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ABSTRACT

The global transition towards sustainable energy sources has positioned solar
power as a cornerstone of modern electricity systems, underscoring the critical
need for advanced forecasting techniques in grid management. Accurate net load
forecasting is crucial for efficient and reliable power grid operations, especially
with the rapid deployment of behind-the-meter (BTM) renewable energy sources
such as rooftop solar. Notably, BTM solar generation is neither controlled nor
monitored by utilities and hence only net load data are observed. Different from
load forecasting, net load forecasting faces new challenges because BTM solar,
a major component of net load, behaves very differently from and is much more
variable than loads. To exploit the distinct natures of solar generation and load
and unlock their predictive potentials, we propose SONNET, which stands for
SOlar-disaggregatioN-based NEt load forecasting with Transformers. It is a novel
probabilistic net load forecasting method based on disaggregating net loads into
solar generation and loads and feeding both into the predictors. The method further
features a) an enhanced Transformer architecture that integrates both historical and
future input data, employing a combination of self-attention and cross-attention
mechanisms, and b) a data augmentation method that enhances the robustness of net
load forecasts against weather forecast errors. Extensive experiments are conducted
based on the comprehensive real-world data set from a recent net load forecasting
competition organized by the U.S. Department of Energy (DOE). It is demonstrated
that our proposed method both improves the accuracy and reduces the uncertainty
of net load forecasts. Notably, our proposed method significantly outperforms the
state-of-the-art. The proposed techniques also have broad applications for energy
and/or general forecasting-related problems.

1 INTRODUCTION

In an electric grid, the net load is the difference between the electric load and the “behind-the-
meter” (BTM) power generation, notably BTM solar generation such as rooftop solar on residential,
commercial, and industrial premises. As grid operators typically neither monitor nor control BTM
generation, net load (as opposed to load) is what grid operators need to procure energy supply for
at all times. With the rapid growth of renewable energy sources in our power systems, net load
forecasting plays an increasingly crucial role for grid operators to efficiently and reliably plan their
daily energy procurement. The importance of net load forecasting is no less exemplified by the first
net load forecasting competition recently organized by the U.S. Department of Energy (DOE) (HeroX,
2023), anticipating a very significant penetration of BTM solar generation in the coming years.

Traditionally, with no or little BTM solar generation, the problem of net load forecasting reduces
to load forecasting only, for which there have been decades of ongoing innovations and practices
(Kuster et al., 2017). As BTM solar penetration increases, the corresponding shift in the composition
of net load leads to a fundamental change in the problem nature of net load forecasting: While a)
electric load in a future time slot correlates with both historical loads and future weather (among other
factors potentially), b) solar generation is predominantly determined by meteorological conditions,
particularly solar irradiance (Ahmed et al., 2020). Given these, an important practical limitation
that makes net load forecasting a particularly challenging and new problem is the following: It is
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Figure 1: Overall structure of SONNET.

almost always the case that only the net load data traces are observed and available to grid operators
and utilities, not the separate traces of load and solar generation. Thus, while methods for load
forecasting may directly be implemented on net load traces (Hong and Fan, 2016), their effectiveness
could degrade as solar generation, a major component of net load, is of a very different nature and
much more variable than load. A critical question is thus the following: Given only net load data,
how can the very different natures of load and solar generation both be exploited to achieve accurate
and robust net load forecasting?

Contributions: We propose SONNET: SOlar-disaggregatioN-based NEt load forecasting with
Transformers (cf. Fig. 1). SONNET produces day-ahead probabilistic net load forecasting that is not
only accurate but also robust to weather forecast errors. The main contributions are as follows:

• We develop a fully unsupervised BTM solar disaggregation algorithm that estimates solar genera-
tion traces given only net load traces, achieving performance close to that of supervised learning
given ground truth solar generation. Both the disaggregated solar generation and loads are then fed
as part of the input data to the predictors for net load forecasting.

• We develop a Transformer-based architecture that integrates both historical and future input data,
employing a combination of self-attention and cross-attention mechanisms to enhance the accuracy
of probabilistic net load forecasting by leveraging exogenous variables such as weather forecasts.

• We develop a physical-model-based data augmentation method that a) improves the predictors’
robustness to weather forecast errors, while also b) alleviating the issue of a limited amount of
training data, a common issue in practice.

• We conduct extensive experiments on day-ahead probabilistic net load forecasting, a particularly
challenging and important problem in power systems. We demonstrate a significant performance
gain by our proposed method over the state-of-the-art based on the comprehensive real-world data.

2 RELATED WORK

Net Load Forecasting: Net load forecasting has gained increasing attention in recent years due to
the growth of BTM solar generation. Algorithms have been developed that take net loads and weather
features, including solar irradiance, as input, and forecast net loads as output (see, e.g., (Tziolis
et al., 2023; Faustine and Pereira, 2022; Zhang et al., 2023) among others.) These works, however,
do not explicitly exploit the different natures of the underlying solar generation and load processes.
Other works took the approach of estimating load and solar generation separately. Most of these
works require knowledge of the ground truth solar generation and load traces as supervised labels
for training their respective predictors (see (Zhang et al., 2021; Alipour et al., 2020) among others.)

2
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As separately monitored solar generation and load traces are typically not available in practice,
disaggregation-based methods have been proposed that only rely on net load traces which are indeed
available. (Wang et al., 2018) decomposes net loads into loads, solar generation, and residuals, albeit
with a relatively simple disaggregation algorithm and evaluated on synthetic data only. (Jia et al.,
2023) decomposes net load into load and solar generation. These works train separate predictors for
the respective sub-traces albeit with relatively simple predictor architectures. Notably, while different
techniques have been proposed, there has not been a verifiable state-of-the-art due to the lack of a
common testing benchmark, until the net load forecasting competition recently organized by the
U.S. DOE (HeroX, 2023). In this competition, more than 90 teams have participated including both
researchers and many commercial forecasting companies. The top-ranked results based on a common
set of real-world data and evaluation metrics demonstrate the first verifiable state-of-the-art for net
load forecasting to the best of the authors’ knowledge.

Time Series Forecasting with Transformers: Transformers, introduced in (Vaswani et al., 2017),
are highly effective in sequence modeling benefiting from the attention mechanism. Researchers
have successfully applied Transformers to time series forecasting across various fields (Wen et al.,
2022; Liang et al., 2024; Wang et al., 2023b), including energy consumption (Nazir et al., 2023),
traffic (Zhang et al., 2024), and finance (Mulvey et al., 2022). Models like (Zhou et al., 2021; Wu
et al., 2021; Zhou et al., 2022) modify the underlying attention mechanism to better accommodate
long-term series forecasting and reduce computational complexity. Alternatively, another approach
avoids altering the attention mechanism itself and instead employs the original Transformer block for
time series modeling (Nie et al., 2022; Zhang and Yan, 2022; Liu et al., 2023).

3 PROBLEM FORMULATION

For an electricity-consuming region of interest, its net load at time t is denoted as Nt. Based on
the common practice of power system operations, it is crucial to perform net load forecasting on a
day-ahead schedule. Specifically, we adopt the schedule from the DOE competition which broadly
embodies real-world power system operation requirements: At 10 am every day, the hourly net
loads of the 24 hours of the next day need to be forecasted. Moreover, due to the risk management
requirement of reliable power system operations, probabilistic forecasts are needed. In other words,
the goal is to provide a probability distribution of each hourly net load of the next day. To evaluate an
estimated probability distribution based on the observed ground truths, a commonly used metric (also
adopted in the DOE competition) is the Continuous Ranked Probability Score (CRPS):

CRPS =
1

n

n∑
i=1

∫
(Fi(x)−Oi(x))

2
dx, Oi =

{
0, if x < xi
1, if x ≥ xi

(1)

where n is the number of forecasted hours, Fi(x) is the Cumulative Distribution Function (CDF)
of the forecast quantity x at hour i, Oi(x) is the “ideal” staircase CDF given the observed value xi.
Importantly, CRPS captures both a) the mean’s accuracy, and b) the uncertainty/confidence of the
estimated probability distribution (Matheson and Winkler, 1976; Gneiting and Raftery, 2007).

4 SONNET: THE METHODOLOGY

4.1 BTM SOLAR DISAGGREGATION

The net load Nt, load Lt, and BTM solar generation Gt satisfy the following simple relation:

Nt = Lt −Gt, t = 1, ..., T. (2)

While only the net load data are observed in practice, intuitively, having both the load and solar
generation data separately can offer more information to facilitate net load forecasting. We aim to
disaggregate each net load data trace Nt into two data traces of solar generation Gt and load Lt, and
then utilize patterns from both traces to forecast future net loads.

In addition, while utilities do not monitor BTM solar generationGt, they typically have some estimate
of the installed solar capacity C at a regional level. This is because solar energy interconnection in a
power distribution system must be approved by utilities for reliability reasons, making solar capacity

3
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information available to them. As such, the solar disaggregation problem is formulated as follows:
For a region of interest, given a net load trace Nt = Lt −Gt,∀t, and a rough estimate of the solar
capacity C, estimate the underlying solar generation trace Gt and load trace Lt,∀t. For this, we
develop a BTM solar disaggregation algorithm inspired by the general framework of (Pu and Zhao,
2023).

4.1.1 PHYSICAL MODEL

We introduce a general physical model of a solar system’s energy production. A solar panel’s
generation can be estimated using a physical model that depends on several factors, including
physical model parameters and related weather variables. (Wang et al., 2018; Pu and Zhao, 2023).

Gt ≈ C
IPV,t

Iref
[1− µ(TPV,t − Tref )] , (3)

where IPV,t is the solar irradiance received on the solar panels, C is the capacity of the solar panel,
µ is the temperature coefficient, TPV,t is the cell temperature, and Tref and Iref are reference
temperature and irradiance, respectively. The irradiance on panel IPV,t depends on direct normal
irradiance (DNI) I0,t, diffuse horizontal irradiance (DHI) Id,t, and direct horizontal irradiance Ib,t:

IPV,t = I0,tτb,t(sinα cosβ + cosα sinβ cos(γ −A))

+ Id,t

(
1 + cosβ

2

)
+ (Ib,t + Id,t) ρt

(
1− cosβ

2

)
. (4)

β and γ are the tilt angle and azimuth angle of the solar panels which are typically unknown to the
utilities and need to be estimated. The meaning of other physical quantities and more details are
relegated to Appendix A.2.1. In short, we denote the overall physical model of solar generation
by Gt = f(x(t);θ), where θ contains the two unknown panel-dependent model parameters, tilt
angle β and azimuth angle γ, and x(t) contains all the external relevant variables that are measured
(essentially weather, time, and location). While this physical model is formulated for an individual
solar panel, we will apply it as an approximate model for a collective set of solar panels in a region.

4.1.2 SOLAR DISAGGREGATION

In principle, the parameter vector θ containing the tilt angle and azimuth angle can be solved from
just two equations given the solar power generation Gti at two time instants t1, t2:

f(x(ti);θ) = Gti , i = 1, 2 (5)

However, when the solar generation Gt is unknown and needs to be estimated, we must rely on other
available data such as the net load data Nt and additional input x(t). In particular, if the loads at two
different time instances, t and t′, are equal, we have

Lt = Nt +Gt = Nt′ +Gt′ = Lt′ (6)

⇒Nt + f(x(t);θ) = Nt′ + f(x(t′);θ) (7)

If the external variables x(t) and x(t′) are not identical, the above equation forms a non-trivial
equation of θ, as all other quantities are measured. As such, we seek to find a sufficiently large
number of such equations that approximately hold to determine θ without relying on any knowledge
of the BTM solar generation Gt. Given only net load data Nt, while we cannot be certain that Lt at
different times are exactly the same, predictions can be made when they are likely to be sufficiently
similar. Collecting a large dataset of similar load instances, named T , allows us to learn θ by forming
an over-determined set of equations. Accordingly, a loss term to capture the load similarity within
selected time pairs is defined as:

L(1) =
∑

(ti,t′i)∈T

(
(Nti + f(x(ti);θ))−

(
Nti′ + f(x(t′i);θ)

))2
. (8)

Additionally, two regularization terms are defined to penalize estimation inaccuracies, in particular,
when either the estimated solar generation or the estimated loads (i.e., consumption) become negative:

L(2) =

T∑
t=1

max (−f(x(ti);θ), 0))2, L(3) =

T∑
t=1

max (− (f(x(ti);θ) +Nti), 0))
2. (9)
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Finally, we solve the following problem and estimate the physical model parameters θ for the region:

min
θ
L(1) + γL(2) + ηL(3), (10)

where γ and η are weights that balance the three losses.

Algorithm 1 Similarity-based BTM Solar Disaggregation

1: Input: Nt, x(t), monthly solar capacity C
2: Initialize a set of time slot pairs T . See Appendix A.2.2 for details.
3: Initialize Lossmin = ∞, θout, model parameters θ
4: for step in 1 to maxiter do
5: for epoch in 1 to maxepochs do
6: Given T , calculate Loss = L(1) + γL(2) + ηL(3)

7: Update model parameters θ̂ by backpropagation
8: end for
9: if Lossmin > Loss then

10: Lossmin = Loss, θout = θ̂
11: else
12: Break
13: end if
14: Update solar estimation Ĝt = f(x(t); θ̂) and load estimation L̂t = f(x(t); θ̂) +Nt

15: Re-select M neighboring time slot pairs with the most similar estimated loads L̂t.
16: end for
17: Output: Estimated physical model parameters θout

Training Set Selection: To collect time pairs with similar loads, we propose an iterative selection
algorithm. Initially, we set the time pairs to be some neighboring pairs during daytime with a
sufficiently large size, denoted by M , leveraging the fact that loads in close time slots tend to be
similar due to the regularity of aggregate human behaviors. In subsequent iterations, neighboring
time pairs in the training set are refined based on the most similar load pairs from the latest round of
disaggregation. The detailed steps are provided in Algorithm 1.

4.2 PREDICTOR ARCHITECTURE

Given the disaggregated solar generation and load traces, we propose a Transformer-based architecture
designed for net load prediction, as depicted in Figure 1. This architecture leverages both historical
and future input data to enhance the accuracy of the forecasts, employing a combination of self-
attention and cross-attention mechanisms.

Exogenous Variables: We integrate not only the net load variables X ∈ Rn×l (net load, load,
disaggregated solar generation), but also introduce exogenous variables S ∈ Rm×l to assist in the net
load forecasting. These exogenous variables encompass weather features W (temperature, humidity,
DHI, DNI), and time features Z. Here l denotes the context window, n denotes the number of net
load variables, and m denotes the number of exogenous variables. Detailed descriptions of these
features are provided in the Appendix A.7.1.

Historical and Future Input: Our model processes both historical and future variables for net
load forecasting. Specifically, the historical input H includes both historical X and S, such that
H = Concat(X,S) ∈ R(m+n)×l, while the future input consists of a) Ŝ ∈ Rm×l̂, i.e., forecasted
exogenous variables, and b) Ĝ ∈ R1×l̂, i.e., forecasted solar generation computed based on the
physical model (cf. Section 4.1.1) and the weather forecasts, where l̂ denotes the prediction length.

For the historical input time series, we apply patching, which involves segmenting the time series
into subseries-level patches that serve as input tokens to the Transformer. This technique has
been demonstrated to enhance the effectiveness of capturing dynamic local patterns and semantic
information while reducing computational costs in time series analysis (Nie et al., 2022). Given
the patch length p and stride s, the patch number of input series is given by r = ⌊(l − p)/s⌋ + 1,
which indicates the sequence length after patching operation. Furthermore, we reshape the tensor

5
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to merge the dimension of patch and feature, which will be H̃ = Patching(H) ∈ Rg×r, where
g = p(m+ n) is the generalized feature dimension. Conversely, the future input time series Ŝ retains
its original resolution to ensure the prediction granularity aligns with our forecasting target.

Self-Attention Encoder: To process both historical and future inputs, we employ a self-attention
encoder. This encoder is adept at modeling intra-sequence patterns and generates useful embeddings
for subsequent stages. The self-attention encoder on input data can be represented as:

SelfAttention(x) = MHA(x′,x′,x′), (11)

where x′ = PE(x), PE stands for position embedding which we explain in details in Appendix
A.3, and MHA(xQ, xK , xV ) denotes the multi-head attention module in standard Transformer ar-
chitecture with input xQ, xK , xV for query, key and value respectively (Vaswani et al., 2017),
which we explain in details in Appendix A.4. Thus, we could obtain the historical embedding
E = SelfAttention(H̃) and future embedding Ê = SelfAttention(Ŝ). By mixing all
the features and learning the temporal patterns of the embeddings, the model can generate useful
representations with the information from all variables.

Cross-Attention Module: Subsequent to obtaining E and Ê through self-attention, we utilize a
cross-attention module to model the relationship between future and historical data. The historical
embedding serves as inputs of keys and values, while the future embedding acts as input of queries.
The cross-attention mechanism calculates the relationship between each future day’s embedding and
the historical embeddings:

CrossAttention(E, Ê) = MHA(Ê,E,E). (12)

This enables the historical sequence to be combined as a reference for future forecasting, enhancing
the model’s predictive capabilities by integrating past trends with expected conditions. Such a
mechanism ensures that when weather-related forecasts are fed into the model, the model can look up
similar conditions from the past for better prediction.

Probabilistic Forecasting: The embedding features derived from the cross-attention module
Ef = CrossAttention(E, Ê) ∈ Rd×l̂ are processed through a final linear layer, which is
responsible for generating multiple quantiles at each time step for probabilistic forecasting. The linear
layer Wf ∈ Rq×d, where q denotes the number of quantiles, transforms Ef into quantile predictions
Q = WfEf ∈ Rq×l̂. To ensure non-negativity and monotonicity among the quantiles, we apply a
softplus activation function σ(·) to all quantiles except the first one. This can be expressed as:

Q′
i =

{
Qi if i = 0,

σ(Qi) if i > 0,
(13)

where Q′
i denotes the adjusted i-th quantile for i = 0, ..., q. Then a cumulative sum operation

is performed across the quantiles to ensure their ordered sequence: Q′′
i =

∑i
j=1 Q

′
j , where Q′′

i

represents the forecast of i-th quantile, maintaining a non-decreasing order across all time steps.
Finally, we apply CRPS loss (the implementation is in Appendix A.5) between Q′′ and the ground
truth O as described in equation 1 to train the model.

4.3 DATA AUGMENTATION

Although the ground truth data for historical net load and weather are available, importantly, day-
ahead forecasts of certain weather variables can suffer from poor accuracy. This issue is particularly
pronounced in areas such as Hawaii due to its fast-varying clouds. Thus, the trained predictors’
robustness to weather forecast errors is a major concern, especially with a high level of penetration
of solar generation. To improve the predictor’s robustness to weather forecast errors, we design the
following data augmentation steps for the training and validation data sets:

• Error Simulation in Meteorological Features: We introduce variability into each meteorological
feature to simulate forecast errors. For irradiance features (e.g., Direct Normal Irradiance (DNI)
and Diffuse Horizontal Irradiance (DHI)), we adjust the original value with a multiplicative error
term (1 + ϵ), where ϵ is sampled from a normal distribution N(0, σ1) with a sufficiently large
σ1. For other weather features (e.g., temperature and humidity), we generate and apply additive

6
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errors from the empirical forecasting error distributions N(0, σ2) (Lucas Segarra et al., 2019).
These adjustments are capped at reasonable limits to ensure that the values remain within plausible
ranges.

• Physical-Model-based Solar Generation Data: Using these adjusted meteorological features,
we apply the physical model 4.1.1 to re-compute the solar generation data, reflecting potential
real-world variations due to forecast errors. The estimated solar generation data is then combined
with the ground truth net load data to update the disaggregated loads.

5 EXPERIMENTS

5.1 DATASETS

Dataset for Net Load Forecasting: We evaluate SONNET, the proposed probabilistic net load
forecasting method, using the real-world dataset from the DOE net load forecasting competition
(HeroX, 2023). This dataset comprises approximately one and a half years of hourly net load
data, spanning from January 1, 2022, to July 16, 2023, from four city/town-size locations across
different states—Texas (TX), Oregon (OR), Georgia (GA), and Hawaii (HI). These four distinct
U.S. locations, situated in the South Central (TX), Northwest (OR), Southeast (GA), and Pacific
Island (HI) regions, have very different weather patterns and solar penetration levels. This allows us
to assess the generalizability of SONNET across diverse climatic conditions and renewable energy
penetration levels. The competition period spanned from June 18, 2023, to July 15, 2023, during
which the competing teams were required to submit their probabilistic day-ahead net load forecasts
for the following day. For privacy considerations, the net load data is quantized and normalized
relative to the peak net load at each location. Additional data provided includes approximate (again
for privacy protection) latitude and longitude, as well as monthly solar capacity estimates C for each
location. The normalized solar capacity (normalized by the maximum net load) in TX, OR, GA, and
HI are approximately 0.18, 0.35, 0.63, and 1.57, respectively, reflecting the diverse solar penetration
levels. The very high solar penetration level of HI, as well as HI’s uniquely poor day-ahead weather
forecast accuracy, pose the greatest challenge for net load forecasting among the four.

Dataset for Solar Disaggregation: As an intermediate step, we would also like to assess the solar
disaggregation component of our method. This is impossible to perform using the DOE competition
dataset due to the absence of BTM solar generation data. We thus use an alternative dataset from
Austin, TX, where ground truth solar generation information is available (Holcomb, 2012). This
dataset comprises smart meter data from 322 customers over four weeks from August 3, 2015, to
August 30, 2015. A subset of these customers is equipped with BTM solar systems. We apply our
unsupervised solar disaggregation algorithm to the aggregate net load data from all the customers in
the dataset, evaluating its effectiveness in a real-world setting.

5.2 SOLAR DISAGGREGATION

We begin with solar disaggregation with the settings above where approximate location is provided
and net load data is normalized by the max net load. Next, we train a supervised physical model
based on the ground truth solar generation data and use the estimated capacity as the ground truth
monthly solar capacity for this region. Since the amount of solar generation at any given time is
proportional to the solar capacity according to equation 3, we scale the solar generation in this dataset
to simulate different solar penetration levels, specifically, the same ones as the DOE competition
sites, 0.18, 0.35, 0.63, and 1.57, respectively.

Table 1: Performance evaluation of the proposed unsupervised disaggregation algorithm.

Capacity RMSE MASE CV
Supervised Unsupervised Supervised Unsupervised Supervised Unsupervised

0.18 0.005 0.009 0.328 0.565 0.188 0.331
0.35 0.010 0.012 0.328 0.407 0.188 0.237
0.63 0.017 0.018 0.328 0.372 0.188 0.201
1.57 0.043 0.044 0.328 0.347 0.188 0.193

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

To evaluate the performance, we compare the results from our unsupervised disaggregation algorithm
with the performance bounds obtained from supervised learning. The evaluation metrics are root
mean square error (RMSE), mean absolute scaled error (MASE), and coefficient of variation (CV)
(Pu and Zhao, 2023). Table 1 demonstrates that the unsupervised solar disaggregation algorithm
achieves performance very close to the supervised one. Visualizations of the results are provided in
Appendix B.1.

5.3 PROBABILISTIC NET LOAD FORECASTING

Next, we evaluate the performance of the main task of this work — day-ahead probabilistic forecasting
of net loads by SONNET. The predictor input includes historical weather variables, weather forecasts,
solar generation forecasts, time-related variables, as well as disaggregated historical solar generation
and loads. Detailed information about the inputs is provided in Appendix A.7. We leave the inclusion
of other features as future work.

Simulating Weather Forecasts. To evaluate the performance of the proposed method in practical
settings and ensure a fair comparison with the competition results, we simulate weather forecast
errors as follows: Errors are randomly sampled from a normal distribution N(0, σ2

f ), where σf
represents the empirical standard deviation of a feature f ’s forecast error that we observe for a given
hour and location. These generated errors are then added back to the ground truth values. The
empirical standard deviations used in generating these errors are provided in Appendix B.2. To
increase the level of difficulty in the net load forecasting task, we further simulate two additional
settings, “Challenging” and “Extreme”, where the errors are generated with 1.5x and 2x of the
empirical forecast error standard deviation of each weather feature.

Evaluation Metric. Continuous Ranked Probability Skill Score (CRPSS) is used as the evaultion
metric, which is the same metric as employed by the DOE competition:

CRPSS =

(
1− CRPSmodel

CRPSref

)
(14)

where CRPSmodel is the CRPS score of the employed model, and CRPSref is the CRPS score of a
“reference” model provided by the DOE competition. The reference model simply calculates the
forecast by aggregating the net load on an hourly basis from the last 30 days and calculating the
probability of net load values for every hour of the next day (Doubleday et al.). Following the standard
of the DOE competition, to represent a CDF, 11 quantiles (i.e. 0th,10th..100th) of the distribution
are to be estimated for each hour’s net load. A perfect forecast would lead to a maximum CRPSS of
1. A negative CRPSS implies that the employed model performs worse than the reference model.

Results. We evaluate SONNET in practical settings by considering weather forecast errors and
comparing our results with those achieved by the top teams in the DOE competition (cf. Table 2).
The results demonstrate that, even under the most challenging conditions with extreme forecast errors
of weather features, SONNET still consistently outperforms these top teams (which, in comparison,
perform with normal errors). We further observe that, across these four locations, the higher the solar
penetration level, the harder it appears to forecast net loads.

In Figure 2, visualizations of the probabilistic forecasts are depicted: we observe that, even with very
poor weather forecasts under the “extreme” error mode, the probabilistic forecasts of SONNET are
still both much more accurate and less uncertain than the reference. More visualizations are available
in Appendix B.3.

5.4 ABLATION STUDY

In Table 3, we conduct a number of ablation studies to demonstrate the importance of the innovative
components of SONNET. We observe the following key messages.

Training without Disaggregated Solar First, even without employing the solar disaggregation step
in the absence of solar capacity information, our transformer-based model significantly outperforms
state-of-the-art methods. Decomposing net load into separate components of load and solar generation

8
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Table 2: This table presents the CRPSS (higher scores indicate better performance) of different
methods under “Normal”, “Challenging”, and “Extreme” weather forecasting scenarios. The CRPSS
scores for SONNET are the averages from 20 experiments. In each experiment, the model is evaluated
over 10 replicates of the 28-day competition period, each with independently and randomly generated
weather forecast errors. “Best among all” denotes the highest CRPSS score achieved for each location
among all participating teams in the competition. Additionally, the scores of the top six teams, ranked
by their average CRPSS across the four locations, are listed (HeroX, 2023). As the solar capacity
increases across the locations (from TX to HI), all the models’ performance decreases.

Team TX OR GA HI Average Mode
Best among all 0.581 0.446 0.280 0.014 0.330 /
Garnet 0.581 0.313 0.185 -0.041 0.260 /
Pearl 0.510 0.287 0.208 0.013 0.255 /
Turquoise 0.499 0.401 0.134 -0.072 0.241 /
Quartz 0.432 0.288 0.228 -0.039 0.227 /
Chrysocolla 0.307 0.310 0.280 -0.060 0.209 /
Cuprite 0.486 0.416 0.092 -0.060 0.202 /

SONNET 0.628 ± 0.032 0.535 ± 0.024 0.293 ± 0.029 0.180 ± 0.016 0.409 Normal
SONNET 0.615 ± 0.025 0.517 ± 0.024 0.265 ± 0.026 0.104 ± 0.019 0.375 Challenging
SONNET 0.595 ± 0.019 0.493 ± 0.024 0.230 ± 0.024 0.019 ± 0.023 0.334 Extreme

Figure 2: Net load forecasting for four locations under the “extreme” weather forecast error mode.

further enhances the model’s ability to capture relationships between weather variables, time variables,
and net load. This decomposition clarifies these relationships, resulting in improved forecasting
accuracy.

Training without Data Augmentation If the model is trained solely on ground truth net load and
weather data, it lacks robustness to weather forecast errors, especially in regions with high solar
penetration levels such as HI. After applying data augmentation, the performance of all models
improves significantly.

9
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Table 3: Ablation Study

TX OR GA HI Average
SONNET 0.628 0.535 0.293 0.180 0.409
w/o disaggregation 0.621 0.528 0.292 0.167 0.402
w/o data augmentation 0.529 0.492 0.210 0.01 0.311
w/o weather, w/o disaggregation -0.356 0.043 0.100 -0.015 -0.057

Training without Exogenous Variables In Table 3, we conduct experiments where no exogenous
variables (weather) or solar disaggregation are included in the training and testing. These experiments
demonstrate that time-series models relying solely on historical net load data suffer from much poorer
performance.

Training with Alternative Predictor Models In Table 4, We conduct experiments to compare
SONNET with additional baselines based on different predictor models: a) We replace the encoder
part of the Transformer with an LSTM and the decoder part with an MLP; b) We employ MLP
followed by a cross attention mechanism; c) We employ XGBoostLSS as opposed to neural networks
(März, 2019). We observe that SONNET significantly outperforms baseline methods across all
locations.

Table 4: Performance Comparison with Other Models

TX OR GA HI Average
SONNET (ours) 0.628 ± 0.032 0.535 ± 0.024 0.293 ± 0.029 0.180 ± 0.016 0.409
LSTM 0.367 ± 0.104 0.414 ± 0.025 0.199 ± 0.045 0.074 ± 0.034 0.264
XGBoostLSS 0.406 ± 0.0198 0.157 ± 0.01 0.091 ± 0.023 0.055 ± 0.040 0.178
MLP 0.348 ± 0.110 0.274 ± 0.130 0.113 ± 0.055 -0.109 ± 0.076 0.157

Training with Different Context Lengths In Table 5, we conduct an ablation study with different
context lengths, i.e., the lengths of the historical look-back window utilized in the Transformer model.
We observe that the context length of 14 days (our default) achieves the best performance, while 7
and 21 days are slightly worse.

Table 5: Ablation Study with Different Look-Back Context Lengths

TX OR GA HI Average
SONNET (context window = 7 days) 0.628 0.517 0.299 0.180 0.406
SONNET (context window = 14 days) 0.628 0.535 0.293 0.180 0.409
SONNET (context window = 21 days) 0.562 0.555 0.266 0.179 0.390

6 CONCLUSION

We developed SONNET, a novel method for net load forecasting based on disaggregated BTM
solar generation and loads. An enhanced Transformer architecture that takes both historical data
and exogenous future input such as weather forecast is designed. A physical-model-based data
augmentation technique is developed to improve the predictor robustness to weather forecast errors.
Extensive validation based on real-world data from U.S. DOE’s recent net load forecasting competition
demonstrated that our method consistently and significantly outperforms the state of the art. Last but
not least, the developed techniques, in particular, disaggregation, enhanced Transformer architecture,
and physics model-based data augmentation, all have broad applications beyond net load forecasting.
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Appendix
A EXPERIMENTAL DETAILS

In this section, we present details on solar disaggregation, data augmentation, and training the
probabilistic net load forecasting model.

A.1 WEATHER DATASET

We download the hourly weather data including, Direct Normal Irradiance (DNI), Diffuse Horizontal
Irradiance (DHI), temperature, relative humidity, and zenith from Solcast (Solcast, 2019) with the
given latitude and longitude for each location.

A.2 SOLAR DISAGGREGATION

A.2.1 PHYSICAL MODELS

In equation 4, α, τb,t and ρt are the elevation of the sun, atmospheric transparent coefficient and
surface albedo, respectively. α can be calculated by equation 17. The cell temperature TPV,t is
approximated by:

TPV,t = TA,t +
IPV,t

800
× (Noct − 20), (15)

where TA,t is the ambient temperature and Noct is the Nominal Operating Cell Temperature. Ib,t is
the direct horizontal irradiance which can be calculated as follows

Ib,t = I0,tτb,t sinα (16)

α = 90− ζ, (17)
where ζ is the zenith of the sun. A in equation 4 denotes the azimuth of the sun and can be calculated
as the following:

cosA =
sin δ cosϕ− cos δ sinϕ cosω

cosα
, (18)

δ = 2π × 23.45◦

360◦
× sin

(
2π × 284 +N

Y

)
. (19)

The above equation only gives the correct estimation of azimuth in the solar morning(i.e. ω < 0), so
post calculation correction needs to be applied(Wikipedia contributors, 2023):

A =

{
A ifω < 0

360−A ifω >= 0,
(20)

Where ω denotes the hour angle which is negative before 12:00 and D is the time zone of the given
location.

ω = (t− 12)× 15◦ + (ψ −D × 15◦) . (21)

In the disaggregation, µ denotes the temperature coefficient, with −0.5%/◦C as a typical value. Iref
and Tref are the reference irradiance and cell temperature, set to be 1000 W/m2 and 25, respectively.
Noct is the Nominal Operating Cell Temperature, with 48 as a typical value (Dong and David, 2017).
τb,t and ρt are set to be 0.74 and 0.2, respectively (Dobos, 2014).

A.2.2 INITIALIZATION OF TRAINING SET PAIRS

We initialize the training set as follows: for all neighboring time pairs within the daytime, we collect
all the time pairs (t, t′) which satisfy (Nt − Nt′) · (IPV,t − IPV,t′) < 0. This condition ensures
that for each time pair, the higher net load corresponds to lower received irradiance, increasing the
likelihood that the loads are similar. Among these pairs, we select the ones with the largest difference
in terms of the solar irradiance received on the solar panels (IPV,t).
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A.2.3 UNSUPERVISED SOLAR DISAGGREGATION

During the training, we set M to be 100 meaning that we collect 100 time pairs in each iteration. γ
and η are both set to 1, and the maximum number of iterations in the disaggregation algorithm is set
to be 10.

A.3 POSITION EMBEDDING

Suppose the input tensor x ∈ Rdf×dt has a feature dimension df and temporal dimension dt.
The input tokens are mapped to the Transformer latent space of dimension d via a trainable linear
projection Wp ∈ Rd×df , and a learnable additive position encoding Wpos ∈ Rd×dt is applied to
monitor the temporal order of patches: x′ = PE(x) = Wpx+Wpos, where x′ ∈ Rd×dt denote the
input that will be fed into Transformer encoder.

A.4 MULTI-HEAD ATTENTION

We employ a standard Transformer encoder with multi-head attention (MHA) to map the observed
signals to latent representations. The MHA block can be represented as z = MHA(xQ,xK ,xV ),
where is the output of MHA, and xQ,xK ,xV are the input for query, key and value respectively.

Each head h = 1, ...,H in MHA will transform the input into query matrices Qh = (xQ)TWQ
h ,

key matrices Kh = (xK)TWK
h and value matrices Vh = (xV )TWV

h , where WQ
h ,W

K
h ,W

V
h are

learnable parameters. After that a scaled production is used for getting attention output zh:

zT
h = Attention(Qh,Kh, Vh) = Softmax(

QhKh
T

√
dk

)Vh

where dk is the dimension of the key vectors. Then all the output from different heads will be con-
catenated. The MHA block also includes BatchNorm, which is preferred in time series Transformer
as demonstrated in (Zerveas et al., 2021), and a feed forward network with residual connections to
generate the final output z, which is similar to the design in vanilla Transformer (Vaswani et al.,
2017).

A.5 CRPS LOSS

The CRPS loss is not directly available in standard PyTorch libraries. We implement a CRPS loss for
general usage and our experiments, which is as follows:

class CRPSLoss(nn.Module):
def __init__(self,

quantiles=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],
adjusted=True,
eps=1e-10):

super().__init__()
self.adjusted = adjusted
if self.adjusted:

self.quantiles = torch.tensor([0]+quantiles+[1])
else:

self.quantiles = torch.tensor(quantiles)
self.eps = eps

def forward(self, preds, target):
assert not target.requires_grad
assert preds.size(0) == target.size(0)
if self.adjusted:

B = preds.shape[0]
N = preds.shape[1]
T = preds.shape[2]
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max_bound = 100
min_bound = -100
preds = torch.cat((min_bound*torch.ones((B, N, T, 1),

device=preds.device),
preds),
dim=-1)

preds = torch.cat((preds,
max_bound*torch.ones((B, N, T, 1),
device=preds.device)),
dim=-1)

q_i1 = self.quantiles[1:].to(preds.device)
q_i = self.quantiles[:-1].to(preds.device)
X_i1 = preds[:,:,:,1:]
X_i = preds[:,:,:,:-1]
X_t = target.unsqueeze(3).repeat(1, 1, 1, X_i.shape[-1])

index = torch.full_like(X_i1, 2)
index[X_t > X_i1] = 0
index[X_t < X_i] = 1
index = F.one_hot(index.to(torch.int64), num_classes=3)

term0 = 1/3*torch.einsum('bntq,q->bntq',
X_i1-X_i,
(q_i1**2+q_i1*q_i+q_i**2))

term1 = 1/3*torch.einsum('bntq,q->bntq',
X_i1-X_i,
((q_i1-1)**2+(q_i1-1)*(q_i-1)
+(q_i-1)**2))

term2 = torch.einsum('bntq,q->bntq',
X_t-X_i, 2*q_i-1) +
torch.einsum('bntq,q->bntq',
(X_t-X_i)**2/(X_i1-X_i+self.eps),
q_i1-q_i) + term1

terms = torch.stack((term0,term1,term2),dim=-1)

loss = torch.einsum('bntqd,bntqd->bntq',
index.to(torch.float), terms)
return torch.mean(torch.sum(loss,dim=-1))

A.6 DATA AUGMENTATION

The training dataset comprises one copy of the ground truth data and two copies of the augmented
data. For the augmented data, we draw the error ratio term ϵ drawn from a normal distribution:
N(0, 0.36) for DNI/DHI and draw the error term from N(0, 2) and N(0, 12) for temperature and
relative humidity, respectively (Lucas Segarra et al., 2019). To ensure that the synthetic weather
variables remain within plausible ranges, we clip the generated DNI/DHI values to fall between zero
and the maximum value observed in the ground truth data. Similarly, the relative humidity values are
clipped to lie within the range of 0 to 100.

A.7 TRAINING PROBABILISTIC NET LOAD FORECASTING MODEL

A.7.1 INPUT VARIABLES

Formally, the net load variables X(t) and the exogenous variables S(t) (which includes W (t) and
Z(t)) on a given time step t can be represented as:

X(t) ⊆ {net load(t), load(t), disaggregated solar generation(t)},
S(t) = {temperature(t), humidity(t),DHI(t),DNI(t), time features(t)}
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The exogenous variables could provide extra information beside historical net load data, which is
beneficial to the forecasting (Wang et al., 2024; 2023a). The inputs for SONNET (and methods in the
ablation study) are shown in Table 6. Time-related variables are encoded using cyclical encoding
since cyclical patterns are important in time series data (Chen et al., 2022; Wang et al., 2022). For a
time feature z, its embedding can be expressed as:[

sin

(
2πz

ω(z)

)
, cos

(
2πz

ω(z)

)]
(22)

Where ω(z) is the frequency for time feature z.

Table 6: W includes weather features such as DNI, DHI, temperature, and relative humidity. Z
includes time-related features such as year, dayofyear, month, weekday, and hour. Weather features

in the future input are generated as described in Sec 5.3. Load is the summation of net load and
disaggregated solar.

Method Historical Input Future Input
SONNET Load + Disaggregated solar + W + Z Forecast W & solar + Z
W/O disaggregation Net load + W + Z Forecast W + Z
W/O weather, W/O disaggregation Net load + Z Z

A.7.2 IMPLEMENTATION DETAILS AND COMPUTATIONAL EFFICIENCY.

The data prior to May 1st, 2023 is used for training; the data from May 1st to June 15th, 2023 is
used for validation; the test set is from June 18th, 2023 to July 16th, 2023, which is the same as the
competition. The model is trained for up to 300 epochs with an early stopping patience of 30 epochs.
If early stopping is triggered at epoch x, the model is re-trained using both the training and validation
datasets for x epochs. This approach ensures the model fully leverages the limited available data.
We employs 8 attention heads for all locations. For the "HI" and "OR" locations, the embedding
dimension (d) is set to 64. However, for the "GA" location, d is reduced to 48. This is because the
data from "GA" is heavily quantized and approximately one-third of it is dropped due to quality
issues. The model architecture includes a single Transformer encoder layer combined with a cross
attention layer with a dropout rate of 0.3. The look back window l is 336 (hours), and the historical
input data is segmented into patches with a length of 8 and a stride of 4, while the prediction window
is 24 (hours) and no patching is applied to the future input data. Learning rate in all experiments
are automatically selected by employing the same algorithm as in (Nie et al., 2022). The model is
trained on a single RTX 3090 GPU and takes approximately 10-20 minutes to complete training for
one location, using augmented data spanning roughly four and a half years.

B ADDITIONAL RESULTS AND VISUALISATIONS

B.1 SOLAR DISAGGREGATION UNDER DIFFERENT CAPACITY

This section presents the performance of BTM solar generation estimation under different solar
capacity, see Figure 3.

B.2 WEATHER FORECAST ERROR GENERATION

This section presents the empirical hourly standard deviation, see Figure 4.

B.3 MORE VISUALIZATIONS FOR NET LOAD FORECASTING

More visualizations are provided below, see Figures 5, 6, 7,and 8.
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(a) Oregon (OR) (b) Georgia (GA)

(c) Hawaii (HI) (d) Texas (TX)

Figure 3: Solar Disaggregation Results for Different Locations

Figure 4: Empirical hourly standard deviation of forecast errors for different weather variables
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Figure 5: Net load forecasting for HI under “extreme” weather forecast error mode for a subset of 6
randomly selected days.
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Figure 6: Net load forecasting for GA under “extreme” weather forecast error mode for a subset of 6
randomly selected days.
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Figure 7: Net load forecasting for OR under “extreme” weather forecast error mode for a subset of 6
randomly selected days.
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Figure 8: Net load forecasting for TX under “extreme” weather forecast error mode for a subset of 6
randomly selected days.

22


	Introduction
	Related work
	Problem formulation
	SONNET: the Methodology
	BTM solar disaggregation
	Physical model
	Solar disaggregation

	Predictor architecture
	Data augmentation

	Experiments
	Datasets
	Solar disaggregation
	Probabilistic net load forecasting
	Ablation study

	Conclusion
	Experimental details
	Weather dataset
	Solar disaggregation
	Physical models
	Initialization of training set pairs
	Unsupervised solar disaggregation

	Position Embedding
	Multi-head attention
	CRPS loss
	Data augmentation
	Training probabilistic net load forecasting model
	Input variables
	Implementation details and computational efficiency.


	Additional results and visualisations
	Solar disaggregation under different capacity
	Weather forecast error generation
	More visualizations for net load forecasting


