Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Anonymous Authors'

Abstract

This paper presents our high-scoring submission
to the AI Mathematical Olympiad - Progress Prize
2 (AIMO-2) competition. Our recipe for build-
ing state-of-the-art mathematical reasoning mod-
els relies on three key pillars. First, we create a
large-scale dataset comprising 540K unique high-
quality math problems, including olympiad-level
problems, and their 3.2M long-reasoning solu-
tions. Second, we develop a novel method to inte-
grate code execution with long-reasoning models
through iterative training, generation, and qual-
ity filtering, resulting in 1.7M high-quality Tool-
Integrated Reasoning solutions. Third, we create a
pipeline to train models to select the most promis-
ing solution from many candidates. We show
that such generative solution selection (GenSe-
lect) can significantly improve upon the majority
voting baseline. Combining these ideas, we train
a series of models that achieve state-of-the-art
results on mathematical reasoning benchmarks.
To facilitate further research, we will release our
code, models, and the complete MathReason
dataset upon publication.

1. Introduction

Recent advances in large language models (LLMs) have sig-
nificantly improved their ability to solve complex reasoning
tasks, including olympiad-level mathematics. A key idea
behind this progress has been to allow models to spend more
tokens thinking about the solution before producing the final
answer. Initially, models were trained to produce a series of
intermediate solution steps (chain-of-thought (CoT) (Wei
et al., 2022)). More recently, long reasoning models (Jaech
et al., 2024; Guo et al., 2025) have learned to reflect on their
work, exploring and refining multiple strategies within a sin-
gle generation. This has led to further improvements across

! Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

mathematics, coding, and scientific domains. To keep pace
with this rapid development, the community has introduced
increasingly challenging benchmarks and competitions that
help to evaluate the progress.

The AI Mathematical Olympiad - Progress Prize 2 (AIMO-
2) is an initiative designed to assess advancements in this
domain by challenging participants to create models capable
of solving 50 difficult, national-level mathematical problems
within strict computational limits. These problems were
never published online, ensuring a more rigorous evaluation
compared to traditional benchmarks. This paper details our
high-scoring submission to the competition. To develop the
state-of-the-art recipe, we focused on addressing several
limitations of the publicly available reasoning models that
we describe below.

Large-scale long-reasoning dataset (§2). To improve ex-
isting models, we started by collecting an extensive set of
mathematical problems from the internet. We developed
an LLM-based problem extraction and refinement pipeline
to construct a dataset of 540K unique problems. Using
this dataset, we then generated 3.2M long-reasoning CoT
solutions by prompting DeepSeek-R1 (Guo et al., 2025)
and QwQ-32B (Team, 2025b). Training Qwen?2 .5-Base
models (Yang et al., 2025) on this large-scale distillation
data, we are able to surpass the accuracy of all other open-
weight models of comparable size, except for QwQ-32B,
which is slightly better than our 32B model.

Tool-Integrated Reasoning (§3). To improve the results fur-
ther, we developed a method for integrating code execution
into long-reasoning generations. Our initial attempts to elicit
Tool-Integrated Reasoning (TIR) from DeepSeek-R1 and
QwQ-32B through simple prompting proved unsuccess-
ful. We hypothesize that these models struggle to deviate
from their standard solution format due to extensive train-
ing on reasoning tasks and limited exposure to instruction-
following. To overcome this challenge, we built a pipeline
that starts with a small-scale reasoning finetuning of an
instruction-following model (Ye et al., 2025). By prompt-
ing this model to generate long-reasoning TIR solutions
followed by aggressive quality filtering, we established an
initial dataset suitable for training. Through multiple itera-
tions of training, generation, and filtering, we constructed a
1.7M TIR solution set that was crucial for improving the ac-

https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2
https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

B TIR maj@64

BN TIR maj064 + Self GenSelect ﬂ—

BB CoT pass0l WEEE CoT maj@64
80f : :
i 715 |
70 656 | ;
60 i i
=< i i
—50 i i
o : :
540 | i
< | i
30 ; i
20 i i
0 | |
0 1 1

B : 2 .

A\ Q\Q’fb f’)% 3o Q"b’\ ’0\\

& TS 0 e
1.5B Models 7B Models

14B Models

76:6

74.6

’ A
o T e S
S\X‘K\ > * Q¥ \M\\ > > Qe%‘?%
(4 3 (9
Qﬂ* N\

32B Models DeepSeek-R1

Figure 1: Accuracy of MathReason—Qwen models and comparable baseline models on math problems from AIME and
HMMT competitions. Even our MathReason—-Qwen—1. 5B model outperforms DeepSeek—R1, which has 400x more

parameters (24x more active parameters).

curacy of our final models. To make TIR more efficient, we
also developed a method to accurately control the number
of code executions the model is allowed to make for each
generation.

Generative Solution Selection (§4). A common approach
to maximize model accuracy is to generate multiple candi-
date solutions and select the most promising one. While ma-
jority voting (Wang et al., 2023) serves as a strong baseline,
its performance falls significantly short of the theoretical
maximum performance of pass@k. To address this limita-
tion, we developed a pipeline for training models to identify
the most promising solution when presented with multiple
candidates. We generated 566K selection examples to train
our models.

Combining these three innovations, we developed a series
of state-of-the-art open-weight math reasoning models with
1.5B, 7B, 14B, and 32B parameters. Each model supports
CoT, TIR, and GenSelect inference modes when appropri-
ately prompted.

To accelerate progress in open-source mathemati-
cal reasoning, we will release our code, finetuned
MathReason—-Qwen models, and the complete
MathReason dataset upon publication.

2. Data Preparation

In this section, we outline our validation and training data
curation pipeline. Section 2.1 presents our methodology for
preparing a large-scale problem set for training. Section 2.2
describes our validation set collection process. Finally, Sec-
tion 2.3 details our approach to synthesizing long-reasoning
Chain-of-Thought (CoT) solutions.

2.1. Problem preparation

To collect math problems, we leverage the Art of Problem
Solving (AoPS) community forums. We include all forum
discussions except “Middle School Math”, which we found
to be too elementary and unhelpful for training in our pre-
liminary experiments. After retrieving forum discussions,
we implement a systematic process to extract problems and
their corresponding answers. Throughout our pipeline, we
utilize Qwen?2 .5-32B-Instruct (Yang et al., 2025) for
all processing steps unless otherwise specified.

Our data processing pipeline starts with the problem ex-
traction from initial forum posts. Subsequently, each po-
tential problem is classified to filter out multiple-choice
questions, binary (yes-or-no) questions, and invalid prob-
lems (e.g., those lacking context). Proof-based problems
are transformed into equivalent answer-seeking questions.
For the remaining non-proof questions, we attempt to ex-
tract final answers from the forum discussions. Finally,

https://artofproblemsolving.com/community
https://artofproblemsolving.com/community

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Table 1: Comparison with other datasets sourced from AoPS
forums. Our work was done concurrently with (Mahdavi
et al., 2025) and (LI et al., 2024).

Dataset

MathReason (ours) 540K
AoPS-Instruct (Mahdavi et al., 2025) 650K
NuminaMath-1.5 (AoPS part) (LI et al., 2024) 68K

following (Yang et al., 2023), we perform an LLM-based
decontamination to remove potential paraphrases of ques-
tions in popular math benchmarks. Starting with approxi-
mately 620K forum discussions, our pipeline yields a final
dataset of 540K unique problems. A more detailed descrip-
tion of each pipeline stage, including specific prompts and
classification criteria, as well as the detailed breakdown of
the dataset size after each processing stage and the final
dataset composition, is provided in Appendix A. Table 1
compares our approach with other popular datasets sourced
from AoPS forums.

Table 2: Final distribution of CoT solutions in our dataset.

CoT solutions

Model

after filtering all
QwQ-32B 0.5M 1.0M
DeepSeek-R1 2. 4.2M
Total 3.2M 5.2M

2.2. Comp-Math-24-25 Benchmark

To create a robust validation dataset for our evaluation, we
combined problems from American Invitational Mathemat-
ics Examinations (AIME) and Harvard-MIT Mathematics
Tournaments (HMMT) gathered from the AoPS forums. We
restricted our selection to 2024 and 2025 competitions to
minimize potential data contamination. AIME and HMMT
problems were selected for our validation set due to their
strong alignment with AIMO-2 competition requirements.
We excluded proof-based questions and those awarding par-
tial credit based on estimate accuracy, as these are generally
incompatible with an exact match evaluation framework.
The resulting dataset, which we call Comp-Math-24-25,
consists of 256 problems, as detailed in Appendix B.

2.3. Text-based Solution Synthesis

To generate CoT solutions, we follow a common pipeline
of directly prompting an existing open-weight LLM to
solve problems collected in Section 2.1. We utilize
DeepSeek-R1 and QwQ—-32B models and generate up
to 32 solution candidates for each problem in our dataset.

We use temperature 0.7, top-p = 0.95, and limit gener-
ations to 16384 tokens. We generate more solutions for
harder problems with known answers, where the hardness
was estimated by computing an average pass-rate across 32

of Problems generations from the Qwen2 . 5-72B-Math-Instruct

model (Yang et al., 2024).

As the final filtering step, we remove any solutions that do
not reach the expected answer. Following (Toshniwal et al.,
2025), predicted and expected answers are compared by
prompting Qwen2 .5-32B-Instruct to judge whether
they are equivalent in the context of the problem. For each
problem where we were unable to extract the final answer, as
well as for all converted proofs, we treat the most common
answer across all available solution candidates as the ground
truth. Table 2 shows the final distribution of CoT solutions
in our dataset. Note that out of the 540K problems, we
could synthesize solutions for only 428K problems using
this pipeline.

3. Tool-Integrated Reasoning

Allowing LLMs to integrate natural language reasoning with
Python code execution is a known way of improving accu-
racy on challenging math problems (Toshniwal et al., 2024;
Yang et al., 2024). However, the best open-weight reasoning
models (most notably DeepSeek—-R1 (Guo et al., 2025)
and QwQ-32B (Team, 2025b)) are not able to directly pro-
duce such Tool-Integrated Reasoning (TIR) solutions. Our
initial attempts to induce TIR generations by prompting
these reasoning models with direct instructions or few-shot
examples turned out to be unsuccessful. Unable to solve this
via prompting, we had to develop a more elaborate pipeline
for building reasoning models capable of producing TIR
solutions.

In our early experiments, we noticed that when non-
reasoning instruct LLMs are trained on a limited quantity of
reasoning data (Ye et al., 2025), they tend to retain their good
instruction-following abilities. Building on this intuition,
we were able to successfully prompt the LIMO-Qwen-32B
model (Ye et al., 2025) to produce TIR solutions, but found
that they tended to be low-quality on average. The produced
code was often irrelevant or was merely used to verify cal-
culations of preceding CoT steps. To overcome this, we
developed a filtering step to retain only high-quality exam-
ples where code execution provides substantial reasoning
benefits. Using this filtered dataset, we then fine-tuned
our reasoning model, achieving significant performance im-
provements over the CoT-only predecessor. Finally, we em-
ployed an iterative model improvement approach by training
a more powerful TIR model in each iteration and using it to
generate and filter additional TIR examples, further enhanc-
ing model performance. In the following subsections, we
detail each stage of this pipeline.

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

3.1. Instruction-following reasoning model

Prior work (Muennighoff et al., 2025; Ye et al., 2025) shows
that fine-tuning on as few as 1K samples is sufficient to
make LLM produce long-CoT solutions. We hypothesize
that an instruct model fine-tuned on such a small dataset
can potentially preserve its instruction-following and long-
reasoning capabilities.

To test this, we prompted LIMO-Qwen—32B to solve the
problem using Python code for the steps that require com-
plex calculations. Appendix E.1 provides the zero-shot
prompt we designed for this purpose. For roughly half of
the problems, the model produced a solution that contained
at least one Python code block. We then synthesized 1.2M
solutions for MathReason problems, using temperature
= 0.7, top-p = 0.95, allowing maximum sequence length
of 16384 tokens and stopping generations if the solution
contained more than 8 code executions.

3.2. Filtering TIR data

Careful inspection of generated solutions revealed that code
execution often does not benefit the solution and could easily
be replaced with several simple CoT steps (see example in
Appendix 1.2). Instead, we want an ideal TIR solution to
provide significant shortcuts by implementing otherwise
infeasible brute-force approaches. We apply several filters
to remove solutions with unwanted code usages. First, we
utilize Qwen?2 .5-32B-Instruct to classify each code
block by two criteria:

* novel calculation / verification. Whether the code
execution leads to a novel result or it simply verifies
the previous steps (see the prompt in Appendix E.2).

« significant / moderate / trivial. Whether the code
implements an important part of the solution or is easily
substitutable with several CoT steps (see the prompt in
Appendix E.3).

We then only keep solutions that either have at least one
novel and significant code block or more than half novel and
moderate code blocks. Additionally, we apply rule-based
filtering and remove solutions with incorrect final answer
and solutions without code execution. We also remove solu-
tions with more than two code blocks, as we found it to be
helpful in our preliminary experiments. As part of prepro-
cessing, we also replace the tags marking the start and end
of code blocks. In particular, we instruct the LIMO-Qwen
model to place code between """ “python" and "** "\n",
following a markdown-like style that models can easily
produce; we then replace these with <tool_call> and
</tool_call> tags, respectively, to make the code end-
ing tag distinguishable from regular markdown and facilitate
code extraction. All described filtering steps result in the

TIR dataset, consisting of 15K samples, which we will refer
to as stage-0 TIR data.

3.3. Iterative data generation

For the next stage of TIR solution generation, we leverage
QwQ-32B as it proved to be a powerful yet lightweight
synthetic reasoning data generator. For this purpose, we
fine-tune it on the stage-0 data for 7 epochs with a constant
learning rate of 5e-6. We then synthesize solutions for
MathReason problems. We generate 700K samples and
filter them down to 260K by removing incorrect solutions
and solutions not using code. Novelty and significance
filters degrade the performance at this stage, so we do not
use them.

To further improve results, we repeat this process one more
time using an intermediate version of our 14B model, which
was finetuned on the CoT-only subset of MathReason
data. We train this 14B model on QwQ—-32B solutions and
then execute a final round of data generation and filtering,
ultimately resulting in the final 1.7M TIR dataset.

3.4. Controlling the number of code blocks

We developed a simple, yet effective method to control the
number of code blocks that the model can use. During all
data generation stages, we format the code output as shown
in Appendix I.1, appending additional notification warnings
about how many code executions are remaining. The model
often refers to this message in its thinking process, refraining
from further code usage when the limit is reached. For
each problem, we randomly select between 1 and 8 allowed
code executions and provide this information in the prompt.
We remove generations that try to use more code blocks
than requested to reinforce the correct behavior in training.
As a result, the model learns to follow the specified code
execution limit. An example of this behavior is provided in
Appendix 1.3.

4. Generative Solution Selection

We observe a considerable gap between the majority@k
vs pass@k performance for our models, implying the mod-
els’ theoretical ability to solve far more problems than can
be achieved with a majority answer. To bridge this gap,
we explore training a model that, given a set of candidate
solution summaries, picks the most promising solution. In
our early experiments, we found that comparing multiple
solutions yields significantly better results than judging each
solution in isolation. Following (Zhang et al., 2025), we do
not change the model’s architecture and instead let it reason
in natural language before selecting one of the provided
solutions. We detail the pipeline to prepare the training data
for such selection generations (GenSelect) in the following

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

[oe]
<t
y

0]
(=]
T

-1
Ut
T

—o— Pass

—o— GenSelect

—e— Majority

-
=)
T

D
t
T

Comp-Math-24-25 Accuracy (in %)

D
[==)
T

0 10 20 30 40 50 60
Number of samples

(a) 14B CoT

90

oo
Ut
T

80f

-3
Ut

-
(=)

—o— Pass

Comp-Math-24-25 Accuracy (in %)

—o— (GenSelect

6ol —e— Majority

0 10 20 30 40 50 60
Number of samples

(b) 14B TIR

Figure 2: Comparison of majority, GenSelect and pass metrics for different number of generation samples. To construct
the input for GenSelect, we use subsets of 16 solutions (or all if fewer samples were generated). For the final answer, we
perform majority @8 over the answers selected by the GenSelect. MathReason—-Qwen —14B model is used to perform
CoT, TIR, and GenSelect inference. We find that GenSelect becomes unstable when using more than 32 generations as we

can no longer show all solutions in a single prompt.

sections.

4.1. Creating New Summaries

Solutions generated by reasoning models have a think-
ing part and a summary which follows it. We noticed
that summaries generated by reasoning models, such as
DeepSeek—R1, could be very succinct; in extreme cases,
they could just be stating the final answer. Since we require
a representative summary for comparing different solutions
during inference, we replace the native summary of the
reasoning models by synthesizing new summaries with the
Qwen?2.5-32B-Instruct model. We synthesize four
candidate summaries per solution with a maximum length
of 2048 tokens. To ensure the summary is faithful, we filter
out summaries where the predicted answer is different from
the original solution’s predicted answer. If there are no valid
summaries, we discard the samplel, otherwise we select
the longest summary to replace the original summary. We
regenerate summaries for the entire MathReason dataset
using this process, so that models trained on it can produce
these summaries directly. See Appendix H for a comparison
between one-word DeepSeek—-R1 summary and a new
one generated by Qwen2.5-32B-Instruct.

4.2. Generating Selection Candidates

We observed that modest accuracy gains over majority vot-
ing can be achieved by simply presenting new solution sum-

"No more than 5% of all samples were discarded this way.

maries to reasoning models and prompting them to compare
and select one (see prompt in Appendix F.3). Building
on this observation, we develop the following pipeline to
generate training data for this GenSelect inference. For each
problem in the Mat hReason dataset, we randomly sample
between 2 and 16 candidate solution summaries. We ensure
that each sample group contains at least one correct and one
incorrect solution. This process is repeated until we obtain
8 distinct comparison groups for each problem. Using the
GenSelect prompt (Appendix F.3), we then task QwQ-32B
with selecting the most promising solution from each group.
See Figure 4 illustrating this pipeline in the Appendix. This
procedure generates 1M selections, which we subsequently
filter down to 566K by eliminating any instances where
incorrect solutions were chosen.

4.3. Reducing computational cost

While this dataset is suitable for training, the comparison
generations can be as long as the original solutions, making
GenSelect inference computationally expensive. To address
this challenge, we explored training models to directly gen-
erate the final comparison summary rather than learning
the full reasoning trace. Consistent with our previous ob-
servations, the native comparison summaries produced by
QwQ-32B proved suboptimal. We therefore again used
Qwen?2.5-32B-Instruct to regenerate all comparison
summaries (see the prompt in Appendix G.1) and trained
our models using these summarized comparisons. Our early
experiments revealed only a slight reduction in accuracy

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Table 3: Accuracy with majority @64 on the Comp-Math-
24-25 benchmark after the first and second SFT rounds. We
see significant gains for CoT generations and comparable
results for TIR generations.

Model First SFT Second SFT
1.5B CoT 55.1 58.2
1.5B TIR 64.1 64.5

7B CoT 61.3 62.5
7B TIR 71.1 70.7
14B CoT 62.9 65.2
14B TIR 74.6 73.4

(1-2%) compared to models trained on the whole reasoning
traces.

This final setup makes GenSelect inference remarkably effi-
cient compared to the original long-reasoning generations.
With output tokens capped at 2048, most computation oc-
curs in a highly-parallelizable pre-filling phase. Since each
solution summary is similarly limited to 2048 tokens, the to-
tal input context typically cannot exceed 32768 tokens when
using the maximum of 16 solutions per problem. Although
more than 16 solutions could theoretically be included in
a prompt, we generally observe diminishing returns as the
context becomes too large. For scenarios requiring evalua-
tion of more solution candidates, we propose sampling 16
solutions multiple times and then performing majority vot-
ing to determine the final answer. Nevertheless, our findings
indicate that the most significant accuracy improvements
occur when GenSelect is applied to a smaller number of
generations (Figure 2).

5. MathReason-Qwen models

In this section, we present the training and evaluation details
of the MathReason-Qwen models.

5.1. Training

To build our final models we perform supervised-finetuning
(SFT) on a series of Qwen2 .5-Base models (1.5B, 7B,
14B and 32B) (Yang et al., 2025). For 1.5B and 7B mod-
els, we start from the special model versions pretrained for
mathematical reasoning tasks (Yang et al., 2024). Unlike
general Qwen2.5 models, the math versions only support a
limited context window of 4096 tokens, which is inadequate
for the long-reasoning generations. To overcome this, we
follow (bloc97, 2023) and change RoPE (Su et al., 2021)
base to 500K.

All models are trained for six epochs on a combination of
three tasks: CoT solution generation, TIR solution genera-
tion, and GenSelect, where the task is to select one correct
solution out of multiple candidates. Each task is defined

by a unique prompt that we can use at inference time to
switch between different generation modes (see prompts in
Appendix F). We found that training on a mix of all tasks
results in a similar accuracy compared to training on each
task sequentially (first CoT, then TIR, then GenSelect). The
total SFT dataset size is 5.5M samples (3.2M CoT, 1.7M
TIR, and 566K GenSelect).

We train all models using AdamW optimizer (Loshchilov
and Hutter, 2019) with weight decay of 0.01 and a cosine
learning rate decay schedule with a 10% linear warmup. We
use a starting learning rate of 3e-4 for 1.5B, 2e-4 for 7B,
and le-4 for 14B and 32B models. The final learning rate is
set to be 1000 times smaller. We use a batch size of 1024
samples and leverage sequence packing and context paral-
lelization techniques from NeMo-Aligner (Shen et al., 2024)
that significantly accelerate training on the long-reasoning
data. Following (Toshniwal et al., 2025), we save 4 equally
spaced checkpoints during the training runs, which are aver-
aged to create the final model. We show the accuracy on the
Comp-Math-24-25 benchmark (Section 2.2) of intermediate
1.5B and 14B model checkpoints in Figure 3.

After the first round of training, we perform an-
other SFT on a subset of harder problems. These
problems are selected only from forums discussing
Olympiad math, and we discard any problems for which
Qwen?2.5-Math-72B-Instruct TIR model has a
pass-rate bigger than 0.3 out of 32 generations. Additionally,
we filter any solutions that have fewer than 5K tokens. The
total SFT data size of this harder set is 2.2M samples. We
follow the same setup as for the first round of SFT, except
we train for four epochs instead of six. We do this second
round of training for all models except 32B, as we found
some degradation in results. Models’ accuracy after the first
and second round of training is presented in Table 3. We
find that CoT results tend to significantly improve while
TIR results stay stable or slightly degrade.

5.2. Results

Final evaluation results of our models are presented in Ta-
ble 4. In addition to Comp-Math-24-25, introduced in Sec-
tion 2.2, we also use Humanity’s Last Exam dataset (et al.,
2025). We only evaluate on a subset consisting of 975 text-
only problems from the “Math” category. We refer to it as
HLE-Math.

We notice that despite being superior in majority @k setting
with TIR prompt, smaller models perform on par or even
worse in pass@1, compared to CoT prompt. The results in
Table 5 suggest that the reason is that with the TIR prompt
there are more unfinished solutions across all model sizes,
with 1.5B clearly standing out. We hypothesize that the
reason behind this is that smaller models are less consistent
in using tools effectively.

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

-<o—- Col maj064

Comp-Math-24-25 Accuracy (in %)

307 ;
TIR maj064
5 —e— (oT pass@1
TIR pass@1
075 15 3 6

Training Epochs

(a) 1.5B

=l

.\g ----- °

o P S —

3 60 ~

< /

Lo ¢ o

A 50r

S

e ---- Col maj064

S 4or TIR maj@64

g —o— (CoT pass@1

- 30r TIR pass@1
075 15 3 :

Training Epochs

(b) 14B

Figure 3: Accuracy improvement through the course of training. We observe that smaller models need to be trained for

longer to achieve meaningful improvements.

6. Related Work

We briefly describe the relevant work in this section, and
defer an extended discussion to Appendix J.

Math Reasoning Datasets. In the pursuit of improv-
ing mathematical reasoning in large language models,
prior work has introduced several large-scale, high-quality
instruction-tuning datasets. Skywork-MathQA (Zeng et al.,
2024) stands out with its 2.5M question-answer pairs, gener-
ated using a trio of augmentation methods and built upon a
varied set of foundational problems. NuminaMath (Li et al.,
2024) consists of 860K challenging competition-style math
problems, each carefully annotated with step-by-step reason-
ing chains (Wang et al., 2023), enabling more interpretable
and structured model outputs. More recent work has fo-
cused on curating “harder" problems. BackMATH (Zhang
and Xiong, 2025) is a novel dataset focused on backward rea-
soning. It contains approximately 14K problems specifically
designed to support backward problem-solving, along with
100K detailed reasoning steps. The OpenR1-Math-220K
(OpenR1 Team, 2025) consists of 220K math problems de-
rived from NuminaMath 1.5 (LI et al., 2024), which are
paired with two to four solutions generated by DeepSeek-
R1. In addition, Zhao et al. (Zhao et al., 2025) presented
AM-DeepSeek-R1-Distilled, a large-scale dataset featur-
ing 1.4M question-response pairs with associated thinking
traces for general reasoning tasks. Following a similar direc-
tion, Liu et al. (2025) introduced a Chinese version of the
DeepSeek-R1 distilled dataset, consisting of 110K question-
solution pairs. The DolphinR1 team (Team, 2025a) released
a dataset of 800K samples, combining outputs from vari-
ous reasoning models, including DeepSeek-R1, Gemini 2.0

Flash Thinking, and Dolphin Chat.

Generative Reward Models. Conventional reward mod-
els and verifiers are often trained as discriminative binary
classifiers (Cobbe et al., 2021), underutilizing the generative
strengths of large language models (LLMs). To address this,
Mahan et al. (2024) introduced Generative Reward Models
(GenRM), which reformulates verification as a generation
task—using the log probabilities of tokens like “Yes" or
“No" to represent correctness. This framing allows GenRM
to better exploit LLMs’ natural language generation capa-
bilities, leading to improved alignment with human judg-
ments across both in-distribution and out-of-distribution
tasks. Concurrently, Zhang et al. (2025) introduced Gen-
erative Verifiers, training CoT-GenRM with a supervised
fine-tuning (SFT) objective to serve as a verifier for mathe-
matical reasoning. Building on a similar motivation, Ankner
et al. (2024) combined Chain-of-Thought (CoT) reasoning
generation with Bradley-Terry reward modeling, enabling
reward models to explicitly reason about response quality
before assigning scores. Extending this line of work, Wang
et al. (2024b) proposed self-taught evaluators, jointly train-
ing generative models and LLM-as-a-Judge frameworks to
produce both intermediate reasoning traces and final judg-
ments. In related approaches, Wang et al. (2024a) trained
large language models as generative judges by leveraging
Direct Preference Optimization (DPO) on both positive and
negative data, demonstrating improved evaluation perfor-
mance across diverse tasks. Wu et al. (2024) introduced
a Meta-Rewarding step in the self-improvement process,
enabling the model to evaluate its own judgments and use
the feedback to refine its evaluation capabilities.

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Table 4: Evaluation results on mathematical benchmarks. All models are evaluated with a maximum of 32768 output
tokens, temperature of 0.6, and top-p 0.95. We present metrics as pass@ 1 (maj@64) where pass@1 is the average accuracy
across 64 generations and maj@64 is the result of majority voting. For HMMT and HLE-Math benchmarks, we use the
LLM-as-a-judge setup described in Toshniwal et al. (2025) to verify the answers. To construct the input for GenSelect, we
use subsets of 16 solutions from the set of 64 solutions. We repeat this process 64 times and perform majority voting over

the answers selected by GenSelect.

Comp-Math-24-25

Model HLE-Math
AIME24 AIME25 HMMT-24-25

DeepSeek-R1-Distill-Qwen-1.5B 26.8 (60.0) 21.4 (36.7) 14.2(26.5) 2.9 (5.0)
MathReason-Qwen-1.5B CoT 61.6 (80.0) 49.5(66.7) 39.9 (53.6) 54(5.4)
MathReason-Qwen-1.5B TIR 52.0(83.3) 39.7 (70.0) 37.2(60.7) 2.5(6.2)

+ Self GenSelect 83.3 70.0 62.2 7.9

+ 32B GenSelect 83.3 70.0 62.8 8.3
DeepSeek-R1-Distill-Qwen-7B 54.4 (80.0) 38.6(53.3) 30.6 (42.9) 33(5.2)
MathReason-Qwen-7B CoT 74.8 (80.0) 61.2(76.7) 49.7 (57.7) 6.6 (6.6)
MathReason-Qwen-7B TIR 72.9 (83.3) 57.5(76.7) 54.6(66.3) 7.8 (10.8)

+ Self GenSelect 86.7 76.7 68.4 11.5

+ 32B GenSelect 86.7 76.7 69.9 11.9
DeepSeek-R1-Distill-Qwen-14B 65.8 (80.0) 48.4 (60.0) 40.1 (52.0) 4.2 (4.8)
MathReason-Qwen-14B CoT 76.3 (83.3) 63.0(76.7) 52.1(60.7) 7.5 (7.6)
MathReason-Qwen-14B TIR 76.3 (86.7) 61.3(76.7) 58.6(70.9) 9.5 (11.5)

+ Self GenSelect 86.7 76.7 72.4 14.1

+ 32B GenSelect 90.0 76.7 71.9 13.7
QwQ-32B 78.1 (86.7) 66.5(76.7) 55.9(63.3) 9.0 (9.5)
DeepSeek-R1-Distill-Qwen-32B 66.9 (83.3) 51.8 (73.3) 39.9 (51.0) 4.8 (6.0)
MathReason-Qwen-32B CoT 76.5 (86.7) 62.5(73.3) 53.0(59.2) 8.3(8.3)
MathReason-Qwen-32B TIR 78.4 (93.3) 64.2(76.7) 59.7(70.9) 9.2 (12.5)

+ Self GenSelect 93.3 80.0 73.5 15.7
DeepSeek-R1 79.1 (86.7) 64.3(73.3) 53.0(59.2) 10.5(11.4)

Table 5: Percentage of unfinished solutions on the Comp-
Math-24-25 dataset. We generate 32k tokens and consider
solution unfinished if it does not contain “\boxed”.

Model Prompt Unfinished (in %)

1.5B 2.23
7B CoT 0.98
14B 1.13
1.5B 40.31
7B TIR 6.45
14B 4.06

7. Conclusion

We present a pipeline for developing state-of-the-art mathe-
matical reasoning models. Our contributions can be summa-
rized as follows:

* We develop a method to combine code execution with

long chain-of-thought (CoT) generations to produce
tool-integrated reasoning (TIR) solutions.

* We create a pipeline for training models to generate

samples that select the most promising solution from
multiple candidates (GenSelect).

* We release a large-scale MathReason dataset. It

contains 540K unique mathematical problems, 3.2M
long chain-of-thought (CoT) solutions, 1.7M long tool-
integrated reasoning (TIR) solutions, and 566K gener-
ative solution selection (GenSelect) traces.

¢ We release a series of MathReason—-Qwen models

capable of operating in CoT, TIR, or GenSelect in-
ference modes. With this release, we establish a new
state-of-the-art in mathematical reasoning among open-
weight models.

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning by improving the mathematical rea-
soning capabilities of Al models. While the primary impact
of our contribution is to foster further research, we acknowl-
edge that any application of this technology in sensitive
domains, such as for educational purposes, carries risks and
requires significant validation and human oversight. The
long-reasoning paradigm is also computationally intensive,
which may impact accessibility. Beyond these consider-
ations, we do not feel there are additional societal conse-
quences of our work that must be specifically highlighted
here.

References

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D
Chang, and Prithviraj Ammanabrolu. Critique-out-Loud
Reward Models. arXiv preprint arXiv:2408.11791, 2024.

bloc97. NTK-Aware Scaled RoPE allows LLaMA
models to have extended (8k+) context size without
any fine-tuning and minimal perplexity degradation.
https://www.reddit.com/r/LocalLLaMA/
comments/141z735/ntkaware_scaled_
rope_allows_llama_models_to_have/, 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W.
Cohen. Program of Thoughts Prompting: Disentangling
Computation from Reasoning for Numerical Reasoning
Tasks. TMLR, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. Training Ver-
ifiers to Solve Math Word Problems. arXiv preprint
arXiv:2110.14168, 2021.

Long Phan et al. Humanity’s last exam, 2025. URL https:
//arxiv.org/abs/2501.14249.

Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan,
Ramakanth Pasunuru, Olga Golovneva, Koustuv Sinha,
Asli Celikyilmaz, Antoine Bosselut, and Tianlu Wang.
Efficient Tool Use with Chain-of-Abstraction Reasoning.
arXiv preprint arXiv:2401.17464, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Rea-
soning Capability in LLMs via Reinforcement Learning.
arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-

cob Steinhardt. Measuring Mathematical Problem Solv-
ing With the MATH Dataset. In NeurlPS Datasets and
Benchmarks, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson,
Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander
Madry, Alex Beutel, Alex Carney, et al. OpenAl ol
system card. arXiv preprint arXiv:2412.16720, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Ro-
man Soletskyi, Shengyi Huang, Kashif Rasul, Longhui
Yu, Albert Q Jiang, Ziju Shen, et al. NuminaMath: The
largest public dataset in Al4Maths with 860k pairs of
competition math problems and solutions, 2024.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul,
Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin,
Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lam-
ple, and Stanislas Polu. NuminaMath. [https:
//huggingface.co/datasets/AI-MO/
NuminaMath-1.5] (https://github.com/
project—-numina/aimo-progress—prize/
blob/main/report/numina_dataset.pdf),
2024.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling
Tool-Integrated RL. arXiv preprint arXiv:2503.23383,
2025.

Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan.
MARIO: MAth Reasoning with code Interpreter Output -
A Reproducible Pipeline. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Findings of ACL, 2024.

Cong Liu, Zhong Wang, ShengYu Shen, Jialiang Peng,
Xiaoli Zhang, ZhenDong Du, and YaFang Wang. The Chi-
nese dataset distilled from DeepSeek-R1-671b. https:
//huggingface.co/datasets/Congliu/
Chinese-DeepSeek-R1-Distill-data-110k,
2025.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In ICLR, 2019.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, and Chase
Blagdenl Nathan Lilel Louis Castricato. Generative
Reward Models. arXiv preprint arXiv:2410.12832, 2024.

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos Thram-
poulidis, Leonid Sigal, and Renjie Liao. Leveraging On-
line Olympiad-Level Math Problems for LLMs Training
and Contamination-Resistant Evaluation. arXiv preprint
arXiv:2501.14275, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candes, and Tatsunori

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
[https://huggingface.co/datasets/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/datasets/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/datasets/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/datasets/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/datasets/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Hashimoto. s1: Simple test-time scaling. arXiv preprint
arXiv:2501.19393, 2025.

OpenR1 Team. OpenR1 Math 220k, February 2025.
URL https://huggingface.co/datasets/
open—rl/OpenR1-Math-220k. Dataset available
on Hugging Face.

Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng,
Yi Dong, Daniel Egert, Shengyang Sun, Jimmy Zhang,
Sahil Jain, Ali Taghibakhshi, et al. NeMo-Aligner:
Scalable Toolkit for Efficient Model Alignment. arXiv
preprint arXiv:2405.01481, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. RoFormer: Enhanced Trans-
former with Rotary Position Embedding. arXiv preprint
arXiv:2104.09864, 2021.

DolphinR1 Team. Dolphinrl. https://huggingface.
co/datasets/cognitivecomputations/
dolphinrl, February 2025a. Accessed April 2025.

Qwen Team. QwQ-32B: Embracing the Power of Re-
inforcement Learning, March 2025b. URL https:
//gqwenlm.github.io/blog/gwg-32b/.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman.
OpenMathlInstruct-1: A 1.8 Million Math Instruction Tun-
ing Dataset. In NeurIPS Datasets and Benchmarks, 2024.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
OpenMathlInstruct-2: Accelerating Al for Math with Mas-
sive Open-Source Instruction Data. In ICLR, 2025.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and
Shafiq Joty. Direct Judgement Preference Optimization.
arXiv preprint 2409.14664, 2024a.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu,
Weizhe Yuan, Jane Dwivedi-Yu, Richard Yuanzhe Pang,
Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-
Taught Evaluators. arXiv preprint arXiv:2408.02666,
2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-Consistency Improves Chain of
Thought Reasoning in Language Models. In ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. NeurIPS, 2022.

10

Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic Reason-
ing: Reasoning LLMs with Tools for the Deep Research.
arXiv preprint arXiv:2502.04644, 2025.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuan-
dong Tian, Jiantao Jiao, Jason Weston, and Sainbayar
Sukhbaatar. Meta-Rewarding Language Models: Self-
Improving Alignment with LLM-as-a-Meta-Judge. arXiv
preprint arXiv:2407.19594, 2024.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khalman,
Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Build-
ing math agents with multi-turn iterative preference learn-
ing. arXiv preprint arXiv:2409.02392, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen
Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren
Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji
Lin, Tianyu Liu, Xingzhang Ren, and Zhenru Zhang.
Qwen2.5-Math Technical Report: Toward Mathematical
Expert Model via Self-Improvement, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou,
Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu,
Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. Qwen2.5 Technical Report, 2025.
URL https://arxiv.org/abs/2412.15115.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.
Gonzalez, and Ton Stoica. Rethinking Benchmark and
Contamination for Language Models with Rephrased
Samples, 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia,
and Pengfei Liu. LIMO: Less is More for Reasoning.
arXiv preprint arXiv:2502.03387, 2025.

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Weli,
Liu Yang, Jujie He, Cheng Cheng, Rui Hu, Yang Liu,
Shuicheng Yan, Han Fang, and Yahui Zhou. Skywork-
Math: Data Scaling Laws for Mathematical Reasoning in
Large Language Models — The Story Goes On, 2024.

Bo-Wen Zhang, Yan Yan, Lin Li, and Guang Liu. In-
finityMATH: A Scalable Instruction Tuning Dataset in
Programmatic Mathematical Reasoning. arXiv preprint
arXiv:2408.07089, 2024.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. Generative

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/cognitivecomputations/dolphinr1
https://huggingface.co/datasets/cognitivecomputations/dolphinr1
https://huggingface.co/datasets/cognitivecomputations/dolphinr1
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2412.15115

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Verifiers: Reward Modeling as Next-Token Prediction. In
ICLR, 2025.

Shaowei Zhang and Deyi Xiong. BackMATH: Towards
Backward Reasoning for Solving Math Problems Step by
Step. In Proceedings of the 31st International Conference

on Computational Linguistics: Industry Track, pages 466—
482, 2025.

Han Zhao, Haotian Wang, Yiping Peng, Sitong Zhao, Xi-
aoyu Tian, Shuaiting Chen, Yunjie Ji, and Xiangang Li.
1.4 Million Open-Source Distilled Reasoning Dataset
to Empower Large Language Model Training. arXiv
preprint arXiv:2503.19633, 2025.

11

A. Data Pipeline

1. Problem Extraction: We prompt an LLM to identify
and extract all problems from the initial forum posts
(Appendix D.7). While most posts contain a single
problem, some include multiple problems or none at
all.

Problem Classification: Each extracted problem is
classified into the following categories. We use an
LLM to perform the classification:

* Proof problem or not (Appendix D.4)
» Multiple choice question or not (Appendix D.3)

* Binary question (yes-or-no answer) or not (Ap-
pendix D.1)

* Valid problem or not (Appendix D.2)?

We remove all multiple-choice questions, binary ques-
tions, and invalid problems from the final dataset.

3. Question Transformation: For proof questions, we
convert them into answer-based questions that require
similar problem-solving techniques (Appendix D.5).

Answer Extraction: For non-proof questions, we at-
tempt to extract the final answer from the forum dis-
cussions (Appendix D.6)3.

5. Benchmark Decontamination: Following (Yang
et al., 2023) we use an LLM-based comparison to re-
move questions that closely resemble those in popular
math benchmarks.

Table 6 has a breakdown of the dataset size after each pro-
cessing stage, and Table 7 shows the final dataset composi-
tion.

B. Comp-Math-24-25 dataset

Table 8: Composition of our Comp-Math-24-25 validation
dataset.

Problem source # of Problems
AIME 2024 30
AIME 2025 30
HMMT Nov 2024 62
HMMT Feb 2024 68
HMMT Feb 2025 66
Total 256

’E.g. problems that are lacking context or referring to other
problems are considered invalid.
3We do not try to extract the full solution, just the final answer.

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Pipeline Stage Data Size
Original forum discussions 620K
Extracted problems 580K
Removing “bad” problems 550K
Benchmark decontamination 540K

Table 6: Dataset size after each processing stage.

Subset Size
Converted proofs 260K
With extracted answer 190K
No extracted answer 90K
Total problems 540K

Table 7: Final dataset composition.

Problem

Solution $ummaries

%% : DY
| &

| &
GenSelect Input
QuQ-328

Filter Reasoning Traces

Quen2.5-32B-Instruct
ize R

Summarize Reasoning Trace

GenSelect Output

Figure 4: Data construction pipeline of GenSelect. The
GenSelect input is constructed by sampling solution sum-
maries of both correct and incorrect instances, ensuring
that the input contains at least one correct and one incor-
rect solution. The input is then fed to QwQ—-32B, which is
tasked with selecting the best solution among the candidate
solutions. The reasoning traces that select correct solutions
are summarized with Qwen2 .5-32B-Instruct, which
forms the GenSelect output.

C. GenSelect Pipeline

Figure 4 illustrates the GenSelect training data synthesis
pipeline.

12

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

D. Problem Preparation Prompts

D.1. Binary Problem Classification

Prompt: Binary Problem Classification

I will provide a math problem, and you need to determine whether it is a binary
question .
Respond only with ’binary’ if the problem meets the criteria , and ’not binary’
otherwise .

A problem qualifies as a binary question if and only if:

1. The problem explicitly asks for a binary response, such as "yes or no", "true or
false", or another equivalent two—choice response.

2. The problem is phrased as a question or statement that naturally leads to a
binary response (e.g., "Is this true?" or "Determine whether the statement is true

or false").

If the problem does not explicitly ask for a binary response, even if it can be
interpreted that way, it should be classified as ’not binary question’

Here are a few examples.

Example 1

Problem:
Is it true that $0.4395308999999\\1dots = 0.4395309%?

Output: binary

Example 2

Problem:

Write first several terms of a geometric progression in which the difference between
the third and first terms is equal to 9, and that between the fifth and third terms
equal 36.

Output: not binary

Example 3

Problem:
Solve the following equations: $\frac {{\sin (60" circ+x)+\sin (60" circ—-x)}}{{2}} =\
frac {{\tan x}}{{(1+\tan?2 x)"2}}+\frac {{\cot x}}{{(1+\cot”2 x)"2}}$

Output: not binary

Example 4

Problem :

Given the quadratic expression \\(ax”2 + bx + ¢ \\) with coefficients \\(a, b, c
\\) such that \\(b — c > a \\) and \\(a \\neq O \\), is it true that the equation
\W(ax”2 4+ bx + ¢ = 0 \\) always has two distinct real roots?

13

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Output: binary

Example 5:

Problem:

Can the vertices of a cube be colored in red, yellow, and blue such that every set
of four coplanar vertices contains all three colors?

Output: binary

Example 6:

Problem:

Can the numbers \\(\\frac{{14x + 5}}{{9}}\\) and \\(\\frac{{17x — 4}}{{12}}\\) both
be integers for some integer \\(x\\)? If so, find that integer.

Output: not binary

Example 7:

Problem:

Can the distances from a point on the plane to the vertices of a certain square be
equal to $1, 1, 2,%$ and 3?

Output: binary

Now here is the problem you need to extract the answer from.

Problem:
{problem}

Output:

D.2. Valid Problem Classification

Prompt: Valid Problem Classification

I will provide a problem statement from a math forum. Your task is to determine
whether it is a valid, solvable math problem based on the given text.

Respond with ’“not invalid’ if the problem meets all of the following conditions:
1. It is a well-defined math question, such as solving an equation, finding a

minimum, computing an expression, or proving a result.
2. It contains enough information to be solved using standard mathematical

techniques , even if the solution requires advanced concepts (e.g., limits,
logarithms , recursion).
3. It is not just a conceptual or definitional question (e.g., "What does the

notation mean?" is not a valid math problem).
4. It does not rely on external resources such as images or missing context.

14

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Otherwise , respond with ’invalid ’, but only if there is a clear and strong reason
why the problem cannot be solved. If you are uncertain, default to ’not invalid ’.

Important Notes:

1. The vast majority (>99%) of problems will be valid math problems.

2. Only extremely rare cases are invalid, such as: Problems relying on external
images or missing definitions. Vague or incomplete statements that cannot be
interpreted mathematically. Open—ended conceptual discussions rather than problem-

solving .

3. A problem is still valid even if solving it requires advanced methods like
recursion, limits , or logarithms.

4. Do not evaluate whether the problem has a solution or not.
5. Do not analyze the difficulty of the problem or the methods required to solve it.

6. Only check whether it is a well-formed math problem that can be meaningfully
interpreted .

Here are a few examples.
Example 1

Problem:
Solve the equation \\(\\log(x - 2)(2x - 3) = \\log(x"2)\\).

Output: not invalid

Example 2

Problem:
Solve the math problem found on Facebook (image provided)

Output: invalid

Example 3

Problem:

Solve the following equations: $\frac {{\sin (60" circ+x)+\sin (60" circ—-x)}}{{2}} =\
frac {{\tan x}}{{(1+\tan”2 x)"2}}+\frac {{\cot x}}{{(1+\cot”2 x)"2}}$

Output: not invalid

Example 4

Problem:
Find the area of square T?

Output: invalid

15

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Example 5:
Problem:
Provide another example of a similar problem involving remainders and squaring a

number .

Output: invalid

Example 6:

Problem:

What does the notation $\\vec{{B}}$ mean in the context of vectors?
Output: invalid

Example 7:

Problem:

Is there a quick way to multiply 59 and 61? If so, explain the method

Output: invalid

Example 8:
Problem:
None\n\n (Note: There is only one problem in the given forum post.)

Output: invalid

Example 9:

Problem:

If $a+b=31$ and $ab=240%, find the sum of the reciprocals of a and b.
Output: not invalid

Example 10:

Problem:

What is the value of $35461754593428% \\mod 11$?

Output: not invalid
Now here is the problem you need to extract the answer from.
Problem:

{problem}

Output:

16

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

D.3. Multiple Choice Problem Classification

Prompt: Multiple Choice Problem Classification

I will provide a math problem, and you need to determine whether it is a multiple —
choice problem.
Respond only with 'mcq’ if the problem meets the criteria, and ’not mcq’ otherwise.

A multiple —choice problem must satisfy all of the following conditions:

1. The problem explicitly presents a set of answer choices to select from.

2. The problem asks for a final answer rather than requiring a proof, justification ,
or explanation.

3. The problem has at least one correct answer among the given choices.

If the problem does not include answer choices, even if it has a numerical answer,

s

it should be classified as ’'not mecq’.

Here are a few examples.
Example 1

Problem :
Simplify the expression \\(\\frac {{{{2}} \\sqre{{6}}}}{{\\sqrt{{2}}}} + \\sqrt{{3}}

+ \Wsqrt{{5}}\\) and choose the correct option from the following:\n\n
A. \NW(\\'sqrt{{2}} + \\sqrt{{3}} — \\sqrt{{5}}\\)\n\n

B. \W(4 — \\sqrt{{2}} = \\sqrt{{3}}\\)\n\n

C. \W(\\'sqre{{2}} + \\sqrt{{3}} + \\sqrt{{6}} — 5\\)\n\n

D. \W(\\ frac{{1}}{{2}} (\\'sqrt{{2}} + \\sqrt{{5}} — \\sqrt{{3}})\\)\n\n
E. \W(\\ frac {{1}}{{3}} (\\'sqrt{{3}} + \\sqrt{{5}} — \\sqrt{{2}})\\)

Output: mcq

Example 2

Problem:

Write first several terms of a geometric progression in which the difference between
the third and first terms is equal to 9, and that between the fifth and third terms
equal 36.

Output: not mcq

Example 3

Problem:

Solve the following equations: $\frac {{\sin(60M\circ+x)+\sin (60" \circ—-x)}}{{2}} =\
frac {{\tan x}}{{(1+\tan”2 x)*2}}+\frac {{\cot x}}{{(1+\cot”2 x)"2}}$

Output: not mcq

Example 4

Problem :

17

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

b+ Wlog {{\\frac{{b}}{{c}}}} +

Simplify the expression \\(\\log{{\\frac{{a}}{{b}}}
{{dx}}}1\V).

Wlog { {\\frac{{c}}{{d}}}} — \\log{{\\frac{{ay}}
Choose from the following options:\n\\[\n
Wteextbf {{(A) }}\\ \Wlog { {\\frac{{y}}{{x}}}}\\qquad
Wtextbf {{(B) }}\\ \\log {{\\frac{{x}}{{y}}}}\\qquad
Wtextbf {{(C) }}\\ 1\\qquad

Wtextbf {{(D) } }\\ 0\\qquad

Wteextbf {{(E) } }\\ \Wlog { {\\frac{{a”2y}}{{d”"2x}}}}\n\\]

Output: mcq

Example 5:

Problem :

What is the maximum possible magnitude of the difference between two vectors? Choose
from the following options and provide reasoning:

A. The magnitude of one of the vectors.

B. The magnitude of both vectors.

C. The magnitude of their sum.

D. Their scalar product.

Output: mcq

Example 6:

Problem :

Compare the numbers a and b: $a=3(\log 7-\log 5),\ b=2\left (\frac {{1}}{{2}}\log
9-\frac {{1}}{{3}}\log 8\right)$

Output: not mcq

Example 7:

Problem::

Which of the two numbers $317{{11}}$ and $177{{14}}$ is greater?

Output: not mcq

Example 8§:

Problem:

Let $ABCD$ be a rectangle and E the reflection of A with respect to the diagonal
BDS. If $EB = EC$, what is the ratio $\frac{{AD}}{{AB}}

Output: not mcq
Now here is the problem you need to extract the answer from.
Problem:

{problem}

Output:

18

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

D.4. Proof Problem Classification

Prompt: Proof Problem Classification

I will give you a math problem and ask to identify if it’s a "proof" problem.
Respond only with "proof" if it is a proof problem, and "not proof" if it is not.

Consider the following characteristics of proof problems:

1. They often use phrases like "prove that", "show that", or "demonstrate that".
2. They may ask to justify or explain why a statement is true.

3. They don’t have a well-defined answer in the form of a number or expression.
Here are a few examples.
Example 1

Problem:

Prove the identity $a~\frac {{1

{1}}
frac {{1}}{{2}} +\frac{{l-ar{{-2}
({2} {{a\frac {{3}}{{2}}=08

2} =\frac{{a-a”r{{-2}}{{a”\frac {2}y —ar{{-\

{{ {{1}}{
Hi{a™frac {{1}}{{2}}+ar{{-\frac{{1}}{{2}}+\frac

Output: proof

Example 2

Problem:

Write first several terms of a geometric progression in which the difference between
the third and first terms is equal to 9, and that between the fifth and third terms
equal 36.

Output: not proof

Example 3

Problem :

Solve the following equations: $\frac {{\sin (60 "\ circ+x)+\sin (60" circ—-x)}}{{2}} =\
frac {{\tan x}}{{(1+\tan”2 x)*2}}+\frac {{\cot x}}{{(1+\cot”2 x)"2}}$

Output: not proof

Example 4

Problem:

Denoting the sums of the first n_1, first n_2 and first n_3 terms of an
arithmetic progression by S_1, S_2 and S_3, respectively , show that $$\frac {{
S_ 133 {{n_1}}(n_2-n_3)+\frac{{S_2}}{{n_2}}(n_3-n_1)+\frac{{S_3}}{{n_3}}(n_1-n_2)=0.%%

Output: proof

Now here is the problem you need to extract the answer from.

Problem:

19

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

{problem}

Output:

D.5. Proof Problem Conversion

Prompt: Proof Problem Conversion

I will give you a math problem that asks to prove something.

Your task is to create an equivalent problem that instead has some kind of numerical
or expression answer that can be used to automatically grade the solution.

Make sure the new problem is at least as difficult as the original proof problem.

Here are a few examples.
Example 1

Problem :

Prove that the system \begin{{align=*}}x"6 + x"3 + x"3y + y &= 147"{{157}} \\ x"3 + x
Ay + yM2 +y + z79 &= 1577{{147}}\end{{align=}} has no solutions in integers x ,
y . and z

Output:

Let x, y and z be a solution to the following system of equations \begin {{
align=*}}x"6 + x"3 + x"3y + y &= 147 {{157}} \\ x*3 + x"3y + y"2 + y + z"9 &=
1577{{147}\end{{align «}}.

Calculate the sum of all possible values of x.

Example 2

Problem:

A triangle is called a parabolic triangle if its vertices lie on a
parabola $y = x”2$. Prove that for every nonnegative integer n , there

is an odd number m and a parabolic triangle with vertices at three
distinct points with integer coordinates with area $(2”nm)”"2$

Output:

Consider parabolic triangles whose vertices lie on $y = x72$ with integer
coordinates. Let $f(n)$ be the smallest possible value of c, where $(0,0)$, $(b,b
A2)$, and $(c,c”2)$ are vertices of such a triangle with area exactly $(27n)”"2$, for
some integer b where 0 < b < c.

Find $f(4)$.

Now here is the problem you need to modify. Only output the new problem xxWITH NOs:
explanation or notes after it.

Again, start with the problem right away, =#%*DO NOT=## start with "Let’s modify the
given problem" or anything like that.

Problem:
{problem}

Output:

20

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

D.6. Forum Answer Extraction

Prompt: Forum Answer Extraction

I will give you a series of posts from a math-related forum that contain one or
several math problems and discussion of their solutions.

I will also specify which problem I’'m currently looking at (in case there are
multiple).

You task is to find an answer to the problem I’m currently looking at inside the
forum discussions.

The answer should be a numerical value or a mathematical expression.

If the answer is not available, output "Answer not found." in the last line of your
response.

You can think before stating the final answer. The final line of your response
should be "Answer: <final answer>".

Here is an example.

First forum post with problem(s):

This problem was extra credit for my math class and I haven’t gotten it back yet but
I’m assuming

a.) Everyone handed it in

and

b.) None of you here goes/takes/will go/take my math class

Anyways:
Suppose two of the zeroes of the following fourth-degree equation are the same and
the other two zeroes are the recipricals of each other. Find a and b.

X:MN:i+ax:M3:+bx:M2:4+4x+4=0

It s not at all hard as it looks...a lot of work though, so I suggest orginizing as
you go along.

Problem we are looking at (it might be rephrased):

Suppose two of the zeroes of the fourth-degree equation \(x4 + ax”"3 + bx"2 + 4x +
4 =0 \) are the same and the other two zeroes are reciprocals of each other. Find
\C a \) and \(b \).

Forum discussions:
Post 1:
Tare wrote:x: " :+ax:"3:+bx:"2:+4x+4=0

Here’s a shorter way:

[hide]Say the four roots are c, c, d, and 1/d. Then the product of the four roots
is the constant term of the polynomial, so c”2=4. Then c= :pm: 2. Similarly, from
the linear term, c”2d+c”2/d+c+c=-4. If we plug in c=2, we get d=-1, so the roots
are 2, 2, -1, =1. So a = —(2+2-1-1)=-2 and b = 2%2+2(-1)+2(-1)+2(-1)+2(-1)+(-1)(-1)
=-3. If we plug in c=-2, we get 4d+4/d=0, so d+1/d=0. Then a = —(-2-240)=4 and b
=(-2)(-2)+(-2)(0)+(-2)0+1=5. So either a=-2, b=-3 or a=4,b=5.

[/hide]

Thanks Tare for catching the mistakes.

——Dan

21

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Post 2:
Well ... it didn’t specify that the solution is real and also you were supposed to get
a and b...

Output:

Seems that there is an answer at the end of the first post. Since none of the other
posts contradicts it, we can assume that the answer is correct.

Answer: a = -2, b = -3 or a =4, b =5

Now here are the posts from the forum that I’'m currently looking at. Please find the
answer to the problem.
Don’t forget to say "Answer not found." if the answer is not available.

First forum post with problem(s):
{forum_post}

Problem we are looking at (it might be rephrased):
{problem}

Forum discussions:
{forum_discussions}

Output:

D.7. Forum Problem Extraction

Prompt: Forum Problem Extraction

I will give you a post from a math-related forum that might contain one or several
math problems.
Your task is to extract all problems or state that none are available.

Here are some guidelines you should follow

— If no problems are available, output "No problems identified."
— For each problem found, use the following format:

Problem 1: <problem statement>

Problem 2: <problem statement>

— For each math problem you identify , make sure to rephrase it such that it’s stated
clearly and concisely.

Remove any redundant context, personal commentary, anecdotes, or unrelated
information .

But make sure not to change the meaning of the problem and keep all necessary
mathematical or technical details.

— If multiple problems that you extract are related , make sure to include all the
context in each problem statement

as they will be looked at independently.

Here are a few examples.

Example 1

Forum post:

22

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Countdown :
What is the remainder of 876+777+6"8 is divided by 5?
no calculator of course, paper isn’t needed either, but sure.

Output:
Problem 1: What is the remainder of $876+727+678% when divided by 5?

Example 2

Forum post:

Question 1:

A tetrahedron has four vertices. We can label each vertex by one of the four digits:
$1, 2, 3, 4%. How many non—congruent ways are there to assign a different digit to
each vertex of a tetrahedron? Tetrahedra are considered congruent through rotation.
Reflections are considered different.

I’m wondering how I could approach a problem like this. I started off with $4!$ and
then divided by 4% to take out the rotation aspect. Now I am stuck.

Note: I1’d rather not do case work because I’m sure the test writers could have
easily used an icosahedron, or something equally lengthy.

Another Question along the same lines:
How many ways to color a cube using 6 colors, where each face has a unique color?
Thanks

Output:

Problem 1: How many non—-congruent ways are there to assign a different digit to each
vertex of a tetrahedron? Tetrahedra are considered congruent through rotation.
Reflections are considered different.

Problem 2: How many ways can a cube be colored using 6 colors, where each face has a
unique color?

Example 3

Forum post:
Yes! I completely agree with what you said. It’s been a tough transition for me too,
but we’ 1l figure it out.

Output:
No problems identified

Example 4

Forum post:

Billy Bob has fourteen different pairs of socks in his drawer. They are just thrown
around randomly in the drawer. Billy Bob once woke up in a hurry and had to get his
socks quickly.

Without switching the light on, he pulled out enough socks to know that he had at
least one pair, and then he ran out of the room. How many socks did Billy Bob pull
out

23

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Output:
Problem 1: From a drawer containing 14 different pairs of socks, how many socks must
be pulled out randomly to ensure at least one matching pair?

Please analyze the following forum post and extract all math problems. Here are the
guidelines one more time for your reference

— If no problems are available, output "No problems identified."

— For each problem found, use the following format:

Problem 1: <problem statement>

Problem 2: <problem statement>

— For each math problem you identify , make sure to rephrase it such that it’s stated
clearly and concisely.

Remove any redundant context, personal commentary, anecdotes, or unrelated
information .

But make sure not to change the meaning of the problem and keep all necessary
mathematical or technical details.

— If multiple problems that you extract are related , make sure to include all the
context in each problem statement

as they will be looked at independently.

Forum post:
{forum_post}

Output:

E. TIR Data Generation Prompts
E.1. Stage-0 TIR Data Generation Prompt

TIR Inference Prompt for Stage-0 Data Generation

You are a math problem solver that uses Python code as an integral part of your
reasoning .

In your solution you MUST strictly follow these instructions:

1. For each step requiring complex calculation write Python code.

2. For Python code use the following template:

‘¢ ‘python

Your Python code

¢

3. Put the final answer within \boxed{{}}.

Please reason step by step, and put your final answer within \\boxed{{}}.

user: |-
Solve the following math problem using Python code for the calculations.

{problem}

24

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

E.2. TIR Novelty Evaluation

Prompt to evaluate TIR novelty

You will be given a fragment of a solution to a math problem that includes a Python
code block.

Your task is to determine the purpose of this Python code block in the solution
fragment.

In your assessment, you MUST follow these guidelines:

1. Classification:

— Verification: Python code is used to verify the correctness of the previous manual
calculations or to confirm some results. E.g. if the result of the code execution
exists in the solution above, it is definitely a verification.

— Novel Calculation: Otherwise, if the result of code execution is not present in
ANY FORM in the solution above, it is a novel calculation.

If you are unsure about the classification of specific code block, you MUST label it
as Verification!

2. Output Format:

— Your response MUST follow this exact format (without extra commentary or text):
Reasoning: <a couple of sentences explaining your rationale >
Judgement: <Verification or Novel Calculation>

3

#x EXAMPLES #

1.
Solution:
<Some text reasoning without code>

Wait, so the answer is 143? Let me verify this with the pow function.

‘“‘python

Compute 77999 mod 1000 using pow function
print (pow(7, 999, 1000)) # Should print 143
‘“‘output

143

So the answer is \\boxed{{143}}.

¢

Reasoning: This is for sure a verification, because the result of the code execution
is present in the solution above. Moreover, comment in the code block explicitly
states that it should print 143 which means that the result is known in advance.
Judgement: Verification

¢

2.

non

Solution :
<Some text reasoning without code>

Therefore, let’s proceed to compute PA5. I can use Python for this calculation to
ensure accuracy .

25

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

First, let’s define the transition matrix P as a numpy array, then compute P75, then
extract the relevant entry, and divide by 3.

Let me import numpy and do the calculations.
‘“‘python
import numpy as np

Define the transition matrix P
P = np.array ([

[0, 1, 0, 0],

[1/3, 0, 2/3, 0],

[0, 2/3, 0, 1/3],

[0, 0, 1, 0]
1)

Compute P75
P5 = np.linalg.matrix_power (P, 5)

The initial state is state O, so the distribution after 5 steps is [1, 0, 0, 0] @
P5

But since PS5 is the transition matrix after 5 steps, the entry (0,1) is the
probability of going from O to 1 in 5 steps.

However, to get the distribution , we need to multiply the initial distribution by
P5.

initial_distribution = np.array([1, 0, 0, 0])

distribution_after_5_steps = initial_distribution @ P5

The probability mass at state 1 (distance 1) after 5 steps
prob_mass_at_1 = distribution_after_5_steps[1]

Since state 1 corresponds to 3 vertices (B, D, E), the probability of being at B
is this mass divided by 3
prob_at_B = prob_mass_at_1 / 3

prob_at_B
‘“‘output
np.float64(0.25102880658436205)

¢

Reasoning: The solution fragment describes algorithmic steps to calculate the
probability and the code block executes these steps. The result of the code
execution is not present in the solution above in any form. Therefore, this is a
novel calculation.

Judgement: Novel Calculation

¢«

3.

nun

Solution:
<Some text reasoning without code>

Compute C(51, 5):
510 /7 (5! = 46!) = ?
But maybe I should calculate it using Python to be accurate.

‘“‘python
import math

26

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

math.comb(51, 5)

‘“‘output
2349060

¢

Reasoning: The solution fragment describes the calculation of a combinatorial
expression and the code block executes this calculation. The result of the code
execution is not present in the solution above in any form. Therefore, this is a
novel calculation.

Judgement: Novel Calculation

¢«

4.
Solution:
<Some text reasoning without code>

But let’s compute these values in Python.
‘“‘python
import math

Given dimensions
=4 # feet
= 12 # feet

9 # feet from the tip, so remaining height
(h / H %« R # since r/R = h/H

= oA

Original volume
V_original = (1/3) % math.pi % R#%2 % H

Remaining volume
V_remaining = (1/3) * math.pi * r=*%2 % h

Volume poured out
V_poured = V_original — V_remaining

V_poured

‘“‘output

116.23892818282235

When I computed the volume manually, I obtained \(37\pi \) cubic feet.
Approximating this as $$

37 % 3.14159 \approx 116.23

$$, it closely matches the Python result of approximately 116.2389. Therefore, the
result appears to be correct.

Reasoning: The rationale right after the code block states that the manual
calculation (that happened before the code block) matches the Python result.
Therefore , code block verifies the previous manual calculations. So, this is a
verification.

Judgement: Verification

¢

+« REMINDER s s

27

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Focus only on the Python code block in the provided fragment and classify it as
either Verification or Novel Calculation based on whether its output appears in the
solution text before the code.

#%xYOUR TASK:

Solution fragment: {fragment}

E.3. TIR Significance Evaluation

Prompt to evaluate TIR significance

You will be given a fragment of a solution to a math problem that includes a Python
code block.

Your task is to evaluate the significance of this Python code in solving the math
problem.

In your assessment, you MUST follow these guidelines:

1. Classification:
Evaluate the significance of the code’s contribution by categorizing it into one of
three levels:

— Trivial: The code performs calculations that could easily be done manually without
significant effort (e.g., solving simple equations, doing arithmetic, applying
formulas to known variables). The code usage provides no meaningful or minor
advantage over manual calculation.

— Moderate: The code performs calculations that would be tedious, error—-prone, or
time—-consuming to do manually, but still technically possible (e.g., matrix
operations , numerical integration of standard functions, solving systems of
equations). The code usage provides efficiency but isn’t essential.

— Significant: The code performs calculations that would be practically impossible
or extremely difficult to do manually (e.g., brute—-forcing combinatorial problems,
complex simulations, solving complex differential equations, high—dimensional
optimization). The code usage creates a crucial shortcut that fundamentally enables
the solution.

2. Output Format:

— Your response MUST follow this exact format (without extra commentary or text):
Reasoning: <a couple of sentences explaining your rationale >
Significance: <Trivial , Moderate, or Significant>

3

% EXAMPLES * %
1.

Let’s find the roots of the quadratic equation: 3x"2 — 5x + 2 = 0

‘“‘python
import numpy as np
from sympy import symbols, solve, Eq

X = symbols(’x")
equation = 3#x*x2 — S5xx + 2

28

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

solutions = solve(equation, Xx)
print(solutions)

‘“‘output

[2/3, 1]

¢

So the solutions are x = 2/3 and x = 1.

nnon

I

Reasoning: This code simply solves a basic quadratic equation that could easily be
solved manually using the quadratic formula or factoring. Finding roots of a
quadratic equation with small integer coefficients is a standard calculation that
requires minimal effort by hand.

Significance: Trivial

2.

To solve this system of 4 linear equations with 4 unknowns:
3x + 2y —z + 2w = 10

X —y + 2z —-w-= -1

2X +y +z + 3w =12

X +3y —z-w=25

1’11 use Python to solve this system using matrices.

‘“‘python
import numpy as np
from scipy import linalg

Define coefficient matrix
A = np.array ([

[3, 2, -1, 2],

[r, -1, 2, -1],

[2, 1, 1, 3],

[r, 3, -1, -1]
D]

Define constants vector
b = np.array([10, -1, 12, 5])

Solve the system
solution = linalg.solve(A, b)

print("x =", solution[0])
print("y =", solution[1])
print("z =", solution[2])
print("w =", solution[3])
‘“‘output

x = 0.64

y = 2.7

z = 1.6

w = 2.14

Therefore , the solution is x = 0.64, y = 2.7, z = 1.6, and w = 2.14.

nun

¢

Reasoning: This code solves a system of 4 linear equations with 4 unknowns. While
this could be solved manually using Gaussian elimination or Cramer’s rule, it would
be tedious and error—prone. The system is complex enough that computational

29

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

assistance provides significant efficiency but doesn’t enable something impossible.
Significance: Moderate

¢

3.

For this traveling salesman problem with 11 cities , where the distances between
cities are given in the distance matrix below, I need to find the shortest possible
route that visits each city exactly once and returns to the starting city.

‘“‘python

import numpy as np

from itertools import permutations
import time

Distance matrix (11x11) between cities

distances = np.array ([
[0, 29, 82, 46, 68, 52, 72, 42, 51, 55, 29],
[29, 0, 55, 46, 42, 43, 43, 23, 23, 31, 41],
[82, 55, 0, 68, 46, 55, 23, 43, 41, 29, 79],
[46, 46, 68, 0, 82, 15, 72, 31, 62, 42, 21],
[68, 42, 46, 82, 0, 74, 23, 52, 21, 46, 82],
[52, 43, 55, 15, 74, 0, 61, 23, 55, 31, 33],
[72, 43, 23, 72, 23, 61, 0, 42, 23, 31, 77],
[42, 23, 43, 31, 52, 23, 42, 0, 33, 15, 37],
[51, 23, 41, 62, 21, 55, 23, 33, 0, 29, 62],
[55, 31, 29, 42, 46, 31, 31, 15, 29, 0, 51],
[29, 41, 79, 21, 82, 33, 77, 37, 62, 51, 0],

D

Brute force approach to solve TSP
def tsp_exact(distances):
n = len(distances)
cities = list(range(l, n)) # Start from city O
min_length = float(inf)
best_route = None

start_time = time.time ()
count = 0

Try all possible permutations of cities (excluding starting city)

for perm in permutations(cities):
route = (0,) + perm + (0,) # Complete route starting and ending at city O
length = sum(distances[route[i]][route[i+1]] for i in range(len(route)-1))

count += 1
if length < min_length:
min_length = length

best_route route
end_time = time.time ()
return best_route , min_length, count, end_time — start_time
Solve the TSP problem
best_route , min_length, permutations_tried , time_taken = tsp_exact(distances)

print (f"Best route: {{best_route}}")

print (f"Minimum distance: {{min_length}}")

print (f"Permutations evaluated: {{permutations_tried:,}}")
print (f"Time taken: {{time_taken:.2f}} seconds")

[

¢«

output

30

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Best route: (0, 1, 8, 4, 6, 2, 9, 7, 5, 3, 10, 0)
Minimum distance: 251

Permutations evaluated: 3,628,800

Time taken: 5.77 seconds

¢

Therefore , the optimal route has a total distance of 291 units.

nun

¢

Reasoning: This code solves a Traveling Salesman Problem with 11 cities by
evaluating over 3.6M permutations — a computation that would be absolutely
impossible to do manually. The brute—-force approach here creates a crucial shortcut
to the solution that would be practically unattainable through manual calculation ,
even with significant time investment.

Significance: Significant

4.

nun

To find all integer solutions to the Diophantine equation 17x + 23y = 3284 where
both x and y are non-negative, 1’11 implement search in Python.

‘*‘python
def find_solutions(a, b, c):
solutions = []

Find the maximum possible value of x
max_x = c¢ // a

Check all possible values of x from 0 to max_x
for x in range(max_x + 1):
Calculate the corresponding y value
remaining = ¢ — a * X

If remaining is divisible by b and the result is non—negative ,
we have a valid solution
if remaining >= 0 and remaining % b == O0:

y = remaining // b

solutions .append ((x, y))

return solutions

Given equation: 17x + 23y = 3284
a, b, ¢ =17, 23, 3284
solutions = find_solutions(a, b, c)

print (f"Solutions to {{a}}x + {{b}}y = {{c}}:")
for x, y in solutions:
print(f"x = {{x}}, y = {{y}}")
Verify the solution
print (f" Verification: {{a}}={{x}} + {{b}}={{y}} = {{axx + bxy}}")
print ()
‘“‘output
Solutions to 17x + 23y = 3284:
x = 20, y = 128
Verification: 17%20 + 23%128 = 3284

x = 43, y = 111
Verification: 17%43 + 23x=111

3284

X = 66, y = 94

31

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Verification: 17%66 + 23%x94 = 3284
x =89,y =177
Verification: 17«89 + 23%77 = 3284
x = 112, y = 60
Verification: 17%112 + 23%60 = 3284
x = 135, y = 43
Verification: 17«x135 + 23%43 = 3284
x = 158, y = 26
Verification: 17%158 + 23%26 = 3284

x = 181, y =9
Verification: 17x181 + 23%9 = 3284

So the integer solutions to the Diophantine equation are x = 11, y = 1.

¢

Reasoning: This code finds all integer solutions to a Diophantine equation by
iterating through possible values of x and calculating the corresponding y. While
this could be done manually, the exhaustive search for non—-negative integer
solutions is tedious and error—prone. The computational approach reduces the effort
and simplifies the solution process, making it more efficient. Thus it provides a
moderate level of significance.

Significance: Moderate

¢

5.
To verify my hypothesis, I need to find the probability of getting at least 3 heads
in 10 coin flips. I’1l calculate this using the binomial distribution.

‘¢ ‘python
import math

def binomial_probability (n, k, p):
Calculate the probability of k successes in n trials
with probability p of success on a single trial
combinations = math.comb(n, k)
return combinations s (p =% k) = ((1-p) =*x (n-k))

Calculate P(X \geq 3) when flipping a fair coin 10 times
p_at_least_3 = sum(binomial_probability (10, k, 0.5) for k in range(3, 11))

print (f"P(X \geq 3) = {{p_at_least_3:.6f}}")
print (f"Percentage: {{p_at_least_3 = 100:.2f}}%")
‘“‘output

P(X \geq 3) = 0.945312

Percentage: 94.53%

¢«

So the probability of getting at least 3 heads in 10 coin flips is approximately
94.53%.

nun

¢

Reasoning: This code calculates a probability using the binomial distribution
formula. While the calculation involves combinations and powers, the mathematical
concept is straightforward and could be calculated manually by explicitly writing

32

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

1760
and reducing the terms. The code provides a minor computational convenience but
1761 ; . - . .
doesn’t fundamentally change the nature of the solution process, making it a trivial
1762 use of Python code.
1763 Significance: Trivial
1764
1765 B
b #% REMINDER s
1767 When evaluating significance , consider:
1768 1. Could this calculation reasonably be done by hand? If yes, how difficult would it
1769 be?
1770 2. Does the code enable a solution approach that would otherwise be impractical?
1771 3. Is the computational advantage merely convenience, or is it essential to the
1772 solution?
1773 Remember to classify as Trivial , Moderate, or Significant based on these
1774 considerations .
1775 B
| o mases
1773 Solution fragment: {fragment}
1779
1780
1781 .
179> F. Prompts for Different Inference Modes
i;:: F.1. CoT Inference
1785 CoT Inference Prompt
1786
1787 .
1788 Solve the following math problem. Make sure to put the answer (and only answer)
1789 inside \boxed{{}}.
1790 {problem }
1791
1792
L’\
};;; F.2. TIR Inference
1795 TIR Inference Prompt
1796
1797
1798 Solve the fo!lowmg math problem, integrating natural language reasoning with Python
. code executions.
1799 You may perform up to {total_code_executions} Python code calls to assist your
1800 reasoning .
1801 Make sure to put the answer (and only answer) inside \boxed{{}}.
1802
1803 {problem}
1804
1805
1806 E.3. GenSelect Inference
1807
1808 GenSelect Inference Prompt
1809
1810 You will be given a challenging math problem followed by {num_solutions} solutions.
1811 Your task is to systematically analyze these solutions to identify the most
1812 mathematically sound approach.
1813
1814

33

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Input Format:

Problem: A complex mathematical word problem at advanced high school or college
level

Solutions: Detailed solutions indexed O—{max_idx}, each concluding with an answer in
\boxed{{}} notation

YOUR TASK
Problem: {problem}

Solutions:
{solutions}

Evaluation Process:

1. Initial Screening

— Group solutions by their final answers

— Identify and explain mathematical contradictions between different answers
— Eliminate solutions with clear mathematical errors

2. Detailed Analysis

For remaining solutions , evaluate:

— Mathematical precision and accuracy

— Logical progression of steps

— Completeness of mathematical reasoning

— Proper use of mathematical notation, including \boxed{{}}

— Handling of edge cases or special conditions

— For solutions containing and addressing errors, evaluate the error identification
and correction methodology.

3. Solution Comparison

Compare viable solutions based on:

— Efficiency of approach

— Clarity of mathematical reasoning

— Sophistication of method

— Robustness of solution (works for all cases)

Your response should include:

1. Brief analysis of conflicting answers

2. Detailed evaluation of mathematically sound solutions
3. Justification for eliminating incorrect solutions

4. Clear explanation for selecting the best approach

End your evaluation with exactly:
Judgment: [IDX]
where IDX is the index O-{max_idx} of the best solution.

G. Prompts for GenSelect Data Preparation

G.1. Re-generating Comparison Summary

Prompt to re-generate comparison summary

I will give you a critique ’s response which compares multiple solutions of a math
problem. This response will explore different approaches, making mistakes along the
way, correcting them, switching around and so on. But eventually the critique
converges on its ranking of the different solutions and ends with a string "Judgment
" followed by a number corresponding to the index of the best solution. Your task
is to write a clean version of the final critique without all the exploration and

34

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

i:;? make.sure to put the f.in'al judgment at thf.: end. Please make sure to iqclude the
1872 details related to arriving at the final judgment but not the tangential details.
1873 Problem:

1874 {problem}

1875

o Solutions:

1877 {solutions }

1878

1879

1880 Critique :

1881 {generation}

1882

1883 Now write a clean version of the final critique without all the exploration. Make
1884 sure to put in:

1885 — The details related to arriving at the final judgment.

1886 - Clearly writing the f.inal judgment at the end via "Judgment: " followed by the
1887 index of the best solution.

1888 \ J
1889

1890

1891

1892

1893

1894 . .

1805 G.2. Re-generating Solution Summary

o
1898

1899 I will give you a math problem and a long solution to that problem exploring

1900 different approaches, making mistakes along. the way, correcti.ng them, switching

) around and so on. But eventually that solution gets to the right approach and solves
1901 the problem. Your task is to write a clean version of the final correct solution
1902 without all the exploration. Cover all the details of the final solution.

1903

1904 Problem :

1905 {problem}

1906 Solution:

1907 {generation}

1908

1909 Now write a clean version of the final correct solution without all the exploration
1910 but cover all the details of the final solution.

1911

1912

1913

1914

1915

1916

1917

1012 H. Example of Re-generated Summary

1919

1920 Problem

igz i Call a 9-digit number a cassowary if it uses each of the digits 1 through 9 exactly once. Compute the number of
1(); cassowaries that are prime.

1924

35

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

Deepseek R1 Response

<think>

Okay, so I need to figure out how many 9-digit numbers, which use each digit from 1 to 9 exactly once, are prime.
These numbers are called cassowaries. Hmm, let’s start by understanding the problem step by step.

First, a cassowary is a 9-digit pandigital number, meaning it uses each digit 1 through 9 once. So, numbers like
123456789, but any permutation of those digits. The question is asking how many of these are prime numbers.
Alright, so the main task is to compute the count of prime numbers among all 9-digit pandigitals. Let me think about
the properties of prime numbers and pandigital numbers.

First, let’s recall that a prime number is a number greater than 1 that has no positive divisors other than 1 and itself.
For a number to be prime, it can’t be even (except for 2), and it can’t end with 5. Also, there are some divisibility
rules that might help here.

Since we’re dealing with 9-digit numbers using all digits 1-9, let’s check the sum of the digits. The digits are
14243+4+5+6+7+849 = 45. Wait, 45 is divisible by 9, right? So any number made with all these digits will have a
digit sum of 45, which is divisible by 9. Therefore, any such number is divisible by 9. But if a number is divisible by
9, it can’t be prime unless the number itself is 9, which it’s not here because we’re dealing with 9-digit numbers. So,
does this mean that all cassowaries are divisible by 9 and hence composite?

If that’s the case, then there are zero prime cassowaries. But let me verify this again. The divisibility rule for 9 is
that if the sum of the digits is divisible by 9, then the number itself is divisible by 9. Since 45 is divisible by 9, every
permutation of the digits 1-9 will result in a number divisible by 9. Therefore, all cassowaries are divisible by 9,
which means they can’t be prime. So the answer should be zero.

Wait, but let me make sure I’'m not missing something. For example, could the number 9 itself be considered? But
the problem specifies a 9-digit number, so 9 is a single-digit number. So all cassowaries are 9-digit numbers, which
are divisible by 9, hence composite. Therefore, there are no primes in the set of cassowaries. So the answer is 0.
But just to be thorough, let me check if there’s any exception. For example, is 9 a prime? No, 9 is 3 squared. So even
if there was a 1-digit cassowary (which there isn’t, since cassowary is defined as 9-digit), it’s not prime. So, yeah, all
9-digit pandigitals using 1-9 are divisible by 9, hence composite. Therefore, the number of prime cassowaries is
Zero.

</think> [0]

Qwen2.5-32b-instruct Solution Summary

To determine the number of 9-digit prime numbers (cassowaries) that use each digit from 1 to 9 exactly once, we
need to analyze the properties of these numbers.

1. **Sum of the Digits**: The sum of the digits from 1 to9is: 1 +2+3+4+5+6+7 +8+9=45.

2. **Divisibility by 9**: A number is divisible by 9 if the sum of its digits is divisible by 9. Since the sum of the
digits is 45, which is divisible by 9, every 9-digit number formed using the digits 1 through 9 will be divisible by 9.
3. **Prime Numbers and Divisibility**: A prime number has no positive divisors other than 1 and itself. Since any
9-digit number formed using the digits 1 through 9 is divisible by 9, it cannot be a prime number (except for the
number 9 itself, which is not a 9-digit number).

4. **Conclusion**: Therefore, no 9-digit number that uses each digit from 1 to 9 exactly once can be a prime
number. Thus, the number of prime cassowaries is:@

36

1980
1981

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

I. TIR Output Examples

I.1. Example of a warning of the remaining code executions

TIR solution with code execution limit warning

<tool_call >
Initialize sum
total_sum = 0

Iterate over possible bases b from 10 to 49 inclusive
for b in range(10, 50):
divisor = b + 7
dividend = 9 = b + 7
if dividend % divisor == O0:
total_sum += b

total_sum
</tool_call >
‘“‘output

70

¢

¢

system

Remaining code executions: 3. You will not be able to call code when you run out of
executions , so use it wisely. Note that you can still continue solving the problem
without code after that.

¢

I.2. Example of a redundant code execution

Redundant code execution that does not introduce new information to the solution

Since 5 is a prime number and 13 is also a prime number, their gcd should indeed be
1. Just to be thorough, let me compute it using Python.

<tool_call >

import math

Compute gcd of 5 and 13
gcd = math.ged(5, 13)
print (ged)

</tool_call >

‘“‘output

1

¢

The ged is 1, so an inverse does exist. Good.

37

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

1.3. Example of model encountering code execution limit

Example of models reaction to reaching code execution limit

Let me import the necessary libraries and define the equations.

<tool_call >
import numpy as np
from scipy.optimize import fsolve

Define the system of equations

def equations(vars):
X, y = vars
eql = 24 % np.cos(x) + 26 * np.cos(y) — 13 % np.sqrt(3) % np.sin(y) + 17.5
eq2 = 24 = np.sin(x) + 13 % np.sqrt(3) = np.cos(y) + 26 * np.sin(y) + 7 =% np.
sqrt(3)/2
return [eql, eq2]

Initial guess
initial_guess = [1, 1]

Solve the system

solution = fsolve(equations, initial_guess)
solution

</tool_call >

‘“‘output

array ([-0.93580304, 2.03210427])

]

¢

system

You have run out of code executions! You can no longer write or execute code. Now
you should continue solving the problem by relying on your mathematical reasoning
and analytical skills.

Hmm, it seems I’ve reached the limit of code executions. Let me check the solution
provided by the code.

J. Related Work

J.1. Tool Integration Reasoning

Tool-augmented approaches to mathematical problem solving have advanced rapidly in recent years. A seminal contribution
by Chen et al. (2023) introduced the Program of Thoughts (PoT) framework, which integrates natural language with
executable code to support step-by-step reasoning through a hybrid of textual and programmatic logic. Building on this
foundation, subsequent research has focused on developing both datasets and models that facilitate tool-integrated reasoning.

On the data side, OpenMathlInstruct-1 (Toshniwal et al., 2024) offers 1.8M instruction-tuning examples derived from code
interpreters across benchmarks such as GSM8K and MATH. Similarly, InfinityMATH (Zhang et al., 2024) introduces
100K instances of programmatic reasoning, while MARIO (Liao et al., 2024) combines model reasoning with tool outputs,
accompanied by a dataset constructed from GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). These
resources have significantly enriched the training landscape for tool-augmented reasoning systems.

On the modeling side, Qwen2.5 (Yang et al., 2024) introduced a series of models with strong mathematical reasoning
capabilities, supporting advanced techniques like Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). Gao et al.
(2024) proposed a two-stage method: training large language models to generate reasoning chains, and then invoking
domain-specific tools to execute each step by injecting the necessary knowledge. Xiong et al. (2024) proposed a multi-turn,
online, iterative direct preference learning framework tailored to this unique context. By incorporating feedback from
code interpreters during the training process, their approach achieves significant performance improvements on the MATH
benchmark. Wu et al. (2025) dynamically integrate web search, code execution, and structured reasoning with contextual
memory to tackle complex problems that demand deep research and multistep logical deduction. Li et al. (Li et al., 2025)

38

Scaling Mathematical Reasoning through Data, Tools, and Generative Selection

developed a Tool-Integrated Reinforcement Learning framework that autonomously utilizes computational tools by scaling
reinforcement learning directly from base models, and demonstrate substantial improvements compared to RL without
tools.

39

