
Workshop track - ICLR 2016

INCORPORATING NESTEROV MOMENTUM INTO ADAM

Timothy Dozat
tdozat@stanford.edu

ABSTRACT

This work aims to improve upon the recently proposed and rapidly popular-
ized optimization algorithm Adam (Kingma & Ba, 2014). Adam has two main
components—a momentum component and an adaptive learning rate component.
However, regular momentum can be shown conceptually and empirically to be in-
ferior to a similar algorithm known as Nesterov’s accelerated gradient (NAG). We
show how to modify Adam’s momentum component to take advantage of insights
from NAG, and then we present preliminary evidence suggesting that making this
substitution improves the speed of convergence and the quality of the learned mod-
els.

1 INTRODUCTION

When attempting to improve the performance of a deep learning system, there are a handful of
approaches one can take–by improving the structure of the model, maybe by making it deeper; by
improving the initialization of the model, so that the error signal is evenly distributed throughout the
model parameters; by collecting more data or trying a different regularization technique to prevent
overfitting; and by using a more powerful optimization algorithm, so that better solutions can be
reached in a reasonable amount of time. This work aims to improve the quality of the learned
models by providing a more powerful learning algorithm.

Many popular learning algorithms for optimizing non-convex objectives use some variant of stochas-
tic gradient descent (SGD); this work will consider a subset of such algorithms in its examination.
Algorithm 1 presents SGD with the notation used in this paper–all following algorithms will add to
or modify this basic template:

Algorithm 1 Stochastic Gradient Descent
Require: α0, . . . , αT : The learning rates for each timestep (presumably annealed)
Require: fi(θ): Stochastic objective function parameterized by θ and indexed by timestep i
Require: θ0: The initial parameters

while θt not converged do
t← t+ 1
gt ← ∇θt−1

ft(θt−1)
θt ← θt−1 − αtgt

end while
return θt

2 RELATED WORK

Classical momentum (Polyak, 1964) accumulates a decaying sum (with decay factor µ) of the previ-
ous updates into a momentum vector m and replaces the original gradient step in Algorithm 1 with
that vector. That is, we modify the algorithm to include the following at each timestep:

mt ←µmt−1 + αtgt (1)
θt ←θt−1 −mt (2)

Intuitively, this allows the algorithm to move faster along dimensions of low curvature where the
update is consistently small but in the same direction, and slower along turbulent dimensions where
the direction of the update is significantly oscillating (Sutskever et al., 2013).

1



Workshop track - ICLR 2016

Sutskever et al. (2013) show that Nesterov’s accelerated gradient (NAG) (Nesterov, 1983)–which
has a provably better bound than gradient descent for convex, non-stochastic objectives–can be
rewritten as a kind of improved momentum. If we expand the term mt in the original formulation
of momentum in line 2, we see that the update is equivalent to taking a step in the direction of the
previous momentum vector and a step in the direction of the current gradient:

θt = θt−1 − (µmt−1 + αtgt) (3)
However, the momentum step µmt−1 doesn’t depend on the current gradient gt, so we can get a
higher-quality gradient step direction by updating the parameters with the momentum step before
computing the gradient. Sutskever et al. (2013) propose modifying the gradient computation line in
the loop of Algorithm 1 as in line 4 below to accomplish this:

gt ←∇θt−1
ft(θt−1 − µmt−1) (4)

mt ←µmt−1 + αtgt (5)
θt ←θt−1 −mt (6)

The authors also provide empirical evidence that this algorithm is superior to SGD, classical mo-
mentum, and Hessian-Free (Martens, 2010) for conventionally difficult optimization objectives.

Both classical momentum and NAG define m as a decaying sum over the previous updates; however,
Adaptive moment estimation (Adam) (Kingma & Ba, 2014) defines it instead as a decaying mean
over the previous gradients (this algorithm also includes an adaptive learning rate component not
discussed here; cf. Duchi et al. (2011) and Tieleman & Hinton (2012)).

mt ←µmt−1 + (1− µ)gt (7)

θt ←θt−1 − αt
mt

1− µt
(8)

Using the previous gradients instead of the previous updates allows the algorithm to continue chang-
ing direction even when the learning rate has annealed significantly toward the end of training, re-
sulting in more precise fine-grained convergence. It also allows the algorithm to straightforwardly
correct for the “initialization bias” that arises from initializing the momentum vector to zero (which
is what the (1− µt) term in the denominator of line 8 is for). (Kingma & Ba, 2014) show that their
algorithm outperforms a number of others, including NAG, on a small handful of benchmarks.

3 MODIFYING ADAM’S MOMENTUM

It often helps to gradually increase or decrease µ over time, so for the rest of this section we will
assume a list of values for µ indexed by timestep µ1, . . . , µT in order to aid clarity. Before modifying
Adam’s update rule, we show how to rewrite NAG to be more straighforward to implement (at the
cost of some intuitivity). Rather than updating the parameters with just the momentum step in order
to compute the gradient, then undoing that step to return to the original paramater state, then taking
the momentum step again during the actual update, we can apply the momentum step of timestep
t+ 1 only once, during the update of the previous timestep t instead of t+ 1:

gt ←∇θt−1ft(θt−1) (9)
mt ←µtmt−1 + αtgt (10)
θt ←θt−1 − (µt+1mt + αtgt) (11)

Notice that line 11 is nearly identical to line 3–the only difference is that the update uses µt+1mt

rather than µtmt−1. It is also easy to see that both the momentum step and the gradient step depend
on the current gradient here, unlike with classical momentum.

Now we can use the same trick with Adam’s momentum: first we rewrite Adam’s update step in
terms of mt−1 and gt, as in line 12, then we substitute the next momentum step for the current one,
as in line 13 (taking care of the initialization bias accordingly).

θt ←θt−1 − αt

(
µtmt−1

1−
∏t
i=1 µi

+
(1− µt)gt
1−

∏t
i=1 µi

)
(12)

θt ←θt−1 − αt

(
µt+1mt

1−
∏t+1
i=1 µi

+
(1− µt)gt
1−

∏t
i=1 µi

)
(13)

2



Workshop track - ICLR 2016

When we change Adam in this way, we get Algorithm 2. However, this form of momentum can in
principle be combined with other algorithms that use adaptive learning rates as well, such as Adamax
(Kingma & Ba, 2014) or Equilibrated gradient descent (EGD) (Dauphin et al., 2015).

Algorithm 2 Nesterov-accelerated Adaptive Moment Estimation (Nadam)
Require: α0, . . . , αT ; µ0, . . . , µT ; ν; ε: Hyperparameters
m0;n0 ← 0 (first/second moment vectors)
while θt not converged do

gt ← ∇θt−1ft(θt−1)
mt ← µtmt−1 + (1− µt)gt
nt ← νnt−1 + (1− ν)g2

t

m̂← (µt+1mt/(1−
∏t+1
i=1 µi)) + ((1− µt)gt/(1−

∏t
i=1 µi))

n̂← νnt/(1− νt)
θt ← θt−1 − αt√

n̂t+ε
m̂t

end while
return θt

4 EXPERIMENT

In order to test the performance of this Nesterov-accelerated Adam (Nadam), we train a convolu-
tional autoencoder (adapted from Jones (2015)) with three conv layers and two dense layers in each
the encoder and the decoder to compress images from the MNIST dataset (LeCun et al., 1998) into
a 16-dimensional vector space and then reconstruct the original image (known to be a difficult task).
We tested six optimization algorithms: SGD, momentum, NAG, RMSProp, Adam, and Nadam, all
of which used initialization bias correction and decaying means (rather than decaying sums) where
relevant. The best learning rate found for SGD was .2, for momentum/NAG was .5, for RMSProp
was .001, and for Adam/Nadam was .002. µ, ν, and ε were set to .975, .999, and 1e−8 respectively
(to varying degrees of arbitrarity) and left untuned. The results in Figure 1 show that even though
Nadam and Adam have the most hyperparameters, they achieve the best results even with no tuning
beyond the learning rate (which is generally unavoidable). Critically, Nadam clearly outperforms
the other algorithms–including its parent algorithm Adam–in reducing training and validation loss.

Figure 1: Training and validation loss of different optimizers on the MNIST dataset

5 CONCLUSION

Kingma & Ba (2014) essentially show how to combine classical momentum with adaptive learning
rates, such as RMSProp or EGD, in a clean and elegant way. This work builds on that research
by taking their approach one step further, and improving one of the principle components of their
algorithm without noticeably increasing complexity.

3



Workshop track - ICLR 2016

REFERENCES

Yann Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in Neural Information Processing Systems, pp. 1504–1512,
2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

Mike Swarbrick Jones. Convolutional autoencoders in python/theano/lasagne. Blog post (retrieved
February 17, 2016), April 2015. URL https://swarbrickjones.wordpress.com/
2015/04/29/convolutional-autoencoders-in-pythontheanolasagne/.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), pp. 735–742, 2010.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, volume 27, pp. 372–376, 1983.

Boris Teodorovich Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pp. 1139–1147, 2013.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

4

https://swarbrickjones.wordpress.com/2015/04/29/convolutional-autoencoders-in-pythontheanolasagne/
https://swarbrickjones.wordpress.com/2015/04/29/convolutional-autoencoders-in-pythontheanolasagne/

	Introduction
	Related Work
	Modifying Adam's Momentum
	Experiment
	Conclusion

