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Abstract

This study aims to enlarge our current knowledge on the application of brain-
inspired network science principles for training artificial neural networks (ANNs)
with sparse connectivity. Dynamic sparse training (DST) emulates the synaptic
turnover of real brain networks, reducing the computational demands of train-
ing and inference in ANNs. However, existing DST methods face difficulties in
maintaining peak performance at high connectivity sparsity levels. The Cannistraci-
Hebb training (CHT) is a brain-inspired method that is used in DST for growing
synaptic connectivity in sparse neural networks. CHT leverages a gradient-free,
topology-driven link regrowth mechanism, which has been shown to achieve ultra-
sparse (1% connectivity or lower) advantage across various tasks compared to
fully connected networks. Yet, CHT suffers two main drawbacks: (i) its time
complexity is O(N · d3)- N node network size, d node degree - hence it can be
efficiently applied only to ultra-sparse networks. (ii) it rigidly selects top link
prediction scores, which is inappropriate for the early training epochs, when the
network topology presents many unreliable connections. Here, we design the first
brain-inspired network model - termed bipartite receptive field (BRF) - to initialize
the connectivity of sparse artificial neural networks. Then, we propose a matrix
multiplication GPU-friendly approximation of the CH link predictor, which reduces
the computational complexity to O(N3), enabling a fast implementation of link
prediction in large-scale models. Moreover, we introduce the Cannistraci-Hebb
training soft rule (CHTs), which adopts a flexible strategy for sampling connections
in both link removal and regrowth, balancing the exploration and exploitation of
network topology. Additionally, we propose a sigmoid-based gradual density decay
strategy, leading to an advanced framework referred to as CHTss. Empirical results
show that BRF offers performance advantages over previous network science mod-
els. Using 1% of connections, CHTs outperforms fully connected networks in MLP
architectures on visual classification tasks, compressing some networks to less than
30% of the nodes. Using 5% of the connections, CHTss outperforms fully con-
nected networks in two Transformer-based machine translation tasks. Finally, with
only 30% of the connections, both CHTs and CHTss achieve superior performance
over other dynamic sparse training methods, and perform on par with—or even
surpass—their fully connected counterparts in language modeling across various
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sparsity levels within the LLaMA model family. The code is available at: https:
//github.com/biomedical-cybernetics/Cannistraci-Hebb-training.

1 Introduction

Artificial neural networks (ANNs) have led to significant advances in various fields such as natural
language processing, computer vision, and deep reinforcement learning. The most common ANNs
consist of several fully connected (FC) layers, which account for a large portion of the total parameters
in recent large language models [1, 2]. This dense connectivity poses major challenges during the
model training and deployment phases. In contrast, neural networks in the brain inherently exhibit
sparse connectivity [3, 4]. This natural design in the brain exploits sparsity, suggesting a model in
which the number of connections does not scale quadratically with the number of neurons. This could
alleviate computational constraints, enabling more scalable network architectures.

Dynamic sparse training (DST) [5, 6, 7, 8, 9] has emerged as a promising approach to reduce
computational and memory overhead of training deep neural networks while maintaining or even
improving model performance. DST is also biologically inspired: it draws an analogy to synaptic
turnover [10] in the brain, a fundamental neurobiological process in which synapses are continuously
formed, strengthened, weakened, and eliminated over time. This dynamic rewiring enables the brain
to adapt, learn, and store memories efficiently while preserving the overall stability of the network.
Similarly, in DST, connections are dynamically pruned and regrown throughout training, allowing
the network to adapt its connectivity structure in response to learning signals while maintaining a
fixed sparsity level.

Apart from some detailed distinctions, the primary innovation in this field centers on the development
of the regrowth criterion. A notable advancement is the gradient-free regrowth method introduced by
Cannistraci-Hebb training (CHT) [9]. This method is inspired by epitopological learning—literally
meaning ‘new topology’—and is rooted in brain-inspired network science theory [11, 12, 13, 14, 15].
Epitopological learning explores how learning can be implemented on complex networks by changing
the shape of their connectivity structure (epitopological plasticity). CHT has demonstrated remarkable
advantages in training ultra-sparse ANNs with connectivity levels of 1% or lower, often outperforming
fully connected networks in various tasks. However, despite these advances, CHT encounters two
major challenges: 1) During dynamic sparse training, its rigid link selection mechanism can lead to
epitopological local minima where the sets of removed links and regrown links exhibit significant
overlap, severely impedes the exploration of optimal network topologies. 2) The time complexity of
the CHT regrowth method, Cannistraci-Hebb 3 on Length 3 paths (CH3-L3p), is O(N · d3), where
N represents the number of nodes in the network and d is the average degree. A length 3 path is a
walk of three consecutive links. As the network becomes denser, the time complexity approaches
O(N4), rendering it impractical for large-scale and higher-density models.

In this article, we present the Cannistraci-Hebb Training soft rule (CHTs), which introduces several
key innovations: 1) To address the issue of epitopological local minima, CHTs employs a multinomial
distribution to sample link scores from removal and regrowth metrics, enabling more flexible and
effective exploration of network topologies. 2) CHTs incorporates novel substitution node-based link
prediction mechanisms, reducing the computational time complexity to O(N3). This improvement
makes CHTs scalable to large-scale models with higher network density. 3) CHTs initializes the
sparse topologies for bipartite networks with the brain-like receptive field, demonstrating superior
performance compared to the traditional Erdős–Rényi [5], bipartite small world, and bipartite scale-
free model [9]. Additionally, we propose a sigmoid gradual density decay strategy, which, when
integrated with CHTs, forms an enhanced framework termed CHTss. This combined approach further
optimizes the training process for sparse neural networks.

To evaluate the effectiveness of the Cannistraci-Hebb Training soft rule with sigmoid density decay
(CHTss), we conduct extensive experiments across multiple architectures and tasks. Firstly, to
assess the basic concept of CHTs, we employ MLPs on benchmark datasets, including MNIST [16],
EMNIST [17], and Fashion MNIST [18]. The results show that CHTs performs better than fully
connected networks with only 1% of the connections (99% sparsity) in MLPs. Further, to evaluate
the end-to-end approach CHTss, we utilize Transformers [19] on machine translation datasets such
as Multi30k en-de [20], IWSLT14 en-de [21], and WMT17 en-de [22]. From the experimental
results, CHTss surpasses fully connected Transformers while using only 5% of the connections
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Figure 1: Illustration of the CHTs process. One training iteration follows the steps of (a1)→ (b1)
→ (c1)→ (c2)→ (d1)→ (e). (a1) Network initialization with each of the sandwich layers (bipartite
networks connecting layers’ input nodes to their output nodes) being a bipartite receptive field (BRF)
network. (a2) BRF network representation with r = 0. (b1) Link removal process. (b2) Formula
for determining which links to remove. (c1) Removal of inactive neurons caused by link removal.
(c2) Adjust and remove incomplete links caused by inactive neuron removal. (d1) Regrowth of links
according to the CH2-L3 node-based soft rule. (d2) Detailed illustration of the CH2-L3 node-based
soft rule. (e) Finished state of the network after one iteration. The next iteration repeats the steps (b1)
- (e) from this finished state. Ã indicates the removal set of the iteration and A∗ is the regrown set.

on Multi30k and IWSLT, and achieves performance comparable to fully connected LLaMA-60M
and LLaMA-130M models on OpenWebText language modeling tasks. Moreover, with 30% of the
connections, CHTs even outperforms the fully connected LLaMA-1B counterpart. These findings
underscore the potential of CHTs and CHTss in enabling highly efficient and effective large-scale
sparse neural network training.

2 Related Work

2.1 Dynamic sparse training

Dynamic sparse training is a subset of sparse training methodologies. Unlike static sparse training
methods (also known as pruning at initialization) [23, 24, 25, 26], dynamic sparse training allows
for the evolution of network topology during the training process. The pioneering method in this
field is Sparse Evolutionary Training (SET) [5], which removes links based on the magnitude of
their weights and regrows new links randomly. Subsequent developments have sought to refine and
expand upon this concept of dynamic topological evolution. One such advancement was proposed
by DeepR [27], a method that adjusts network connections based on stochastic gradient updates
combined with a Bayesian-inspired update rule. Another significant contribution is RigL [7], which
leverages the gradient information of non-existing links to guide the regrowth of new connections
during training. MEST [8] utilizes both gradient and weight magnitude information to selectively
remove and randomly regrow new links, analogously to SET. In addition, it introduces an EM&S
strategy that allows the model to train at a higher density and gradually converge to the target sparsity.
The Top-KAST [6] method maintains constant sparsity throughout training by selecting the top K
parameters based on parameter magnitude at each training step and applying gradients to a broader
subset B, where B ⊃ A. To avoid settling on a suboptimal sparse subset, Top-KAST also introduces
an auxiliary exploration loss that encourages ongoing adaptation of the mask. Additionally, sRigL
[28] adapts the principles of RigL to semi-structured sparsity, facilitating the training of vision models
from scratch with actual speed-ups during training phases. Despite these advancements, the state-
of-the-art method remains RigL-based, yet it is not fully sparse in backpropagation, necessitating
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the computation of gradients for non-existing links. Addressing this limitation, Zhang et al. [9]
propose CHT, a dynamic sparse training methodology that adopts a gradient-free regrowth strategy
that relies solely on topological information (network shape intelligence), achieving an ultra-sparse
configuration that surpasses fully connected networks in some tasks. Some extra related works of
DST are provided in Appendix M.

2.2 Cannistraci-Hebb Theory and Network Shape Intelligence

As the SOTA gradient-free link regrown method, CHT [9] originates from a brain-inspired network
science theory. Drawn from neurobiology, Hebbian learning was introduced in 1949 [29] and can
be summarized in the axiom: “neurons that fire together wire together.” This could be interpreted
in two ways: changing the synaptic weights (weight plasticity) and changing the shape of synaptic
connectivity [11, 12, 13, 14, 15]. The latter is also called epitopological plasticity [11] because
plasticity means “to change shape,” and epitopological means “via a new topology.” Epitopological
Learning (EL) [12, 13, 14] is derived from this second interpretation of Hebbian learning and studies
how to implement learning on networks by changing the shape of their connectivity structure. One
way to implement EL is via link prediction, which predicts the existence and likelihood of each
nonobserved link in a network. CH3-L3 is one of the best-performing and most robust network
automata, belonging to the Cannistraci-Hebb (CH) theory [30], which can automatically evolve the
network topology starting from a given structure. The rationale is that, in any complex network with
local-community organization, the cohort of nodes tends to be co-activated (fire together) and to learn
by forming new connections between them (wire together) because they are topologically isolated
in the same local community [30]. This minimization of the external links induces a topological
isolation of the local community, which is equivalent to forming a barrier around it. The external
barrier is fundamental to maintaining and reinforcing the signaling in the local community, inducing
the formation of new links that participate in epitopological learning and plasticity.

3 Cannistraci-Hebb training soft rule with sigmoid gradual density decay

3.1 Soft removal and regrowth.

Definition 1. Epitopological local minima. In the context of dynamic sparse training
methods, we define an epitopological local minima (ELM) as a state where the sets of
removed links and regrown links exhibit a significant overlap.

Let At be the set of existing links in the network at the training step t. Let Ãt be the set of removal
links and A∗

t be the set of regrown links. The overlap set between removed and regrown links at
step t can be quantified as Ot = Ãt ∩A∗

t . An ELM occurs if the size of Ot at step t is significantly
large compared to the size of A∗

t , indicating a high probability of the same links being removed and
regrown repeatedly throughout the subsequent training steps. This can be formally represented as
|Ot|
|A∗

t |
≥ θ, where θ is a predefined threshold close to 1, indicating strong overlap. This definition is

essential for the understanding of CHT, as evidenced by the article [9] indicating that the overlap rate
between removed and regrown links becomes significantly high within just a few epochs, leading to
rapid topological convergence towards the ELM. Previously, CHT implemented a topological early
stop strategy to avoid predicting the same links iteratively. However, it will stop the topological
exploration very fast and potentially trap the model within the ELM.

In this article, we adopt a probabilistic approach where the regrowth process is modeled as sampling
from a {0, 1} multinomial distribution, with probabilities determined by link prediction scores,
thereby introducing a "soft sampling" mechanism. Under this formulation, each mask value is not
rigidly dictated by the link prediction score; instead, low-score links can still be selected with lower
probability, facilitating escape from epitopological local minima (ELM).

To demonstrate that soft sampling effectively balances exploration and exploitation, we evaluate
its behavior in Figure 3, which presents the impact of varying softness levels during training of
LLaMA-60M for 5000 steps under 90% sparsity. We compare the in-time over-parameterization
(ITOP) rate [31], which quantifies the cumulative proportion of links activated throughout training.
As shown, deterministic regrowth leads to rapid topological convergence after approximately 1000
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steps, indicating that it becomes trapped in an ELM without further exploration. Random regrowth,
while capable of escaping ELMs by introducing new connections, fails to exploit the underlying
topological structure effectively. In contrast, soft regrowth achieves a balance by both exploiting
the current topology and exploring new link combinations probabilistically. This balance enables a
more appropriate exploration of the connectivity space, ultimately leading to superior performance,
as evidenced by the results.

Link removal alternating from weight magnitude and relative importance. We illustrate the
link removal part of CHTs in Figure 1b1) and b2). We employ two methods, Weight Magnitude
(WM) |W| and Relative Importance (RI) [32], to remove the connections during dynamic sparse
training. Given an input node i and an output node j connected with weight Wij , we define the
relative importance RIij as:

RIij =
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

(1)

As illustrated in Equation 1, RI assesses connections by normalizing the absolute weight of links
that share the same input or output neurons. This method does not require calibration data and
can perform comparably to the baseline post-training pruning methods like sparsegpt [33] and
wanda [34]. Generally, WM and RI are straightforward, effective, and quick to implement in DST
for link removal, but give different directions for network percolation. WM prioritizes links with
higher weight magnitudes, leading to rapid network percolation, whereas RI inherently values links
connected to lower-degree nodes, thus maintaining a higher active neuron post-percolation (ANP)
rate. The ANP rate is the ratio of the number of active neurons after training over the original number
of neurons before training. These methods are equally valid but cater to different scenarios. For
instance, using RI significantly improves results on the Fashion MNIST dataset compared to WM,
whereas WM performs better on the MNIST and EMNIST datasets.

Soft link removal. In the early stages of training, both WM and RI are not reliable due to the
model’s underdevelopment. Therefore, rather than strictly selecting top values based on WM and RI,
we also sample links from a multinomial distribution using an importance score calculated by the
removal metrics. The final formula for link removal is defined in Equation 2.

Sij =

(
|Wij |/2

α+ (1− α)
∑
|Wi∗|

+
|Wij |/2

α+ (1− α)
∑
|W∗j |

) δ
1−δ

(2)

Here, α determines the removal strategy, shifting from weight magnitude (α = 1) to rela-
tive importance (α = 0). In all experiments, we only evaluate these two α values. δ ad-
justs the softness of the sampling process. As training progresses and weights become more
reliable, we adaptively increase δ from 0.5 to 0.75 to refine the sampling strategy and im-
prove model performance. These settings are constant for all the experiments in this article.

densities

Figure 2: One-time Link Prediction Runtime
Performance Evaluation of node-based and path-
based methods across varying densities and net-
work sizes. In (a), the network size is fixed at 1024
× 1024, while in (b), the density is fixed at 5%.

Node-based link regrowth. Another signif-
icant challenge for CHT lies in the time com-
plexity of link prediction. In the original CHT
framework [9], the path-based CH3-L3p metric
is employed for link regrowth, as discussed in
Appendix C. However, this method incurs a high
computational cost due to the need to compute
and store all length-three paths, resulting in a
time complexity of O(N · d3), where N is the
number of nodes and d is the network’s average
degree. This complexity is prohibitive for large
models with numerous nodes and higher-density
layers.

To address this issue, we introduce a more ef-
ficient, node-based paradigm that eliminates
the reliance on length-three paths between seed
nodes. Instead, this approach focuses on the
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common neighbors of seed nodes. The node-based version of CH3-L3p, denoted as CH2-L3n, also
depends on the internal local community links (iLCL, the links between the common neighbors [30])
to enhance the expressiveness of the formula. This variant is formulated as:

CH2-L3n(u, v) =
∑
z∈L3

di∗z
de∗z

(3)

Here, u and v denote the seed nodes, while z is the common neighbor on the L3 path [30], a walk of
three consecutive links that connects u to v via two of those intermediate nodes. The terms di∗z de

∗
z

represent the number of internal local community links (iLCL) and external local community links
(eLCL) of node i, with a default increment of 1 to prevent division by zero. The detailed explanation
of iLCL and eLCL can be found in Appendix C. The pseudocode is provided in the supplementary
material. The new node-based variant, CH2-L3n, reduces the computational complexity to O(N3)
and enables efficient matrix-based computations on GPUs. We evaluate the one-time link prediction
runtime performance of both CH3-L3p and CH2-L3n across different network sizes and sparsity
levels, as illustrated in Figure 2. The red and green lines depict the actual runtime for the path-based
and node-based methods, respectively. The results reveal that the node-based version achieves
significantly faster runtime performance compared to the path-based methods. Furthermore, the
node-based method demonstrates consistently stable runtime across diverse network sizes and density
levels, making it an ideal link prediction as the CH theory-based link regrowth component of CHTs
in dynamic sparse training for large-scale models.

3.2 Bipartite receptive field network modeling.

In this article, we propose the Bipartite Receptive Field (BRF) network model, a novel sparse
topological initialization method capable of generating brain-network-like receptive field connectivity.
The principal topological initialization approaches for dynamic sparse training are grounded in
network science theory, where three basic generative models for monopartite sparse artificial complex
networks are the Erdős-Rényi (ER) model [35], the Watts-Strogatz (WS) model [36], and the Barabási-
Albert (BA) model [37], which are not brain-inspired. Since the standard WS and BA models are
not directly designed for bipartite networks, they were recently extended [9] into their bipartite
counterparts and term as Bipartite Small-World (BSW) and Bipartite Scale-Free (BSF), respectively.
BSW generally outperforms BSF for dynamic sparse training (see Appendix D).

During BSW initialization, each output node is connected to its spatially nearest input nodes. This
spatially local connectivity pattern aligns with the concept of receptive fields observed in biological
neural systems, where neurons respond selectively to localized regions of input space. However, the
rewiring process of BSW does not follow brain mechanisms: it simply deletes a set of links from the
closer input nodes to rewire them uniformly at random anywhere on the input layer. Conversely, the
random allocation of connectivity in brain network topologies is guided by the spatial distance of the
neurons [38, 39]. Unlike the BSW model that introduces random connectivity by a rewiring process,
which cannot control the extent of spatial-dependent randomness injected in the topology, the BRF
model directly generates a connectivity with a customized level of spatial-dependent randomness
using a parameter r ∈ [0, 1]. A low value of r results in links that are densely clustered around the
diagonal, while a higher value of r leads to less clustered connectivity patterns, which tend to be
uniformly at random only for r = 1. Specifically, a bipartite adjacency matrix with links near the
diagonal indicates that adjacent nodes from the two layers are linked, whereas links far from the
diagonal correspond to more distant node pairs. The mathematical formula and implementation are
detailed in Appendix D.

Furthermore, the degree distribution of the BSW model is fixed to the same value for all the nodes at
the same layer before rewiring, whereas after rewiring, the degree distribution is not conserved, and
the more links it rewires, the more it will be similar to the ER model. Instead, the BRF model has
the important property to conserve the degree distribution of the output layer, which ensures that it
maintains a designed receptive field connectivity. This means that an initialization setting of the BRF
model is the output degree distribution, which in this study we consider fixed or uniformly at random,
as shown in Appendix D. We also conduct a sensitivity test of the influence of r in Figure 7a). It
should be noted that when r = 0, the network is equivalent to the BSW with β = 0, and when r = 1,
the network becomes an ER network. The examples of the adjacency matrices of BSF, BSW, and
BRF are shown in Figure 5.

6



3.3 Sigmoid Gradual Density Decay

As demonstrated in GraNet [40] and MESTEM&S [8], incorporating a density decrease strategy can
significantly improve the performance of dynamic sparse training. In MESTEM&S , the density is
reduced discretely at predefined epochs. In GraNet, the network evolution process consists of three
steps: pruning, link removal, and link regrowth. The method first prunes the network to reduce the
density, followed by removing and regrowing an equivalent number of links under the updated density.
The density decrease in GraNet follows the same approach as Gradual Magnitude Pruning (GMP)
[41], which adheres to a cubic function.

However, this density decay scheduler exhibits a sharp decline in the initial stages of training, which
risks pruning a substantial fraction of weights before the model has sufficiently learned. To enable
a smoother decay during the pruning stage, we propose a sigmoid-based gradual density decrease
strategy, defined as:

st = si + (si − sf )

(
1

1 + e
−k

(
t−

tf+t0
2

)
)
, (4)

where t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0 is the
starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t is the pruning
frequency. k controls the curvature of the decrease. We set k=6 for all the experiments in this article.
This strategy ensures a smoother initial pruning phase, allowing the model to warm up and stabilize
before undergoing significant pruning, thereby enhancing training stability and performance. We
explain how to adjust the training FLOPs of sigmoid density decay to the same as cubic decay in
Appendix I.

In addition to refining the decay function, we replace the weight magnitude criterion used in the
original GMP and GraNet processes with relative importance (RI). This adjustment is motivated by
prior work [32], which has shown that RI provides a significant performance advantage over weight
magnitude, particularly when pruning models initialized with high density.

4 Experiments

4.1 Experimental Setup

Table 1: Performance comparison of different spar-
sity dynamic sparse training methods on the CI-
FAR10 dataset trained on an MLP at 99% sparsity.
The density decay of GMP, GraNet, and CHTss
starts with a sparsity of 50%. ACC represents ac-
curacy, and ANP denotes the active neuron perco-
lation rate, indicating the final size of the network.
The lowest anp rate and the best dynamic sparse
training method are highlighted in bold, and perfor-
mances surpassing the fully connected model are
marked with “*". The results present a standard
error taken over three seeds of the experiments.

Method ACC (%) Comparison to FC ANP

FC 62.85 ± 0.16 – –

CHTs 69.97 ± 0.06* +11.33% 54%
CHT 59.10 ± 0.06 -5.97% 96%
RigL 63.90 ± 0.19* +1.67% 59%
SET 62.70 ± 0.11 -0.24% 100%

CHTss 71.29 ± 0.14* +13.43% 63%
GraNet 69.31 ± 0.17* +10.28% 61%
GMP 65.11 ± 0.11* +3.60% 75%

We evaluate the performance of CHTs using
MLPs for image classification tasks on the
MNIST [16], Fashion MNIST [18], EMNIST
[17], and CIFAR10 [42] datasets. To further
validate our approach, we apply the sigmoid
gradual density decay strategy to Transformers
for machine translation tasks on the Multi30k
en-de [20], IWSLT14 en-de [21], and WMT17
en-de [22] datasets. Additionally, we conduct
language modeling experiments using the Open-
WebText dataset [43] and evaluate zero-shot per-
formance on the GLUE [44] and SuperGLUE
[45] benchmark with LLaMA-60M, 130M, and
1B models [1]. For MLP training, we sparsify
all layers except the final layer, as ultra-sparsity
in the output layer may lead to disconnected neu-
rons, and the connections in the final layer are
relatively minor compared to the previous layers.
For Transformers and LLaMA models, we ap-
ply dynamic sparse training (DST) to all linear
layers, excluding the embedding and final gen-
erator layer. Detailed hyperparameter settings
for each experiment are provided in Tables 4, 5,
and 6. We also conduct a series of ablation and
sensitivity tests on the components proposed in
this article for CHTs and CHTss in Appendix H.
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Table 2: Performance comparison on machine translation tasks of Multi30k, IWSLT, and WMT with
varying final sparsity levels. The scores indicate BLEU scores, which is the higher the better. CHTs
(GMP) represents CHTs with GMP’s density decay strategy. Bold values denote the best performance
among fixed sparsity DST methods or density decay DST methods. The performances that surpass
the fully connected model are marked with “*". The density decay of GMP, GraNet, and CHTss
starts with a sparsity of 50%. The scores are averaged over three seeds ± their standard error.

Method Multi30k IWSLT WMT

95% 90% 95% 90% 95% 90%

FC 31.38 ± 0.38 24.48 ± 0.30 25.22

SET 28.99 ± 0.28 29.73 ± 0.10 18.53 ± 0.05 20.13 ± 0.08 20.19 ± 0.12 21.52 ± 0.28
RigL 29.94 ± 0.27 30.26 ± 0.34 20.53 ± 0.21 21.52 ± 0.15 20.71 ± 0.21 22.22 ± 0.10
CHT 27.79 28.38 18.59 19.91 19.03 21.08
CHTs 28.94 ± 0.57 29.81 ± 0.37 21.15 ± 0.10 21.92 ± 0.17 20.94 ± 0.63 22.40 ± 0.06

MESTEM&S 28.89± 0.26 30.04 ± 0.52 19.56 ± 0.10 21.05 ± 0.21 20.70 ± 0.07 22.22 ± 0.10
GMP 30.51 ± 0.82 30.49 ± 0.40 22.76 ± 0.82 22.82 ± 0.53 22.47 ± 0.10 23.37 ± 0.08
GraNet 31.31 ± 0.31 31.62 ± 0.48* 22.53 ± 0.12 22.43 ± 0.09 22.51 ± 0.21 23.46 ± 0.09
CHTss 32.03 ± 0.29* 32.86 ± 0.16* 24.51 ± 0.02* 24.31 ± 0.04 23.73 ± 0.43 24.61 ± 0.14

Baseline Methods. We compare our method with the baseline approaches in the literature. We
divide the dynamic sparse training (DST) methods into two categories: fixed sparsity DST and density
decay DST. For the fixed sparsity DST, we compare CHTs with the SET [5], RigL [7], and CHT [9],
and for the density decay DST methods, we compare CHTss with MESTEM&S [8], GMP [41], and
GraNet [40]. We explain the detailed implementations and the reason we split GMP as a type of DST
method in Appendix G.

4.2 MLP for image classification

Main results. In the MLP evaluation, we aim to assess the fundamental capacity of DST methods
to train the fully connected module, which is common across many ANNs. The sparse topological
initialization of CHT and CHTs is CSTI [9] since the input bipartite layer can directly receive
information from the input pixels. Table 7 displays the performance of DST methods compared
to their fully connected counterparts across three basic datasets of MNIST, Fashion MNIST, and
EMNIST. The DST methods are tested at 99% sparsity. As shown in Table 7, both of the two
regrowth methods of CHTs outperform the other fixed sparsity DST methods. Notably, the path-based
CH3-L3p outperforms the fully connected one in all the datasets. The node-based CH2-L3n also
achieves comparable performance on these basic datasets. However, considering the running time
of CH3-L3p is unacceptable, especially in large scale models, in the rest of the experiments of this
article, we only use CH2-L3n as the representative method to regrow new links. Table 1 presents a
comparison of fixed-sparsity dynamic sparse training (DST) methods against the fully connected (FC)
baseline. Notably, CHTs outperforms all other DST methods and achieve an 11% improvement in
accuracy over the fully connected model. In addition, we present the active neuron post-percolation
rate (ANP) for each method in Table 7 and Table 1. It is evident that CHTs adaptively percolates the
network more effectively while retaining performance.

4.3 Transformer on Machine Translation

We assess the Transformer’s performance on a classic machine translation task across three datasets.
We take the best performance of the model on the validation set and report the BLEU on the test set.
Beam search, with a beam size of 2, is employed to optimize the evaluation process. In our evaluation,
CHTs and CHTss configure the topology of each layer using the BRF model, employ a weight
magnitude soft link removal technique, and regrow new links using CH2-L3n-soft. Additionally, we
apply an adjusted network percolation technique to the Transformer, as detailed in Appendix F. The
findings, presented in Table 2, demonstrate that 1) CHTs surpasses other fixed density DST methods
on all the sparsity scenarios except for Multi30K. 2) Incorporating the sigmoid density decrease,
CHTss outperforms even the fully connected ones with only 5% density on Multi30K and IWSLT.
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Table 3: Validation perplexity of different dynamic sparse training (DST) methods on Open-
WebText using LLaMA-60M, LLaMA-130M, and LLaMA-1B across varying sparsity levels.
Bold values denote the best performance among fixed sparsity DST methods or density decay DST
methods. Lower perplexity corresponds to better model performance. GMP, GraNet, and CHTss
are run with an initial sparsity of si = 0.5. The test of CHT over LLaMA-1B is missing due to its
excessive runtime. The performances that surpass the fully connected model are marked with “*".

Method LLaMA-60M LLaMA-130M LLaMA-1B

70% 80% 90% 95% 70% 80% 90% 95% 70%

FC 26.56 19.27 14.62

SET 31.77 30.69 35.26 39.70 20.82 22.02 24.73 28.37 16.37
RigL 39.96 41.33 45.34 51.49 25.85 66.35 37.18 49.39 149.17
CHT 31.02 32.99 35.01 41.87 21.02 22.82 26.27 30.01 –
CHTs 28.12 29.84 33.03 36.47 20.10 21.33 23.71 26.45 14.53*

MEST 28.26 29.94 33.60 37.87 21.32 22.21 24.98 27.96 60.36
GMP 29.22 30.59 33.68 39.00 20.49 22.28 23.61 27.16 31.76
GraNet 30.55 31.51 33.76 39.98 22.84 29.03 26.81 61.31 79.44
CHTss 27.62 29.00 31.42 35.10 19.85 20.70 22.51 25.07 15.41

4.4 Natural Language Generation

Language modeling. We utilize the LLaMA model family [1] across 60M, 130M, and 1B architec-
ture as the baseline for our language generation experiments. We follow the experiment setup from
[46] detailed in Table 6. To ensure that the FLOPs are the same for all the density decrease methods,
for CHTss, we implement a half-step strategy for the density decay steps to make sure the sparsity
across the training steps is the same as GMP and GraNet.

Table 3 shows the validation perplexity results of each algorithm across different density levels on
LLaMA-60M and LLaMA-130M. CHTs stably outperforms SET, CHT, and RigL, while CHTss
are constantly better than GraNet and GMP. At 70% sparsity, CHTss is already able to perform
comparably to the fully connected model. It is important to note that RigL and GraNet exhibit subpar
performance in this evaluation due to the use of bfloat16 precision in this configuration. This lower
precision adversely impacts gradient accuracy, particularly in the early stages of training. Since
both RigL and GraNet rely on gradient information to regrow new links, the imprecise gradients
lead to regrowing the wrong links, thereby hindering their performance. To further validate this
observation, we conduct additional experiments under FP32 precision, presented in Table 10. The
results confirm that RigL and GraNet perform significantly better under high-precision training,
although they still fall behind CHTs and CHTss. Importantly, industry trends are increasingly moving
toward low-precision training and inference to improve efficiency [47, 48]. In this context, CHTs and
CHTss demonstrate greater robustness compared to RigL and GraNet, making them better aligned
with practical deployment needs under reduced-precision settings.

5 Conclusion and Discussion

We advance current knowledge in brain-inspired dynamic sparse training, proposing the Cannistraci-
Hebb Training soft rule with sigmoid gradual density decay (CHTss). First, we introduce a matrix
multiplication mathematical formula for GPU-friendly approximation of the CH link predictor. This
significantly reduces the computational complexity of CHT and speeds up the running time, enabling
the implementation of CHTs in large-scale models. Second, we propose a Cannistraci-Hebb training
soft rule (CHTs), which innovatively utilizes a soft sampling rule for both removal and regrowth links,
striking a balance for epitopological exploration and exploitation. Third, we propose the Bipartite
Receptive Field (BRF) model to initialize the sparse network topology in a brain-inspired manner,
enabling the network to preferentially capture spatially closer features. Finally, in transformer-based
models, we integrate CHTs with a sigmoid gradual density decay strategy (CHTss). Empirically,
CHTs demonstrate a remarkable ability to achieve ultra-sparse configurations—up to 99% sparsity in
MLPs for image classification—surpassing fully connected networks. Notably, the regrowth process
under CHTs does not rely on gradients. With the sigmoid gradual density decay, CHTss surpasses
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the fully connected Transformer using only 5% density and achieves comparable language modeling
performance. Moreover, CHTs and CHTss achieve language modeling performance comparable to
the fully connected LLaMA-60M and LLaMA-130M models, while CHTs even surpasses the fully
connected LLaMA-1B counterpart. We describe the limitations of this study and future works in
Appendix A.
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Table 4: Hyperparameters of MLP on Image Classification Tasks.
Hyper-parameter MLP
Hidden Dimension 1568 (3072 for CIFAR10)
# Hidden layers 3
Batch Size 32
Training Epochs 100
LR Decay Method Linear
Start Learning Rate 0.025
End Learning Rate 2.5e−4

ζ (fraction of removal) 0.3
Update Interval (for DST) 1 epoch
Momentum 0.9
Weight decay 5e−4

Table 5: Hyperparameters of Transformer on Machine Translation Tasks. inoam refers to a
learning rate scheduler that incorporates iterative warm-up phases, specifically designed for dynamic
sparse training (DST) methods. The purpose is to allow newly regrown connections to accumulate
momentum, preventing potential harm to the training process. For the fully connected (FC) baseline,
only the standard noam scheduler is used.

Hyper-parameter Multi30k IWSLT14 WMT17
Embedding Dimension 512 512 512
Feed-forward Dimension 1024 2048 2048
Batch Size 1024 tokens 10240 tokens 12000 tokens
Training Steps 5000 20000 80000
Dropout 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1
Max Gradient Norm 0 0 0
Warmup Steps 1000 6000 8000
Learning rate Decay Method inoam inoam inoam
Iterative warmup steps 20 20 20
Label Smoothing 0.1 0.1 0.1
Layer Number 6 6 6
Head Number 8 8 8
Learning Rate 0.25 2 2
ζ (fraction of removal) 0.3 0.3 0.3
Update Interval (for DST) 100 steps 100 steps 100 steps

A Limitations and Future Work

A potential limitation of this work is that the hardware required to accelerate sparse training with
unstructured sparsity has not yet become widely adopted. Consequently, this article does not present a
direct comparison of training speeds with those of fully connected networks. However, several leading
companies [49, 50] have already released devices that support unstructured sparsity in training.

For future work, we aim to develop methods for automatically determining the temperature for soft
sampling at each epoch, guided by the topological features of each layer. This could enable each layer
to learn its specific topological rules autonomously. Additionally, we plan to test CHTs and CHTss in
larger LLMs such as LLaMA-7b to evaluate the performance in scenarios with denser layers.

B Broader Impact

In this work, we introduce a novel methodology for dynamic sparse training aimed at enhancing the
efficiency of AI model training. This advancement holds potential societal benefits by increasing
interest in more efficient AI practices. However, the widespread availability of advanced artificial
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Table 6: Hyperparameters of LLaMA-60M, LLaMA-130M, and LLaMA-1B on OpenWebText.
inoam refers to a learning rate scheduler that incorporates iterative warm-up phases, specifically
designed for dynamic sparse training (DST) methods. The purpose is to allow newly regrown
connections to accumulate momentum, preventing potential harm to the training process. For the
fully connected (FC) baseline, only the standard noam scheduler is used.

Hyper-parameter LLaMA-60M LLaMA-130M LLaMA-1B
Embedding Dimension 512 768 2048
Feed-forward Dimension 1376 2048 5461
Global Batch Size 512 512 512
Sequence Length 256 256 256
Training Steps 10000 30000 100000
Learning Rate 3e-3 (1e-3 for FC) 3e-3 (1e-3 for FC) 3e-3 (4e-4 for FC)
Warmup Steps 1000 10000 10000
Learning rate Decay Method inoam inoam inoam
Iterative warmup steps 20 20 20
Optimizer Adam Adam Adam
Layer Number 8 12 24
Head Number 8 12 32
ζ (fraction of removal) 0.1 0.1 0.1
Update Interval (for DST) 100 steps 100 steps 100 steps

Table 7: Performance comparison of different dynamic sparse training methods on
MNIST, Fashion MNIST (FMNIST), and EMNIST datasets trained on MLP at 99%
sparsity. ACC represents accuracy, and ANP denotes the active neuron percolation
rate, indicating the final size of the network. Accuracies present a standard error
taken over three seeds. The best dynamic sparse training method for each dataset is
highlighted in bold, and the performances that surpass the fully connected model are
marked with “*".

Method MNIST FMNIST EMNIST

ACC (%) ANP ACC (%) ANP ACC (%) ANP

FC 98.78 ± 0.02 – 90.88 ± 0.02 – 87.13 ± 0.04 –

CHTsp 98.81 ± 0.04* 20% 90.93 ± 0.03* 89% 87.61 ± 0.07* 24%
CHTsn 98.76 ± 0.05 27% 90.67 ± 0.05 73% 87.82 ± 0.04* 28%
CHT 98.48 ± 0.04 29% 88.70 ± 0.07 30% 86.35 ± 0.08 21%
RigL 98.61 ± 0.01 29% 89.91 ± 0.07 55% 86.94 ± 0.08 28%
SET 98.14 ± 0.02 100% 89.00 ± 0.09 100% 86.31 ± 0.08 100%

CHTssn 98.83 ± 0.02* 32% 90.81 ± 0.11 40% 87.52 ± 0.04* 35 %
GraNet 98.81 ± 0.00* 35% 89.98 ± 0.06 53% 86.94 ± 0.03 45%
GMP 98.62 ± 0.03 58 % 90.29 ± 0.19 69% 86.93 ± 0.09 75 %
p Refers to the regrowth method CH3_L3p.
n Refers to the regrowth method CH2_L3n.

neural networks, particularly large language models (LLMs), also presents risks of misuse. It is
essential to carefully consider and manage these factors to maximize benefits and minimize risks.

C Cannistraci-Hebb epitopological rationale

The original CHT framework leverages the Cannistraci-Hebb link predictor on Length 3 paths (CH3-
L3p) metric for link regrowth. Given two seed nodes u and v in a network, this metric assigns a
score

CH3-L3p(u, v) =
∑

z1,z2∈L3

1√
de∗z1 · de∗z2

(5)
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Table 8: Perplexity (PPL) results across different sparsities (0.7, 0.8, 0.9, 0.95) for CHTs and CHTss
under different regrowth strategies (Fixed and Uniform) and r settings on LLaMA60M.

Fixed Uniform
Sparsity r = 0.0 r = 0.1 r = 0.2 r = 0.3 r = 0.0 r = 0.1 r = 0.2 r = 0.3

CHTs

70% 28.16 28.39 28.25 28.32 30.11 28.12 28.43 28.56
80% 30.22 29.84 30.04 30.03 30.19 29.86 30.23 30.06
90% 33.32 33.37 33.03 33.77 33.45 33.36 33.88 33.72
95% 37.29 37.51 37.24 37.46 37.23 36.47 37.33 37.67

CHTss

70% 27.62 30.05 27.82 28.43 27.62 27.74 27.74 27.68
80% 29.00 29.00 29.66 32.91 29.49 29.69 29.09 29.24
90% 31.51 31.67 31.65 31.59 31.66 32.61 31.68 31.42
95% 38.66 35.31 36.24 37.50 42.20 37.40 35.36 35.10

Table 9: Perplexity (PPL) results across different sparsities (0.7, 0.8, 0.9, 0.95) for CHTs and CHTss
under different regrowth strategies (Fixed and Uniform) and r settings on LLaMA-130M.

Fixed Uniform
Sparsity r = 0.0 r = 0.1 r = 0.2 r = 0.3 r = 0.0 r = 0.1 r = 0.2 r = 0.3

CHTs

70% 20.24 20.16 20.10 20.25 20.62 20.18 20.15 20.20
80% 21.33 21.37 21.36 21.48 21.34 21.40 21.40 22.49
90% 23.72 23.76 23.76 23.94 23.74 23.73 23.71 24.99
95% 28.05 26.45 26.90 26.91 26.78 27.97 29.05 27.10

CHTss

70% 20.63 19.88 19.93 19.85 21.43 19.90 20.93 19.94
80% 20.71 22.60 20.86 20.70 20.73 20.74 20.72 20.82
90% 22.58 22.72 22.61 22.51 22.53 22.59 22.60 23.12
95% 25.28 25.12 25.20 25.12 25.07 25.15 25.23 25.12

Here, u and v denote the seed nodes, while z1 and z2 are common neighbors on the L3 path [30], a
walk of three consecutive links that connects u to v via those two intermediate nodes. The term de∗i
represents the number of external local community links (eLCL) of node i, with a default increment
of 1 to prevent division by zero. Path-based link prediction has demonstrated its effectiveness on
both real-world networks [30] and artificial neural networks [9]. However, this method incurs a high
computational cost due to the need to compute and store all length-three paths, resulting in a time
complexity of O(N · d3), where N is the number of nodes and d is the network’s average degree.
This complexity is prohibitive for large models with numerous nodes and higher-density layers. To

Figure 3: Comparison of link regrowth strategies in CHTs using a LLaMA-60M model trained on
OpenWebText for 5000 steps. The left plot shows validation perplexity (lower is better), while the
right plot reports the in-time over-parameterization (ITOP) rate, which measures the cumulative
proportion of links activated during training. Results are presented for three strategies: Soft, Random,
and Deterministic regrowth.
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Figure 4: Cannistraci-Hebb epitopological rationale. [30] The figure illustrates an explanatory
example of topological link prediction using the Cannistraci-Hebb epitopological rationale based on
either L2 or L3 paths. The two black nodes represent the seed nodes whose unobserved interaction is
to be assigned a likelihood score. White nodes denote the common neighbours (CNs) of the seed
nodes at either L2 or L3 distance. Together, the set of CNs and the internal local community links
(iLCL) constitute the local community. Different link types are color-coded: green for nLCLs, red
for external local community links (eLCLs), and white for iLCLs. The L2 (path length 2) and L3
(path length 3) paths associated with the illustrated communities are highlighted. Notably, in artificial
neural networks (ANNs), linear layers correspond to bipartite networks, which inherently support
only L3 path predictions, as shown in Figure 1.

address this issue, we introduce a more efficient, node-based paradigm that eliminates the reliance on
length-three paths between seed nodes. Instead, this approach focuses on the common neighbors of
seed nodes. The node-based version of CH3-L3p, denoted as CH2-L3n, is defined as follows:

CH2-L3n(u, v) =
∑
z∈L3

di∗z
de∗z

(6)

Here, u and v denote the seed nodes, while z is the common neighbor on the L3 path [30], a walk of
three consecutive links that connects u to v via two of those intermediate nodes. The terms di∗z de

∗
z

represent the number of internal local community links (iLCLs) and external local community links
(eLCLs) of node i, with a default increment of 1 to prevent division by zero. Internal local community
links (iLCLs) are those that connect nodes belonging to the same local community. Contrarily,
external local community links (eLCLs) connect nodes belonging to different communities. Figure 4
gives a visual representation of L2 and L3 paths between two seed nodes u and v, defining their local
community.

D Sparse topological initialization

Correlated sparse topological initialization. Correlated Sparse Topological Initialization (CSTI)
is a physics-informed topological initialization. CSTI generates the adjacency matrix by computing
the Pearson correlation between each input feature across the calibration dataset and then selects
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the predetermined number of links, calculated based on the desired sparsity level, as the existing
connections. CSTI performs remarkably better when the layer can directly receive input information.
However, for layers that cannot receive inputs directly, it cannot capture the correlations from the start
since the model is initialized randomly, as in the case of the Transformer. Therefore, in this article,
we aim to address this issue by investigating different network models to initialize the topology, to
improve the performance for cases where CSTI cannot be directly applied.

Bipartite scale-free model. In artificial neural networks (ANNs), fully connected networks are
inherently bipartite. This article explores initializing bipartite networks using models from network
science. The Bipartite Scale-Free (BSF) [9] network model extends the concept of scale-freeness
to bipartite structures, making them suitable for dynamic sparse training. Initially, the BSF model
generates a monopartite Barabási-Albert (BA) model [37], a well-established method for creating
scale-free networks in which the degree distribution follows a power law (γ=2.76 in Figure 5).
Following the creation of the BA model, the BSF approach removes any connections between nodes
of the same type (neuron in the same layer) and rewires these connections to nodes of the opposite
type (neuron in the opposite layer). This rewiring is done while maintaining the degree of each node
constant to preserve the power-law exponent γ.

Bipartite small-world model. The Bipartite Small-World (BSW) network model [9] is designed to
incorporate small-world properties and a high clustering coefficient into bipartite networks. Initially,
the model constructs a regular ring lattice and assigns two distinct types of nodes to it. Each node
is connected by an equal number of links to the nearest nodes of the opposite type, fostering high
clustering but lacking the small-world property. Similar to the Watts-Strogatz model (WS) [36], the
BSW model introduces a rewiring parameter, β, which represents the percentage of links randomly
removed and then rewired within the network. At β = 1, the model transitions into an Erdős-Rényi
model [51], exhibiting small-world properties but without a high clustering coefficient, which is
popular as the topological initialization of the other dynamic sparse training methods [5, 7, 8].

Bipartite receptive field model. The Bipartite Receptive Field (BRF) model is a random network
generation technique designed to mimic the receptive field phenomenon in the brain networks. The
process involves adding links to the adjacency matrix of the bipartite network, with the connectivity
structured around the main diagonal according to a parameter r ∈ [0, 1]. A low value of r results
in links that are primarily clustered around the diagonal, while a higher value of r leads to a more
random connectivity pattern. Specifically, a bipartite adjacency matrix with links near the diagonal
indicates that adjacent nodes from the two layers are linked, whereas links far from the diagonal
correspond to more distant node pairs. Mathematically, consider an N ×M bipartite adjacency
matrix Mi,j i=1,...,M,j=1,...,N , where M represents the input size and N represents the output size.
Each entry of the matrix mi,j is set to 1 if input node i is connected to output node j, and 0 otherwise.
A scoring function Si,j is assigned to each connection in the adjacency matrix based on its distance
to the main diagonal. This score is given by:

Si,j = d
1−r
r

ij , (7)

where
dij = min{|i− j|, |(i−M)− j|, |i− (j −N)|} (8)

is the distance between the input and output neurons. Therefore, Si,j represents the distance from
the diagonal, raised to the power of 1−r

r . The parameter r controls how structured or random the
adjacency matrix is. As r → 0, the scoring function becomes more deterministic, with high scores
assigned to entries near the diagonal and low scores to entries farther away. Conversely, as r → 1,
all scores Si,j become more uniform, leading to a more random, less structured adjacency matrix.
The next step is to determine the degree distribution for the output nodes. This can either be fixed,
assigning the same degree to all output nodes, or uniform, where the degrees are randomly sampled
from a uniform distribution. Hence, we propose two variations of the BRF model: the Bipartite
Receptive Field with fixed sampling (BRFf), in which the degrees of output nodes are fixed, and
the Bipartite Receptive Field with uniform sampling (BRFu), where the degrees of the output nodes
follow a uniform distribution. This represents an additional enhancement to the WS scheme, which
offers no way to control how connections are allocated among the output nodes. In conclusion, to run
the BRF model, the user should input an output degree distribution and a spatial dependent distance
randomness.
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Bipartite Scale-Free 

network model

Bipartite Small-World network model

Existing links

Non-existing links

Regular network (𝛽 = 0) 𝛽 = 0.25 𝛽 = 0.5 𝛽 = 0.75 Erdős−Rényi network (𝛽 = 1)

Powerlaw (𝛾 = 2.76)

Bipartite Receptive Field - Fixed Sampling

Regular network (r = 0) r = 0.25 r = 0.5 r = 0.75 r = 1

Bipartite Receptive Field - Uniform Sampling

r = 0.25 r = 0.5 r = 0.75 r = 1Regular network (r = 0)

Figure 5: The adjacency matrix of the Bipartite Scale-Free (BSF) network model compared to
those of the Bipartite Small-World (BSW) network, the Bipartite Receptive Field with fixed sampling
(BRFf ), and the Bipartite Receptive field with uniform sampling (BRFu) as parameters β and r
vary between 0 and 1. a) The BSF model inherently forms a scale-free network characterized by a
power-law distribution with γ = 2.76. b) As β changes from 0 to 1, the network exhibits reduced
clustering. It is important to note that when β = 0, the BSW model does not qualify as a small-world
network. c) As r increases towards 1, the adjacency matrix becomes more random, while sampling
the output neurons’ degrees from a fixed or uniform distribution.

E Equal Partition and Neuron Resorting to enhance bipartite scale-free
network initialization

As indicated in SET and CHT [5, 9], trained sparse models typically converge to a scale-free
network. This suggests that initiating the network with a scale-free structure might initially enhance
performance. However, starting directly with a Bipartite Scale-Free model (BSF, power-law exponent
γ = 2.76) does not yield effective results. Upon deeper examination, two potential reasons emerge:

• The BSF model generates hub nodes randomly. However, this random assignment of hub
nodes to less significant inputs leads to a less effective initialization, which is particularly
detrimental in CHT, which merely utilizes the topology information to regrow new links.

• As demonstrated in CHT, in the final network, the hub nodes of one layer’s output should
correspond to the input layer of the subsequent layer, which means the hub nodes should
have a high degree on both sides of the layer. However, the BSF model’s random selection
disrupts this correspondence, significantly reducing the number of Credit Assignment Paths
(CAP) [9] in the model. CAP is defined as the chain of transformation from input to output,
which counts the number of links that go through the hub nodes in the middle layers.

To address these issues, we propose two solutions:

• Equal Partitioning of the First Layer: We begin by generating a BSF model, then rewire the
connections from the input layer to the first hidden layer. While keeping the out-degrees
of the output neurons fixed, we randomly sample new connections to the input neurons
until each of the input neurons’ in-degrees reaches the input layer’s average in-degree. This
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a) b) 

Figure 6: The ablation test of the β of the bipartite small world (BSW) model and the removal
methods in CHTs. a) evaluates the influence of the rewiring rate β on the model performance
when initialized with the BSW model. b) assesses the influence of link removal selecting from the
weight magnitude (WM), weight magnitude soft (WM-soft), relative importance (RI), and relative
importance soft (RI-soft). We utilize the win rate of the compared factors under the same setting
across each realization of 3 seeds for all experiment combinations on MLP. The factor with the
highest win rate is highlighted in orange.

b)a)

Figure 7: The ablation test of the parameter r in the bipartite receptive field (BRF) model and the
removal methods in CHTs using the BRF initialization technique. a) evaluates the influence of the
parameter r on the model performance when initialized with the BRF model. b) assesses the influence
of link removal in the CHTs model with BRF initialization. We utilize the win rate of the compared
factors under the same setting across each realization of 3 seeds for all experiment combinations on
MLP. The factor with the highest win rate is highlighted in orange.

approach ensures all input neurons are assigned equal importance while maintaining the
power-law degree distribution of output neurons.

• Resorting Middle Layer Neurons: Given the mismatch in hub nodes between consecutive
layers, we suggest permuting the neurons between the output of one layer and the input of
the next, based on their degree. A higher degree in an output neuron increases the likelihood
of connecting to a high-degree input neuron in the subsequent layer, thus enhancing the
number of CAPs.

As illustrated in Figure 8, while the two techniques enhance the performance of the BSF initialization,
they remain inferior to the BSW initialization. As noted in the main text, achieving scale-freeness is
more effective when the model is allowed to learn and adapt dynamically rather than being directly
initialized as a predefined structure.

F Network percolation and extension to Transformer.

We have adapted network percolation [52, 9] to suit the architecture of the Transformer after link
removal. The core idea is to identify inactive neurons, which are characterized by having no
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BRF

MNIST

Fashion_MNIST
EMNIST

Figure 8: The Performance of the bipartite scale-free model and two enhanced techniques. a) shows
the win rate of the Bipartite Scale-Free network model (BSF) with the different techniques. EP stands
for equal partition of the first layer, and Resort refers to reordering the neurons based on their degree.
b) assesses the comparison between Correlated Sparse Topological Initialization (CSTI), the Bipartite
Scale-Free (BSF) model with the best solution from a), and the Bipartite Small-World (BSW) model
with β = 0.25.

connections on either one or both sides within a layer of neurons. Such neurons disrupt the flow of
information during forward propagation or backpropagation. In addition, Layer-wise computation of
the CH link prediction score further implies that neurons without connections on one side are unlikely
to form connections in the future. Therefore, network percolation becomes essential to optimize the
use of remaining links.

As shown in Figure 1, network percolation encompasses two primary processes: c1) inactive neuron
removal to remove the neurons that lack connections on one or both sides; c2) incomplete path
adjustment to remove the incomplete paths where links connect to the inactive neurons after c1).
Typically applied in simpler continuous layers like those in an MLP, network percolation requires
modification for more complex structures. For example, within the Transformer’s self-attention
module, the outputs of the query and key layers undergo a dot product operation. It necessitates
percolation in these layers to examine the activity of the neurons in both output layers at the same
position. Similar interventions are necessary in the up_proj and gate_proj layers of the MLP module
in the LLaMA model family [1, 53].

G Baseline Methods

G.1 Fixed Density Dynamic Sparse Training Methods

SET [5]: Removes connections based on weight magnitude and randomly regrows new links.

RigL [7]: Removes connections based on weight magnitude and regrows links using gradient
information, gradually reducing the proportion of updated connections over time.

CHT [9]: A state-of-the-art (SOTA) gradient-free method that removes links with weight magnitude
and regrows links based on CH3-L3 scores. CHT is often applied with early stopping to mitigate its
computational complexity when working with large models.

G.2 Gradual Density Decrease Dynamic Sparse Training Methods

GMP [54, 41]: Prunes the network with weight magnitude and gradually decreases the density
based on Equation 10. Although originally a pruning method, GMP is treated as a dynamic sparse
training method in their implementation [41], as it stores historical weights and allows pruned weights
to reappear during training, since, during training, the pruning threshold might change.

MESTEM&S [8]: Implements a two-stage density decrease strategy as described in the original
work. It removes links based on the combination of weight magnitude and 0.01*gradient and regrows
new links randomly.
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GraNet [40]: Gradually decreases density using Equation 10. Similar to RigL, GraNet removes
links based on the weight magnitude and regrows new links with the gradient of the existing links.

Table 10: Float32 Precision Comparison on LLaMA-130M. Bold values denote the best performance
among DST methods. Lower perplexity corresponds to better model performance. si represents the
initial sparsity for DST methods employing a density decay strategy.

Method Sparsity

70% 80%

FC 17.07

RigL 18.34 19.64
CHTs 17.99 19.25
GraNet (si = 0.5) 17.92 18.79
CHTss (si = 0.5) 17.76 18.69

H Ablation and Sensitivity Tests

An overall ablation test To fully assess each component’s effectiveness, we conduct several
ablation and sensitivity tests that help us understand how to select a sparse topological initialization
and identify the best link removal and regrowth methods. We first made a global test for all the
components in Table 11, which shows the effectiveness of each element introduced by this article. The
node-based and path-based link regrowth methods have comparable performance, but the node-based
versions are much faster.

Sparse topological initialization. For sparse topological initialization, we compare BRF, BSW,
BSF, and CSTI [9] across three image classification datasets, as shown in Figure 8b. The results
indicate that when the inputs can directly access task-relevant information, CSTI consistently achieves
the best performance. In general, BRF and BSW perform similarly under these conditions, but
outperform the BSF initialization.

To further validate our findings, we evaluate BRF and BSW network initializations on machine trans-
lation tasks using Transformer models. Figure 9 and Figure 10 present the performance comparisons
between BSW and BRF on the Multi30k and IWSLT datasets, while Figure 11 shows the win-rate
analysis. These comparisons demonstrate that BRF consistently outperforms BSW across most cases.
Additionally, Figure 7a analyzes the impact of the receptive field range r on BRF initialization for
MNIST, Fashion MNIST, and EMNIST tasks using MLPs, with results indicating that r = 0.25
yields the best performance.

Building on this prior knowledge, we further evaluate BRF on LLaMA-60M and LLaMA-130M
models, testing r values in the range [0, 0.3] and comparing two different degree distributions. The
results, shown in Table 8 and Table 9, indicate that on LLaMA models, the choice of r and distribution
has limited impact. While r = 0.1 wins slightly more often, the improvements remain marginal.
Finally, Table 3 reports the best performance combinations of r and degree distributions derived from
these evaluations.

Link removal. We first conduct a simple evaluation of the link removal methods introduced in this
article when changing the α and δ inside Figure 1b2) on Figure 6b) and Figure 7b). The removal
methods are selected from Weight Magnitude (WM), Weight Magnitude soft (WMs), Relative
Importance (RI), and Relative Importance soft (RIs). For WM we fix the hyperparameters α = 1 and
δ = 1; for RI we fix the hyperparameters α = 0 and δ = 0.5; for WMs we fix α = 1 and we let δ
increase linearly from 0.5 to 0.9; for RIs we fix α = 0 and let δ increase linearly from 0.5 to 0.9.
From the results, it can be observed that WMs performs the best in most cases. We compare these
methods with those in [55] in Table 12 on two machine translation tasks. The results indicate that
using WMs as a link removal method generally outperforms the alternatives.

We also evaluate how to define the softness in WMs. During sampling, we have a hyperparameter to
decide the temperature of the scores that convert to the probability of being removed. We perform a
test using a linear decay solution, since, generally, the weights in the model become more reliable as
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Table 11: Ablation results of Transformer on Multi30K and IWSLT datasets at 90% sparsity. The
scores indicate BLEU scores, the higher the better. Bold values denote the best performance among
DST methods.

Variant Multi30K
(90% sparsity)

IWSLT
(90% sparsity)

a. CHT 28.38 19.91
b. CHTss

without node-based implementation 32.68 (2.42 hours) 24.82 (18 hours)

c. CHTss
without soft sampling 28.92 21.88

d. CHTss
without sigmoid decay (= CHTs) 30.35 21.60

e. CHTss
(full model) 32.79 (0.25 hours) 24.57 (1.5 hours)

Table 12: Performance comparison of CHTs and CHTss at 90% sparsity across different removal
methods. The tested dataset is Multi30K, and the reported metric is BLEU, which is the higher the
better.

Remove Method CHTs CHTss
set 28.82 25.76
wm 28.17 31.15
wm_soft 30.35 32.79
ri 28.91 32.20
ri_soft 27.86 31.86
MEST 28.70 32.07
snip 28.23 31.66
sensitivity 29.02 29.73
Rsensitivity 28.18 30.67

training progresses. Figure 12 shows the variation in BLEU scores as we change the starting and
ending values of the δ parameter in the soft weight magnitude removal method on transformer models.
Recalling that we define the temperature by T = 1

1−δ , we observe that for a simple benchmark like
Multi30k, a high starting temperature produces better performance. This is motivated by the fact
that loss decreases very fast through epochs, meaning that weights are learned quickly, and we can
deterministically remove weights with high reliability. In more complex datasets, like IWSLT, low
starting temperatures are preferred. This is because during the early stages of training, weights are
learned slowly, meaning that a deterministic removal can be less reliable. To be more consistent, we
select a start δ = 0.5 and end δ = 0.9 for all the tasks in the main article.

Density Decay Strategy. To further demonstrate the benefit of the density decay strategy, we
conduct an ablation study comparing the sigmoid-based density decay strategy with a cubic-based
density decay strategy. We evaluate the performance on the LLaMA-60M model using the C4 dataset
and report the perplexity. We show the number of density decay steps and a comparison between the
cubic density decay that GraNet [40] and GMP [41] introduced and our proposed sigmoid density
decay strategy. The results in the Table 13 show that the sigmoid-based decay consistently achieves
lower PPL than the cubic-based decay in all the density decay steps, and both strategies outperform
the baseline fixed sparsity (CHTs). These results confirm the motivation for introducing the sigmoid
density decay strategy. The table below shows the PPL of CHTss with the two density decay strategies
over different density decay steps.

Curvature of the Density Decay. In CHTss, the parameter k dictates the pruning schedule’s shape:
lower k values yield a smoother decay, while higher values create a sharper curve. We varied k in
2, 4, 6, 8, 10 on LLaMA60M at 70% and 95% sparsity, using perplexity as the evaluation metric.
Results on Table 14 show that overly sharp decay curves (larger k) cause instability. In the article, we
used k = 6 for all experiments.
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Density Decay Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000

CHTss (Sigmoid-based) 35.20 35.19 35.24 34.63 34.68 34.63 34.46 34.50 34.39
CHTss (Cubic-based) 35.23 35.21 35.29 35.03 34.96 39.23 34.96 34.79 34.94

Table 13: Comparison of CHTss variants (Sigmoid- vs. Cubic-based) under different density decay
steps. Baseline (CHTs) achieves 35.59. Lower values indicate better performance.

LLaMA60M (70% sparsity) k=2.0 k=4.0 k=6.0 k=8.0 k=10.0

0.1 27.61 27.74 27.74 27.82 29.79
0.2 27.60 28.81 27.81 29.82 34.05
0.3 27.66 27.67 27.78 27.59 27.58
0.4 27.93 27.82 27.78 27.73 27.71
0.5 28.05 27.82 27.62 27.83 28.13

LLaMA60M (95% sparsity) k=2.0 k=4.0 k=6.0 k=8.0 k=10.0

0.1 37.00 36.02 35.86 36.42 36.59
0.2 36.83 36.08 35.42 38.39 35.87
0.3 36.67 35.30 35.53 35.67 35.78
0.4 35.71 35.48 35.42 35.44 35.63
0.5 36.76 35.70 35.59 35.72 36.05

Table 14: Perplexity comparison of LLaMA60M under different initial sparsity and k values at 70%
and 95% sparsity levels. Lower is better.

Removal Fraction ζ. This parameter determines the proportion of existing connections that are
pruned during each pruning-regrowth cycle. It directly controls the amount of structural change
introduced to the network at each step. In our sensitivity analysis on Table 15, we evaluated a range
of ζ values (0.1, 0.2, 0.3, 0.4, 0.5) to assess their effect on the convergence and final performance of
the CHTs model. The tests were performed on MLPs (CIFAR-10) at 90%, 95%, and 99% sparsities.
Results are averaged over three seeds. When the sparsity is lower, we need a lower ζ to keep the
model trained more stably, and when the sparsity is higher, a higher ζ is required to encourage the
topological exploration. In all experiments involving MLP and Transformer, we use a ζ of 0.3, and
for LLaMA models, we use 0.1 for all the experiments.

CHTs vs. CHTss. In most experiments, CHTss (with the sigmod density decay schedule) con-
sistently outperforms CHTs. There are, however, a few counter-examples (e.g., LLaMA-1B at
70% target sparsity on OpenWebText) where CHTs slightly surpasses CHTss. To understand this
outlier behavior, we first note that in the LLaMA-1B OpenWebText run the schedule only decreased
density from 50% to 30%—a small change relative to the fixed 50% baseline—yielding very similar
perplexities (14.66 vs. 15.15). When we extended the schedule to a much lower final density 5%, the
advantage of CHTss became clear: CHTss reached 16.51 PPL versus 18.93 for CHTs. This aligns
with our ITOP analysis: at 30% density, over 90% of candidate links appear during the evolution
of both methods, but at 5% density CHTs touches only ∼20% of links while CHTss still explores
∼90%. In other words, density–decay confers a broader search over plausible connections precisely
where search matters most—at high sparsity. We further corroborated this with a cross-scale study on
six LLaMA sizes (20M(→)1B) at 70%, 90% , and 95% sparsity on Table 16: averaged validation
perplexity differences are not significant at 70% (Wilcoxon (p=0.688)), but become significant in
favor of CHTss at 90% and 95% (p=0.031 for both). Taken together, these results indicate that
occasional wins of CHTs arise in regimes where the decay is shallow and the effective search space
is already well covered; they do not suggest that the sigmoid density–decay strategy fails on larger
models or particular tasks. Rather, its benefit scales with the target sparsity: the more aggressive the
final sparsity, the more CHTss helps by exposing and testing a larger set of candidate links during
training.
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Figure 9: Top average BLEU for WS (grey) and BRF initialization methods on the Multi30k
translation dataset of CHTs (left) and CHTss (right, with sigmoid decay) at different sparsity levels.
Error bars denote the standard error across three seeds.

Figure 10: Top average BLEU for WS (grey) and BRF initialization methods on the IWSLT translation
dataset of CHTs (left) and CHTss (right, with sigmoid decay) at different sparsity levels. Error bars
denote the standard error across two seeds.

Figure 11: Win rates of BRF against WS over CHTs and CHTss models on different datasets
(Multi30k and IWSLT) and different sparsities (0.9 and 0.95 for IWSLT and 0.7, 0.8, 0.9, 0.95 for
Multi30k).
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ζ CIFAR-10 (90%) CIFAR-10 (95%) CIFAR-10 (99%)

0.1 68.73 ± 0.27 69.28 ± 0.08 63.45 ± 0.04
0.2 68.63 ± 0.10 69.78 ± 0.09 67.30 ± 0.21
0.3 68.47 ± 0.10 69.37 ± 0.10 68.08 ± 0.02
0.4 67.90 ± 0.10 69.01 ± 0.08 67.83 ± 0.19
0.5 67.47 ± 0.14 68.56 ± 0.15 67.24 ± 0.14

Table 15: Test accuracy (%) on CIFAR-10 under varying sparsity ratios and ζ values. Mean ±
standard deviation over multiple runs. Bold indicates best per column.

Table 16: CHTs vs. CHTss across sparsity levels (validation perplexity; lower is better).
Sparsity Mean CHTs ↓ Mean CHTss ↓ p-value Significance
0.70 23.81 23.88 0.688 Not significant
0.90 28.47 26.51 0.031 Significant
0.95 31.89 29.19 0.031 Significant

I Integral of Sigmoid Density Decay and Cubic Density Decay

In this section, we show the formula for the proposed Sigmoid Density Decay and the Cubic decay
implemented in GraNet [40] and GMP [54].

For the Cubic function, it is formulated as:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, (9)

where t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0 is the
starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t is the pruning
frequency.

Since our work focuses on MLP, Transformer, and LLMs, where FLOPs are linearly related to the
density of the linear layers, the FLOPs of the whole training process are linearly related to the integral
of the density function across the training time. The integral of the cubic decay function from t0 to tf
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t δ

End δ End δ

Figure 12: Investigating the level of randomness in link removal strategies. Top BLEU scores of
the transformer model using CHTs with weight magnitude soft removal strategy, as the initial and
final values of δ take values in {0.1, 0.25, 0.5, 0.75, 0.8}.
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is: ∫ tf

t0

(si − sf )

(
1− t− t0

n∆t

)3

dt

=
1

4
(si − sf )(tf − t0).

(10)

For the sigmoid decrease, the integral is:

∫ t′f

t0

(si − sf )

 1

1 + e
−k

(
t−

t′
f
+t0

2

)
 dt

=
(si − sf )(t

′
f − t0)

2
.

(11)

To maintain consistency in the computational cost (FLOPs) during training compared to the cubic
decay strategy, we reduce the number of steps in the sigmoid-based gradual density decrease by half.

J Historical weights

Inspired by GMP [54, 41], we incorporate historical weights into our CHTs and CHTss implementa-
tion. During training, we maintain a historical weight matrix that records previously learned weights
throughout the training process. When CHTs and CHTss predict new links, we initialize them using
their corresponding historical weights - specifically, the values they held before being pruned. In this
way, CHTs and CHTss enable weight recovery with preserved memory, allowing the model to retain
valuable prior information.

K Pseudo code of node-based CH link predictor

We present the pseudocode for the node-based CH2-L3 regrowth method in Algorithm 1, which
comprises three main steps.

Step 1: We compute the sets of path length-2 (L2) neighbors from nodes U to U and from V to V .
The computational complexity of this step is

O(m ⟨dmdn⟩+ n ⟨dmdn⟩),

where ⟨dmdn⟩ denotes the average product of degrees dm and dn across all relevant node pairs. In
the case of an ultra-sparse network (e.g., with average degree close to 1), this simplifies to O(m+ n).

Step 2: We treat each destination node along the UU and V V paths as a potential common neighbor
and compute the CH2-L3 score according to Equation (3) in the main text. This step has a time
complexity of

O(m2 + n2).

Step 3: We aggregate the CH2-L3 scores across all hop-3 nodes. This step requires

O(mn ⟨dm⟩+ nm ⟨dn⟩)

time. Under the ultra-sparse assumption, this further reduces to O(mn+ nm).

Combining all steps, the overall time complexity of the node-based CH2-L3 regrowth procedure is

O(mn ⟨dm⟩+ nm ⟨dn⟩).

Since all operations can be implemented in a matrix-wise manner leveraging GPU acceleration
assuming all matrices as dense, the total time complexity becomes

O(nm2 +mn2).
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Algorithm 1 CH2–L3n

Require: Binary bipartite adjacency matrix AUV ∈{0, 1}m×n ▷ U–to–V edges
Ensure: Score matrix S∈Rm×n with S[i, j] > 0 only if AUV [i, j] = 0
1: function CH2-L3N(AUV )
2: AV U ← A⊤

UV ▷ V →U edges
3: dU ← row-sum(AUV )
4: dV ← row-sum(AV U )

▷ Step 1: two–step paths inside each partition
5: UU ← AUV AV U ▷ U→V →U
6: V V ← AV UAUV ▷ V →U→V

▷ Step 2: CH2-L3n preparatory scores
7: init eUU ← 0m×m, eV V ← 0n×n

8: for i← 1 to m do
9: for j ← 1 to m s.t. j ̸= i and UU [i, j] > 0 do

10: ext← dU [j]− UU [i, j]− 1

11: eUU [i, j]←
UU [i, j] + 1

ext+ 1
▷ # According to Equation (3)

12: end for
13: end for
14: for a← 1 to n do
15: for b← 1 to n s.t. b ̸= a and V V [a, b] > 0 do
16: ext← dV [b]− V V [a, b]− 1

17: eV V [a, b]←
V V [a, b] + 1

ext+ 1
▷ # According to Equation (3)

18: end for
19: end for

▷ Step 3: final CH2–L3n scores
20: init S ← 0m×n

21: for i← 1 to m do
22: for a← 1 to n s.t. AUV [i, a] = 0 do

23: SUV ←
m∑
j=1

eUU [i, j] AUV [j, a]

24: SV U ←
n∑

b=1

eV V [a, b] AV U [b, i]

25: S[i, a]← SUV + SV U

26: end for
27: end for
28: return S
29: end function

L Extra results of LLaMA1b

Language modeling. We present a comparison of CHTs, CHTss, and fully connected network on
language modeling tasks using the LLaMA-1B model on Table 17. The results clearly demonstrate
that CHTs outperform the fully connected (FC) baseline at 70%, even at a high sparsity of 95%,
CHTss achieves a perplexity of 16.51, which is remarkably close to the FC baseline.

Zero-shot performance. We compare CHTs, CHTss, and a fully connected (FC) network on
zero-shot benchmarks, as summarized in Table 20. At 90% and 95% sparsity, CHTs often surpasses
the FC baseline, suggesting improved generalization to unseen data. At 70% sparsity, CHTs is
comparable to FC, whereas at higher sparsity (90–95%) it can exceed FC in accuracy. This pattern
appears at odds with perplexity trends, so we provide additional analysis for readers evaluating
pretrained models on GLUE/SuperGLUE in a zero-shot setting.

A key confound is label imbalance in several tasks: some datasets contain markedly skewed posi-
tive/negative distributions. In practice, we observed that models sometimes emit nearly the same
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Table 17: Validation perplexity of different dynamic sparse training (DST) methods on Open-
WebText using LLaMA-1B across varying sparsity levels.. Lower perplexity corresponds to better
model performance. The performances that surpass the fully connected model are marked with “*".

Sparsity 0.7 0.9 0.95
FC 14.62

CHTs 14.53* 17.14 18.93
CHTss 15.15 15.62 16.51

Table 18: Label imbalance in selected GLUE/SuperGLUE tasks (positive vs. negative counts and
proportions).

Dataset Pos (count, %) Neg (count, %)
CoLA 721 (69.13%) 322 (30.87%)
MRPC 279 (68.38%) 129 (31.62%)
QQP 14,885 (36.82%) 25,545 (63.18%)
BoolQ 2,033 (62.17%) 1,237 (37.83%)

label for most inputs, yielding deceptively strong accuracy if that label matches the dataset majority
class. Table 18 reports the class ratios for representative tasks.

To mitigate this issue, we report Matthews correlation coefficient (MCC) instead of accuracy. MCC
is robust to class imbalance and better reflects the quality of binary predictions. Table 19 shows
averaged MCC over GLUE/SuperGLUE under multiple sparsity regimes.

The 70% sparse models (MCC 0.028 for CHTs; 0.033 for CHTss) are on par with the dense FC
baseline (MCC 0.031), but MCC declines as sparsity increases; at 95% sparsity, negative MCC
indicates predictions are anticorrelated with ground truth (worse than random). We attribute part
of this degradation to compute-limited pretraining budgets (e.g., up to 8.9B tokens for LLaMA-1B
in our runs), which are insufficient to reach the regime where zero-shot performance is reliable at
extreme sparsity. Recommendation: for zero-shot evaluation on imbalanced datasets, prefer MCC (or
similarly balanced metrics) over raw accuracy, especially when comparing across sparsity levels and
training budgets.

M Extra Related Works

More recently, BiDST has elegantly reframed DST as a bi-level optimization problem to co-optimize
the weights and the sparsity mask simultaneously [57]. Other methods improve the training dynamics
itself, such as AC/DC, which alternates between sparse and dense phases [58], or Powerpropagation,
which introduces a sparsity-inducing weight reparameterization [59]. To enhance generalization
in the often-chaotic loss landscape of sparse models, S2-SAM provides an efficient, plug-and-play
sharpness-aware optimizer [60]. Another thrust of research adapts DST for specific architectural
or hardware advantages. For example, SLaK utilizes dynamic sparsity to enable massive, high-
performance kernels in CNNs [61]. CHASE provides a practical method to translate unstructured
dynamic sparsity into hardware-friendly, channel-level sparsity [62]. Addressing network health,
NEURREV proposes a mechanism to revitalize “dormant neurons” that can emerge during training
[63].

N Experiments compute resources

All experiments were conducted on NVIDIA A100 80GB GPUs. MLP and Transformer models were
trained using a single GPU, while LLaMA models were trained using eight GPUs in parallel.
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Table 19: Average MCC on zero-shot GLUE/SuperGLUE. FC denotes the dense fully connected
model.

Metric FC 70% CHTs 70% CHTss 90% CHTs 90% CHTss 95% CHTs 95% CHTss

AVG MCC 0.031 0.028 0.033 0.031 0.022 −0.003 −0.007

Table 20: Zero-shot evaluation of LLaMA-1B across GLUE and SuperGLUE. ACC scores are shown.
Values are mean ± sd over 5 seeds (lm-eval [56]). Red values indicate the top scores over models and
sparsities for a benchmark.

Dataset FC 70 % sparsity 90 % sparsity 95 % sparsity

CHTs CHTss CHTs CHTss CHTs CHTss

CoLA 40.27 ± 1.52 38.83 ± 1.51 44.20 ± 1.54 50.53 ± 1.55 67.88 ± 1.45 68.84 ± 1.43 31.83 ± 1.44
MNLI 32.89 ± 0.47 32.77 ± 0.47 32.65 ± 0.47 32.83 ± 0.47 32.73 ± 0.47 32.91 ± 0.47 32.68 ± 0.47
MRPC 39.95 ± 2.43 40.44 ± 2.43 36.03 ± 2.38 66.42 ± 2.34 38.48 ± 2.41 67.65 ± 2.32 46.81 ± 2.47
QNLI 49.95 ± 0.68 50.96 ± 0.68 49.70 ± 0.68 50.36 ± 0.68 49.79 ± 0.68 49.26 ± 0.68 51.42 ± 0.68
QQP 47.94 ± 0.25 43.40 ± 0.25 49.12 ± 0.25 50.57 ± 0.25 48.22 ± 0.25 36.92 ± 0.24 41.70 ± 0.25
RTE 47.29 ± 3.01 46.93 ± 3.00 55.96 ± 2.99 46.57 ± 3.00 52.71 ± 3.01 52.35 ± 3.01 49.46 ± 3.01
SST-2 65.71 ± 1.61 52.98 ± 1.69 49.66 ± 1.69 49.08 ± 1.69 53.21 ± 1.69 54.59 ± 1.69 49.08 ± 1.69
WNLI 50.70 ± 5.98 49.30 ± 5.98 47.89 ± 5.97 56.34 ± 5.93 50.70 ± 5.98 50.70 ± 5.98 40.85 ± 5.88
Hellaswag 28.98 ± 0.45 28.75 ± 0.45 28.70 ± 0.45 27.57 ± 0.45 28.13 ± 0.45 27.57 ± 0.45 27.53 ± 0.45
Boolq 41.07 ± 0.86 50.89 ± 0.87 48.62 ± 0.87 44.59 ± 0.87 47.46 ± 0.87 55.38 ± 0.87 52.14 ± 0.87
CB 48.21 ± 6.74 50.00 ± 6.74 50.00 ± 6.74 50.00 ± 6.74 50.00 ± 6.74 37.50 ± 6.53 48.21 ± 6.74
Copa 65.00 ± 4.79 62.00 ± 4.88 64.00 ± 4.82 66.00 ± 4.76 63.00 ± 4.85 60.00 ± 4.92 60.00 ± 4.92

Average 46.50 45.60 46.38 49.24 48.53 49.47 44.31
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