINF’s iteration number Niter.

Ensure: Influence Score for each training data point: IHYPERINF(xk, yk) for k = 1, ..., n.

# Step 1: Compute the first-order gradients from validation datasets
for l ∈ [L] do

for i ∈ [m] do
Compute∇θlℓ(y

(val)
i , fθ(x

(val)
i )) ∈ Rdl×r, unflattened gradient

end for
Compute vl :=

1
m

∑m
i=1∇θlℓ(y

(val)
i , fθ(x

(val)
i ))

end for

# Step 2: Compute the inversion using Schulz’s method
for l ∈ [L] do

for i ∈ [n] do
Compute∇θlℓ(yi, fθ(xi)) ∈ Rdl×r, unflattened gradient

end for
Compute ϵl := 0.1× (ndl)

−1∑n
i=1∇θlℓ(yi, fθ(xi)) · ∇θlℓ(yi, fθ(xi))

Compute Al := Gl(θ) + ϵlIdl

Compute approximated inversion for Al: Âl
−1
← SCHULZ INVERSE(Al, X0,l, Niter)

Compute the Hessian-Vector Product: hl ← v⊤l Âl
−1
∈ Rr×dl

end for

# Step 3: Compute the Influence Score
for k ∈ [n] do

IHYPERINF(xk, yk)← −
∑L
l=1 [hl∇θlℓ(yk, fθ(xk))]

end for

# Function to compute an inversion of a matrix via Schulz’s method
procedure SCHULZ INVERSE(A,X0, Niter)

# Input: A matrix A needed to be computed for its inverse, an initial guess X0 for A−1, a
maximum iteration number Niter.

# Output: The final approximation XNiter for A−1.

for t ∈ [Niter] do
Iteratively update Xt = Xt−1(2I −AXt−1)

end for
Get the approximation for A−1 ← XNiter

end procedure
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C CONVERGENCE ANALYSIS OF SCHULZ’S METHOD

In this section, we provide convergence analysis of the Schulz’s method. We first give the setup with
notations:

Let A ∈ Rn×n be a non-singular matrix, and Xk be the k-th iteration of the Schulz’s method, defined
as:

Xk+1 = Xk(2I −AXk), (25)
where X0 is the initial approximation of A−1. Define the error at kth iteration as: Rk = I −AXk.
We provide the proof for the following convergence theorems:

Theorem C.1. The matrix of error Rk satisfies a quadratic relation. I.e.,

Rk+1 = R2
k.

Proof. According to Equation 25, at kth iteration, we have:

AXk+1 = AXk(2I −AXk) = AXk(I +Rk).

Plug into Rk+1 = I −AXk+1, we have,

Rk+1 = I −AXk+1 = I −AXk(I +Rk) = I −AXk −AXkRk.

By definition, Rk = I −AXk ⇒ AXk = I −Rk, which gives:

Rk+1 = I − (I −Rk)− (I −Rk)Rk = R2
k.

Theorem C.2. The spectral norm of the error decreases quadratically:

∥Rk+1∥ ≤ ∥Rk∥2. (26)

Proof. Taking norms on both sides:
∥Rk+1∥ = ∥R2

k∥.
Applying the submultiplicative property of matrix norms:

∥R2
k∥ ≤ ∥Rk∥ · ∥Rk∥.

Thus we obtain:
∥Rk+1∥ ≤ ∥Rk∥2.

This proves that the error decreases quadratically with each iteration, provided ∥R0∥ < 1.

Theorem C.3. Given the initial condition that the spectral norm of R0 = I−AX0 satisfies ∥R0∥ <
1, then limk→∞ ∥Rk∥ → 0, limk→∞ Xk → A−1.

Proof. Given ∥R0∥ < 1, then ∥Rk∥ satisfies:

∥Rk∥ ≤ ∥R0∥2
k

following the above proved iterative relation ∥Rk+1∥ ≤ ∥Rk∥2. As k → ∞, ∥Rk∥ → 0 exponen-
tially fast. Consequently, as k →∞,

Xk → A−1.
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D DETAILS FOR MISLABELED DATA DETECTION TASK

Implementation Details. In this task, we choose rank-stabilized LoRA (Kalajdzievski, 2023) in-
stead of original LoRA (Hu et al., 2021), for it corrects the one limitation of LoRA (i.e. the per-
formance did not improve further with increasing rank) by a simply dividing LoRA adapters by the
square root of their rank, which unlocks the effectiveness of higher adapter ranks in LoRA.

We conduct mislabeled data detection experiment on six binary classification tasks based on GLUE
benchmark (Wang et al., 2019a), which are GLUE-COLA ((Warstadt et al., 2019), detecting whether
a sentence is grammatical acceptable) GLUE-MRPC ((Dolan & Brockett, 2005), detecting whether
the sentences in the pair are semantically equivalent), GLUE-QNLI ((Rajpurkar et al., 2016), de-
termining whether the context sentence contains the answer to the question), GLUE-QQP6 (deter-
mining whether a pair of questions are semantically equivalent), GLUE-RTE ((Dagan et al., 2006;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), detecting the entailment),
and GLUE-SST2 ((Socher et al., 2013), predicting the sentiment of a given sentence).

When finetuning the LLM with rsLoRA technique with rank r = 16 in Figure 2 and r = 64 in
Figure 3, we apply the gradients from trainable parameters (i.e. every value and query matrix of the
attention layers) to approximate influence functions. We run HYPERINF for 25 iterations and run
LISSA for 10 iterations following the implementation of Kwon et al. (2024). The total number of
tunable parameters is 1.6M, 7.3M respectively for r = 16, 64.

Moreover, We also experiment using the last layer’s gradients of Roberta-large to detect the
mislabeled datapoints. We only tune the last layer of the model on the corrupted training dataset,
then compute the influence function based on the last layer’s gradients. The results are shown in
Figure 4, which indicates that the last layer’s gradients can also be a candidate for computing the
influence function.

Table 5: Mislabeled Data Detection Rate (%) with r = 16.

Method (LoRA) (k%) DATAINF LISSA TRACIN HYPERINF

COLA 20% 39.66 32.18 40.25 51.55
40% 50.59 48.81 49.74 66.04

MRPC 20% 58.52 24.46 57.75 60.89
40% 68.89 37.88 67.34 79.17

QNLI 20% 48.92 43.70 45.37 64.77
40% 56.51 50.18 49.51 76.66

QQP 20% 51.11 38.14 52.18 57.85
40% 62.07 44.74 61.59 73.07

RTE 20% 36.74 35.07 35.14 47.90
40% 47.85 47.85 45.51 57.96

SST2 20% 74.96 44.93 66.51 69.00
40% 80.51 46.62 71.96 78.44

6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Comparisons between HYPERINF with GFIM and HYPERINF with FIM To explore if using
GFIM can lead to performance degradation, we compare HYPERINF with GFIM and HYPERINF
with FIM. In this experiment, we set rank r = 8 since larger ranks (e.g. r = 16, 32, ...) would cause
the Out-Of-Memory error in FIM. The results are shown in Figure 5, where we do not observe the
significantly worse performance in HYPERINF with GFIM, and it performs even better on some
datasets than FIM, such as QQP and SST2.
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Figure 3: Mislabeled data detection results on GLUE benchmark datasets with rank r = 64,
#params = 7.3M .

0 20 40 60 80 100
0

20

40

60

80

100

De
te

ct
io

n 
Ra

te
 rt

(%
)

COLA

TracIN
DataInf
Low-Rank HyperINF
LiSSA
Random
Oracle

0 20 40 60 80 100
0

20

40

60

80

100
MRPC

0 20 40 60 80 100
0

20

40

60

80

100
QNLI

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100

De
te

ct
io

n 
Ra

te
 rt

(%
)

QQP

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
RTE

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
SST2

Figure 4: Mislabeled data detection results on GLUE benchmark datasets, where influence function
is computed based on the last layer’s gradients.
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Figure 5: Mislabeled data detection results on GLUE benchmark datasets with rank r = 8.
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D.1 ANALYSIS OF COMPLEXITY AND TIME COSTS.

To understand the computation overheads incurred from different data attribution algorithms, we
report both time costs on CPU and one Nvidia A100 GPU according to 6 and 7 on two datasets
(COLA and MRPC) from the GLUE benchmark. Specifically, we only record the running time for
computing the inverse Hessian vector product v⊤G(θ) with different LoRA ranks r = 1, 2, 4, 8, 16.
We observe that the efficiency of three algorithms ranks largely differently between GPU and CPU.
On CPU, DATAINF introduces least time overheads while HYPERINF incurs the most amount of
extra time costs. In addition, the time costs from DATAINF and LISSA increase quadratically with
LoRA rank r while HYPERINF increase linearly (note that the y-axis is on log scale). Alternatively,
on one Nvidia A100 GPU, the time costs from all algorithms are almost constant across LoRA ranks,
and HYPERINF costs least of time, followed by DATAINF. In comparison, LISSA requires (∼ 4×)
more time costs than HYPERINF and DATAINF.
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Figure 6: Runtime on CPU for approximating Hessian-vector product using different methods on
GLUE-COLA and GLUE-MRPC datasets.
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Figure 7: Runtime on GPU for approximating Hessian-vector product using different methods on
GLUE-COLA and GLUE-MRPC datasets. HYPERINF takes lowest time costs compared to other
methods.
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D.2 CORRELATION WITH LEAVE-ONE-GROUP-OUT (LOGO) SCORES.

The performance of a training data attribution (TDA) algorithm can be assessed by its ability to
recover the true Leave-One-Out (LOO) score (Tukey, 1958) The LOO score of a given datapoint xi
is defined as the gap of validation losses of a model before and after removing the certain datapoint.
To prevent the large computations incurred from retraining LLMs, we evaluate the TDA algorithms
with Leave-One-Group-Out (LOGO). Firstly, we rank all training datapoints according to assigned
scores and split them equally into K groups from high to low scores (K = 5 in our experiments).
On each group of data Ci, we iteratively remove Ci and retraining the LLM on the remaining set
of data Dtrain/Ci. We define the LLM trained on the full training set as θ0 and the LLM retrained
with removing Ci as θ/Ci

Then we measure the LOGO score as:

LOGO(Ci) = L(θ/Ci
, Dval)− L(θ0, Dval) (27)

If Ci contains high quality datapoints, excluding Ci would hurt the model’s performance and lead to
an increment of validation loss. Therefore, the LOGO score is proportional to the data quality within
the group. In that case, we measure the rank correlation between the average influence score assigned
to all groups and the corresponding LOGO scores. We report the spearman rank correlation scores
on all four algorithms across six datasets in GLUE benchmark in Table 6. The results demonstrate
HYPERINF outperforms all the other baselines on the accuracy of data attribution.

Method (LoRA) DATAINF LISSA TRACIN HYPERINF

COLA 0.50 0.49 -0.99 0.70
MRPC 0.0 0.0 0.0 0.20
QNLI -0.40 -0.30 -0.60 0.10
QQP 0.30 0.49 -0.30 0.70
RTE 0.60 0.60 0.40 1.00
SST2 -0.90 -0.30 -0.10 0.70

Table 6: Spearman Rank Correlation.
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E DATA SELECTION FOR LLM FINETUNING

Dataset Details. We run the experiments on four LLM reasoning tasks: QASC (a question-
answering dataset with a focus on sentence composition. It consists of 9, 980 8-way multiple-choice
questions about grade school science) (Khot et al., 2020), HellaSwag (a challenging dataset for eval-
uating commonsense NLI) (Zellers et al., 2019), PIQA (a dataset introducing the task of physical
commonsense reasoning) (Bisk et al., 2020) and LogiQA (is constructed from the logical compre-
hension problems from publically available questions of the National Civil Servants Examination of
China) (Liu et al., 2020). For LogiQA, we use the official validation set asDval in data selection and
use labelled official test set for evaluation; for other three datasets, since the labels for the official
test set are not available, we randomly split 20% from the official validation set as Dval, and use the
rest 80% validation set as the held-out test set.

Implementation Details. For LoRA-finetuning, we follow the same setting as we implement in
Mislabeled Data Detection task while setting the rank r = 64. The hyperparameters are set as the
same as in VLM experiments (Table 7), while the Epoch number is set to 3 for fully-finetuning and
5 for LoRA-finetuning across k = 5%, 20%, 40%. When selecting all datapoints (i.e. k = 100%),
we finetune it for only 1 epoch.

Evaluation Statistics. We present the detailed statistics of evaluation results in Table 2 and Fig-
ure 8 for LoRA-finetuning experiments, and Table 3 and Figure 9 for fully-finetuning experiments.
HYPERINF significantly outperforms all baselines.
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Figure 8: Evaluation accuracy according to data selection ratio (k) for LLM LoRA-finetuning.
HYPERINF greatly improves the reasoning accuracy above other baselines.
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Figure 9: Evaluation accuracy according to data selection ratio (k) for LLM fully-finetuning.
Influence scores are computed based on the gradients of the last layer of LLM. HYPERINF shows
significantly better performances above other baselines especially when k = 5%.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F DATA SELECTION FOR VLM PRETRAINING

F.1 DETAILS OF VLM ARCHITECTURE AND TRAINING STRATEGY

Following LLaVa (Liu et al., 2023c), we adopt the commonly used VLM architecture which consists
of three components: a vision backbone Vϕ, a projector Fψ and a language backbone LMθ. Both
the vision and language backbones are pre-trained, while the projector is randomly initialized and
would be tuned through the alignment and instruct-tuning phases using multimodal data (Karamcheti
et al., 2024; Liu et al., 2023c; Bai et al., 2023; Chen et al., 2023). We follow the auto-regressive
training paradigm of vision-language models, where the images are tokenized into patches (i.e.
visual tokens) to fit into the conventional training patterns of language models. Specifically, each
datapoint in a multimodal instruct-tuning dataset can be represented as a tuple (ximg,xtext). We
get a sequence of embeddings of the image patches through the vision backbone pimg = Vϕ(ximg)
then feed it into the projector to obtain the transformed features eimg = Fψ(pimg). Meanwhile, we
have the embeddings from textual tokens as etext = LMθ(xtext). We then concatenate the features
from both modalities together to conduct next-token predictions. In our experiments, we apply
CLIP ViT-Large (Radford et al., 2021) with a patch size of 14 and input resolution of 336px
as the vision backbone and Llama2-7B (Touvron et al., 2023) as the language backbone. For
the projector Fψ , we initialize a two-layer GELU-MLP (Hendrycks & Gimpel, 2023). Along the
suggested setting from Karamcheti et al. (2024), we freeze the vision backbone Vϕ throughout the
entire training process while only tuning the projector Fψ and the language backbone LMθ.

Specifically, we utilize the Prismatic-VLM framework7 (Karamcheti et al., 2024) to train the VLM.
We use 6xA100 80G GPUs to train the model, and the hyperparameters are set as Table 7.

Table 7: Hyperparameters setting for training VLM

Hyperparameters Values

Epoch 1
Optimizer AdamW
Learning Rate 2e-5
Weight Decay 0.1
Max Grad Norm 1.0
Warmup Ratio 0.03
Batch Size per GPU 16
Scheduler Warmup & Cosine Decay

F.2 DETAILS OF VLM DATASET

Instruct-tuning Dataset. We follow the work of Karamcheti et al. (2024) and this dataset con-
tains 665K multimodal instruct tuning examples8. Liu et al. (2023b) has identified a set of ”trigger
prompts” for each dataset in the mixture, to induce more capabilities of VLM. The datasets are
sourced as follows, where we removed ShareGPT (language-only) in our experiments. We split it
into a training dataset and a validation dataset as 8 : 2 ratio.

LlaVa Synthetic Data (158K): A synthetically generated dataset of conversations, fine-grained de-
scriptions, and question-answering data from Liu et al. (2023c), built by prompting GPT-4 (OpenAI
et al., 2024) with image captions and object bounding boxes from COCO (Lin et al., 2014).

Standard VQA Data (224K): A combination of visual question answering data sourced from
the training sets of VQAv2 (general question answering) (Goyal et al., 2017), GQA (spa-
tial and compositional reasoning) (Hudson & Manning, 2019), OK-VQA (reasoning requir-
ing external knowledge) (Marino et al., 2019), and OCR-VQA (reasoning over text/logos
in images) (Mishra et al., 2019). LLaVa v1.5 defines the following trigger prompt:
”〈Question〉? Answer the question using a single word or phrase.”

7https://github.com/TRI-ML/prismatic-vlms?tab=readme-ov-file
8It can be downloaded following the instructions of https://github.com/TRI-ML/

prismatic-vlms
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Multiple Choice VQA Data (50K). Multiple choice visual question answer-
ing data sourced from A-OKVQA (requires diverse external knowledge)
(Schwenk et al., 2022). LLaVa v1.5 defines the following trigger prompt:
”〈Question〉? A. 〈Option A〉 B. 〈Option B〉... Answer with the option’s
letter from the given choices directly.”

Captioning Data (22K). Images and captions sourced from TextCaps (images with
text/logos) (Sidorov et al., 2020). LLaVa v1.5 defines the following trigger prompt:
”Provide a one-sentence caption for the provided image.”

Referring Expression Data (116K). Referring expression grounding (bounding box predic-
tion) and region captioning data sourced from RefCOCO (Kazemzadeh et al., 2014; Yu
et al., 2016) and Visual Genome (Krishna et al., 2016). For bounding box prediction (lo-
calization), the model needs to generate normalized bounding box coordinates (as a natural
language string). For the localization task, LLaVa v1.5 defines the following trigger prompt:
”〈Referring Expression〉 Provide the bounding box coordinates of the
regionthis sentence describes.”

For the inverse task (region caption), LLaVa v1.5 defines a separate trigger prompt:
”Provide the bounding box coordinate of the region this sentence
describes.”

F.3 DATA SELECTION AFTER CROSS-MODAL ALIGNMENT WITH PROJECTOR AND LORA
OF LANGUAGE BACKBONE

Details of Cross-Modal Alignment. We keep the same hyperparameter setting as in Table 7
and adopt LoRA to the language backbone. We keep the same LoRA setting in the LLM LoRA-
finetuning. In the alignment phase, we tune the projector and LoRA layers while keeping other parts
frozen. We use the Vision-Language Alignment dataset (Karamcheti et al., 2024), which consists of
558K (image, caption) pairs, where the caption is a sentence description of the corresponding image.
The images are sourced from LAION (Schuhmann et al., 2021), Conceptual Captions (Sharma et al.,
2018) and SBU Captions (Ordonez et al., 2011). Considering the limited computation resources, we
randomly select 5% datapoints from the alignment dataset for the alignment phase. We leave the
larger-scale experiments to future work.

Details of the Instruct-tuning. Because of the limited computation resources, we constrain our
experiments on 10% of instruct-tuning training dataset used in F.2. We compute the influence func-
tion based on the gradients from both Project and LoRA layers, then select k = 5%, 20%, 40%
datapoints using various influence function-based methods from the 10% training subset, which is
equivalent to 0.5%, 2%, 4% of the original 665K instruct-tuning dataset. In this experiment, we also
finetune the projector and LoRA layers of the language backbone and keep other parts frozen.

F.4 VLM PRETRAINING BEFORE CROSS-MODAL ALIGNMENT

Setup. Karamcheti et al. (2024) illustrated from extensive empirical experiments that only applying
instruct-tuning can achieve comparable performant pretrained VLMs as the conventional two-phase
training (cross-modal alignment then instruct-tuning) for LLaVa (Liu et al., 2023c). Thus, we hereby
skip the alignment phase in LLaVa (Liu et al., 2023c) and aim to select the most beneficial multi-
modal instruct-tuning datapoints for more efficient VLM pretraining (instruct-tuning only). Since
the projector is randomly initialized which is not suitable for computing influence function, we use
the gradient of the last layer of the pretrained language backbone for HYPERINF and all baselines,
to select the datapoints. In this experiment, we compute all instruct-tuning training datapoint’s in-
fluence score of each method, then select the top-k% (k = 20%, 40%, 80%) subset with the lowest
scores. During instruct tuning of this experiment, we tune the projector and the whole language
backbone while keeping the vision backbone frozen.

Results. We present the evaluation accuracies on four multimodal downstream tasks in Table 8.
Notably, when selecting k = 20% of datapoints, HYPERINF improves the accuracy in average
by 7.20% above DATAINF, 8.37% above LISSA and 9.11% above TRACIN. However, we also
note that when the selection ratio gets larger (k > 40%), the performance of other baselines will
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approach HYPERINF, since the impact from approximation errors on the data ranking is mitigated.
Meanwhile, we observe that the random selection is a very strong baseline for all tasks, where
only HYPERINF has a small improvement above the random baseline (0.25%) in average accuracy
while all the other methods cause a large performance degradation (> 5%). We hypothesize that
using pretrained LLM backbone without leveraging cross-modal alignment information may lead to
sub-optimal results.

Evaluation Statistics. We present detailed statistics for downstream evaluations in Table 8 and
Figure 10. HYPERINF greatly improves the accuracies across all tasks above the other data selection
baselines, while the random selection is a strong baseline. When selecting 20% subset, HYPERINF
is the only method that could outperform random selection according to average accuracy.
Table 8: Downstream evaluation accuracies (%) from VLM instruct-tuning data selection ex-
periments (before cross-modal alignment). The best results are Bolded and the second-best are
Underlined. The gradient from the last layer of the language backbone is used to compute approx-
imated scores. HYPERINF could outperform the Random baseline while the other methods fail
when selection ratios are small. The ↑ (↓) indicates the improvement (degradation) compared to the
Random baseline. Methods with > 5% accuracy degradation are marked in Red.

Method (k%) Random DATAINF LISSA TRACIN HYPERINF

20% 71.30 66.91 66.20 65.33 70.40
VQAv2 40% 74.84 75.35 75.92 75.84 75.27

60% 76.29 75.35 76.99 76.95 76.89

20% 55.92 53.29 52.23 51.03 57.97
GQA 40% 59.83 60.95 62.41 61.76 61.63

60% 61.49 62.97 63.11 62.62 63.35
20% 86.11 86.04 85.52 85.04 85.66

POPE 40% 86.58 85.98 86.39 86.52 86.91
60% 87.00 86.63 86.40 86.99 86.92

20% 36.20 15.50 13.10 12.70 36.50
TextVQA 40% 45.00 45.60 44.90 44.90 45.70

60% 47.60 49.40 48.90 49.20 49.20

20% 62.38 55.43(6.95↓) 54.26(8.12↓) 53.52(8.86↓) 62.63(0.25↑)
Average 40% 66.56 66.97(0.41↑) 67.25(0.69↑) 67.40(0.84↑) 67.38(0.82↑)

60% 68.09 68.59(0.50↑) 68.85(0.76↑) 68.94(0.85↑) 69.09(1.00↑)
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Figure 10: Downstream evaluation for VLM instruct-tuning data selection (before cross-modal
alignment). HYPERINF benefits the most when selecting a small subset k = 20%, from its accurate
approximation of influence function. With k increasing, the performance of other baselines approach
HYPERINF, since the impact from approximation errors is mitigated. Random selection is a strong
baseline for all data selection methods.
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G COMPARISON BETWEEN MATRIX INVERSION ALGORITHMS

Implementation Details. In this section, we compare the efficiency of computing inverse of matri-
ces between Schulz’s method and other commonly used methods9, including Gaussian Elimination,
Conjugate Gradient, Generalized Minimal Residual method (GMRES) and Faster Gaussian Elimi-
nation (i.e. torch.inverse). For the iterative methods, we all set the number of iterations to 20
for fair comparisons. We follow the same step in Section. 4 to construct the invertible matrix M , and
set the dimension of the matrix in different scales: d ∈ {16, 64, 256, 1024, 4096} and N = 12800.
We use the Frobenius Norm to measure the error between the approximated and true inverse, where
we set the Gaussian Elimination as the ground truth. In addition to the error comparison, we also
compare the time cost of each method in terms of efficiency aspect. We run the experiments with 3
random seeds and report the average and standard deviation of time costs. All the experiments are
done with a single A100 GPU.

Results. The comparisons of error and time cost are shown in Table 9 and Table 10 as well as
Figure 11. Schulz achieves a similar error margin as FGE, which is better than CG and GMRES
in most cases. Furthermore, Schulz also has the lowest time cost generally in different dimension
settings even when d = 4096, while other methods observe a significant increase in running time as
ranks become larger(especially for Gaussian Elimination, Conjugate Gradient and GMRES). This
illustrates the efficiency and stability of HYPERINF since Schulz’s method is the main part of our
method.
Table 9: Error comparisons among different methods for computing the inverse of the matrix. CG,
and FGE denote the Conjugate Gradient and Faster Gaussian Elimination respectively. We reimple-
mented all the algorithms in torch if the original implementation does not support GPU accelera-
tion.

Matrix Dim CG FGE GMRES Schulz

16 3.5e-10 ±1.2e-10 3.0e-11 ±3.1e-12 1.3e-10 ±4.2e-11 4.2e-11 ±5.1e-12

64 9.7e-10 ±5.2e-11 8.7e-11 ±8.6e-12 1.6e-10 ±1.7e-11 1.4e-10 ±3.9e-12

256 9.9e-9 ±3.6e-10 3.9e-10 ±1.1e-11 8.9e-10 ±1.3e-10 5.4e-10 ±1.3e-11

1024 1.2e-8 ±5.3e-10 2.1e-9 ±1.8e-11 3.7e-9 ±3.8e-11 2.5e-9 ±3.1e-11

4096 1.2e-7 ±5.1e-10 2.1e-8 ±1.9e-10 1.5e-7 ±7.5e-10 2.7e-8 ±2.0e-10

Table 10: Time cost (s) comparisons among different methods for computing the inverse of the ma-
trix. GE, CG and FGE denote the Gaussian Elimination, Conjugate Gradient and Faster Gaussian
Elimination respectively. We reimplemented all the algorithms in torch if the original implemen-
tation does not support GPU acceleration.

Matrix Dim GE CG FGE GMRES Schulz

16 0.04 ±0.02 0.11 ±0.005 0.02±0.03 0.41±0.02 0.002±0.002

64 0.31 ±0.02 0.43±0.03 0.01±0.01 2.27±0.17 0.0008±0.0001

256 2.55±0.02 2.37±0.11 0.001±0.0005 12.7±0.31 0.002±0.002

1024 23.7±0.10 14.6± 0.06 0.007±0.0003 77.1 ±0.44 0.002 ±0.002

4096 313.8±2.29 107.9±5.13 0.07±0.009 581.6±8.15 0.001±0.0005

9https://github.com/devzhk/Pytorch-linalg
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Figure 11: Time cost comparisons among different methods for computing the inverse of the matrix.
Schulz presents superior efficiency than other methods.
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H SUPPLEMENT RESULTS OF CONVERGENCE TEST ON MATRIX INVERSION

We follow the same setting as in section 4 and construct matrices M = 1
N

∑N
i=1 sis

⊤
i +λI ∈ Rd×d.

To study the convergence with various data distribution and initialization condition, we report the
results with si and v vectors drawn from 5 difference distributions:

• Each element of si and v are drawn from Standard Normal Distribution: N (0, 1)

• Each element of si and v are drawn from Normal Distribution: N (0.5, 1)

• Each element of si and v are drawn from Normal Distribution: N (0, 5)

• Each element of si and v are drawn from Normal Distribution: N (0.5, 5)

• Each element of si and v are drawn from Uniform Distribution: U(0, 1)

We also include the Neumann Series (which is the same method of LiSSA) and Successive Over
Relaxation (SOR) methods to compare. For SOR, the iteration is shown as:

X(k+1) = (D − ωL)−1(ωU + (1− ω)D)X(k) + ω(D − ωL)−1 (28)

where D,L,U denote the diagonal, lower and upper triangular parts of M . ω is a hyperparameter,
when ω > 1 it is overrelaxation, and when ω < 1 it is underrelaxation. We choose ω = 0.5, 1.5
for experiments. To measure the error for all methods, we use the Frobenius norm of the matrix
||Q̂−Q||F .

Results. The results are shown as Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16. HY-
PERINF with Schulz’s algorithm demonstrates remarkable stability and convergence performance,
which is robust with various data distribution and initial conditions. LISSA only converges in a few
circumstances, indicating it’s sensitive to the initial condition and matrix distributions. For SOR,
only when the data distribution is from N (0, 1) (see Figure 12 and Figure 13) it can converge in
limited circumstances.
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Figure 12: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 0.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Standard Normal DistributionN (0, 1). Only HYPERINF can converge to a low
error rate in all cases. For LISSA, it does converge in some cases (e.g. N = 6400, dim = 512), but
would diverge when dim is larger. SOR only converges when N is large and dim is small.
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Figure 13: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Standard Normal DistributionN (0, 1). Only HYPERINF can converge to a low
error rate in all cases. For LISSA, it does converge in some cases (e.g. N = 6400, dim = 512), but
would diverge when dim is larger. SOR only converges when N is large and dim is small.
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Figure 14: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from th Normal Distribution N (0.5, 1). Only HYPERINF can converge to a low error
rate in all cases. For other methods, they all diverge. For SOR, it has the nan issue.
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Figure 15: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Normal DistributionN (0, 5). Only HYPERINF can converge to a low error rate
in all cases. For other methods, they all diverge. For SOR, it has the nan issue.
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Figure 16: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Uniform Distribution U(0, 1). Only HYPERINF can converge to a low error
rate in all cases. For other methods, they all diverge. For SOR, it has the nan issue.
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I DISCUSSION AND LIMITATIONS ON FIM AND GFIM APPROXIMATION IN
INFLUENCE FUNCTION COMPUTATION

I.1 LIMITATIONS OF FIM APPROXIMATION OF HESSIAN MATRIX

While the Fisher Information Matrix (FIM) have been widely applied to approximate the Hessian
matrix (Bartlett, 1953; Kwon et al., 2024), we recognize that some infeasible conditions required
by Equation 3 cannot be met in realistic LLM training cases, which might cause discrepancies and
undesirable downstream effects. Firstly, Equation 3 only stands when the model is nearly converged,
which can hardly be achieved when train LLMs; Besides, Equation 3 requires that the labels y are
drawn from the distribution p(y|x,θ). While the ground-truth labels are normally used as y in
influence function computation.
From the optimization point of view, using FIM to approximate second-order gradients or curvature
during training could lead to sub-optimal optimization outcomes, wuch as adverse distortion of the
gradient field (Kunstner et al., 2020). For more detailed and complete studies of FIM and hessian
matrices, we refer the readers to (Kunstner et al., 2020).

I.2 LIMITATIONS OF GFIM APPROXIMATION OF FIM

In Theorem 3.1, we make the idealized assumption that each column in the gradient matrix g is
independently and identically distributed (i.i.d.) following a distribution with zero-mean. However,
we demonstrate that this assumption may not be strictly valid in realistic cases of large langauge
model training.
According to 17a, we visualize both the fisher information matrix (FIM, vec(g)vec(g)T ) and ex-
pended generalized fisher information matrix (GFIM, Ir ⊗ ggT ) of gradient matrices from LoRA
finetuning on the MRPC dataset.
In 17b, we constructed a 16 × 1000 matrix by sampling each column from a standard guassian
distribution with zero-mean and one-variance independently and identically. We then plot the FIM
and expended GFIM matrices of the given matrix.
In practice, FIM and GFIM show some differences, especially with randomness and complex dy-
namics during LLM training. However, it does not impact the empirical performance of our method
according to the improvement from our comprehensive experiments. How to derive a more accu-
rate low-rank approximation of Hessian matrices within tractable computations is an important and
compelling research topic. We will leave it for future work.
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(a) GFIM and FIM of Gradient Matrices from LoRA fine-tuning (r=16)
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Figure 17: Difference between GFIM and FIM.
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I.3 LINEAR INDEPENDENCE OF MATRIX COLUMNS

In realistic LLM training, it is hard to justify the i.i.d. assumption made in Theorem 3.1. However,
we provide the empirical evidence that each column in the gradient matrices are linear independent
with each other. Specifically, the rank of the gradient matrix should be equal to the number of
columns, i.e. the LoRA rank in low-rank fine-tuning.
We hereby compute the rank of each gradient matrix across all training data points from MRPC
dataset and present the distribution of matrices ranks in 18a and 18b. With r=8 and r=16, most of
(> 90%) gradient matrices are with full column ranks, which shows that Theorem 3.1 stands in real
low-rank tuning cases. In addition, we also compute the difference between GFIM and FIM in the
above same setting (r = 16 in this experiment).
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(a) Rank Distribution of Gradient Matrices with r=8.
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(b) Rank Distribution of Gradient Matrices with r=16.

Figure 18: Rank distribution of gradient matrices on MRPC. More than 90% matrices are with full
column rank, which justifies our linear dependent aussumption in Theorem 3.1.
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