
Workshop track - ICLR 2016

NEURAL NETWORK TRAINING VARIATIONS IN SPEECH
AND SUBSEQUENT PERFORMANCE EVALUATION

Ewout van den Berg, Bhuvana Ramabhadran & Michael Picheny
IBM Watson Group
1101 Kitchawan Rd.
Yorktown Heights, NY 10598, USA
{evandenberg,bhuvana,picheny}@us.ibm.com

ABSTRACT

In this work we study variance in the results of neural network training on a wide
variety of configurations in automatic speech recognition. Although this variance
itself is well known, this is, to the best of our knowledge, the first paper that
performs an extensive empirical study on its effects in speech recognition. We
view training as sampling from a distribution and show that these distributions
can have a substantial variance. These observations have important implications
on way results in the literature are reported and interpreted.

1 INTRODUCTION

In automatic speech recognition (ASR), the goal is to develop a combination of language and acous-
tic models that together minimize the decoding word-error rate (WER) on predefined tasks. Re-
cently, deep neural networks and variations, such as convolution neural networks, have been used
with great success in ASR, and motivated by these results as well as those in machine vision, there
is now very active research in network architectures, training algorithms, feature representations,
and data augmentation. The performance of a newly proposed approach is typically evaluated by
comparing it against the performance of a baseline system. This process typically involves exten-
sive tuning of the hyperparameters of the new system followed by re-training and evaluating the
performance of the system. Once an instance of the approach is found that substantially improves
the WER (in the case of ASR), it is concluded that the method, architecture, or training algorithm is
successful.

2 NEURAL NETWORK TRAINING AS SAMPLING

For the vast majority of conventional neural networks, training involves minimizing a cost function
that is highly non-convex. Given that optimization is done with techniques that were designed for
convex problems, such as stochastic gradient descent (SGD), it should come as no surprise that
the solution of a training run depends on the initial starting point, as well as various factors that
affect the optimization process, such as the mini-batch randomization (see also (Choromanska et al.,
2014; Pascanu et al., 2014; Pinto et al., 2009)). Although this phenomenon is rarely discussed
explicitly in the literature, it is common knowledge to the practitioner, and indeed it was leveraged
in work by Hinton et al. (2015) to generate ensembles. Generally, the outcome of the neural network
training is deterministic given the parameters and the state of the pseudo-random number generators
(PRNG); we here exclude asynchronous algorithm, in which the exact timing and network condition
may affect the outcome. Unless controlled explicitly, the PRNG state can be viewed as a hidden
random variable and it then follows that training of a neural network is equivalent to sampling a
result from some distribution that is conditioned on the tunable parameters. Namely, training the
network starting from all finitely many PRNG states gives a mapping from states to results, and
actual training of the network gives the result corresponding to the random initial PRNG state. In the
next section we perform extensive experiments that empirically show what these distributions look
like for practical ASR tasks. We discuss the implications on the evaluation of new methodologies in
Section 4.

1



Workshop track - ICLR 2016

3 NUMERICAL RESULTS

3.1 EXPERIMENT SETUP

For the training and evaluation of the systems we use three datasets. The first two datasets are based
on the English Broadcast News (BN) training corpus (Fiscus et al., 1998) which we pre-process to
obtain 40-dimensional logmel features with speaker-dependent mel filters chosen from a set of 21
possible filters. The first dataset (BN400) contains the complete 400-hour BN training set and a 30-
hour hold-out set. The second dataset (BN50) uses only a subset of the data and defines a 45-hour
training set and a 5-hour hold out set (Kingsbury, 2009). For evaluation we use EARS Dev-04f, as
described by Kingsbury (2009). we generate logmel features based on the 300h Switchboard corpus
(Godfrey & Holliman, 1997; Liu et al., 1995). Evaluation is done on the Hub5-2000 and CallHome
corpora Saon et al. (2015). For all decodes we use the trigram language model as described in
(Kingsbury, 2009).

For the acoustic model we consider both DNN and CNN architectures, each with a softmax output
layer mapping to 5999 tri-phone states for BN and 9300 for Switchboard. The DNN has an input
layer that takes the logmel features with ±4 temporal context for BN and ±5 for SWB. This input
is then transformed through five hidden linear layers, each with a sigmoid activation function and
an output dimension of 1024 for BN and 2048 for SWB, before reaching a softmax output layer.
The CNN consists of two convolution layers (with max pooling and respectively 128 filters of size
9×9×3 and 25 of size 3×4×128), two hidden linear layers with sigmoid activation of size 1024, and a
final output layer. The input features are logmel with±4 frames context and ∆ and ∆2 information.

Most of the training is done by minimizing a cross-entropy loss function using SGD in combination
with the newbob schedule in which the learning rate is halved whenever there is an insufficient
decrease in the held-out loss. In addition, we reset the network weights to those from the previous
epoch whenever the held-out loss increases. For the DNN we apply greedy layerwise pre-training,
with one epoch per layer (Sainath et al., 2012). For the BN50-DNN task we also apply Hessian-free
sequence training Kingsbury (2009); Martens (2010); Kingsbury et al. (2012).

3.2 RESULTS

By controlling the random seeds for the data order and network initialization we can get an empirical
distribution of the neural network training results. Unless otherwise noted, we vary both the param-
eter and data order seeds. We first consider BN50h DNN training with different configurations: (1)
same seed for the parameters, different seeds for the data order, initial learning rate 0.07; (2) same as
(1) but with learning rate 0.08; (3) different seeds for parameters, same seed for the data order; and
(4) different seeds for parameters and data order. For each configuration we train 50 models with dif-
ferent initial seed values over 30 epochs. The kernel density estimation for the final network, with
Gaussian kernels and manually chosen standard deviation, are plotted in Figure 1(a). The largest
variance in results is obtained for setting (4) in which both seeds are varied. Keeping the initial
parameter seed fixed, as done in settings (1,2) reduces the training variance. The variance for setting
(3) in which we only vary the seed for the initial parameters is very small. This suggests, at least in
this case, that the data order affects the final outcome much more than the initial parameters. Fig-
ure 1(b)–(d) respectively show the WER density estimation for settings (2)–(4). The blue and dashed
magenta line indicate estimations obtained for decodings with different acoustic weights. For the
results in blue, the mean is fairly constant. The standard deviation is again largest (0.27) when both
seeds are varied, and smallest (0.13) when the data order is kept fixed and only the initial parameters
differ. Increasing the amount of data often leads to substantial improvement in the WER. This is
reflected in the BN400-DNN results shown in Figure 1(e). We expected the standard deviation in
the results to decrease accordingly, but only found it to decrease from 0.27 to 0.24. The distribution
for CNN training is shown in Figure 1(f). Compared to the equivalent DNN training (3) we see a
slightly lower minimum and mean WER, as well as a smaller standard deviation. The WER for the
SWB systems evaluated on the Hub5-2000 and CallHome test sets are summarized in Figures 1(g)
and (h), respectively. For sequence training we took ten networks from setting (2) and generated
enumerator and denominator lattices using a unigram language model. Labeling the networks n1

through n10 in increasing WER, and the corresponding lattices `1 through `10 we considered three
ST settings: (1) initial network ni, lattices `i; (2) ni and `1; and (3) n1 and `i; for i = 1 . . . 10. The
resulting WERs are plotted in Figure 1(i) and connected by lines for clarity. All ST results can be

2



Workshop track - ICLR 2016

2.5 2.55 2.6
Cross entropy

0

50

100

150

200

250

A
pp

ro
x.

 d
en

si
ty

Data order, lr = 0.007
Data order, lr = 0.008
Network only
Data order and network

15.5 16 16.5 17
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 16.13
Std = 0.19
Min = 15.80

15.5 16 16.5 17
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 16.06
Std = 0.13
Min = 15.75

(a) BN50-DNN (b) BN50-DNN (c) BN50-DNN

15.5 16 16.5 17
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 16.10
Std = 0.27
Min = 15.63

13 13.5 14 14.5 15
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 13.98
Std = 0.24
Min = 13.49

15.5 16 16.5 17
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 15.90
Std = 0.19
Min = 15.34

(d) BN50-DNN (e) BN400-DNN (f) BN50-CNN

14.5 15 15.5 16
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 15.10
Std = 0.14
Min = 14.75

23.5 24 24.5 25 25.5
WER

0

1

2

3

4

A
pp

ro
x.

 d
en

si
ty

Mean = 24.49
Std = 0.17
Min = 24.08

0 2 4 6 8 10
Training instance

14

14.5

15

15.5

16

16.5

17

17.5

W
E

R

Cross-entropy
ST - both
ST - parameters
ST - lattices

(g) SWB-DNN (h) SWB-DNN (i) BN50-DNN

Figure 1: Result obtained for different datasets and neural network types, as indicated next to the
labels. Plot (a) gives the kernel density estimation for the cross-entropy loos; (b–h) give the density
estimates for the word-error rate obtained with SGD; and (i) summarizes the results obtained with
sequence training.

seen to improve substantially over the cross-entropy results. Interestingly, the starting point seems
to be much more important than the network quality used to generate the lattices.

4 DISCUSSION

The results in Figure 1 show that by merely changing the random seeds we obtain a wide range of
word error rates across network settings and data sets. For example in BN50-DNN we obtain 15.6
to 17.0, which far exceeds the impact of many typical algorithm enhancements. In fact, even the
standard deviation (0.27) nearly reaches the 0.3 absolute improvement in WER commonly reported
in the literature. This raises serious questions on how meaningful such results really are. For the
BN50-DNN example, we could sample a baseline from the distribution and then repeatedly sample
other instances and with high probability conclude that the method improves upon itself! Although
this may seem far fetched, extensive fine tuning does essentially correspond to sampling from po-
tentially very similar distributions, thereby increasing the chance of sampling a fortuitous outlier.
Of course, improvements of 0.3 can certainly be meaningful (as shown for example by the decoding
results with different acoustic weights), but based on individual WERs we simply cannot tell. On the
other hand, we concede that extensively sampling the distributions as done in Figure 1 is practically
infeasible. The challenge therefore will be to find a metric for comparing distributions that requires
a minimal number of samples. Until then, we at hope that the results presented in this paper will
raise awareness of this important issue.

3



Workshop track - ICLR 2016

REFERENCES

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. arXiv:1412.0233, 2014.

Jonathan Fiscus, John Garofolo, Mark Przybocki, William Fisher, and David Pallett. 1997 English
Broadcast News Speech (HUB4) LDC98S71, 1998. Linguistic Data Consortium.

John Godfrey and Edward Holliman. Switchboard-1 Release 2 LDC97S62, 1997. Linguistic Data
Consortium, Philadelphia.

Geoffrey Hinton, Oriol Vinyals, and Jeff dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Brian Kingsbury. Lattice-based optimization of sequence classification criteria for neural-network
acoustic modeling. In Proceedings of ICASSP, pp. 3761–3764, 2009.

Brian Kingsbury, Tara Sainath, and Hagen Soltau. Scalable minimum Bayes risk training of deep
neural network acoustic models using distributed Hessian-free optimization. In Proceedings of
Interspeech, 2012.

Fu-Hua Liu, Mike Monkowski, Mirek Novak, Mukund Padmanabhan, Michael Picheny, and Pati-
bandla Srinivasa Rao. Performance of the IBM LVCSR system on the Switchboard corpus. In
Speech Research Syposium, pp. 189, 1995.

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML), 2010.

Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point problem
for non-convex optimization. arXiv:1405.4604, 2014.

Nicolas Pinto, David Doukhan, James J. DiCarlo, and David D. Cox. A high-throughput screening
approach to discovering good forms of biologically inspired visual representation. PLos Comput
Biol, 5(11):e100579, 2009.

Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. Improving training time of deep
belief networks through hybrid pre-training and larger batch sizes. In Proceedings of the NIPS
Workshop on Log-linear Models, 2012.

George Saon, Hong-Kwang J. Kuo, Steven Rennie, and Michael Picheny. The IBM 2015 English
conversational telephone speech recognition system. arXiv:1505.05899, 2015.

4


	Introduction
	Neural network training as sampling
	Numerical results
	Experiment setup
	Results

	Discussion

