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Abstract

Prior knowledge integration helps identify semantic entities and their relationships
in a graphical representation, however, its meaningful abstraction and intervention
remain elusive. This paper advocates a knowledge-inspired 3D scene graph pre-
diction method solely based on point clouds. At the mathematical modeling level,
we formulate the task as two sub-problems: knowledge learning and scene graph
prediction with learned prior knowledge. Unlike conventional methods that learn
knowledge embedding and regular patterns from encoded visual information, we
propose to suppress the misunderstandings caused by appearance similarities and
other perceptual confusion. At the network design level, we devise a graph auto-
encoder to automatically extract class-dependent representations and topological
patterns from the one-hot class labels and their intrinsic graphical structures, so that
the prior knowledge can avoid perceptual errors and noises. We further devise a
scene graph prediction model to predict credible relationship triplets by incorporat-
ing the related prototype knowledge with perceptual information. Comprehensive
experiments confirm that, our method can successfully learn representative knowl-
edge embedding, and the obtained prior knowledge can effectively enhance the
accuracy of relationship predictions. Our thorough evaluations indicate the new
method can achieve the state-of-the-art performance compared with other scene
graph prediction methods.

1 Introduction and Motivation

Scene graph has been studied as a viable means towards better interpretation of scene context, which
encodes the semantic elements and their complex relationships of a scene [16, 32, 33, 11, 31, 9]. As
an enriched scene structure representation, scene graph parsing from 3D data has recently interested
researchers in 3D vision for the tasks of scene understanding [2], VR/AR scene interactions [25], and
robot navigation [7]. However, the scanned 3D data has a intrinsic nature of incompleteness [1, 24],
geometrical similarity across categories, and other visual challenges. These perception errors result
in extra difficulties in object and relationship recognition purely based on visual inputs.

Fortunately, in cognitive psychology, besides visual perception, human beings also associate objects
and concepts with certain abstract symbolic class-dependent representations and regular combinations
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Figure 1: Overview of the knowledge-inspired 3D scene graph prediction method. We decompose
the problem into two sub-tasks. First, we learn the meta-embedding only from the class labels
with their graphical structures avoiding perceptual errors. The figure on the right shows that our
meta-embedding (stars) can effectively represent the latent class features (points) in the latent space.
Then, our scene graph prediction model selects related meta-embedding as prior knowledge to classify
object entities and their relationships with point cloud perceptual features.

of scene context, known as knowledge. However, utilizing prior knowledge still remains chal-
lenging in scene graph prediction. Prior knowledge-incorporated methods have several limitations.
Static knowledge (e.g., heuristic co-occurrence statistics [37], mined triplet facts [8], or knowledge
graph [35]) could be incomplete and inaccurate depending on the quality of knowledge sources
and the domain knowledge covered. Thus, several methods tend to use learning-based knowledge
to capture the graphical structure and regular combinations in the exact domain. However, the
knowledge learned from visual information also inherits perceptual confusion into the knowledge
embedding and network parameters [22, 36].

To ameliorate, this paper advocates a novel 3D scene graph prediction method with learned prior
knowledge. The knowledge can be encoded in various forms (e.g., vectors, graphs, and natural
language). In our work, we choose class-dependent prototypical memories as the carrier of knowledge
to tackle the key challenges mentioned above. We re-formulate the target problem into two sub-tasks:
knowledge learning and knowledge-inspired scene graph prediction. Unlike previous works, we
learn the knowledge only depending on semantic categories and regular structural patterns without
any visual confusion. The knowledge learning model is a graph auto-encoder that takes the one-hot
class labels as inputs with scene graph structure annotations. Since we do not involve any geometric
and visual features, the latent embedding indeed encodes only category-related regular structure
patterns. To correctly record this prior knowledge, we enforce a group of prototypes [23], namely
meta-embedding, to approach the latent areas of the corresponding category in the metric space.
As we illustrated in Figure 1, the meta-embedding is capable of representing each semantic class
as prototypical knowledge. Once trained, the scene graph prediction model unites the geometric
features and the corresponding knowledge meta-embedding to predict each element in a triplet with
the <subject, predicate, object> structure. Extensive experiments confirm that the effectiveness of
knowledge extraction and the injection of the meta-embedding can improve the scene graph prediction
accuracy.

The primary contributions of this paper could be summarized as follows: (1) We introduce a
novel knowledge-inspired scene graph prediction method that directly functions on 3D scene point
clouds. To achieve our goal, we re-formulate the problem into two sub-tasks: knowledge learning
and scene graph prediction with knowledge intervention; (2) We propose a graph auto-encoder, called
meta-embedding, to learn a group of class-dependent prototypical representations. The learned class
prototypes can avoid perceptual errors and effectively encode prior structural knowledge in a more
distinguishable latent space; and (3) We design a scene graph prediction model benefiting from the
prior learned knowledge in order to predict credible relation triplets. With our learned knowledge,
our scene graph prediction model can achieve state-of-the-art performance on the 3D semantic scene
graph (3DSSG) dataset [29] compared to currently available methods.
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2 Related Work

Knowledge-based Scene Graph Classification. Prior knowledge has been proven as an effective
source of information to enhance object and relation recognition. Early methods use statistical
co-occurrence as extra knowledge for scene graph inference. Zellers et al. observed that the predicate
distribution is strongly dependent on the head and tail categories. It introduces a pre-computed bias
into the final prediction [37]. The biased results naturally improve the most frequent combinations.
To improve the classification performance on the rarely sampled ones, knowledge-embedded routing
network (KERN) [4] implicitly fuses co-occurrence probabilities as weights in the message pass step
to neutralize the long-tail phenomenon. Nevertheless, this integrated knowledge can hardly be used
and studied in isolation since it is hard-coded as intrinsic parameters. Besides, some methods bring
external knowledge bases into scene graph inference. Gu et al. extracted knowledge triplets from
the ConceptNet knowledge bases [8]. Graph bridging network (GB-Net) adopts auxiliary edges as
bridges that enable and facilitate message passing between knowledge graphs and scene graph [35].
This hand-crafted external information is highly dependent on the organization of knowledge and the
quality of sources. Furthermore, several methods try to incorporate learning-based commonsense into
scene graph inference. Zareian et al. proposed a local-global graph transformer to complete a masked
scene graph by embedding the regular patterns into the network parameters [36]. More recently,
Sharifzadeh et al. encoded inductive biases into the class-level prototypical representations learned
from all previous perceptual outputs [22]. Inspired by [22], our method also adopts prototypical
representations as prior knowledge. Nevertheless, our method focuses on class-dependent and graph
structure information, which aims to combat the confusion resulting from perceptual errors.

3D Scene Graph Prediction. 3D scene graph has only recently been studied in the 3D vision
community. There are mainly two approaches for 3D scene graph construction. The first group
of works benefits from image-based scene graph techniques. Armeni et al. firstly introduced a 3D
scene graph construction framework with 3D meshes and registered RGB panoramic images [2]. It
adopts multi-view consistency to enforce the accuracy of object identification by 2D-3D projection.
Furthermore, succeeding methods [13, 20] execute image-based scene graph prediction within
dynamic simultaneously localization and mapping (SLAM) [12, 17, 30]. Kim et al. proposed a
framework that merges the local graphs into a global one by fusing the same nodes in different
images [13]. Spatial PerceptIon eNgine (SPIN) distinguishes human and object nodes by dynamic
masking [20]. The second group of approaches directly process 3D data. Recently, Wald et al.
proposed an end-to-end network, scene graph prediction network (SPGN) [29], which takes scene
scans as input. Along with the network, they also published the 3DSSG dataset of reconstructed
scene scans. Similar to this work, we investigate a novel model to extend the scene graph prediction
methods using 3D scene data solely based on point clouds.

3 New Method

Problem Formulation. We define a scene graph G as a directed graph with sets of nodes and edges,
G = {V, E}. The node set V includes all object instances of a scene, and the edge set E consists of
all possible connections of nodes as predicates in a relation triplet <subject, predicate, object>. The
edges are directed by connecting neighbor nodes from subject to object. Unlike previous knowledge-
embedded approaches [37, 4, 36], we formulate the knowledge-inspired scene graph prediction task
as a multi-task problem: we intend to learn knowledge and scene graphs from 3D data simultaneously.
Mathematically, given a 3D scene data D with scene graph annotations, the training process is aimed
to predict the probability of P (G,K|D), where K is the prior knowledge. Furthermore, we can
decompose the joint probability into two individual components:

P (G,K|D) = P (K|D)P (G|D,K). (1)
This decomposition breaks the problem into two sub-tasks. The first sub-task, the predication of
P (K|D), extracts knowledge from existing 3D scene configurations. In this paper, the learned
knowledge is in the form of prototypical embedding of each object and predicate category, named
meta-embedding K = {emeta}. The set of meta-embedding is expected to represent each semantic
class and also encode the corresponding class’s regular patterns in scene graphs. Towards this goal,
we design a graph auto-encoder network, which only takes the one-hot labels as input without any
perceptual information. The graphical encoder also can extract the topological interactions of each
class. We close the distance of latent outputs and the related meta-embedding in metric space so that
the meta-embedding records the prior knowledge of the training data.
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Figure 2: Overview of the meta-embedding learning auto-encoder.

The second sub-task, P (G|D,K), incorporates the meta-embedding and perceptual features to predict
the possible scene graph elements. It is also the expected mathematical model in the evaluation stage
with unseen 3D scene data.

Meta-embedding and Learning Model. This model is designed to learn class-dependent prototypi-
cal knowledge embedding with a graph auto-encoder. The overview of the meta-embedding learning
model is illustrated in Figure 2. Since we consider the class-related patterns instead of perceptual
information, the auto-encoder only takes the one-hot class labels as input. The first two multi-layer
perceptron (MLP) blocks lift one-hot vectors into latent space with the same dimension size. Then,
we assume that each object pair can have a relation (including none relation) and fully connect them
as a graph where predicates are represented as edges. We design a graph neural network to further
encode the graphical patterns of each node and edge in scene graphs by message passing [6]. At
the network design level, we adapt the message passing mechanism to the directed graph structure.
To calculate the latent representations {hn,lv } for all nodes v ∈ V and {he,luv} for all directed edges
(u, v) ∈ E in every layer l, the message passing of nodes and edges can be formulated as:

hn,l+1
v = GRUn,l(hn,lv ,mn,l(v)), (2)

he,l+1
uv = GRUe,l(he,luv,m

e,l(u, v)), (3)

where mn,l and me,l are the parameterized neural networks that calculate messages in layer l. We
adopt the gated recurrent unit (GRU) [5] to update the hidden state for reserving initial information.
It is worth noting that a node could be a subject or object in a relation triplet. We consider both
conditions in message computation. For node v and one of its neighbors u, the message as subject
ms,l(v) and as object mo,l(v) are computed by:

ms,l(v) = LN(φp(he,lvu) + φo(he,lu )), (4)

mo,l(v) = LN(φp(he,luv) + φs(he,lu )), (5)

where φs, φp, and φo are three non-linear transformations for subject, predicate, and object respec-
tively. To stabilize the numerical calculation in recurrent mechanism, we adopt the layer normalization
(LN ) [3] after feature fusion. The final message of node v is the average of ms,l

v and mo,l
v :

mn,l(v) =
1

|Rsv|+ |Rov|
(
∑
u∈Rs

v

(ms,l(u)) +
∑
u∈Ro

v

(mo,l(u))), (6)

where | · | denotes cardinality andRsv andRov are the set of connections of node v as subject and as
object respectively. The calculation of edge (u, v) message is:

me,l(u, v) = LN(φs(hn,lu ) + φo(hn,lv )). (7)

We use the sum pooling operation to the stacked hidden states as the output model of the graph
encoder. Since we know the class labels of the latent output embedding of the graph encoder,
we update the corresponding meta-embedding vectors by reducing their distances (e.g., Euclidean
distance) in metric space. Given the latent embedding of nodes and those of edges, we select the
corresponding class vectors from the object meta-embedding and the predicate meta-embedding.
Then we reduce the distance between those embeddings as a loss function. As the values of
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Figure 3: Overview of the scene graph prediction model with the learned meta-embedding.

meta-embedding are initialized as network parameters, they can eventually be updated with back-
propagation [21]. The meta-embedding is updated only when seeing the related category, not
depending on the number of training samples. This property makes the meta-embeddings qualified to
be prototypical representations for even less frequent categories. The last two MLPs predict one-hot
labels to enforce the latent embedding is class-related and complete the auto-encoder structure.

Knowledge-inspired Scene Graph Prediction Model. This model is aimed to fuse prior meta-
embedding into the scene graph prediction task. Figure 3 shows the pipeline of the knowledge-
inspired scene graph prediction model. Taking a scene point cloud with instance masks as input, we
expect to encode geometrical features from both objects and object pairs. Based on the pioneering
point set encoder, PointNet [18], we enhance the original structure to capture multi-scale geometric
information like several point completion methods [10, 34]. For the object nodes, we directly use
our modified multi-scale PointNet (MS PointNet) on the normalized point clouds. We first encode
subject and object point sets separately for the object-pair edges and concatenate the latent features
with the center coordinates of two point sets. To better encode the contradictory relationships (e.g.,
left and right, lower than and higher than), we adopt subtraction as an anti-symmetric operation on
these two features. After a transformation by a two-layer MLP, we obtain the initial edge embedding
from the object pairs.

We adopt the same graph neural network design in the meta-embedding learning stage to capture
the global context with perceptual information. In the first iteration, the graph neural network only
takes the geometric features of the PointNet as input. The last two MLPs output the node and edge
classification possibilities and offer the clues to select meta-embedding vectors of related categories.
We select the five most confident meta-embedding for each node and edge and fuse them with
the perception features. Based on our experiments, the large number of selected embedding is
inevitable to introduce wrong knowledge, while a small meta-embedding set might contain no proper
knowledge. In practice, we choose five meta-embedding as a compromise. In the second iteration,
since the perceptual embedding and the knowledge are in different latent spaces, we transform them
by two-layer feed-forward networks f and g respectively before directly fusing them. Denoting by
{eimeta}i=1...k the selected meta-embedding and x the features encoded by multi-scale PointNet, we
fuse the knowledge and perceptual information similar as in [22]:

z = LN(f(x) +
k∑
i=1

g(eimeta)), (8)

x̂ = LN(z + ψ(z)). (9)
where ψ is a two-layer MLP and x̂ is the knowledge-embedded input of the graph neural network in
the second iteration. In practice, we only implement two iterations considering the time consumption
since the classification performance can not be significantly improved over more iterations.

Loss Function Design. We use the focal loss for object and predicate classification [14, 29] in both
meta-embedding learning and scene graph prediction tasks due to the data distribution imbalance.
The focal loss we used is formulated as in [29]:

Lfocal = α(1− p)γ log(p), (10)

where p is the logits of a prediction of object or predicate, α is the normalized inverse frequency for
object classification and an edge/no-edge weight for the predicates, and the γ is a hyper-parameter.
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We follow the parameter settings in [29]. To enforce the meta-embedding close to the class latent
vectors in metric space, we adopt the Euclidean distance d between the output of the graph encoder
and the corresponding meta-embedding as a loss:

Ldist =
∑
v∈V

d(hv, evmeta) +
∑
e∈E

d(he, eemeta), (11)

where evmeta and eemeta are the corresponding meta-embedding of the categories of node v and edge
e. In the meta-embedding learning task, we formulate the loss function as:

Lmeta = Lobjfocal + L
pred
focal + Ldist. (12)

Empirically, we use the summation of the three components with the same weight. In the scene graph
prediction task, we only use the focal loss for object and predicate classification.

Lsg = λLobjfocal + L
pred
focal, (13)

where λ is a hyper-parameter to re-weight the components as in [29].

4 Experiments and Evaluations

Dataset and Task Description. We train the meta-learning auto-encoder and the scene graph
prediction model on the 3DSSG dataset [29] 1, a 3D scene graph dataset based on 3RScan [28]. The
dataset annotates support, proximity, and comparative relationships among daily indoor objects. With
the same sub-scene split in [29], there are 3582 scenes in the training set and 548 for evaluation. On
average, there are 9 objects per scene of 160 categories with 27 kinds of relationships, including none
relation. We evaluate our model and compare it to others in two standard tasks proposed in [32].
(1) The scene graph classification (SGCls) scenario is aimed to predict both object and predicate
semantic classes. (2) In the predicate classification (PredCls) task, the model only needs to predict
the predicate categories with the ground truth labels of object entities.

Implementation Details. Our model is implemented in PyTorch. We trained our model on an Nvidia
RTX 2080Ti GPU in a personal computer platform for 40 epochs with the ADAM optimizer. The
initial learning rate is set to 0.0001, and the decay rate is 0.7 for every ten epochs. We trained the meta-
embedding learning network and the scene graph prediction network separately. We followed the
focal loss parameter settings in [29]. In the scene graph prediction model, we used pre-trained multi-
scale PointNets to encode the point cloud. The multi-scale PointNet is also trained on the 3DSSG
dataset. We replaced the faster-RCNN [19] image encoder with the same pre-trained PointNet used
in our model to compare with image-based methods [4, 22, 29] 2. We selected the meta-embedding
vectors according to the five most confident class predictions in the knowledge fusion stage. In
the PredCls task, we assigned the corresponding object meta-embedding as the input of the graph
encoder since the ground truth of objects is known. We trained each model three times to calculate
the standard deviation. All models are trained on the 3DSSG dataset with the same random seeds and
the same split for a fair comparison.

Metrics. Conventionally, we compute the recall at the top-n (R@n) triplets predicted by each model.
The triplet is considered correct when the subject, predicate, and object are all valid. As defined
in [15], the recall is the fraction of the correct top-n triplets against the ground truth. Additionally,
since the long-tail phenomenon in the dataset annotations, we also adopt mean recalls (mR@n) [4, 26]
to evaluate the performance on the unevenly sampled relations. The mean recall is computed as the
average of the recalls on each predicate class.

Comparison with Related Methods. We introduce several baselines to compare with our proposed
method. Co-Occurrence: we propose a relation prediction baseline with only co-occurrence statis-
tics of the training set. This baseline outputs the most frequent predicate given the subject and
object categories predicted by the multi-scale PointNet. This simple model draws a scratch line for

1We used the 3DSSG dataset [29] under the permission of its creators and authors. We contacted the author
by email (johanna.wald@tum.de).

2We implemented the KERN model based on its released code (https://github.com/yuweihao/KERN)
with MIT license. The SGPN and the Sechemata models have no public code for now. We reproduced them
based on their papers.
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Figure 4: Examples of predicted scene graphs from our proposed method. The green nodes are
correctly classified by our model. The orange nodes are false negatives. The green edge results are
true positives at the R@50 setting. The blue edges are correct in commonsense but not annotated in
the ground truth. The orange edges are the annotated relationships missed by our model.

knowledge-based methods on the evaluated dataset. Since this model is deterministic, the standard
deviation is zero for both SGCls and PredCls tasks. KERN: the knowledge-embedded routing network
is a robust statistical knowledge-based method that incorporates the co-occurrence probability into the
scene graph prediction [4]. SGPN: the scene graph prediction network is proposed with the 3DSSG
dataset, which is the first scene graph prediction model evaluated on this dataset [29]. Schemata:
this baseline is a recently proposed scene graph prediction model with learning-based knowledge. It
encodes the class-dependent prototypes from the previous decoded perceptual results [22], which is a
similar approach to ours.

Table 1: Quantitative results of the evaluated methods in SGCls and PredCls tasks in recall, with
and without graph constraint (GC). We additionally report our method with and without the meta-
embedding (ME) intervention. The standard deviation is reported after the mean recall value.

SGCls PredCls

Model R@20 R@50 R@100 R@20 R@50 R@100

w/
GC

Co-Occurrence 0.148±0.000 0.197±0.000 0.199±0.000 0.347±0.000 0.474±0.000 0.479±0.000

KERN [4] 0.203±0.007 0.224±0.008 0.227±0.008 0.468±0.004 0.557±0.007 0.565±0.007

SGPN [29] 0.270±0.001 0.288±0.001 0.290±0.001 0.519±0.004 0.580±0.005 0.585±0.004

Schemata [22] 0.274±0.003 0.292±0.004 0.294±0.004 0.487±0.004 0.582±0.007 0.591±0.006

Ours (w/o ME) 0.282±0.002 0.299±0.001 0.301±0.001 0.529±0.004 0.592±0.004 0.598±0.005

Ours 0.285±0.001 0.300±0.001 0.301±0.001 0.593±0.004 0.650±0.004 0.653±0.004

w/o
GC

Co-Occurrence 0.141±0.000 0.202±0.000 0.258±0.000 0.351±0.000 0.556±0.000 0.706±0.000

KERN [4] 0.208±0.007 0.247±0.007 0.276±0.005 0.483±0.003 0.648±0.006 0.772±0.011

SGPN [29] 0.282±0.001 0.326±0.001 0.353±0.001 0.545±0.006 0.701±0.001 0.824±0.002

Schemata [22] 0.288±0.001 0.335±0.003 0.363±0.002 0.496±0.002 0.671±0.003 0.802±0.009

Ours (w/o ME) 0.293±0.001 0.338±0.003 0.367±0.003 0.549±0.004 0.716±0.005 0.824±0.008

Ours 0.298±0.002 0.343±0.004 0.370±0.002 0.622±0.005 0.784±0.004 0.883±0.002

Table 1 shows that our model achieves the best relation recall than other approaches and the state-
of-the-art performance in both SGCls and PredCls tasks. It confirms the effectiveness of our graph
network design and the intervention of the meta-embedding. Additionally, we show the results
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Table 2: Quantitative results of the evaluated methods in SGCls and PredCls tasks in mean recall.
We additionally report our method ablated on the meta-embedding (ME) intervention. The standard
deviation is reported after the mean recall value.

SGCls PredCls

Model mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Co-Occurrence 0.088±0.000 0.127±0.000 0.129±0.000 0.338±0.000 0.474±0.000 0.479±0.000

KERN [4] 0.095±0.011 0.115±0.012 0.119±0.009 0.188±0.007 0.256±0.010 0.265±0.009

SGPN [29] 0.197±0.001 0.226±0.006 0.231±0.005 0.321±0.004 0.384±0.006 0.389±0.006

Schemata [22] 0.238±0.012 0.270±0.002 0.272±0.002 0.352±0.008 0.426±0.005 0.433±0.005

Ours (w/o ME) 0.219±0.004 0.242±0.004 0.245±0.005 0.353±0.011 0.410±0.007 0.415±0.010

Ours 0.244±0.011 0.286±0.008 0.288±0.007 0.566±0.011 0.635±0.001 0.638±0.001

evaluated in mean recall in Table 2. Our model can still achieve the best performance. Our model
improves the mR@100 of 4.3% and 22.3% in SGCls and PredCls tasks with the meta-embedding
compared to our ablated version without learned knowledge. This comparison proves that our
meta-embedding can improve the predictions in marginally sampled predicate categories. We also
illustrate several examples of predicted scene graphs in Figure 4. We provide more examples in the
supplementary material.

Compared with the Schemata method, our model performs better in relationship prediction tasks. The
reason behind the difference could be that our meta-embedding is encoded from a more distinguishable
latent space than the schemata, as shown in Figure 5. The visualized results confirm that the knowledge
learned from the class information is more representative than that from visual information with
inevitable perceptual confusion.

However, there is a massive gap in recall values while comparing the SGCls and the PredCls tasks.
The performance of relationship prediction drops gravely without the object annotations. It presents
the limitation of our model in object identification. This failure is caused by the severe geometric
incompleteness of point clouds and the long-tail distribution of the annotations. A potential solution
is using a stronger point set encoder than the PointNet to extract robust geometric features from
incomplete scans.

Figure 5: The t-SNE visualization [27] of the object latent space of the Schemata [22] (a) and our
method (b). It shows clearly that our prototypical knowledge embedding is learned from a more
distinguishable latent space than the Schemata, which extracts the knowledge from perceptual latent
embedding.

Analysis on the Meta-embedding. We illustrate the t-SNE visualization of the output object
embedding of the graph encoder in the meta-learning stage and the object meta-embedding in
(b) of Figure 5. There are two points worth noticing. Firstly, the learned meta-embedding can
locate at a similar area of its related class in metric space, which validates its potential to be
prototypes of semantic categories. Secondly, the sub-spaces represented by the meta-embedding
are distinguishable that help to enlarge the distance between categories after injecting knowledge
into perception inference. In Figure 6, we visualize the latent spaces in the predicate classification
task with and without the meta-embedding. It illustrates that the predicate representations are more
separable after knowledge intervention.
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Figure 6: The t-SNE visualization of the latent spaces in the predicates classification task. The figures
show the geometrical features from PointNet in (a), the contextualized features by the graph neural
network in (b), and the latent space after knowledge intervention in (c).

Table 3: Quantitative results of our proposed method in SGCls and PredCls tasks on different splits
of the 3DSSG dataset. We report our method ablated on the meta-embedding (ME) intervention. The
percentage of the used training set is noted in parentheses. The standard deviation is reported after
the mean recall value.

SGCls PredCls

Model mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Ours w/o ME (100%) 0.219±0.004 0.242±0.004 0.245±0.005 0.353±0.011 0.410±0.007 0.415±0.010

Ours w/ ME (0%) - - - 0.365±0.005 0.428±0.003 0.430±0.004

Ours w/ ME (25%) 0.185±0.005 0.219±0.004 0.220±0.005 0.505±0.009 0.557±0.004 0.559±0.004

Ours w/ ME (50%) 0.227±0.001 0.249±0.001 0.252±0.001 0.557±0.005 0.600±0.005 0.603±0.005

Ours w/ ME (100%) 0.244±0.011 0.286±0.008 0.288±0.007 0.566±0.011 0.635±0.001 0.638±0.001

Additionally, to understand the importance of the meta-embedding intervention, we train the scene
graph classification model with more minor splits. The results are reported in Table 3. For the SGCls
task, our model can achieve competitive results with the backbone model with only 50% of the training
set with the meta-embedding. For the PredCls task, our model can even give reasonable predicate
classification results without any perception information with the object labels and corresponding
meta-embedding. This attempt could also be extended for scene generation applications. For example,
our model can output a plausible scene organization with only graph inference based on the learned
meta-embedding given object numbers and categories. Another interesting observation is that our
design preserves the possibility of training the meta-embedding from other data sources, which could
be larger than the training set used in the scene graph prediction model. It is also the reason that we
maintain the independence of the two modules instead of training the whole model in an end-to-end
manner.

Figure 7: The relative improvement of predicate recalls on R@5 with the intervention of the meta-
embedding(a) and the predicates statistical distributions (b). The meta-embedding intervention
enhances the predictions especially on rarely sampled predicate categories.
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Furthermore, we illustrate the improvements of predicate predictions on R@5 with the meta-
embedding intervention and the distribution of each predicate category in the evaluation set in
Figure 7. We can see that the meta-embedding intervention can notably improve the recall of the less
frequently sampled predicates. However, our model could damage the performance of predicting
categories with considerable frequency. Since the fused meta-embedding could introduce extra infor-
mation of the most related categories, it could be noises for the most frequent classes but guidance for
rare-sampled ones. Fortunately, the recalls of the frequent predicates are qualified enough because
of their large proportion in the training set. We provide more quantitative results of the predicate
predictions in the supplementary material.

5 Conclusion, Discussion, and Future Work

We proposed a novel knowledge-inspired 3D scene graph prediction method in this paper. We
decomposed our final destination into two sub-tasks. For the first task of knowledge embedding
learning, we designed a graph auto-encoder to extract class-dependent prototypical knowledge solely
based on semantic category information without adverse effect of perceptual confusion. Secondly,
we incorporated the learned knowledge embedding in the scene graph prediction task for an accurate
object and predicate classification performance. Comprehensive experiments verified that our method
could extract and inject the prior knowledge to achieve more accurate relationship prediction than the
existing approaches pertaining to this subject.

However, our method still has several limitations yet to overcome. First, our multi-scale point set
encoder could fail to predict confident initial class guesses when experiencing severe incomplete-
ness. The inaccurate object identification impairs the relation predictions. Second, our knowledge
intervention could not help the predictions for the most frequent semantic categories since the chosen
knowledge might be noises for the inference of those classes. Moreover, our prior learned knowledge
is highly dependent on the variation and the completeness of the training set. Considering the personal
information security, the data used in our paper contains only uncolored scene scatter scans without
any personally identifiable information nor any sensitive content. However, for the potential negative
societal impacts, in real-world robot navigation tasks, inaccurate prediction of object entities and
their relationships could lead agents to the wrong target and raise human safety concerns. To avoid
this potential problem, we suggest proposing a security protocol in case of dysfunction of our scene
understanding algorithm in real-world robotic applications.

Our near-term research efforts are geared towards immediate improvement with better solutions.
Other aspects of 3D scene understanding and applications could be researched in the long term. For
example, we could formulate the dynamic scene graph generation task to capture spatio-temporal
cues from other data modalities (e.g., videos). Additionally, it would be of interest to researchers to
explore the registration of virtual agents in dynamic scene graphs and enhance interactions with the
real world in augmented reality (AR) applications.
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limitations is reported in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The
potential negative societal impacts is discussed in Section 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have already read the ethics review guidelines and ensured that our
paper conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

of the theoretical results are listed and discussed in the problem formulation part of
Section 3.

(b) Did you include complete proofs of all theoretical results? [Yes] The theoretical results
mentioned in this paper are obtained by basic probability. They are conventional and
easy to understand.

12



3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-
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