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Abstract

Denoising diffusion models are a novel class of generative algorithms that achieve state-of-the-
art performance across a range of domains, including image generation and text-to-image tasks.
Building on this success, diffusion models have recently been extended to the Riemannian
manifold setting, broadening their applicability to a range of problems from the natural and
engineering sciences. However, these Riemannian diffusion models are built on the assumption
that their forward and backward processes are well-defined for all times, preventing them
from being applied to an important set of tasks that consider manifolds defined via a set of
inequality constraints. In this work, we introduce a principled framework to bridge this gap.
We present two distinct noising processes based on (i) the logarithmic barrier metric and
(ii) the reflected Brownian motion induced by the constraints. As existing diffusion model
techniques cannot be applied in this setting, we proceed to derive new tools to define such
models in our framework. We then empirically demonstrate the scalability and flexibility
of our methods on a number of synthetic and real-world tasks, including applications from
robotics and protein design.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021; Ho et al., 2020) have
recently been introduced as a powerful new paradigm for generative modelling. They work as follows: noise
is progressively added to data following a Stochastic Differential Equation (SDE)—the forward noising
process—until it is approximately Gaussian. The generative model is given by an approximation of the
associated time-reversed process called the backward denoising process. This is also an SDE whose drift
depends on the gradient of the logarithmic densities of the forward process, referred as the Stein score.
This score is approximated by leveraging techniques from deep learning and score matching (Hyvärinen,
2005; Vincent, 2011). Building on the success of diffusion models in domains such as images and text, this
framework has recently been extended to a wide range of Riemannian manifolds (De Bortoli et al., 2022;
Huang et al., 2022), broadening their applicability to various important modelling domains from the natural
and engineering sciences—including Lie groups such as the group of rotations SO(3), the group of rigid body
motions SE(3), and many others (see e.g. Trippe et al., 2022; Corso et al., 2022; Watson et al., 2022; Leach
et al., 2022; Urain et al., 2022; Yim et al., 2023).

However, a key assumption of the Riemannian diffusion models introduced in De Bortoli et al. (2022) and
Huang et al. (2022) is that the stochastic processes they consider are defined for all times. While this holds
for a large class of stochastic processes, it is not the case for most manifolds defined via a set of inequality
constraints. For instance, in the case of the hypercube (−1, 1)d equipped with the Euclidean metric, the
Riemannian Brownian motion coincides with the Euclidean d-dimensional Brownian motion (Bt)t∈[0,T ] as
long as Bt ∈ (−1, 1). With probability one, (Bt)t≥0 escapes from (−1, 1), meaning that the Riemannian
Brownian motion is not defined for all times and the frameworks introduced in De Bortoli et al. (2022) and
Huang et al. (2022) do not apply. Such constrained manifolds comprise a wide variety of settings—including
polytopes and convex sets of Euclidean spaces—and are studied across a large number of disciplines, ranging
from computational statistics (Morris, 2002), over robotics (Han & Rudolph, 2006) and quantum physics
(Lukens et al., 2020), to computational biology (Thiele et al., 2013). Deriving principled diffusion models
that are able to operate directly on these manifolds is thus of significant practical importance, as they enable
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Figure 1: The behaviour of different types of noising processes considered in this work defined on the unit
interval. Bt: Euclidean (unconstrained) Brownian motion. B̂t: Log barrier forward noising process. B̄t:
Reflected Brownian motion. All sampled with the same initial point and driving noise. Black line indicates
the boundary.

generative modelling in data-scarce and safety-critical settings in which constraints on the modelled domain
may reduce the number of degrees of freedom or prevent unwanted behaviour.

As sampling problems on such manifolds are important (Kook et al., 2022; Heirendt et al., 2019), a flurry
of Markov chain based methods have been developed to sample from unnormalised densities. Successful
algorithms include the reflected Brownian motion (Williams, 1987; Petit, 1997; Shkolnikov & Karatzas, 2013),
log-barrier methods (Kannan & Narayanan, 2009; Lee & Vempala, 2017; Noble et al., 2022; Kook et al.,
2022; Gatmiry & Vempala, 2022; Lee & Vempala, 2018) and hit-and-run approaches in the case of polytopes
(Smith, 1984; Lovász & Vempala, 2006). In this work, we study the generative modelling counterparts of
these algorithms through the lens of diffusion models. Among existing methods for statistical sampling on
constrained manifolds, the geodesic Brownian motion (Lee & Vempala, 2017) and the reflected Brownian
motion (Williams, 1987) are continuous stochastic processes, and thus well suited for extending the continuous
Riemannian diffusion framework developed by De Bortoli et al. (2022) and Huang et al. (2022). In particular,
we introduce two principled diffusion models for generative modelling on constrained domains based on (i) the
geodesic Brownian motion, leveraging tools from the log-barrier methods, and (ii) the reflected Brownian
motion. In both cases, we show how one can extend the ideas of time-reversal and score matching to these
settings. We empirically demonstrate the scalability and flexibility of these methods on a range of tasks
defined on high-dimensional convex polytopes and the space of symmetric positive definite matrices, including
the constrained conformational modelling of proteins and robotic arms.

2 Background

Riemannian manifolds. A Riemannian manifold is a tuple (M, g) with M a smooth manifold and g a
metric which defines an inner product on tangent spaces. The metric g induces key quantities on the manifold,
such as an exponential map expx : TxM→M, defining the notion of following straight lines on manifolds, a
gradient operator ∇1 and a divergence operator div2. It also induces the Laplace-Beltrami operator ∆ and
consequently a Brownian motion with density (w.r.t. the volume form3) whose density is given by the heat
equation ∂tpt = ∆pt. We refer the reader to Appendix A for a brief introduction to differential geometry, to
Lee (2013) for a thorough treatment and to Hsu (2002) for details on stochastic analysis on manifolds.

Constrained manifolds. In this work, we are concerned with constrained manifolds. More precisely, given
a Riemannian manifold (N , h), we consider a family of real functions {fi : N → R}i∈I indexed by I. We
then define

M = {x ∈ N : fi(x) < 0, i ∈ I}. (1)

In this scenario, {fi}i∈I is interpreted as a set of constraints on N . For example, choosing N = Rd and
affine constraints fi(x) = ⟨ai, x⟩ − bi, x ∈ Rd, we get that M is an open polytope as illustrated in Figure 2.

1The (Riemannian) gradient ∇ is defined s.t. for any smooth f ∈ C∞(M), x ∈ M, v ∈ TxM, g(x)(f(x), v) = df(x)(v).
2The Riemannian divergence acts vector fields and can be defined using the volume form of M.
3We assume that M is orientable and therefore that a volume form exists.
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Figure 2: A convex polytope defined by six con-
straints {fi}i∈I , along with the log barrier po-
tential, and ‘straight trajectories’ under the log-
barrier metric and under the Euclidean metric
with and without reflection at the boundary.

This setting naturally appears in many areas of engineering, biology, and physics (Boyd et al., 2004; Han &
Rudolph, 2006; Lukens et al., 2020).

While the two methods we introduce in Section 3 can be applied to the general framework (1), in our
applications, we focus on two specific settings: (a) polytopes—N = Rd, (b) symmetric positive definite
matrices (SPD) under trace conditions—N = Sd

++.

Continuous diffusion models. We briefly recall the framework for constructing continuous diffusion
processes introduced by Song et al. (2021) in the context of generative modelling over Rd. At minimum
diffusion models need four things: (i) A forward noising process converging to an invariant distribution.
(ii) A time reversal for the reverse process. (iii) A discretization of the continuous-time process for the
forward/reverse process. (iv) A score matching loss — in this paper we will focus on the implicit score
matching loss. Song et al. (2021) consider a forward noising process (Xt)t∈[0,T ] which progressively noises
a data distribution p0 into a Gaussian N(0, Id). More precisely (Xt)t∈[0,T ] is an Ornstein–Uhlenbeck (OU)
process which is given by the following stochastic differential equation (SDE)

dXt = − 1
2 Xtdt + dBt, X0 ∼ p0.

Under mild conditions on p0, the time-reversed process (←−Xt)t∈[0,T ] = (XT−t)t∈[0,T ] also satisfies an SDE
(Cattiaux et al., 2021; Haussmann & Pardoux, 1986) given by

d←−Xt = { 1
2
←−Xt +∇ log pT−t(

←−Xt)}dt + dBt,
←−X0 ∼ pT , (2)

where pt denotes the density of Xt. This construction allows direct sampling of the forward process and
leverages the Euler-Maruyama discretisation to facilitate sampling of the reverse process. Finally, the quantity
∇ log pt is referred as the Stein score and is unavailable in practice. It can be approximated with a score
network sθ(t, ·) trained by minimising a denoising score matching (dsm) loss

L(θ) = E[λt

∥∥∇ log pt|0(Xt|X0)− sθ(t, Xt)
∥∥2],

or an equivalent score matching (ism) loss

L(θ) = E[λt{ 1
2∥sθ(t, Xt)∥2 + div(sθ)(t, Xt)}] + C, (3)

where C ≥ 0 and λt > 0 is a weighting function, and the expectation is taken over t ∼ U([0, T ]) and (X0, Xt).
For an arbitrarily flexible score network, the global minimiser θ⋆ = argminθL(θ) satisfies sθ⋆(t, ·) = ∇ log pt.

3 Inequality-constrained diffusion models

We are now ready to introduce our methodology to deal with manifolds defined via inequality constraints (1).
In Section 3.1, we propose a Riemannian diffusion model endowed with a metric induced by a log-barrier
potential. In Section 3.2, we introduce a reflected diffusion model. While both models extend classical
diffusion models to inequality-constrained settings, they exhibit very different behaviours. We discuss their
practical differences in Section 5.1.
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3.1 Log-barrier diffusion models

dXt = 1
2
div(g−1)(Xt)dt+ g−1/2(Xt)dBt

Figure 3: Convergence of the Barrier Langevin dynam-
ics on the unit interval to the uniform distribution.

(N , h) (M,∇2ϕ)

Original space Constrained space

Figure 4: Illustrative diagram of the barrier method
and the change of metric.

Barrier Langevin Dynamics. Barrier methods work by constructing a smooth potential ϕ : M→ R
such that it blows up on the boundary of a desired set, see Nesterov et al. (2018). Such potentials are at
the basis of interior methods in optimisation (Boyd et al., 2004). Among these functions, the logarithmic
barrier is the most popular among practitioners (Lee & Vempala, 2017). For a convex polytope M defined
by the constraints Ax < b, with A ∈ Rm×d and b ∈ Rm, the logarithmic barrier ϕ : M→ R+ is given for
any x ∈M by

ϕ(x) = −
∑m

i=1 log(⟨Ai, x⟩ − bi). (4)
Assuming that ∥Ai∥ = 1, we have that for any x ∈M, ϕ(x) = −

∑m
i=1 log(d(x, ∂Mi)), where ∂Mi = {x ∈

Rd : ⟨Ai, x⟩ = b}. More generally we can define for any x ∈M

ϕ(x) = −
∑m

i=1 log(d(x, ∂Mi))

where d(x, ∂Mi) computes the minimum geodesic distance from x to the boundary ∂M. In general this is a
highly non-trivial optimization problem, contrary to the polytope case which admits a simple closed form.

While developed and most commonly used in optimisation, barrier methods can also be used for sampling
(Lee & Vempala, 2017). The core idea of barrier methods is to ‘warp the geometry’ of the constrained space,
stretching it as the process approaches the boundary so it never hits it, hence bypassing the need to explicitly
deal with the boundary. Assuming ϕ to be strictly convex and smooth, its Hessian ∇2ϕ is positive definite
and thus defines a valid Riemannian metric on M. The formal approach to ’warping the geometry’ of the
convex space with the boundary is to endow M with the Hessian as a Riemannian metric g = ∇2ϕ, making
it into a Hessian Manifold, see Shima & Yagi (1997). In the special case where the barrier is given by (4), we
get for any x ∈M

g(x) = A⊤S−2(x)A with S(x) = diag(bi − ⟨Ai, x⟩)i.

Equipped with this Riemannian metric, we consider the following Langevin dynamics as a forward process

dXt = 1
2 div(g−1)(Xt)dt + g(Xt)−

1
2 dBt, (5)

with div(F )(x) ≜ (div(F1)(x), . . . , div(Fd)(x))⊤, for any smooth F : Rd → Rd. Under mild assumptions on
M, div(g−1) and g−1 we get that (Xt)t≥0 is well-defined and for any t ≥ 0, Xt ∈M. In particular, for any
t ≥ 0, Xt does not reach the boundary. This stochastic process was first proposed by Lee & Vempala (2017)
in the context of efficient sampling from the uniform distribution over a polytope. Under similar conditions,
Xt admits a density pt w.r.t. the Lebesgue measure and we have that ∂tpt = 1

2 Tr(g−1∇2pt). In addition,
(Xt)t≥0 is irreducible. Hence, assuming that M is compact, the uniform distribution on M is the unique
invariant measure of the process (Xt)t≥0 and (Xt)t≥0 converges to the uniform distribution in some sense.
We refer the reader to Appendix C for a proof of these results.

Time-reversal. Assuming that g−1 and its derivative are bounded on M, the time-reversal of (5) is given
by Cattiaux et al. (2021), in particular we have

d←−Xt = [− 1
2 div(g−1) + div(g−1)+g−1∇ log pT−t](

←−Xt)dt + g(←−Xt)−
1
2 dBt,

=
[ 1

2 div(g−1) + g−1∇ log pT−t

]
(←−Xt)dt + g(←−Xt)−

1
2 dBt. (6)
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←−X0 is initialised with the uniform distribution on M (which is close to the one of XT for large T ).

The estimation of the score term ∇ log pt is done by minimising the ism loss function (3). We refer to
Section 3.3 for details on the training and parameterisation.

Sampling. Sampling from the forward (5) and backward (6) processes, once the score is learnt, requires
a discretisation scheme. We use Geodesic Random Walks (GRW) (Jørgensen, 1975) for this purpose, see
Algorithm 1. This discretisation is a generalisation of the Euler-Maruyama discretisation of SDE in Euclidean
spaces, where the + operator is replaced by the exponential mapping on the manifold, computing the
geodesics.

Algorithm 1 Geodesic Random Walk. Discretisation of the SDE dXt = d(t, Xt)dt + dBt.
Require: T (simulation time), N (number of steps), Xγ

0 (initial point), d (drift function)
γ = T/N
for k ∈ {0, . . . , N − 1} do

Zk+1 ∼ N(0, Id)
Wk+1 = γd(kγ, Xk) +√γZk+1
Xγ

k+1 = expXk
[Wk+1] ≈ projM(Xk + Wk+1)

return {Xk}N
k=0

However, contrary to De Bortoli et al. (2022), we will not have access explicitly to the exponential mapping
of the Hessian manifold. Instead, we rely on an approximation, using a retraction (see Absil & Malick (2012);
Boumal (2023) for a definition and alternative schemes).

3.2 Reflected diffusion models

dB̄t = dBt − dkt |k|t

Figure 5: Left: Convergence of the reflected Brownian motion on the unit interval to the uniform distribution.
Right: Value of |k|t for the trajectory samples on the left through time.

Another approach to deal with the geometry of M is to use the standard metric h and forward dynamics of
N and constraining it to M by reflecting the process whenever it would encounter a boundary. We will first
assume that M is compact and convex. To simplify the presentation we focus on the Euclidean case N = Rd

with smooth boundary ∂M4.

The key difference between this approach and the barrier approach is that in the reflected case we leave
the geometry unchanged, so all we need to do is show that the dynamics induced by reflecting the forward
process whenever it hits the boundary leads to an invariant distribution and admit a time-reversal.

It is worth noting that while barrier approaches have received considerable theoretical attention in the
sampling literature (Lee & Vempala, 2017; Noble et al., 2022), reflected methods have remained comparatively
undeveloped from the methodological and practical point of view. In the next section, we recall the basics of
reflected stochastic processes.

Skorokhod problem. The reflected Brownian motion is defined as the solution to the Skorokhod problem.
Roughly speaking a solution to the Skorokhod problem consists into two coupled processes (B̄t, kt)t≥0 such

4We refer to Appendix G for a definition of smooth boundary.
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that (B̄t)t≥0 acts locally as a Euclidean Brownian motion (Bt)t≥0 and kt compensates for the excursion
of (Bt)t≥0 so that (B̄t)t≥0 remains in M. We say that (B̄t, kt)t≥0 is a solution to the Skorokhod problem
(Skorokhod, 1961) if (kt)t≥0 and (B̄t)t≥0 are two processes satisfying mild conditions, see Appendix D for a
rigorous introduction, such that for any t ≥ 0,

B̄t = B̄0 + Bt − kt ∈M, (7)

and |k|t =
∫ t

0 1B̄s∈∂Md|k|s, kt =
∫ t

0 n(B̄s)d|k|s, where (|k|t)t≥0 is the total variation of (kt)t≥0 and we recall
that n is the outward normal to M5. When (B̄t)t≥0 hits the boundary, the condition kt =

∫ t

0 n(B̄s)d|k|s,

tells us that −kt “compensates” for B̄t by pushing the process back into M along the inward normal −n,
while the condition |k|t =

∫ t

0 1B̄s∈∂Md|k|s can be interpreted as kt being constant when (B̄t)t≥0 does not
hit the boundary. As a result (B̄t)t≥0 can be understood as the continuous-time counterpart to the reflected
Gaussian random walk. The process (kt)t≥0 can be related to the notion of local time (Revuz & Yor, 2013)
and quantifies the amount of time (B̄t)t≥0 spends at the boundary ∂M. Lions & Sznitman (1984, Theorem
2.1) ensure the existence and uniqueness of a solution to the Skorokhod problem. One key observation is
that the event {B̄t ∈ ∂M} has probability zero (Harrison & Williams, 1987, Section 7, Lemma 7). As in the
unconstrained setting, one can describe the dynamics of the density of B̄t.
Proposition 3.1 (Burdzy et al. (2004)). For any t > 0, the distribution of B̄t admits a density w.r.t. the
Lebesgue measure denoted pt. In addition, we have for any x ∈ int(M) and x0 ∈ ∂M

∂tpt(x) = 1
2 ∆pt(x), ∂npt(x0) = 0, (8)

where we recall that n is the outward normal to M.

Note that contrary to the unconstrained setting, the heat equation has Neumann boundary conditions.
Similarly to the compact Riemannian setting (Saloff-Coste, 1994) it can be shown that the reflected Brownian
motion converges to the uniform distribution on M exponentially fast (Loper, 2020; Burdzy et al., 2006), see
Section 3.2. Hence, (B̄t)t≥0 is a candidate for a forward noising process in the context of diffusion models.

Time-reversal. In order to extend the diffusion model approach to the reflected setting, we need to derive
a time-reversal for (B̄t)t∈[0,T ]. Namely, we need to characterise the evolution of (←−Xt)t∈[0,T ] = (B̄T−t)t∈[0,T ].
It can be shown that the time-reversal of (B̄t)t∈[0,T ] is also the solution to a Skorokhod problem.

Theorem 3.2. There exist (←−k t)t≥0 a bounded variation process and a Brownian motion (Bt)t≥0 such that

←−Xt =←−X0 + Bt +
∫ t

0 ∇ log pT−s(←−Xs)ds−
←−k t.

In addition, for any t ∈ [0, T ] we have

←−
|k|t =

∫ t

0 1←−Xs∈∂Md
←−
|k|s,

←−k t =
∫ t

0 n(←−Xs)d
←−
|k|s.

The proof, see Appendix G, follows Petit (1997) which provides a time-reversal in the case where M is the
positive orthant. It is based on an extension of Haussmann & Pardoux (1986) to the reflected setting, with a
careful handling of the boundary conditions. In particular, contrary to Petit (1997), we do not rely on an
explicit expression of pt but instead use the intrinsic properties of (kt)t≥0. Informally, Theorem 3.2 means
that the process (←−Xt)t∈[0,T ] satisfies

d←−Xt = ∇ log pT−t(
←−Xt)dt + dBt − d←−k t, (9)

which echoes the usual time-reversal formula (2). In practice, in order to sample from (←−Xt)t∈[0,T ], one needs
to consider the reflected version of the unconstrained dynamics d←−Xt = ∇ log pT−t(

←−Xt)dt + dBt.
5We extend the normal n to the whole space by letting n(x) = 0 if x ̸∈ ∂M.
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Algorithm 2 Reflected step algorithm. The algorithm operates by repeatedly taking geodesic steps until one
of the constraints is violated, or the step is fully taken. Upon hitting the boundary we parallel transport the
tangent vector to the boundary and then reflect it against the boundary. We then start a new geodesic from
this point in the new direction. The arg intersectt function computes the distance one must travel along a
geodesic in direction s til constraint fi is intersected. For a discussion of paralleltransport, expg and reflect
please see Appendix A.
Input: x ∈M, v ∈ TxM, {fi}i∈I

ℓ← ∥v∥g
s← v/∥v∥g
while ℓ ≥ 0 do

di = arg intersectt

[
expg(x, ts), fi

]
i← arg mini di s.t. di > 0
α← min(di, ℓ)
x′ ← expg(x, αs)
s← paralleltransportg(x, s, x′)
s← reflect(s, fi)
ℓ← ℓ− α
x← x′

return x

Algorithm 3 Reflected Random Walk. Discretisation of the SDE dXt = b(t, Xt)dt + dBt − dkt.
Require: T (simulation time), N (number of steps), Xγ

0 (initial point), {fi}i∈I (boundary functions)
γ = T/N
for k ∈ {0, . . . , N − 1} do

Zk+1 ∼ N(0, Id)
Xγ

k+1 = ReflectedStep[Xγ
k ,
√

γZk+1, {fi}i∈I ]
return {Xγ

k }N
k=0

Sampling. In practice, we approximately sample the reflected dynamics by considering the Markov chain
given by Algorithm 3. We refer to Pacchiarotti et al. (1998); Bossy et al. (2004) for weak convergence results
on this numerical scheme in the Euclidean setting.

Likelihood evaluation. In the case of a reflected Brownian motion, it is possible to compute an equivalent
ODE in order to perform likelihood evaluation. The associated ODE was first derived in Lou & Ermon (2023).
The form of the ODE and the proof that it remains in M are postponed to Appendix F.

3.3 Loss and score network parameterisation

In order to train log-barrier and reflected diffusion models we prove that we can use a tractable score matching
loss in constrained manifolds. We will prove that the implicit score-matching loss leads to the recovery of
the correct score when we have a boundary, so long as we enforce that the score is zero on the boundary
(see Appendix E.1). This proof holds for both the log-barrier and the reflected process.

Proposition 3.3. Let s ∈ C∞([0, T ]× Rd,Rd) such that for any x ∈ ∂M and t ≥ 0, st(x) = 0. Then, there
exists C > 0 such that

E[∥∇ log pt − st∥2] = E[∥st∥2 + 2 div(st)] + C,

where E is taken over Xt ∼ pt and t ∼ U([0, T ]).

This result immediately implies we can optimise the score network using the ism loss function so long as we
enforce a Neumann boundary condition. The estimation of the score term ∇ log pt is also done by minimising
the ism loss function (3).
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Figure 6: Reflection against a linear boundary. For a step s with magnitude
|s| and direction ŝ the distance to the boundary described by the normal n̂ and
offset b is d = ⟨ŝ,xt⟩−b

⟨ŝ,n̂⟩ . The reflected direction is given by ŝ′ = ŝ− 2⟨ŝ, n̂⟩n̂.

Figure 7: Reflection against a spherical boundary. For a sphere of radius
r, the distance to the boundary from xt in direction s is given by d =
1
2 (⟨ŝ, xt⟩2 + 4(r2 − ∥xt∥2))1/2 − 1

2 ⟨ŝ, xt⟩. The normal at the intersection can
be computed as the unit vector in the direction −2(dŝ + xt), and then ŝ′ as
above.

The score term ∇ log pT−t appearing in both time-reversal processes (6) and (9) is intractable. It is thus
approximated with a score network sθ(t, ·) ≈ ∇ log pt. We use a multi-layer perceptron architecture with sin
activation functions, see Appendix J for more details on the experimental setup. Due to boundary condition
(8), the normal component of the score is zero at the boundary in the reflected case. A similar result holds in
the log-barrier setting. This is additionally required for our proof of the ism loss.

Following Liu et al. (2022) we can accommodate this in our score parameterisation by additionally scaling
the score output of the neural network by a monotone function h(d(x, ∂M)) where d is the distance
from x to the boundary, where h(0) = 0. In particular we use a clipped ReLU function: sθ(t, x) =
min(1, ReLU(d(x, ∂M)− δ)) ·NNθ(t, x) with δ > 0 a threshold so the model is forced to be zero “close” to the
boundary as well as exactly on the boundary, see Appendix J for an illustration. The inclusion of this scaling
function is necessary to produce reasonable results as we show in Appendix E.2 The weighting function in (3)
is set to λt = (t + 1).

The forward processes (5) and (7) for the barrier and reflected methods cannot be sampled in closed form, so
at training time samples from the conditional marginals p(Xt|X0) are obtained by discretising these processes.
As to take the most of this computational overhead, we use several samples from the discretised forward
trajectory (Xt1 , · · · , Xtk

|X0) instead of only using the last sample.

4 Related Work

Sampling on constrained manifolds. Sampling from a distribution on a space defined by a set of
constraints is an important ingredient in several computational tasks, such as computing the volume of a
polytope (Lee & Vempala, 2017). Incorporating such constraints inside MCMC algorithms while preserving
fast convergence properties is an active field of research (Kook et al., 2022; Lee & Vempala, 2017; Noble et al.,
2022). In this work, we are interested in sampling from the uniform distribution defined on the constrained
set in order to define a proper forward process for our diffusion model. Log-barrier methods such as the
Dikin walk or Riemannian Hamiltonian Monte Carlo Kannan & Narayanan (2009); Lee & Vempala (2017);
Noble et al. (2022) change the geometry of the underlying space and define stochastic processes which never
violate the constraints, see Kannan & Narayanan (2009); Noble et al. (2022) for instance. If we keep the
Euclidean metric, then unconstrained stochastic processes might not be well-defined for all times. To counter
this effect, it has been proposed to reflect the Brownian motion Williams (1987); Petit (1997); Shkolnikov &
Karatzas (2013). Finally, we also highlight hit-and-run approaches (Smith, 1984; Lovász & Vempala, 2006)
which generalise Gibbs’ algorithm and enjoy fast convergence properties provided that one knows how to
sample from the one-dimensional marginals.

Diffusion models on manifolds. De Bortoli et al. (2022) extended the work of Song et al. (2021) to
Riemannian manifolds by defining forward and backward stochastic processes in this setting. Concurrently, a
similar framework was introduced by Huang et al. (2022) extending the maximum likelihood approach of
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Table 1: MMD metrics between synthetic data of varying dimension and samples from trained constrained
diffusion models. Bold indicates best results.

Space Dimension Log-barrier Reflected

[−1, 1]d
2 0.066±0.006 0.055±0.015

3 0.209±0.077 0.080±0.004

10 0.330±0.004 0.313±0.048

Space Dimension Log-barrier Reflected

∆d
2 0.050±0.012 0.043±0.002

3 0.238±0.009 0.181±0.007

10 0.275±0.015 0.290±0.009

Data Log-barrier Reflected
(a) 2D square data.

Data Log-barrier Reflected
(b) 2D Dirichlet data.

Figure 8: Histograms of samples from the data distribution and from trained constrained diffusion models.

Huang et al. (2021). Existing applications of denoising diffusion models on Riemannian manifolds have been
focused on well-known manifolds for which one can find metrics so that the framework of De Bortoli et al.
(2022) applies. In particular, on compact Lie groups, geodesics and Brownian motions can be defined in a
canonical manner. Their specific structure can be leveraged to define efficient diffusion models Yim et al.
(2023). Leach et al. (2022) define diffusion models on SO(3) for rotational alignment, while Jing et al. (2022)
consider the product of tori for molecular conformer generation. Corso et al. (2022) use diffusion models on
R3 × SO(3)× SO(2) for protein docking applications. RFDiffusion (Watson et al., 2022) and FrameDiff also
incorporate SE(3) diffusion models. Finally, Urain et al. (2022) introduce a methodology for SE(3) diffusion
models with applications to robotics.

5 Experimental results

To illustrate the scalability and flexibility of the constrained diffusion models introduced in Section 3, we first
construct a series of increasingly difficult synthetic tasks on convex polytopes, including the hypercube and
the simplex, in Section 5.1. We then demonstrate their applicability to more practical settings by considering
two real-world problems from robotics and protein design. In particular, we show that our models are able
to learn distributions over the space of d× d symmetric positive definite (SPD) matrices Sd

++ under trace
constraints in Section 5.2—a setting that is essential to describing and controlling the motions and exerted
forces of robotic platforms (Yoshikawa, 1985). In Section 5.3, we use the parametrisation introduced in Han
& Rudolph (2006) to map the problem of modelling the conformational ensembles of proteins under positional
constraints on their endpoints to the product manifold of a convex polytope and a torus. We refer the reader
to Appendix J for more details on the experimental setup. Additionally, the codebase will be made public
upon publication.

5.1 Method characterisation on convex polytopes

First, we aim to assess the scalability of our methods on constrained manifolds of increasing dimensionality.
For this, we focus on polytopes and construct synthetic datasets that represent bimodal distributions—in
particular, we investigate two specific instances of polytopes: hypercubes and simplices. In Appendix J.1 we
also present results on the Birkhoff polytope. We measure the performance of each model via the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012), which is a kernel-based metric between distributions.
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(a) Samples from the data
distribution.

(b) Samples from our log-
barrier diffusion model.

(c) Samples from our re-
flected diffusion model.

(d) Samples from the uni-
form distribution.

Figure 9: Samples of joint distributions over SPD matrices (illustrated as ellipsoids) and their location from
(a) the data distribution, (b) our log-barrier diffusion model, (c) our reflected diffusion model and (d) the
uniform distribution. For visual clarity, a small fraction of samples with a large determinant was omitted
from the plot, see Appendix J.2 for additional results and full correlation plots.

We present a qualitative comparison of the logarithmic barrier and reflected Brownian motion models in
Figure 8, and observe that both methods recover the data distribution on the two-dimensional hypercube
and simplex, although the reflected method seems to produce a better fit. In Table 1, we report the MMD
between the data distribution and the learnt diffusion models. We similarly observe that the reflected method
consistently gives better results than the log-barrier one. One key drawback of the log-barrier method is
the slow convergence of the forward process, as already illustrated in Figure 3. It should also be highlighted
that in order to implement the log-barrier method, one needs to invert a d × d matrix, which requires
O(d3) operations. This prevents the use of the log-barrier method for very high-dimensional applications.
Additionally, although we can derive the likelihood evaluation for both the log-barrier and reflected models
(see Appendix F), in practice the numerical issues in the log-barrier approach prevent actual evaluation.

5.2 Modelling robotic arms under force and velocity constraints

Accurately determining and controlling the movement and exerted forces of robotic platforms is a fundamental
problem in many real-world robotics applications. A kinetostatic descriptor that is commonly used to quantify
the ability of a robotic arm to move and apply forces along certain dimensions is the so-called manipulability
ellipsoid E ∈ Rd (Yoshikawa, 1985) which is naturally described as a symmetric positive definite (SPD)
matrix M ∈ Rd×d (Jaquier et al., 2021). The manifold of such d× d SPD matrices, denoted as Sd

++, is defined
as the set of matrices {x⊤Mx ≥ 0, x ∈ Rd : M ∈ Rd×d}.

In many practical settings, it may be desirable to constrain the volume of E to retain flexibility or limit
the magnitude of an exerted force, which can be expressed as an upper bound on the trace of M, i.e. as
the inequality constraint

∑d
i=1 Mii < C with C > 0. Constraining the rest of the entries of the matrix to

ensure it is SPD is non-trivial. Alternatively, we can parameterise the SPD matrices via their Cholesky
decomposition. Each SPD matrix has a unique decomposition of the form M = LL⊤, where L is a lower
triangular matrix with strictly positive diagonal (Golub & Van Loan, 2013, p.143). Constraining the entries
of this matrix simply requires ensuring the diagonal is positive. The trace of the SPD matrix is given by
Tr(M) = Tr(LL⊤) =

∑
ij L2

ij , and results in the constraint on the entries of L to live in a ball of radius C.

We additionally model the two-dimensional position of the arm. In summary, the space over which we
parameterise the diffusion models is defined as {L ∈ Rd(d+1)/2 : Li,i > 0,

∑
i,j L2

i,j < C} × R2. Under the
Euclidean metric, we can apply both our log-barrier and reflected approaches. The positive diagonal (linear)
constraint is handled similarly to the polytope setting. The reflection on the ball boundary is defined and
illustrated on Figures 6 and 7. Using this framework, we model the datasets presented in Jaquier et al. (2021)
(see Appendix H for full experimental details). The joint distribution over the SPD matrices (represented as
ellipsoids) and their positions is presented in Figure 9. We qualitatively observe that the reflected method is
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(a) An illustrative diagram of the parameterisation
used for the conformational modelling of the Cα trace
of a cyclic peptide, introduced in Han & Rudolph
(2006).

(b) The convex polytope constraining the diagonals
of the triangles for the given bond lengths in the
illustrated molecule. The total design space is the
product of this polytope with the 4D flat torus.

Figure 10: Illustrations of the parametrisation used to model distribution of polypeptide backbone conforma-
tions under anchor point distance constraints as the product of a convex polytope P and torus T: P3 × T4.

able to fit the joint data distribution. Quantitatively, the reflected method achieves an MMD of 0.161 as
opposed to 0.247 for the log-barrier one.

5.3 Modelling protein loops with anchored endpoints

Modelling the conformational ensembles of proteins is an important task in the field of molecular biology,
particularly in the context of bioengineering and drug discovery. In many data-scarce practical settings
such as antibody or enzyme design, it is often unnecessary or even undesirable to model the structure of an
entire protein, as researchers are primarily interested in specific functional sites with distinct biochemical
properties. However, generating conformational ensembles for such substructural elements necessitates
positional constraints on their endpoints to ensure that they can be accommodated by the remaining scaffold.

This problem can be reformulated as modelling a spatial chain with spherical joints and fixed end points.
Following the framework outlined in Han & Rudolph (2006), we parametrise the conformations of such chains
with d fixed-length links and arbitrary end-point constraints as the product of a convex polytope P and torus
T: P(d−2) × T(d−1). The essential idea in this parameterisation is to fix one end point as an “anchor” and
model the chain as the series of triangles formed by the anchor and each pair of adjacent joints in the chain.
A point in the polytope corresponds to the lengths of the diagonals of these triangles, and a point in the
torus to the angles between each subsequent triangle. See Figure 10 for an illustration and Appendix I.1 for a
full description.

Using this framework, we model the conformational landscape of the cyclic peptide c-AAGAGG, consisting
of a circular polypeptide chain with coinciding endpoints. We generate 106 backbone conformations using
tools from molecular dynamics (Eastman et al., 2017; Hornak et al., 2006) and divide them into training and
evaluation datasets, (see Appendix I.2 for full experimental details). Drawing on the definition above, the
space on which we effectively parameterise our constrained diffusion models for a circular polypeptide chain
of length d = 6 is given by the product manifold P3 × T4.

To learn a distribution over this space, we leverage the methodology introduced in Section 3 for the polytope
component P3 and in De Bortoli et al. (2022) for the torus component T4. A qualitative comparison of
samples from the data distribution, our log-barrier and reflected diffusion models, and the uniform distribution
is presented in Figures 11a to 11d. For enhanced visual clarity, we project the modelled spatial chain onto
the 2D plane by removing the (unconstrained) torus component of the product manifold and only plotting
the planar chains encoded by the (constrained) polytope component (a correlation plot of the full product
manifold is presented in Figure 26). It is immediately obvious that the data distribution is highly multimodal,
encompassing a large number of locally optimal conformational clusters. Nevertheless, both our reflected and
log-barrier diffusion models are able to robustly approximate this challenging energetic landscape, producing
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(a) Samples from the data
distribution.

(b) Samples from our log-
barrier diffusion model.

(c) Samples from our re-
flected diffusion model.

(d) Samples from the uni-
form distribution.

Figure 11: Planar projection of the modelled Cα chains from (a) the training dataset, (b) our log-barrier
diffusion model, (c) our reflected diffusion model and (d) the uniform distribution. Additional results and full
correlation plots are postponed to Appendix J.3.

samples that reflect key conformational states. Interestingly when we quantiatively evaluate the sample the
log-barrier and the reflected models both learn about the same with respect to an RBF MMD: 0.0319±0.001 for
the log-barrier and 0.321±0.021 for the reflected. The improved relative performance of the log-barrier method
seems likely due to the fact that the data for this experiment is largely in the interior of the constrained set,
not close to the boundary.

6 Discussion

Learning complex distributions supported on constrained spaces is a crucial task in many natural and
engineering sciences, including computational statistics (Morris, 2002), robotics (Han & Rudolph, 2006),
quantum physics (Lukens et al., 2020) and computational biology (Thiele et al., 2013). In this work we
extend continuous diffusion models to this setting, proposing two complementary approaches—one based on
log-barrier methods and the other on the reflected Brownian motion. For both approaches, we derive the time-
reversal formula, propose discretisation schemes and extend the score-matching toolbox. We demonstrate the
utility of our methods on a range of synthetic and real-world tasks, including the constrained conformational
modelling of proteins and robotic arms, and find that reflected methods, while enjoying fewer theoretical
guarantees than their log-barrier counterparts, often yield preferable results.

Concurrently to our work, Lou & Ermon (2023) introduced a reflected diffusion model for image applications.
They introduce reflected stochastic processes in order to give a methodological and theoretical justification to
the thresholding procedure commonly used in large image diffusion models such as (Saharia et al., 2022).

We conclude by highlighting important future directions. First, the computational cost of performing the
reflection when discretising the reflected Brownian motion is high. Finding numerically efficient approximations
of the reflected process is therefore necessary to extend this methodology to very high dimensional settings.
Second, the retraction used in place of the exponential map for the barrier method leads to a high number of
discretisation steps to ensure a good approximation. Designing a faster forward process for the log-barrier
method is key to targeting more complex distributions.
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Supplementary to:
Diffusion Models for Constrained Domains

Introduction

In this supplementary, we first recall some key concepts from Riemannian geometry in Appendix A. In
Appendix B we remind the expression of the Brownian motion in local coordinates. Details about the geodesic
Brownian motion are given in Appendix C. Background on the Skorokhod problem is given in Appendix D.
In Appendix E we derive the implicit score matching loss. We give details about the likelihood evaluation
in Appendix F. Then in Appendix G we prove the time-reversal formula of reflected Brownian motion. In
Appendix I we give some background on the conformational modelling of proteins backbone for the experiment
in Section 5.3. In Appendix H we detail the geometrical constraint arising from the configurational robotics
arm modelling experiment from Section 5.2. Additional results, training and miscalleneous experimental
details are reported in Appendix J.

A Manifold concepts

For readers unfamiliar with Riemannian geometry here we give a brief overview of some of the key concepts.
This is not a technical introduction, but a conceptual one for the understanding of terms. For a technical
introduction, we refer readers to Lee (2013). A Riemannian manifold is a tuple (M, g) with M a smooth
manifold and g a metric which defines an inner product on tangent spaces.

Figure 12: Example charts of the
2D manifold S2.

A smooth manifold is a topological space which locally can be described
by Euclidean space. It is characterised by a family of charts {U ⊂M, ϕ :
U → Rd}, homeomorphic mappings between subsets of the manifold
and Euclidean space. The collection of charts must cover the whole
manifold. For the manifolds to be smooth the charts must be smooth,
and the transition between charts where their domains overlap must also
be smooth.

The metric on a Riemannian manifold gives the manifold a notion of
distance and curvature. The same underlying smooth manifold with
different metrics can look wildly different. The metric is defined as a
smooth choice of positive definite inner product on each of the tangent
spaces of the manifold. That is we have at every point a symmetric
bilinear map

g(p) : TpM× TpM→ R

The tangent space of a point on a manifold is the generalisation of the
notion of tangent planes and can be thought of as the space of derivatives of scalar functions on the manifold
at that point. The collection of all tangent spaces is written as TM =

⋃
p∈M TpM and is called the tangent

bundle. It is also manifold. Vector fields on manifolds are defined by making a choice of tangent vector at
every point on the manifold in a smooth fashion. The space of vector fields is written at Γ(TM) and is more
technically the space of sections of the tangent bundle.

One thing that the metric itself does not immediately define is how different tangent spaces at points on the
manifold relate to one another. For this, we need additionally the concept of a connection. A connection is a
map that takes two vector fields and produces a derivative of the first with respect to the second, that is a
function ∇ : Γ(TM)× Γ(TM)→ Γ(TM) and it typically written as ∇(X, Y ) = ∇XY . Such a connection
must for X, Y, Z ∈ Γ(TM) and smooth functions on the manifold a, b :M→ R obey the following conditions:

(a) ∇aX+bY Z = a∇XZ + b∇Y Z,
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(b) ∇X(Y + Z) = ∇XY +∇XZ,

(c) ∇X(aY ) = ∂XaY + a∇XY ,

where ∂XaY is the regular directional derivative of aY in the direction X. These conditions ensure the
connection is a well-defined derivative.

Figure 13: Top: Parallel transport
of vectors along the red path with
non-zero torsion. Bottom: Paral-
lel transport of vectors along the
red path with zero torsion. Both
under the Euclidean metric.

On a given manifold, there are infinitely many connections. Fortunately,
there is a natural choice, called the Levi-Cevita connection if we impose
two additional conditions:

(a) X · (g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ),

(b) [X, Y ] = ∇XY −∇Y X,

where [·, ·] is the Lie bracket. The first condition ensures that the metric
is preserved by the connection. That is to say, the parallel transport (to
be defined shortly) using the connection leaves inner products unchanged
on the manifold. The second ensures the connection is torsion-free. The
change in tangent space along a geodesic (again to be defined shortly) can
be described in two parts, the curvature, how the tangent space rotates
perpendicular to the direction of travel, and the torsion, how the tangent
space rotates around the axis of the direction of travel. The curvature of
the connection is uniquely fixed by the other 4 conditions (the well-defined

derivative and preservation of the metric). The torsion however is not fixed. By requiring it to be zero we
ensure a unique connection. The requirement of zero torsion also has implications for ensuring integrability
on the manifold.

With the metric and the Levi-Cevita connection in hand, we can define a number of key concepts.

Figure 14: Parallel transport of
vectors along a path on the sphere.

We say that a vector field X is parallel to a curve γ : (0, 1)→M if

∇γ′X = 0

where γ′ : (0, 1)→ Tγ(t)M is the derivative of the path. For two points on
the manifold p, q ∈M and a curve between them, γ, γ(0) = p, γ(1) = q,
for an initial vector X0 ∈ TpM there is a unique vector field X that
is parallel to γ such that X(p) = X0. This induces a map between the
tangent spaces at p and q

τγ : TpM→ TqM

This map is referred as the parallel transport of tangent vectors between
p and q, and this satisfies the condition that for v, u ∈ TpM

g(p)(v, u) = g(q)(τγ(v), τγ(u)).

A geodesic on a manifold is the unique path on the manifold γ : (0, 1)→M
such that ∇γ′γ′ = 0. It is also the shortest path between two points on a manifold in the sense that

L(γ) =
∫ 1

0

√
g(γ(t))(γ′(t), γ(t)),

is minimal out of any path between the start and end of the geodesic. Geodesics give the notion of ‘straight
lines’ on manifolds. We define the exponential map on a manifold as the mapping between an element of the
tangent space at point p, v ∈ TpM and the endpoint of the unique geodesic γ with γ(0) = p and γ′(0) = v.
In the tangent space of a manifold, we require the notion of a reflection in order to reflect geodesics off of
boundary constraints. If at a point in the manifold with have v ∈ TpM and a unit vector normal to the
constraint n ∈ TpM, then the reflection of this vector is given by v′ = v − 2g(v, n)n.
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B Brownian motion in local coordinates

We consider a smooth function f ∈ C∞(M). The Laplace-Beltrami operator ∆M is given by ∆M(f) =
div(grad(f))). In local coordinates we have

div(X) = (det(g)−1/2)
∑d

i=1 ∂i(det(g)1/2Xi),

as well as
grad(f) = g−1∇f.

Therefore, the Laplace-Beltrami operator is given by

∆M(f) =
∑d

i,j=1 g
−1
i,j ∂i,jf + (det(g)−1/2)

∑d
i,j=1 ∂i(det(g)1/2g−1

i,j )∂jf.

Therefore, in local coordinates the infinitesimal generator associated with the Laplace-Beltrami operator is
given by

A(f) =
∑d

i,j=1 g
−1
i,j ∂i,jf + ⟨bi,∇f⟩,

with
bi = (det(g)−1/2)

∑d
j=1 ∂j(det(g)1/2g−1

i,j ). (10)

Therefore, the dual operator associated with A is given by

A⋆(f) =
∑d

i,j=1 ∂i,j(g−1
i,j f)−

∑d
i=1 ∂i(bif).

Note that by letting f = det(g)1/2 we get that A⋆(f) = 0 and therefore we recover that p ∝ det(g) is the
invariant distribution of the Brownian motion.

Langevin dynamics on M. We know that the Brownian motion targets det(g)1/2. Therefore in order to
correct and sample from the uniform distribution we consider the Langevin dynamics

dXt = −grad log(det(g)1/2)(Xt)dt +
√

2dBMt .

Note that in the previous equation grad and BMt are defined w.r.t. the metric of the manifold. In local
coordinates we have

dXt = {b− grad log(det(g)1/2)}(Xt)dt +
√

2g(Xt)−1/2dBt. (11)

where b = {bi}d
i=1 is given in equation 10. In addition, we have

grad log(det(g)1/2) = det(g)−1/2g−1∇det(g). (12)

Using equation 10 we have

bi = (det(g)−1/2)
∑d

j=1 ∂j(det(g)1/2g−1
i,j ) =

∑d
j=1 ∂jg

−1
i,j + grad log(det(g)1/2)i

This can also be rewritten as
divM(g−1) = µ + grad log(det(g)1/2),

with
µi =

∑d
j=1 ∂jg

−1
i,j .

Combining this result and equation 12 we get that equation 11 can be rewritten as

dXt = µ(Xt) +
√

2dBt.

Note that (up to a factor 2) this is the same SDE as the one considered in Lee & Vempala (2017).
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C Geodesic Brownian Motion

In this section, we provide some details on the geodesics Brownian motion introduced in Section 3.1. In the
rest of the section, we make the following assumption.
A1. M⊂ Rd is compact and g−1 : M→ S++

d can be C∞(Rd,Rd×d).

First, we start by showing that the process (Xt)t≥0 defined in equation 5 exists and that we have for any
t ≥ 0, Xt ∈M. We recall that g = ∇2ϕ and limx→∂MΦ(x) = +∞.
Proposition C.1. Assume A1. For any x0 ∈ M, there exists a unique strong solution to equation 5
denoted (Xt)t≥0. In addition, we have that for any t ≥ 0, Xt ∈M almost surely. More precisely, we have
E[ϕ(Xt)] ≤ ϕ(x0) + t.

Proof. A unique strong solution (Xt)t≥0 of equation 5 with starting point x0 ∈M exists since the coefficients
are smooth, see (Ikeda & Watanabe, 2014, Theorem 3.1, p.165). For any A ≥ 0, we define τA = inf{t ≥ 0 :
Φ(Xt) ≥ A}. Note that for any t ∈ [0, τA], Φ(Xt) ∈M. Using Itô formula, we have for any t ≥ 0

E[Φ(Xt∧τA
)] = Φ(x0) + E[

∫ t∧τA

0 Tr(g−1(Xs)∇2Φ(Xs))ds] = Φ(x0) + E[t ∧ τA].

Using Fatou’s lemma, and letting A→ +∞, we conclude the proof.

In the next result, we show that the uniform distribution is the unique invariant probability distribution
for (Xt)t≥0 and that (Xt)t≥0 converges to this invariant distribution. We refer to (Meyn & Tweedie, 1993,
Section 2, p.490) for a definition of irreducibility. We recall that the total variation of a finite (not necessarily
non-negative) measure µ over Rd is given by ∥µ∥TV = sup{µ(A) : A ∈ B(()Rd)}.
Proposition C.2. Assume A1. (Xt)t≥0 is π-irreducible, the uniform distribution over M is the only
invariant probability distribution and limt→+∞ ∥Pt − π∥TV = 0, where Pt is the distribution of Xt for any
t ≥ 0 and π is the uniform distribution over M.

Proof. Since x 7→ div(g−1)(x) and x 7→ g−1 are smooth and g−1(x) is positive definite for any x ∈ M, we
have that (Xt)t≥0 is π-irreducible, extending (Bhattacharya, 1978, Lemma 1.4) to M and using (Meyn &
Tweedie, 1993, Proposition 2.1). In addition, (Xt)t≥0 is T-Feller using (Meyn & Tweedie, 1993, Proposition
3.3). Combining these results and the fact thatM is bounde, we get that (Xt)t≥0 is positive Harris recurrent
(Meyn & Tweedie, 1993, Theorem 3.2). The uniform distribution π is an invariant distribution for equation 5.
Since (Xt)t≥0 is π-irreducible, we get that this invariant measure is unique. Hence, we conclude using (Meyn
& Tweedie, 1993, Theorem 6.1).

Note that the convergence result in total variation could be improved. In particular, quantitative geometric
results could be derived. We finish this section, by applying results from the Malliavin calculus to show that
for any t > 0, Xt admits a density w.r.t. the Lebesgue measure.
Proposition C.3. Assume A1. Then, for any t ≥ 0, Xt admits a smooth density pt w.r.t. the Lebesgue
measure.

Proof. This is a direct consequence of (Nualart, 2006, Theorem 2.3.3).
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D Reflected Brownian Motion and Skorokhod problems

In this section, we provide the basic definitions and results to derive the time-reversal of the reflected Brownian
motion in Appendix G. We follow closely the presentation of Lions & Sznitman (1984) and Burdzy et al.
(2004). We first define the Skorokhod problem for deterministic problems. We consider M to be a smooth
open bounded domain. We recall that the normal vector n is defined on ∂M and we set n(x) = 0 for any
x /∈ ∂M.

Before giving the definition of the Skorokhod problem, we recall what is the space of functions of bounded
variations.
Definition D.1. Let a, b ∈ (−∞, +∞) and f :∈ C([a, b] ,R). We define the total variation of f as

Va,b(f) = sup{
∑n−1

i=0 ∥f(xi+1)− f(xi)∥ : (xi)n−1
i=0 , a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b, n ∈ N}.

f has bounded variations over [a, b] if Va,b(f) < +∞. Let f ∈ C([0, +∞) ,R). f has bounded variations over
[0, +∞) if for any b > 0, f has bounded variations over [0, b].

The notion of bounded variation is a relaxation of the differentiability requirement. In particular, if
f ∈ C1([a, b] ,R), we have Va,b(f) =

∫ b

a
∥f ′(t)∥dt. In the definition of the Skorokhod problem, we will see that

this relaxation is necessary, even in the deterministic setting.

For any function of bounded variation f ∈ C([a, b] ,R) on [a, b], we define |f | : [a, b]→ [0, +∞) given for any
t ∈ [a, b] by |f |t = Va,t(f). Note that |f | is non-decreasing and right-continuous. Therefore, we can define
the measure µ|f | on [a, b], given for any s, t ∈ [a, b] with t ≥ s by µ|f |([s, t]) = |f |(t)− |f |(s). In particular,
for any φ : [a, b]→ R+, we define ∫ b

a
φ(t)d|f |t =

∫ b

a
φ(t)dµ|f |(t).

In addition, f can be decomposed in a difference of two non-decreasing processes right continuous processes
g1, g2, where for any t ∈ [a, b], f(t) = g1(t)− g2(t), g1(t) = |f |t and g2(t) = |f |t − f(t). Hence, for every φ
bounded on [a, b], we can define∫ b

a
φ(t)df(t) =

∫ b

a
φ(t)dg1(t)−

∫ b

a
φ(t)dg2(t).

Note that these definitions can be extended to the setting where f : [a, b]→ Rd.

We begin with the following result, see Lions & Sznitman (1984).
Theorem D.2. Let (xt)t≥0 ∈ C([0, +∞) ,R). Then, there exists a unique couple (x̄t, kt)t≥0 such that

(a) (kt)t≥0 has bounded variation over [0, +∞).

(b) (x̄t)t≥0 ∈ C([0, +∞) ,M).

(c) For any t ≥ 0, xt + kt = x̄t.

(d) For any t ≥ 0, |k|t =
∫ t

0 1x̄s∈∂M(x̄s)d|k|s and kt =
∫ t

0 n(x̄s)d|k|s.

Let us discuss Theorem D.2. First, Theorem D.2-(c) states the original (unconstrained) process (xt)t≥0 can be
decomposed into a constrained version (x̄t)t≥0 and a bounded variation process (kt)t≥0. The process (|k|t)t≥0
counts the number of times the constrained process (x̄t)t≥0 hits the boundary. More formally, we have
|k|t =

∫ t

0 1x∈∂M(x̄s)d|k|s. When, we hit the boundary, we reflect the process. This condition is expressed in
kt =

∫ t

0 n(x̄s)d|k|s.

We now consider the extension to stochastic processes. We are given (Xt)t≥0 such that

dXt = b(Xt)dt + σ(t)dBt,

where (Bt)t≥0 is a d-dimensional Brownian motion. We also assume that b and σ are Lipschitz which implies
the existence and strong uniqueness of (Xt)t≥0. We have the following result Lions & Sznitman (1984).
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Theorem D.3. There exists a unique process (X̄t, kt)t≥0 such that

(a) (kt)t≥0 has bounded variation over [0, +∞) almost surely.

(b) (X̄t)t≥0 ∈ C([0, +∞) ,M).

(c) For any t ≥ 0, X̄t = X̄0 +
∫ t

0 b(X̄s)ds +
∫ t

0 σ(X̄s)dBs − kt.

(d) For any t ≥ 0, |k|t =
∫ t

0 1x̄s∈∂M(x̄s)d|k|s and kt =
∫ t

0 n(x̄s)d|k|s.

The process (Xt)t≥0 is almost surely continuous, so we could apply the previous theorem almost surely
for all the realizations of the process,. However, this does not tell us if the obtained solutions (X̄t, kt)t≥0
form themselves a process. The main difference with Theorem D.2 is in Theorem D.3-(c) which differs from
Theorem D.3-(c). Note that in the case where b = 0 and σ = Id we recover Theorem D.3-(c). This is not true
in the general case. However, it can be seen that for any realization of the process (X̄t)t≥0, we have that
(X̄t, kt)t≥0 is solution of the deterministic Skorokhod problem by letting xt = X̄0 +

∫ t

0 b(X̄s)ds+
∫ t

0 σ(X̄s)dBs.
The backward and forward Kolmogorov equations can be found in Burdzy et al. (2004). Note that the presence
of the process (kt)t≥0 incurs notable complications compared to unconstrained processes. In particular, there
is no martingale problem associated with weak solutions of reflected SDEs but only sub-martingale problems,
see Kang & Ramanan (2017) for instance.
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E Implicit Score Matching Loss

E.1 Proof of ISM

Using the divergence theorem, we have

(1/2)
∫
M ∥sθ(x)−∇ log pt(x)∥2pt(x)dµ(x)

= (1/2)
∫
M ∥sθ(x)∥2pt(x)dµ(x)−

∫
M⟨sθ(x),∇ log pt(x)⟩pt(x)dµ(x) + (1/2)

∫
M ∥∇ log pt(x)∥2pt(x)dµ(x)

= (1/2)
∫
M ∥sθ(x)∥2pt(x)dµ(x)−

∫
∂M⟨sθ(x), n⟩pt(x)dν(x)

+
∫
M div(sθ)(x)pt(x)dµ(x) + (1/2)

∫
M ∥∇ log pt(x)∥2pt(x)dµ(x).

Using that sθ(x) = 0 for all x ∈ ∂M, we get that

(1/2)
∫
M ∥sθ(x)−∇ log pt(x)∥2pt(x)dµ(x)

= (1/2)
∫
M ∥sθ(x)∥2pt(x)dµ(x)+

∫
M div(sθ)(x)pt(x)dµ(x) + (1/2)

∫
M ∥∇ log pt(x)∥2pt(x)dµ(x),

which concludes the proof.

E.2 Importance of scaling function

As discussed in Section 3.3, we include a monotone scaling function h which is zero close to the boundary to
ensure the relevant conditions are met for the score matching loss and the boundary conditions. This may
seem like a technical detail, but is of significant practical importance. Upon removal of the scaling function,
we observe that the learned score functions behave strangely around the boundary in the reverse process,
leading to samples that do not match the forward process. The problems are apparent when comparing the
top three plots of Fig. 15 and Fig. 16. Interestingly, we found that these issues early on in the sampling are
smoothed out by the end of the reverse process, but still lead to a failure to recover the target density.

Figure 15: Reverse process samples for the cyclic peptide dataset from Section 5.3 at t = 1.0, 0.9 (left and
right respectively) trained without the scaling function.
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Figure 16: Reverse process samples for the cyclic peptide dataset from Section 5.3 at t = 1.0, 0.9 (left and
right respectively) trained with the scaling function.
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F Likelihood evaluation

One key advantage of constructing a continuous noising process is that, similarly to Song et al. (2021), we
can evaluate the model’s likelihood via the following probability flow Ordinary Differential Equation (ODE).
In particular, for the Langevin dynamics (5) which we recall

dXt = 1
2 div(g−1)(Xt)dt + g(Xt)−

1
2 dBt,

the following ODE has the same marginal density

dYt =
[ 1

2∇ · g
−1(Yt)− 1

2g
−1(Yt)∇ log pt(Yt)

]
dt.

We conclude this section with a derivation of the equivalent ODE. We highlight that the ODE representation
for reflected diffusion models was first derived in Lou & Ermon (2023). We recall that ifM⊂ Rd is a bounded
open set with smooth boundary then (Burdzy et al., 2004, Theorem 2.2) ensures that the reflected Brownian
motion admits a density w.r.t. the Lebesgue measure. We denote pt this smooth density.
Proposition F.1. Assume that M ⊂ Rd is a bounded open set with smooth boundary. Assume that
(t, x) 7→ ∇ log pt(x) is smooth on [0, +∞)× ∂M. Let (B̄t)t≥0 be the reflected Brownian motion with B̄0 ∼ p0
smooth and supported in M. Let (Xt)t≥0 be given for any t ≥ 0 by dXt = 1

2∇ log pt(Xt)dt and X0 ∼ p0,
where pt denotes the density of B̄t w.r.t. the Lebesgue measure for any t > 0. Then for any t ∈ [0, T ], B̄t

and Yt have the same distribution.

Proof. Since the distributions of (B̄t)t∈[0,T ] and (Yt)t∈[0,T ] satisfy the same Fokker-Planck equation whenever
these processes are well-defined. Therefore, we first show that the process (Yt)t∈[0,T ] is well-defined and
stay in M at all times. Using (Burdzy et al., 2004, Theorem 2.2), we have that ∂pt(x) = 1

2 div(∇ log pt)(x),
for any t > 0 and x ∈ M. Next, we define dXt = 1

2∇ log pt(Xt)dt. Note that (Xt)t≥0 is defined up to an
explosion time T∞ after which we fix Xt = ∞. Denote T0 the first time such that Xt ∈ ∂M. Note that
since p0 is supported on M we have T0 > 0. We denote (Yt)t∈[0,T0] = (XT0−t)t∈[0,T0]. We have that for any
t ∈ [0, T0], dYt = − 1

2∇ log pT0−t(Yt)dt. Since (t, x) 7→ ∇ log pt(x) is smooth on [0, +∞)× ∂M, we get that
for any t ∈ [0, T0], Yt ∈ ∂M. In particular, we have that YT0/2 = XT0/2 ∈ ∂M which is absurd. Therefore
T0 = +∞ (which also implies that T∞ = +∞). Hence, (Xt)t≥0 is a flow on M and therefore for any t ≥ 0,
the density qt of Xt is smooth and satisfies ∂tqt(x) = − 1

2 div(qt∇ log pt)(x). We conclude using the uniqueness
of the solutions to the transport equation for smooth initialisation and coefficients on Rd.
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G Time-reversal for reflected Brownian motion

We start with the following definition.
Definition G.1. Let M⊂ Rd be an open set. M has a smooth boundary if for any x ∈ ∂M, there exists
U ⊂ Rd open and f ∈ C∞(U,R) such that x ∈ U and (a) cl(M) ∩ U = {x ∈ U : f(x) ≤ 0}, (b) ∇f(x) ̸= 0
for any x ∈ U where cl(M) is the closure of M.

We will make the use of the following lemma which is a straightforward extension of Burdzy et al. (2004,
Theorem 2.6). The surface measure is defined in (?, Proposition 2.43). Under mild regularity assumptions, it
corresponds to the Hausdorff measure of ∂M, see Evans & Gariepy (2015).
Lemma G.2. Let u such that s 7→ u(s, x) ∈ C1((0, T ) ,R), for any s ∈ (0, T ), x 7→ u(s, x) ∈ C2(M,R) and
u ∈ C1(cl(M),R). Then for any T ≥ 0, s, t ∈ [0, T ], we have

E[
∫ t

s
u(w, B̄w)dkw] = 1

2
∫ t

s

∫
∂M u(x)pw(x)dσ(x)dw.

Note that we recover Burdzy et al. (2004, Theorem 2.6) if we set u = 1. We also emphasize that the result of
Burdzy et al. (2004, Theorem 2.6) is stronger than Theorem G.2 as it holds not only in expectation but also
in L2 and almost surely.

We are now ready to prove Theorem 3.2. We follow the approach of Petit (1997) which itself is based
on an extension of Haussmann & Pardoux (1986). We refer to Cattiaux et al. (2021) for recent entropic
approaches of time-reversal. Recall that (B̄t, kt)t≥0 is a solution to the Skorokhod problem (Skorokhod, 1961)
if (kt)t≥0 a bounded variation process and (B̄t)t≥0 a continuous adapted process such that for any t ≥ 0,
Bt = B̄t + kt ∈M, (B̄t)t≥0 and

|k|t =
∫ t

0 1B̄s∈∂Md|k|s, kt =
∫ t

0 n(B̄s)d|k|s, (13)

In what follows, we define (Yt)t∈[0,T ] such that for any t ∈ [0, T ], Yt = B̄T−t. Let us consider the process
(B̃t)t∈[0,T ] defined for any t ∈ [0, T ] by

B̃t = −B̄T + B̄T−t + kT − kT−t −
∫ T

T−t
∇ log ps(B̄s)ds.

First, note that t 7→ B̃t is continuous. Denote by F , the filtration associated with (B̄T−t)t∈[0,T ]. We have that
(B̃t)t∈[0,T ] is adapted to (B̄T−t)t∈[0,T ]. Even more so, we have that (B̃t)t∈[0,T ] satisfies the strong Markov
property since (B̄t)t∈[0,T ] also satisfies the strong Markov property. Let g ∈ C∞c (cl(M)) and consider for any
0 ≤ s ≤ t ≤ T , E[(B̃t − B̃s)g(B̄T−t)]. For any 0 ≤ s ≤ t ≤ T we have

E[(B̃t − B̃s)g(B̄T−t)] = E[(−B̄T−s + B̄T−t + kT−s − kT−t −
∫ T−s

T−t
∇ log pu(B̄u)du)g(B̄T−t)]. (14)

In what follows, we prove that for any 0 ≤ s ≤ t ≤ T we have E[(B̃t − B̃s)g(B̄T−t)] = 0. Therefore, we only
need to prove that for any 0 ≤ s ≤ t ≤ T we have

E[(−B̄t + B̄s + kt − ks −
∫ t

s
∇ log pu(B̄u)du)g(B̄t)] = 0. (15)

Let t ∈ (0, T ]. We introduce u : [0, t]×M such that for any s ∈ [0, t] and x ∈M, u(s, x) = E[g(B̄t)|B̄s = x].
Using Burdzy et al. (2004, Theorem 2.8) we get that for any x ∈ M, s 7→ u(s, x) ∈ C1((0, t) ,R) and for
any s ∈ (0, t), x 7→ u(s, x) ∈ C2(M,R) and x 7→ u(s, x) ∈ C1(cl(M),R). In addition, we have that for any
s ∈ (0, t) and for any x ∈M and x0 ∈ ∂M

∂su(s, x) + 1
2 ∆u(s, x) = 0, ⟨∇u(s, x0), n(x0)⟩ = 0. (16)

This equation is called the backward Kolmogorov equation. Using equation 16, B̄t = Bt − kt for any t ≥ 0
and the Itô formula for semimartingale (Revuz & Yor, 2013, Chapter IV, Theorem 3.3) we have that for any

27



Under review as submission to TMLR

s ∈ (0, t)

E[u(t, B̄t)B̄t]= E[u(s, B̄s)B̄s] + E[ 1
2

∫ t

s
B̄w∆u(w, B̄w)dw]+E[

∫ t

s
∇u(w, B̄w)dw]

−E[
∫ t

s
B̄w⟨∇u(w, B̄w), n(B̄w)⟩d|k|w]

−E[
∫ t

s
u(w, B̄w)n(B̄w)d|k|w]

+E[
∫ t

s
B̄w∂wu(w, B̄w)dw]

= E[u(s, B̄s)B̄s]+E[
∫ t

s
∇u(w, B̄w)dw]−E[

∫ t

s
u(w, B̄w)n(B̄w)d|k|w] (17)

In addition, using the Fubini theorem and the definition of kt we have that for any s ∈ (0, t)

E[
∫ t

s
u(w, B̄w)n(B̄w)d|k|w] = E[

∫ t

s
E[g(B̄t)|B̄w]n(B̄w)d|k|w] = E[g(B̄t)(kt − ks)]. (18)

Finally, using the divergence theorem and Burdzy et al. (2004, Theorem 2.6) we have that for any s ∈ (0, t)

E[
∫ t

s
∇u(w, B̄w)dw] =

∫ t

s

∫
M∇u(w, x)pw(x)dxdw

= −
∫ t

s

∫
M u(w, x)∇ log(pw(x))pw(x)dxdw +

∫ t

s

∫
∂M u(w, x)pw(x)dxdσ(w),

where σ is the surface area measure on ∂M, see Burdzy et al. (2004). Using Theorem G.2 and the Fubini
theorem we get that

E[
∫ t

s
∇u(w, B̄w)dw] = −

∫ t

s

∫
M u(w, x)∇ log(pw(x))pw(x)dxdw + E[

∫ t

s
u(w, B̄w)dkw]

= −E[
∫ t

s
g(B̄t)∇ log(pw(B̄w))dw] + 2E[g(B̄t)(kt − ks)] (19)

Combining equation 17, equation 18 and equation 19 we get that

E[u(t, B̄t)] = E[u(s, B̄s)]− E[g(B̄t)
∫ t

s
∇ log pw(B̄w)dw] + E[g(B̄t)(kt − ks)].

Therefore, we get equation 15 and equation 14. Hence, (B̃t)t∈[0,T ] is a continuous martingale. In addition,
we have that for any t ∈ [0, T ], E[B̃tB̃⊤t ] = t Id and therefore, (B̃t)t∈[0,T ] is a Brownian motion using
the Lévy characterisation of Brownian motion (Revuz & Yor, 2013, Chapter IV, Theorem 3.6). Denote
(jt)t∈[0,T ] = (kT − kT−t)t∈[0,T ]. Using equation 14, we have that for any t ∈ [0, T ]

B̄T−t = Ȳ0 + B̃t +
∫ t

0 ∇ log pT−s(Ys)ds− jt.

Using equation 13, we have for any t ∈ [0, T ]

|j|t =
∫ t

0 1Ys∈∂Md|j|s, jt =
∫ t

0 n(Ȳs)d|j|s,

which concludes the proof.
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H Configurational modelling of robotic arms under manipulability constraints

Accurately determining and specifying the movement of a robotic arm and the forces it exerts is a fundamental
problem in many real-world robotics applications. A widely-used set of descriptors for modelling the flexibility
of a given joint configuration are so-called manipulability ellipsoids (Yoshikawa, 1985), which are kinetostatic
performance measures that quantify the ability to move or exert forces along different directions. Jaquier
et al. (2021) present a geometric framework to learn trajectories of manipulability ellipsoids by making use of
the fact any ellipsoid M ∈ RN is defined by the set of points {x|xT Ax = 1} where A lies on the manifold of
N ×N symmetric positive definite matrices SN

++.

In many practical settings, it is desirable to constrain the minimal or maximal volume of a manipulability
ellipsoid to retain motional flexibility or limit the magnitude of the exerted force. This necessitates lower or
upper limits on the determinant of A, translating into constraints on SN

++. To model this, we make use of
one of the datasets introduced by Jaquier et al. (2021), containing demonstrations of a robotic arm drawing
different letters in the plane, providing the respective positional trajectories (R2) and velocity manipulability
ellipsoids (S2

++).

We use the processing routines provided by Jaquier et al. (2021) to interpolate the trajectories into 104

distinct points, for each of which we derive the position x ∈ R2 and the PSD matrix

A =
(

a b
b c

)
∈ S2

++.

parametrizing the velocity manipulability ellipsoid M ∈ R2. The resulting data is split into training, validation,
and test sets by trajectory and visualized in Figures 17 and 18.

(a) (b)

Figure 17: Positional trajectories x ∈ R2 (a) and the parameters a, b, c of the the SPD matrix A ∈ S2
++ (b)

for the letter C.

We add a small amount of Gaussian noise to these trajectories, which is shown as the target distribution in
J.2.

I Conformational modelling of polypeptide backbones under end point constraints

Polypeptides and proteins constitute an important class of biogenic macromolecules that underpin most
aspects of organic life. Accurately modelling their conformational ensembles, i.e. the set of three-dimensional
structures they assume under physiological conditions, is essential to both understanding the biological
function of existing and designing the enzymatic or therapeutic properties of novel proteins (Lane, 2023).
Motivated by the success of diffusion models in computer vision and natural language processing, there has
been considerable interest in applying them to learn and sample from distributions over the conformational
space of protein structures (Watson et al., 2022; Trippe et al., 2022; Wu et al., 2022).
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(a) (b)

Figure 18: Positional trajectories x ∈ R2 (a) and the parameters a, b, c of the the SPD matrix A ∈ S2
++ (b)

for the letter L.

I.1 Problem parameterisation

Proteins are biopolymers in which a sequence of N amino acids is joined together through N−1 peptide bonds,
resulting in a so-called polypeptide backbone with protruding amino acid residues. As the deviation of chemical
bond lengths and angles from their theoretical optimum is generally negligible, the problem of modelling the
three-dimensional structure of this polypeptide chain is often reframed in the space of the internal torsion
angles Φ and Ψ (see Figure 19a for an illustration), which can be modelled on a (2N − 2)-dimensional torus
T2N−2.

R

H
N

O R

N
H

O R

H
N

O

Φ Ψ Φ ΨΦ Ψ

(a) A commonly-used approximate parameterisation
of backbone geometry only considers the Cα torsion
angles Φ and Ψ.

R

H
N

O R

N
H

O R

H
N

O

(b) As peptide bond orientations can be inferred rela-
tively reliably, researchers often only model the Cα

traces.

Figure 19: Standard approaches to modelling the conformations of polypeptide backbones.

In many data-scarce practical settings such as antibody or enzyme design, it is often unnecessary or even
undesirable to model the structure of an entire protein, as researchers are primarily interested in specific
functional sites with distinct biochemical properties. However, generating conformational ensembles for such
substructural elements necessitates positional constraints on their endpoints to ensure that they can be
accommodated by the remaining scaffold. While it is conceivable that a diffusion model could derive such
constraints from limited experimental data, we argue that it is much more efficient and precise to encode
them explicitly.

For this purpose, we adopt the distance constraint formulation from Han & Rudolph (2006) and interpret the
backbone as a spatial chain with N spherical joints and fixed-length links (see Figure 20a for an illustration).
After selecting a suitable anchor point, the geometry of the polypeptide chain is fully specified by (a) the set
of link lengths ℓ = {ℓj}N

j=1, (b) the set of vectors r = {r(1, j)}N
j=2 between the anchor point and each atom in

the chain, and (c) the set of dihedral angles

T =
{

arccos
(
|⟨r(1, j)× r(1, j + 1), r(1, j + 1)× r(1, j + 2)⟩|
|r(1, j)× r(1, j + 1)||r(1, j + 1)r(1, j + 2)|

)}N−2

j=2
∈ TN−3
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between any three consecutive vectors. After specifying the fixed bond lengths ℓ, including an arbitrary
anchor point distance danchor = ℓN = r(1, N), the set of valid vectors r is given by the convex polytope
P ⊆ R3 defined by the following linear constraints (see Figure 20b for an illustration):

r(1, 3) ≤ ℓ1 + ℓ2,
−r(1, 3) ≤ − |ℓ1 − ℓ2| ,

r(1, j)− r(1, j + 1) ≤ ℓj ,
−r(1, j) + r(1, j + 1) ≤ ℓj ,
−r(j)− r(j + 1) ≤ −ℓj ,

 3 ≤ j ≤ N − 2,

r(1, N − 1) ≤ ℓN−1 + danchor,
−r(1, N − 1) ≤ − |ℓN−1 − danchor| .

HN

O NH

O

NH

O

HN

OHN

O

NH

O

l1

l3

l4

l5

l6

P1

P2

P3

P4

P5

P6

l2
r(1, 3)

r(1, 4)

r(1, 5)

(a) An illustrative diagram of the proposed parame-
terisation for modelling the Cα trace geometry of the
cyclic peptide c-AAGAGG.

(b) The convex polytope constraining the diagonals
of the triangles for the given bond lengths in the
illustrated molecule. The total design space is the
product of this polytope with the 4D flat torus.

Figure 20: Parameterising the conformational space of polypeptide backbones under anchor point distance
constraints.

This means that the set of all valid polypeptide backbone conformations is defined by the product manifold
P× TN−3, enabling us to train diffusion models that exclusively generate conformations with a fixed anchor
point distance danchor.

I.2 Data generation and model training

As a proof-of-concept for the practicality of our methods, we chose to model the conformational distribution of
the cyclic peptide c-AAGAGG. Cyclic peptides are an increasingly important drug modality with therapeutic
uses ranging from antimicrobials to oncology, exhibiting circular polypeptide backbones (i.e. danchor = 0)
that confer a range of desirable pharmacodynamic and pharmacokinetic properties (Dougherty et al., 2019).
To reduce the dimensionality of the problem, we only consider the Cα traces (with fixed Cα-Cα link distances
of 3.6 Å) instead of the full polypeptide backbone (see Figure 19b), although we note that our framework is
fully applicable to both settings.

To derive a suitable dataset, the product manifold P× T3 describing the conformations of cyclic Cα traces
of length N = 6 was constructed (see Figures 20a and 20b for an illustration) and used to generate 107

uniform samples satisfying the anchor point distance constraint danchor = 0. Subsequently, an estimate of
the free energy Ei of each sample i was obtained by (1) reconstructing the full-atom peptide from each Cα
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trace using the PULCHRA algorithm (Rotkiewicz & Skolnick, 2008), (2) relaxing all non-Cα backbone and
side-chain atoms (keeping the Cα positions fixed), and (3) quantifying the potential energy of each of the
resulting conformations using the OpenMM suite of molecular dynamics tools (Eastman et al., 2017), and
the AMBER force field (Hornak et al., 2006). These free energy estimates were then used to approximate
the Boltzmann distribution over conformational states

pB(i) ∝ exp
(
− Ei

kBT

)
,

where temperature was set to T = 273.15 K and kB = 1.380 649× 10−23 J K−1 is the Boltzmann constant.
We then apply a very minor amount of smoothing to the resulting distribution by running forward Brownian
motion on both the polytope and the torus for 10 steps, using a small step size of 5× 10−3 and the respective
metrics. Finally, a subsample of 106 Cα traces was drawn from this distribution and used for training and
evaluating our models.

J Experimental details

In what follows we describe the experimental settings used to generate results introduced in Section 5. The
models and experiments have been implemented in Jax (Bradbury et al., 2018), using a modified version of
the Riemannian geometry library Geomstats (Miolane et al., 2020).

Architecture. The architecture of the score network sθ is given by a multilayer perceptron with 6 hidden
layers with 512 units each. We use sinusoidal activation functions.

Training. All models are trained by the stochastic optimizer Adam (Kingma & Ba, 2014) with parameters
β1 = 0.9, β2 = 0.999, batch-size of 256 data-points. The learning rate is annealed with a linear ramp from 0
to 1000 steps, reaching the maximum value of 2e− 4, and from then with a cosine schedule down to 0 after
100k iterations in total.

Diffusion. Following Song et al. (2021), the diffusion models diffusion coefficient is parametrized as
g(t) =

√
β(t) with β : t 7→ βmin + (βmax − βmin) · t, where we found βmin = 0.001 and βmax = 6 to work best.

Metrics. We measure the performance of trained models via the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012), which is a kernel based metric between two distributions P and Q. The MMD can
be empirically approximated with the following U-statistics MMD2(P, Q) = 1

m(m−1)
∑

i

∑
j ̸=i k(xi, xj) +

1
m(m−1)

∑
i

∑
j ̸=i k(yi, yj)− 2 1

m2

∑
i

∑
j k(xi, yj) with xi ∼ P and yi ∼ Q, where k is a kernel. For synthetic

experiments we use a sum of weighted RBF kernels matching the generating distributions for the Gaussian
mixtures. For the other experiments we use an RBF kernel. For all experiments we use 100,000 samples to
compute the MMD.
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J.1 Synthetic data on polytopes

Hypercube [−1, 1]n. The hypercube is a specific instance of a convex polytope where the affine constraints
are given by the following coefficients:

A =


1 . . . 0
−1 . . . 0
...

. . .
...

0 . . . 1
0 . . . −1

 , b =


1
1
...
1
1

 .

Where A is a 2n× n matrix and b an n dimensional vector.

We construct the training and test datasets by sampling for both 100000 points from a mixture of ‘wrapped
normal’ distributions illustrated in Figure 21a and which density is given by

p0(x) = 0.7 ReflectedStep[(0.5, 0.5), ·, {fi}i∈I ]#N (0, 0.25)+0.3 ReflectedStep[(−0.5,−0.5), ·, {fi}i∈I ]#N (0, 0.25).

(a) On the hypercube. (b) On the simplex.

Figure 21: Pairwise and marginals samples from the synthetic data distribution.

Simplex ∆n. Similarly, to parameterise the simplex as a convex polytope we set the matrix and constraints
to be given by

A =


−1 0 . . . 0
...

...
. . .

...
0 0 . . . −1
1 1 1 1

 , b =


0
...
0
1

 .

Where A will be a n− 1× n matrix. Essentially we perform diffusion over the first n− 1 components of the
simplex, allowing the last component to be determined by the one minus the sum of the first n− 1.

Similarly than for the hypercube, we construct the training and test datasets from generated data points
which are illustrated in Figure 21b. The score network at different times is illustrated in Figure 22.
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(a) t = 0.01. (b) t = 0.5. (c) Generated distribution.

Figure 22: Evolution of the score on the simplex and generated distribution.

The Birkhoff polytope. The Birkhoff polytope is the space of doubly stochastic matrices, i.e. Bn = {P ∈
[0, 1]n×n :

∑n
i Pi,j = 1,

∑n
j Pi,j = 1}. It is a convex polytope in Rn2 and has dimension d = (n− 1)2.

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 23: Pairwise and marginals samples on the Birkhoff polytope from synthetic data distribution and
from trained constrained diffusion models.
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J.2 Constrained SPD matrices for robotic arms modelling

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 24: Pairwise and marginals distributions over the coefficients L11, L21, L22 of the lower triangle matrix
parameterising SPD matrices M = LL⊤ (which represent the manipulability ellipsoids of the robotic arms).

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 25: Pairwise and marginals distributions over the (x, y) locations of the robotic arms.

J.3 Conformational modelling of polypeptide backbones under anchor point constraints

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 26: Pairwise and marginals distributions over the dimensions of the polytope and torus used to model
the conformational ensembles of cyclic peptides generated by the reflected diffusion model.
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J.4 Euclidean Models on the Hypercube and the Simplex

We train a set of Euclidean models on the hypercube and the simplex datasets. We use the same hyper-
parameters as the main experiments, which were derived from best practices on Euclidean models in any
case.

Space Dimension MMD Portion outside M
[−1, 1]d 2.00 0.062±0.011 0.988

3.00 0.076±0.004 0.985
10.00 0.081±0.005 0.964

∆d 2.00 0.055±0.013 0.964
3.00 0.068±0.014 0.963
10.00 0.060±0.003 0.926

Table 2: MMD and Proportion of samples outside the manifold for Euclidean models trained on the synthetic
experiments.

In these experiments we can see that in lower dimensions the constrained models do better; in higher
dimensions the Euclidean model performs better. There are a number of confounding factors here. First of
all the data generating process for the synthetic experiments is actually a mixture of Normal distributions
constrained within the boundary, as displayed in the plots. In higher dimensions our simulated distributions
place much less mass near the boundary and more closely resemble a mixture of Normals. This is a very
natural distribution for the Euclidean diffusion models to learn, and relatively more challenging for the
log-barrier/reflected models which initialise at the uniform within the constraints. An alternative factor is
that the dynamics of the Euclidean model remain simple in high dimensions, while the constrained processes
become more complex in higher dimensions. Finally we note that, as Lou & Ermon (2023) comments, it may
be that the ism loss is causing problems for the constrained methods in higher dimensions. Another factor
may be relevant: in this paper we did not significantly explore the design space for constrained diffusion
models. We use all the standard tricks derived for Euclidean models, including the std trick, the residual
trick, gradient clipping, etc. It seems likely we could significantly improve the relative performance of the
constrained models with more time working on the training dynamics in higher dimensions.
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