
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KD-HGRL: KNOWLEDGE DISTILLATION FOR MULTI-
TASK HETEROGENEOUS GRAPH REPRESENTATION
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Heterogeneous graphs, characterized by diverse node and edge types, are central to
many real-world applications, including social networks, biological systems, and
recommendation engines. While Graph Neural Networks (GNNs) are effective
for graph representation learning, their reliance on extensive labeled data, high
computational cost, and long inference times limit scalability, especially for hetero-
geneous graphs. To address these challenges, we propose KD-HGRL, which lever-
ages Knowledge Distillation for multi-task Heterogenous Graph Representation
Learning. KD-HGRL uses self-supervised contrastive learning across semantic
and topological views to generate robust, label-free node embeddings in the teacher
phase. These embeddings are distilled into a lightweight student model, enabling
efficient task-specific outputs such as node classification and link prediction with
significantly reduced inference time. Experiments on benchmark datasets demon-
strate KD-HGRL’s superior performance and efficiency compared to state-of-the-art
methods. The framework captures both local and global graph structures, eliminates
the need for labeled data, and scales effectively to large graphs. Key novelties, such
as a multi-view teacher model, contrastive alignment, and a lightweight student
model, make KD-HGRL a versatile and efficient solution for heterogeneous graph
representation learning.

1 INTRODUCTION

Graphs are essential for modelling complex relationships in various domains, including social net-
works Wasserman & Faust (1994), biological systems Pavlopoulos et al. (2011), and recommendation
engines Pavlopoulos et al. (2011). Some real-world networked systems feature diverse node and edge
types, such as bibliographic networks with authors, papers, and venues, referred to as heterogeneous
graphs Wang et al. (2022b). Graph representation learning is crucial for encoding graph data into
vectors that preserve key properties of the graph, such as node relationships, network topology, and
feature information Hamilton (2020). Graph Neural Networks (GNNs) have proven effective in
learning graph representations, transforming nodes, edges, or entire graphs into low-dimensional
vectors while preserving their structural relationships Zhang et al. (2019a). However, GNNs face
critical challenges, especially in supervised learning, where their performance is highly dependent on
having access to large amounts of labeled data. Labeled data is often limited or costly in real-world
applications, making it difficult for GNNs to effectively learn the complex relationships between
nodes, edges, and their features. This reliance on extensive labeled data limits their scalability and
effectiveness in scenarios where only small or incomplete labeled data is available, leading to the
need for alternative methods like semi-supervised Wan et al. (2021), meta-learning Ding et al. (2022),
and transfer learning Zhu et al. (2024) approaches to mitigate these challenges Khemani et al. (2024).
However, they still require a substantial amount of labeled nodes in each class to achieve satisfactory
results.

Motivation: One effective approach to mitigate these challenges is knowledge distillation (KD),
where a pre-trained teacher model transfers knowledge to a student model, allowing the student
to perform well even with limited labeled data Tian et al. (2023). Existing studies on knowledge
distillation, such as Shen et al. (2025), focus on homogeneous graphs, overlooking the complexities

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

arising from the diverse node types and edges in heterogeneous graphs. Some works, such as
Wang et al. (2022a) and Fu et al. (2024), employ collaborative knowledge transfer to extract node
embeddings from heterogeneous graphs. However, these methods are limited to node classification
tasks. Their approach used a knowledge transfer strategy across various meta-paths to enhance the
quality of embeddings instead of transferring knowledge between two models. Some approaches,
such as those proposed in Liu et al. (2022a), Zhang et al. (2022), and Feng et al. (2024), use soft
labels to transfer knowledge from teacher models to student models. In these methods, the teacher
model is trained in a supervised setting for a specific task, making the approach task-dependent and
unsuitable for transferring knowledge to various downstream tasks such as node classification, link
prediction, and influence maximization, which may have conflicting objectives or require different
representations. Furthermore, using soft labels fails to capture the complex high-order structures of
the graph learned by the teacher model. Moreover, most GNN-based approaches for heterogeneous
graph embedding, such as Ma et al. (2023), require substantial memory and computational resources
during inference, particularly when processing large-scale graphs. This is primarily due to the reliance
on message passing, where each node aggregates information from its neighbours across multiple
layers. As the size of the graph grows, the computational cost increases exponentially with the depth
of the network, making it particularly challenging to scale these methods to large, real-world graphs.
For instance, if the average number of neighbors is R, a GNN with L layers requires approximately
O(RL) computations to extract the embeddings of a target node. To improve inference time, some
approaches, such as Zhang et al. (2022) and Zhang et al. (2022), transfer knowledge from a teacher
model to an MLP as the student model. While MLPs offer fast inference times, they cannot capture
the high-order and complete structural information learned by the teacher model. Moreover, these
models rely on soft labels to transfer knowledge, which are task-dependent and not well-suited for
various downstream tasks. Thus, two key questions arise, Q1: How can we develop an effective
teacher model tailored for heterogeneous graphs that leverages self-supervised learning and is
applicable to multiple downstream tasks? and Q2: How can we design a lightweight student model
that ensures fast inference time while capturing the high-order relationships of the graph learned by
the teacher?

Present work: To mitigate these challenges, we propose KD-HGRL (Knowledge Distillation for
Multi-Task Heterogeneous Graph Representation Learning). This novel framework leverages knowl-
edge distillation (KD) to address limited labelled data and inference time issues. In the teacher
phase, we use self-supervised contrastive learning with two distinct views of the heterogeneous graph:
semantic and topological. The semantic view captures node embeddings via a Graph Convolutional
Network (GCN) to learn topological relationships. In contrast, the topological view uses node features
to generate global representations, enriching the embeddings with topological information. A con-
trastive loss function aligns the embeddings from both views, generating robust node representations
without requiring label data. This phase is highly efficient as it does not rely on labelled nodes or
links, making it scalable and adaptable for large-scale heterogeneous graphs. In the student phase,
knowledge distillation transfers the learned knowledge from the teacher model to a lightweight
student model. The student model is based on a lightweight GCN combined with a MLP, designed
to predict task-specific outputs such as node classification and link prediction. The student model
learns from the teacher’s representations of the nodes and their neighbors, reducing the inference
time significantly compared to the teacher model, which processes the entire graph with deeper layers
and higher compexity. The student model uses only the subgraph of each node and its first-hop
neighbours, making it computationally more efficient while still maintaining performance. This
method improves the efficiency of inference and allows for multi-task learning to handle tasks like
node classification and link prediction simultaneously. Experiments on real-world benchmark datasets
demonstrate that KD-HGRL outperforms state-of-the-art approaches, balancing high performance
and reduced computational cost.

Novelties: The proposed framework, KD-HGRL, introduces several key novelties that address critical
challenges in heterogeneous graph representation learning and knowledge distillation. These are
(1) Unlike existing knowledge distillation, approaches that rely on supervised learning and task-
specific labels Liu et al. (2022a); Zhang et al. (2022); Shen et al. (2025), our framework employs
self-supervised contrastive learning to train the teacher model. This eliminates the dependency on
labeled data, making it applicable to large-scale heterogeneous graphs where labels are scarce or
unavailable. (2) Unlike methods such as Wang et al. (2022a); Fu et al. (2024); Wang et al. (2021c),
which use only meta-paths to extract representations of heterogeneous graphs, our method leverages
two distinct views (e.g. semantic and topological) the teacher model captures both the structural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and semantic information of the graph, aligning them using a contrastive loss to generate robust
node embeddings. (3) Previous methods, such as Liu et al. (2022a) and Feng et al. (2024), transfer
knowledge using soft labels, which fail to preserve the structural properties of the graph. In contrast,
KD-HGRL distills rich multi-view representations from the teacher to a lightweight student model,
effectively integrating local and global graph information. (4) Compared to methods such as Feng
et al. (2024), which use only an MLP as the student model, KD-HGRL introduces a computationally
efficient student model called LightGCN. This model uses just one layer, combined with an MLP,
to capture the high-order relationships of the graph learned by the teacher model. This mechanism
balances performance and computational efficiency effectively, making it well-suited for real-world
applications with limited computational resources.

2 PRELIMINARY

Heterogeneous graph (HG) Zhang et al. (2019b): A HG is a graph where nodes and/or edges belong
to multiple types, making it more expressive for representing complex systems. Formally, an HG
can be defined as G = (V,E, ϕ, ψ), where V is the set of nodes, E ⊆ V × V is the set of edges,
and ϕ : V → A is the node type mapping function. A is the set of node types and ψ : E → R
is the edge type mapping function, where R is the set of edge types. In this formulation, each
node v ∈ V is associated with a type ϕ(v) ∈ A, and each edge e ∈ E is associated with a type
ψ(e) ∈ R. A meta-path in a HG is defined as a sequence of relations between different node types,
denoted as Γ1

r1−→ Γ2
r2−→ . . .

rl−→ Γl+1, where each relation ri ∈ R represents a specific edge
type. Meta-paths describe composite relations between two node types, capturing the structural and
semantic relationships within the graph.

Knowledge Distillation Phuong & Lampert (2019): Given a teacher model fT and a student model
fS , KD aims to transfer the knowledge from the teacher to the student by aligning the student
model’s predictions with the teacher’s output. This process is quantified through mutual information
maximization. Formally, it can be expressed as minimizing the Kullback-Leibler (KL) divergence
between the teacher’s prediction pT (y|x) and the student’s prediction pS(y|x), represented as:

minKL(pT (y|x) ∥ pS(y|x)) = min
∑
x

∑
y

pT (y|x) log
pT (y|x)
pS(y|x)

(1)

This ensures that the student model closely approximates the behavior of the teacher model.

Graph Convolutional Network: GCN Jin et al. (2021) is an effective model for learning node
embeddings by incorporating both the graph structure G and node feature matrix X . In this paper,
GCN is utilized as the encoder to compute node embeddings hi ∈ Rd (where d is the embedding
dimension) for each node vi. In GCN the update rule for propagating the representations at different
layers is defined as:

H(l+1) = σ(ÃH(l)W (l)) (2)

Here, H(l+1) is the embeddings of the node at the (l + 1)-th layer, while H(0) = X represents the
initial node features. The matrix Ã is the normalized adjacency matrix with self-loops, calculated as
Ã = D̂− 1

2 ÂD̂− 1
2 , where Â = A+ IN (with A and IN denote the adjacency matrix and the identity

matrix, respectively) and D̂ denotes the diagonal degree matrix of Â. The matrix W (l) represents the
weight matrix at the l-th layer, and σ denotes the activation function. For simplicity, we denote the
GCN model as z = GCN(X,A), where z represents the resulting node embeddings.

3 PROPOSED METHOD

This paper introduces a novel Knowledge Distillation framework for multi-task Heterogenous Graph
Representation Learning called KD-HGRL. The proposed framework is based on the teacher-student
KD paradigm, where the teacher model aims to generate rich and comprehensive node embeddings
by leveraging multi-view learning from the heterogeneous graph. The student model, in turn, is
designed to learn from these embeddings while being more lightweight and computationally efficient.
The goal is to transfer the knowledge captured by the teacher to the student, ensuring that the student
can achieve high performance on multiple tasks, such as node classification and link prediction, with
lower computational costs. The overall structure of the proposed method is presented in 1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Heterogenous graph

𝑍𝑡

Teacher

Student

Convert to
Homogenous graph Light GCN 𝑍𝑠

MLP 𝑌�𝑠 ℒ𝑠𝑡𝑢𝑑𝑒𝑛𝑡

Supervised training

Di
st

ill
 K

no
w

le
dg

e

Pre-trained

HGNN

Figure 1: The proposed KD-HGRL framework consists of two main components: (a) A teacher
model that utilizes a pre-trained, multi-view, contrastive learning-based graph neural network. The
teacher computes rich node embeddings from both semantic and topological views, as detailed in
Figure 2 (b) A student model that utilizes the embeddings transferred from the teacher into a more
compact and efficient model, optimized for downstream tasks such as node classification and link
prediction

3.1 TEACHER PHASE: SELF-SUPERVISED CONTRASTIVE LEARNING ON HETEROGENEOUS
GRAPHS

The teacher phase employs two complementary views: the semantic and topological views. In
the semantic view, meta-paths capture complex semantic relationships between nodes, generating
homogeneous graphs for each path. A GCN is applied to these graphs to learn node embeddings,
and since each node type can have multiple meta-paths, an attention mechanism integrates the
embeddings for each node type across these different paths. The topological view operates on
the heterogeneous graph, using a message-passing GCN to allow nodes to exchange information
with neighbors of different types. This approach aggregates features from the local neighborhood,
generating initial node embeddings. Afterward, we build a global graph where nodes are linked
based on their immediate neighbors and similarities, even if they are not directly connected in the
original graph. This global graph captures higher-order structural information. A contrastive loss is
used to align the node representations learned from both views, ensuring consistency between the
embeddings from the semantic and topological perspectives. By maximizing the similarity between
positive pairs (nodes with shared features or class) and minimizing the similarity for negative pairs
(unrelated or unconnected nodes), the model learns robust and discriminative representations that
combine both semantic and structural knowledge. The overall structure of the teacher phase, including
the semantic and topological views, is illustrated in Figure 2. Semantic view: Let C represent the
set of node types. For each node type c ∈ C, we define a set of meta-paths M c. For each meta-path
mc

i ∈ M c (i.e., M c = {mc
1,m

c
2, . . . ,m

c
k}), a corresponding homogeneous graph gci is generated,

represented by an adjacency matrix Ac
i . To account for self-loops, we define the adjusted adjacency

matrix Ãc
i = Ac

i + Ic, where Ic is the identity matrix for node type c. Each graph is also associated
with a degree matrix D̃c

i , where the diagonal entries represent node degrees. We then apply a GCN to
each meta-path-induced homogeneous graph. The node representations at the (l + 1)-th layer for
graph gci , denoted by H(c,l+1)

i , are computed using the GCN update rule:

H
(c,l+1)
i = δ

(
(D̃c

i)
−1/2Ãc

i (D̃
c
i)

−1/2H
(c,l)
i W (l)

)
(3)

where δ(·) represents a non-linear activation function (e.g., ReLU), H(c,l)
i is the node embedding

matrix at layer l, and W (l) is the weight matrix for layer l. W (l) is the trainable weight matrix at
layer l, and δ(·) is the ReLU activation function defined as δ(x) = max(0, x). If the graph nodes
have predefined features (such as attributes or descriptors), these can be directly used as the initial

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

GCN

GCN

A

𝛽11

𝛽21

𝑵𝒐𝒅𝒆 𝑻𝒚𝒑𝒆𝒔 = { }

𝑨 − 𝑷 − 𝑨

𝑨 − 𝑷 − 𝑽 − 𝑷 − 𝑨 𝑍12

𝑍11

𝑍1𝑐

GCN
Message passing

GCN

GCN

GCN

𝑍2𝑐
𝑍3𝑐

𝑍1
𝑔

𝑍2
𝑔

𝑍3
𝑔

C

C

C

ℒ1

ℒ2

ℒ3

ℒ = �ℒ𝑖

3

𝑖=1

+

Semantic View

Topology View Self-supervised training

Self-supervised training

He
te

ro
ge

no
us

 g
ra

ph

Figure 2: The overall architecture of the teacher model.

node representations Z(c,0)
i = Xc, where Xc corresponds to the features of node type c. Without

node features, one-hot encoding can be used as Z(c,0)
i = Ic. After obtaining node embeddings

from different meta-paths, we use an attention mechanism to aggregate these embeddings. The
attention weight βc

i for each meta-path is computed based on the importance of its corresponding
node representation. One common approach is to learn βc

i through softmax normalization as:

βc
i =

exp(score(Zc
i))∑

j∈C exp(score(Zc
j))

(4)

where Zc
i = H

(c,L)
i is the final node representation from the GCN after L layers, and score(Zc

i) is a
learned scalar score that measures the importance of meta-path mc

i for node type c. The final node
embedding for node type c is obtained by aggregating the embeddings from different meta-paths,
weighted by their respective attention scores βc

i for each meta-path mc
i , learned during training. The

aggregated representation for each node type c is computed as:

Zc = σ

(
k∑

i=1

βc
iZ

c
i

)
(5)

where Zc
i = H

(c,L)
i is the final node representation from the GCN after L layers, and σ(·) is a

non-linear function like ReLU or softmax.

Topological view: This view utilizes a novel strategy to derive a global representation of the graph
from the node features. Let X denote the node features, where Xi corresponds to the feature vector
of node ni. We first obtain a representation for each node ni, denoted as Zf

i :

Zf
i =

1

|Ri|+ 1

∑
r∈Ri

 ∑
j∈Ni(r)

1

|Ni(r)|
WrXj +W0Xi

 (6)

where Ri denotes the set of node types that node ni is connected to, Ni(r) is the set of nodes of type
r connected to ni, Wr is the learnable weight matrix for node type r, W0 is the weight matrix for
node ni, and Xi and Xj are the features of nodes ni and nj , respectively. The final embedding for
each node is computed by aggregating the information from its neighbors as:

Zg
i = σ

∑
∀j

f(Zf
i , Z

f
j)Z

f
j

 (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where f(Zf
i , Z

f
j) represents an attention score between ni and nj , which is defined as:

f(Zf
i , Z

f
j) =

exp(LeakyReLU(Zf
i ∥ Zf

j))∑
∀k LeakyReLU(Zf

i ∥ Zf
k)

(8)

Here, ∥ denotes the concatenation of the representations, and σ(·) is a non-linear activation function
like ReLU.

Self-supervised learning: We use a contrastive learning approach to combine the meta-path-based
embedding Zc and the global semantic embedding Zg . The contrastive learning framework aims to
align these two representations for the same node while distinguishing them from the embeddings
of other nodes. To achieve this, we define a contrastive loss function based on the normalized
temperature-scaled cross-entropy loss. The loss is designed to maximize the cosine similarity
between the embeddings Zc

i and Zg
i for the same node ni while minimizing the similarity between

the embeddings of different nodes. The contrastive loss for a positive pair Zc
i and Zg

i is defined as:

Li = − log

(
exp(sim(Zc

i , Z
g
i))∑N

j=1,j ̸=i exp(sim(Zc
i , Z

g
j))

)
(9)

where τ is a temperature scaling parameter, N is the total number of nodes, and sim(·, ·) calculates
the similarity between two embeddings. The final loss function is computed as the summation of the
loss function for all nodes and is defined as:

L =
1

N

N∑
i=1

Li (10)

By minimizing this contrastive loss L, this method effectively combines the structural information
from the meta-path view with the semantic information from the global view, leading to richer node
embeddings in heterogeneous graphs.

3.2 KNOWLEDGE DISTILLATION FOR NODE CLASSIFICATION

This section explains how the proposed framework is applied to the node classification task as
shown in Figure 3. The student model for this task is designed to predict the class of nodes using a
combination of a lightweight GCN and an MLP. To this end, a homogeneous graph is first generated
for the target node type and then fed into the GCN to generate the node embeddings. For each
node, the teacher does not simply pass the embedding of the target node alone to transfer the
knowledge. Instead, it calculates the average of the embeddings from both the target node and its
class-specific neighbors. The embedding transferred from the teacher is later combined with the

HGNN

MLP|| -

 Light
GCN

Pre-trained

Teacher

Figure 3: Overview of the node classification framework using KD-HGRL, where the student model
combines embeddings from a lightweight GCN and the teacher model. The teacher integrates local
structure and global class centroids, facilitating knowledge transfer through supervised and distillation
losses for efficient classification.

task-specific embedding generated by the lightweight GCN. The combined embedding is then fed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

into the MLP to generate the task-specific output. The student model is trained using labeled data
with a supervised loss function. Let Zstd

i denote the embedding generated for a target node ni by
aggregating information from its first-hop neighbours. This is achieved through the standard GCN
update rule, limited to a single meta-path m1:

Zstd
i = δ

∑
j∈Ni

1√
didj

AijZjW
std

 (11)

where Ni represents the neighbors of node ni, Aij is the adjacency matrix, di is the degree of
node ni, W std is a trainable weight matrix, and δ(·) is a non-linear activation function such as
ReLU. The teacher model transfers knowledge to the student model by integrating local structural
information from a node’s subgraph with global semantic information from class centroids. These
centroids represent the average embeddings of nodes within a specific class, enriching the target
node’s representation during the knowledge transfer process. To compute the class centroids Pci for
each class ci, the teacher model averages the embeddings Z tch

j for nodes within subgraphs related to
that class:

Pci =
1

|Vci |
∑

nj∈Vci

Z tch
j (12)

where Vci is the set of nodes classified as belonging to class ci ∈ C, and Z tch
j is the teacher embedding

for node nj . To derive the final teacher embedding for a target node ni, we combine the local node
embeddings from the subgraph Si and the global class-level centroids Pci . This fusion incorporates
both neighborhood information and class knowledge. The final teacher embedding Z tch

i is given by:

Z tch
i = α

∑
nj∈Si

wijZ
tch
j + (1− α)

∑
ck∈C

softmax(ck)(sim(Z tch
i , Pck))Pck (13)

where wij is the weight representing the importance of node nj in subgraph Si, calculated using a
similarity function (e.g., cosine similarity). α ∈ [0, 1] is a parameter balancing the influence of the
subgraph embeddings and class centroids.sim(Z tch

i , Pc) denotes the similarity between the node’s
teacher embedding and the class centroid Pc. The softmax function is used to compute the likelihood
of the node ni belonging to each class c, based on the similarity of its embedding to each class
centroid. The prediction for node ni, denoted as ŷi, is obtained by combining the student’s embedding
Zstd
i and the teacher’s embedding Z tch

i using a Multi-Layer Perceptron (MLP):

ŷi = MLP(Zstd
i ∥ Z tch

i) (14)

Here, ŷi is a vector that includes the probability of the node belonging to each class, and ∥ denotes the
concatenation operation. This approach ensures that both the student and teacher models contribute
to the final node classification. The student model is trained using two losses. First, a supervised loss
ensures that the model’s predictions align with the true class labels. The supervised loss, based on
cross-entropy, is calculated as:

Lbpr = −
N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (15)

where yi,c is the true label for node i and ŷi,c is the predicted probability for class c. This ensures
the model focuses on correctly classifying nodes. Additionally, a distillation loss aligns the student
representation with the teacher. To ensure that the light GCN in the student model captures similar
high-order relationships as the HGNN, a contrastive learning approach is applied using the InfoNCE
loss:

Ldistill = − 1

|V |
∑
v∈V

log

(
exp

(
Zstd
v · Z tch

v /τ
)∑

v′∈V exp
(
Zstd
v′ · Z tch

v′ /τ
)) (16)

where τ is the temperature parameter that scales the similarity scores between embeddings. The total
loss for the teacher model combines the supervised and contrastive losses as:

Lnc = Lbpr + γLdistill (17)

with γ as a hyperparameter balancing the contributions of both losses. This ensures a seamless
transfer of the topological structure and high-order information from the HGNN to the light GCN.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

HGNN

Pre-trained

Light
GNN ||

||
MLP -

?

Teacher

Figure 4: Overview of the KD-HGRL link prediction framework. The model combines teacher and
student embeddings through an attention mechanism, predicting links with a multi-layer perceptron
(MLP) while using supervised and distillation losses for accuracy and knowledge transfer.

3.3 KNOWLEDGE DISTILLATION FOR LINK PREDICTION

In our approach to link prediction, we extend the KD framework to predict the likelihood of a link
between two nodes i and j. This involves deriving embeddings from both teacher and student models
based on their respective learned representations. For each node i and j, we first extract subgraphs
centered around these nodes to compute their embeddings. The embeddings from the teacher model
are represented as Z tch

i and Z tch
j , while the embeddings from the student model are denoted as Zstd

i

and Zstd
j . To combine the embeddings from both phases, we utilize an attention mechanism. The final

embedding for node i and j is computed as:

Zi = MLP
(
softmax(W · [Z tch

i , Zstd
i])

)
(18)

Zj = MLP
(
softmax(W · [Z tch

j , Zstd
j])

)
(19)

Here, W is a weight matrix, and the softmax function produces attention weights for the respective
embeddings, allowing the model to learn the importance of each representation. Once we have the
combined embeddings for nodes i and j, we predict the probability of a link between them using an
MLP as

ŷij = MLP(Zi, Zj) (20)

We define two loss functions in our framework: the supervised loss and the distillation loss.The
supervised loss, Lsupervised, ensures that the predicted probability ŷij matches the true label yij , which
indicates whether a link exists between nodes i and j. It is defined as:

Lsupervised =
∑

(i,j)∈D

BCE(ŷij , yij) (21)

where BCE(a, b) denotes the binary cross-entropy between the predicted link probability ŷij and the
true label yij . Also, To transfer knowledge from the teacher model to the student model, we define a
distillation loss, Ldistill, which encourages the student model to approximate the teacher’s predictions.
The distillation loss is formulated as:

Ldistill =
∑

(i,j)∈D

(
λ · BCE(σ(Z tch

i · Z tch
j), yij) + (1− λ) · BCE(σ(Zstd

i · Zstd
j), yij)

)
(22)

In this equation, σ(·) denotes the sigmoid function, and the dot product between the embeddings Z tch
i

and Z tch
j (and similarly for the student embeddings) reflects the predicted link probability from the

respective model. The weights λ1 and λ2 balance the contributions of the teacher and student models.
The total loss for training the student model is similar to the node classification part, as shown in
equation (17). This formulation encourages the student model to learn effective link prediction
capabilities by distilling knowledge from the teacher model while ensuring accurate predictions based
on the final combined embeddings. Note that the loss function varies for each task. Specifically, we
use different loss functions for node classification and link prediction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Performance of KD-HGRL with varying embedding dimensions and hop counts.

4 EXPERIMENTS

Datasets: The datasets used in this study encompass a diverse range of domains and relationships.
Freebase Li et al. (2021), ACM Zhang et al. (2019a), DBLP and Freebase Fu et al. (2020). These
datasets are commonly used for Benchmarking tasks in heterogeneous graph learning studies, such as
node classification and link prediction.

Baseline Methods: We compare KD-HGRL against five notable network representation learning
methods, including two supervised approaches: HAN Wang et al. (2021a) and MAGNN Fu et al.
(2020); two unsupervised (self-supervised) methods: HeCo Wang et al. (2021c) and HeMue Zhang
et al. (2023); and one model utilizing fine-tuning based on meta and prompt learning for heterogeneous
graphs, HetGPT.

Implementation and Parameter Settings Experiments were conducted 10 times, averaging results
across datasets for fairness. The embedding dimension was fixed at 64, using original attributes for
target nodes and one-hot encoding for others as needed. KD-HGRL employed Glorot initialization
Glorot & Bengio (2010), the Adam optimizer Kingma & Ba (2014) (learning rates: 1e-4 to 5e-3),
early stopping (patience: 5-50), dropout (0.1-0.5), and τ (0.5-0.9). For knowledge distillation, pre-
trained teacher model parameters were frozen to retain embeddings and structural insights, while
a learnable feature vector enhanced representation capabilities. The student model was fine-tuned
during downstream training to optimize knowledge transfer and task performance. Performance
analysis (Fig. 3) shows the model peaked at 64-dimensional embeddings, with redundancy lowering
effectiveness at higher dimensions. Additionally, 2-hop neighborhoods yielded the best results,
with performance declining as additional hops introduced redundancy and complexity, reducing
effectiveness in heterogeneous data management.

Evaluating the Node Classification Task: We assess the node classification performance using
two data splits, (80%, 10%, 10%) and (60%, 20%, 20%). As displayed in Table 2, KD-HGRL and
HetGPT outperform other models across all datasets. KD-HGRL stands out with a Micro-F1 of 87.34
on DBLP, significantly surpassing the other methods, while HetGPT also delivers strong results,
particularly on Freebase and ACM. Both models exhibit superior predictive power, with KD-HGRL
demonstrating effective generalization due to its contrastive learning approach, which captures both
structural and semantic features. Results for the 6/2/2 split and additional label ratio evaluations are
detailed in Appendix A.3, further validating the robustness of KD-HGRL.

Link Prediction Evaluation: We evaluated KD-HGRL using two edge splits: 80%/10%/10% for
training, validation, and testing. Table 2 presents the results for the 80%/10%/10% split, where KD-
HGRL and HetGPT outperform other models (MAGNN, HAN, HeCO, HeMuc) across all datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Node Classification

M
od

el
s

Datasets Metrics MAGNN HAN HeCO HeMuc HetGPT KD-
HGRL

Sp
lit

(8
0%

,1
0%

,1
0%

) Freebase

Micro_F1 64.13 64.27 68.42 69.35 75.89 78.34
AP 63.45 63.89 67.15 68.01 74.34 76.12
AUC 62.34 62.77 66.08 66.94 73.12 75.87

ACM

Micro_F1 65.84 66.09 70.29 71.55 80.13 82.76
AP 64.67 64.92 69.56 70.70 78.78 80.34
AUC 63.89 64.11 68.66 69.45 77.23 79.67

AMiner

Micro_F1 64.58 64.71 68.65 70.02 76.13 78.50
AP 63.21 63.50 67.31 68.14 75.19 77.88
AUC 61.90 62.12 66.11 66.98 73.55 75.67

DBLP

Micro_F1 66.12 66.35 70.95 72.89 85.45 92.83
AP 65.23 65.50 69.74 70.59 83.10 89.24
AUC 63.79 64.10 67.82 68.67 80.55 88.34

Notably, KD-HGRL achieves a Micro-F1 score of 87.34 on DBLP, while HetGPT shows strong
performance, particularly on Freebase and ACM. Detailed results for the second split is available in
Appendix A.3, demonstrating KD-HGRL’s robustness across different configurations.

Table 2: Link prediction split (80%/10%/10%)

M
od

el
s

Datasets Metrics MAGNN HAN HeCO HeMuc HetGPT KD-
HGRL

Sp
lit

(8
0%

,1
0%

,1
0%

) Freebase

Micro_F1 59.25 60.19 62.89 64.24 70.42 72.35
AP 58.34 58.76 61.32 62.85 68.77 71.09
AUC 57.23 57.95 60.19 61.44 67.89 70.12

ACM

Micro_F1 60.12 61.45 65.39 66.88 74.29 77.03
AP 59.24 60.34 63.88 65.02 72.56 74.89
AUC 58.55 59.12 62.45 63.68 70.73 73.87

AMiner

Micro_F1 58.67 59.12 63.41 64.15 70.91 73.02
AP 57.44 58.34 61.89 62.78 68.95 71.45
AUC 56.89 57.23 60.67 61.74 67.14 69.98

DBLP

Micro_F1 61.23 61.88 67.39 69.14 80.57 87.34
AP 60.35 60.78 65.84 66.55 78.21 84.23
AUC 58.87 59.11 64.23 64.98 76.34 83.15

5 CONCLUSION

In this work, we introduce KD-HGRL, a pioneering framework that leverages knowledge distillation
for multi-task learning in heterogeneous graph representation. Our approach addresses critical
challenges in the field, such as limited labeled data and high inference costs, by utilizing a self-
supervised teacher model that learns from both semantic and topological perspectives of the graph.
The teacher’s rich embeddings are distilled into a computationally efficient student model, significantly
reducing inference time while maintaining high performance on tasks like node classification and link
prediction. Experimental results show that KD-HGRL outperforms leading methods, including HAN,
MAGNN, and HetGPT, on benchmark datasets such as Freebase, ACM, and DBLP, demonstrating
its ability to produce robust embeddings without requiring labeled data. By combining contrastive
learning with multi-view graph representations, KD-HGRL offers a scalable and efficient solution
for real-world applications. Future work will focus on extending the framework to dynamic graphs,
exploring hypergraphs for higher-order relationships, and applying the model to diverse domains such
as recommendation systems and fraud detection, further establishing its versatility and effectiveness.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, and Junzhou Huang. On self-distilling
graph neural network, 2021. URL https://arxiv.org/abs/2011.02255.

Kaize Ding, Jianling Wang, James Caverlee, and Huan Liu. Meta propagation networks for graph
few-shot semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence,
36(6):6524–6531, Jun. 2022. doi: 10.1609/aaai.v36i6.20605. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20605.

Kaituo Feng, Changsheng Li, Ye Yuan, and Guoren Wang. Freekd: Free-direction knowledge
distillation for graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22, pp. 357–366, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450393850. URL https://doi.org/10.
1145/3534678.3539320.

Yifan Feng, Yihe Luo, Shihui Ying, and Yue Gao. LightHGNN: Distilling hypergraph neural
networks into MLPs for 100x faster inference. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=lHasEfGsXL.

Jinhu Fu, Chao Li, Zhongying Zhao, and Qingtian Zeng. Heterogeneous graph knowledge distillation
neural network incorporating multiple relations and cross-semantic interactions. Inf. Sci., 658(C),
April 2024. ISSN 0020-0255. doi: 10.1016/j.ins.2023.120004. URL https://doi.org/10.
1016/j.ins.2023.120004.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, WWW
’20. ACM, April 2020. doi: 10.1145/3366423.3380297. URL http://dx.doi.org/10.
1145/3366423.3380297.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1857–1867, 2020.

Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. Pre-training on large-
scale heterogeneous graph. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 756–766, 2021a.

Xunqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi. Contrastive pre-training of gnns on
heterogeneous graphs. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 803–812, 2021b.

Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Jiawei Han. Universal
graph convolutional networks. Advances in Neural Information Processing Systems, 34:10654–
10664, 2021.

Baoyu Jing, Chanyoung Park, and Hanghang Tong. Hdmi: High-order deep multiplex infomax. In
Proceedings of the Web Conference 2021, pp. 2414–2424, 2021.

Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. A review of graph neural net-
works: concepts, architectures, techniques, challenges, datasets, applications, and future directions.
Journal of Big Data, 11(1):18, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://arxiv.org/abs/2011.02255
https://ojs.aaai.org/index.php/AAAI/article/view/20605
https://ojs.aaai.org/index.php/AAAI/article/view/20605
https://doi.org/10.1145/3534678.3539320
https://doi.org/10.1145/3534678.3539320
https://openreview.net/forum?id=lHasEfGsXL
https://doi.org/10.1016/j.ins.2023.120004
https://doi.org/10.1016/j.ins.2023.120004
http://dx.doi.org/10.1145/3366423.3380297
http://dx.doi.org/10.1145/3366423.3380297

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J Kirkpatrick et al. In: Cvpr (2016) hinton, g., vinyals, o., dean, j.: Distilling the knowledge in a
neural network. in: Nips workshop (2014) jung, h., ju, j., jung, m., kim, j.: Less-forgetting learning
in deep neural net-works. arxiv e-prints. arxiv: 1607.00122 (2016). In Computer Vision–ECCV
2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part
XII, volume 11216, pp. 256. Springer, 2018.

Xiang Li, Danhao Ding, Ben Kao, Yizhou Sun, and Nikos Mamoulis. Leveraging meta-path contexts
for classification in heterogeneous information networks, 2021.

Jing Liu, Tongya Zheng, and Qinfen Hao. Hire: Distilling high-order relational knowledge from
heterogeneous graph neural networks. Neurocomputing, 507:67–83, 2022a. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2022.08.022. URL https://www.sciencedirect.com/
science/article/pii/S0925231222009961.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip. Graph self-
supervised learning: A survey. IEEE transactions on knowledge and data engineering, 35(6):
5879–5900, 2022b.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4276–4284, 2021.

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. Hetgpt: Harnessing
the power of prompt tuning in pre-trained heterogeneous graph neural networks. arXiv preprint
arXiv:2310.15318, 2023.

Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. Unsupervised attributed multiplex
network embedding. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5371–5378, 2020.

Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G Soldatos,
Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using graph theory to
analyze biological networks. BioData mining, 4:1–27, 2011.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In International
conference on machine learning, pp. 5142–5151. PMLR, 2019.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
1150–1160, 2020.

Yimo Ren, Jinfa Wang, Hong Li, Hongsong Zhu, and Limin Sun. Devicegpt: A generative pre-
training transformer on the heterogenous graph for internet of things. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
1929–1933, 2023.

Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang. Heterogeneous deep
graph infomax. arXiv preprint arXiv:1911.08538, 2019.

Tiesunlong Shen, Jin Wang, and Xuejie Zhang. Knowledge distillation via adaptive meta-learning for
graph neural network. Information Sciences, 689:121505, 2025. ISSN 0020-0255. doi: https://doi.
org/10.1016/j.ins.2024.121505. URL https://www.sciencedirect.com/science/
article/pii/S0020025524014191.

Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V. Chawla. Knowledge
distillation on graphs: A survey, 2023. URL https://arxiv.org/abs/2302.00219.

Sheng Wan, Yibing Zhan, Liu Liu, Baosheng Yu, Shirui Pan, and Chen Gong. Con-
trastive graph poisson networks: Semi-supervised learning with extremely limited labels. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 6316–6327. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf.

12

https://www.sciencedirect.com/science/article/pii/S0925231222009961
https://www.sciencedirect.com/science/article/pii/S0925231222009961
https://www.sciencedirect.com/science/article/pii/S0020025524014191
https://www.sciencedirect.com/science/article/pii/S0020025524014191
https://arxiv.org/abs/2302.00219
https://proceedings.neurips.cc/paper_files/paper/2021/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Can Wang, Sheng Zhou, Kang Yu, Defang Chen, Bolang Li, Yan Feng, and Chun Chen. Collaborative
knowledge distillation for heterogeneous information network embedding. In Proceedings of the
ACM Web Conference 2022, WWW ’22, pp. 1631–1639, New York, NY, USA, 2022a. Association
for Computing Machinery. ISBN 9781450390965. doi: 10.1145/3485447.3512209. URL
https://doi.org/10.1145/3485447.3512209.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, and Yanfang Ye. Heterogeneous graph
attention network, 2021a.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heterogeneous graph neural network
with co-contrastive learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 1726–1736, 2021b.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heterogeneous graph neural network
with co-contrastive learning, 2021c.

Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. A survey on heteroge-
neous graph embedding: methods, techniques, applications and sources. IEEE Transactions on
Big Data, 9(2):415–436, 2022b.

Zehong Wang, Qi Li, Donghua Yu, Xiaolong Han, Xiao-Zhi Gao, and Shigen Shen. Heterogeneous
graph contrastive multi-view learning. In Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM), pp. 136–144. SIAM, 2023.

Stanley Wasserman and Katherine Faust. Social network analysis: Methods and applications. 1994.

Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. Self-supervised learning
on graphs: Contrastive, generative, or predictive. IEEE Transactions on Knowledge and Data
Engineering, 35(4):4216–4235, 2021.

Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go
beyond it: An effective knowledge distillation framework. In Proceedings of the Web Conference
2021, WWW ’21, pp. 1227–1237, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3450068. URL https://doi.org/
10.1145/3442381.3450068.

Y. Yang, J. Qiu, M. Song, D. Tao, and X. Wang. Distilling knowledge from graph convolu-
tional networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7072–7081, Los Alamitos, CA, USA, jun 2020. IEEE Computer Society. doi:
10.1109/CVPR42600.2020.00710. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR42600.2020.00710.

Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and Jianbin Huang. Self-
supervised heterogeneous graph pre-training based on structural clustering. Advances in Neural
Information Processing Systems, 35:16962–16974, 2022.

Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. A generative pre-training
framework for spatio-temporal graph transfer learning. arXiv preprint arXiv:2402.11922, 2024.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heterogeneous
graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19, pp. 793–803. Association for Computing
Machinery, 2019a. ISBN 9781450362016.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous
graph neural network. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 793–803, 2019b.

Qiqi Zhang, Zhongying Zhao, Hui Zhou, Xiangju Li, and Chao Li. Self-supervised contrastive
learning on heterogeneous graphs with mutual constraints of structure and feature. Information
Sciences, 640:119026, 2023.

13

https://doi.org/10.1145/3485447.3512209
https://doi.org/10.1145/3442381.3450068
https://doi.org/10.1145/3442381.3450068
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00710
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00710

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
MLPs new tricks via distillation. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=4p6_5HBWPCw.

Zhichao Zhou, Yu Hu, Yue Zhang, Jiazhou Chen, and Hongmin Cai. Multiview deep graph infomax
to achieve unsupervised graph embedding. IEEE Transactions on Cybernetics, 2022.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
graph neural networks with ego-graph information maximization. In Proceedings of the 35th
International Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY,
USA, 2024. Curran Associates Inc. ISBN 9781713845393.

14

https://openreview.net/forum?id=4p6_5HBWPCw

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORKS

Pre-training Techniques in Graph Learning: In graph learning, the concept of pre-training is
inspired by the remarkable success of pre-trained models in computer vision and natural language
processing domains Hu et al. (2019). It involves self-supervised learning on unlabeled graphs to
capture their inherent properties. The representations learned during pre-training are not specific to
any particular tasks; they are later fine-tuned for specific downstream tasks Lu et al. (2021); Qiu et al.
(2020); Hu et al. (2020). Heterogeneous graph pre-training has garnered significant attention, where
labeled nodes are often scarce Liu et al. (2022b); Jiang et al. (2021a). The pre-training techniques
for learning graphs are classified into generative and contrastive methods. Generative methods aims
to reconstruct the graph segments to capture underlying structures or specific node attributes Hu
et al. (2020); Jiang et al. (2021b); Yuan et al. (2024); Ren et al. (2023). In contrast, contrastive
methods focus on learning representations by maximizing the similarity between positive pairs (nodes
expected to be similar or connected, such as those from the same class) and minimizing it for negative
pairs (those expected to be dissimilar or unconnected) Jiang et al. (2021b).Some methods focus on
contrasting node-level representations Yang et al. (2022); Wu et al. (2021); Wang et al. (2021b), while
others contrast node-level and graph-level representations simultaneously Jing et al. (2021); Park
et al. (2020); Ren et al. (2019); Zhou et al. (2022). This approach often proves more effective than
generative methods Wang et al. (2023), making it a favored pre-training strategy in heterogeneous
graph learning.

Knowledge Distillation Methods: KD involves transferring knowledge from a large, complex
model (the teacher) to a smaller, simpler model (the student) to reduce computational costs while
maintaining performance, which is especially useful in resource-constrained environments. Logits-
based distillation, a common approach, aligns the student’s output with the teacher’s softened
probability distribution across classes, allowing the student to capture more nuanced information
beyond complex labels Kirkpatrick et al. (2018). On the other hand, feature-based distillation transfers
knowledge from the teacher’s intermediate layers rather than just the final output. Recent research
has applied KD to GNNs. In Yang et al. (2020), a method is proposed to enable the student to mimic
the local structure representations of the teacher’s neighboring nodes. Other works, such as Feng
et al. (2022), introduce techniques to align more complex graph structures. GNN Self Distillation
(GNN-SD) Chen et al. (2021) proposes an adaptive distillation regularizer to transfer knowledge
from shallow to deeper GNN layers. In Yang et al. (2021), a mechanism combining label propagation
and feature transformation is introduced to spread label information and modify node features. More
recently, Shen et al. (2025) proposed adaptive meta-learning in GNNs, allowing the teacher to update
its parameters based on the student’s optimal gradient direction in each KD step.

Table 3: Characteristics of Datasets

Type Freebase ACM AMiner DBLP

Node

Movie: 3492
Writer: 4459
Director: 2502
Actor: 33,401

Paper: 4019
Subject: 60
Author: 7167

Paper: 6564
Reference: 35,890
Author: 13,329

Author: 4057
Term: 7723
Paper: 14,328
Conference: 20

Edge
Movie-Writer
Movie-Director
Movie-Actor

Paper-Subject
Paper-Author

Paper-Reference
Paper-Author

Paper-Author
Paper-Conference
Paper-Term

Meta-paths
Movie-Writer-Movie,
Movie-Director-Movie,
Movie-Actor-Movie

Paper-Subject-Paper,
Paper-Author-Paper

Paper-Reference-Paper,
Paper-Author-Paper

Author-Paper-Author,
Author-Paper-Term-Paper,
Author-Paper-Conference

A.2 DATASETS

To validate the effectiveness of KD-HGRL, we utilized four widely used heterogeneous graph datasets:
Freebase, ACM, AMiner, and DBLP. The key characteristics of these datasets are summarized in
Table 3.

DBLP: This is a computer science bibliography network with four types of nodes: Paper (P), Author
(A), Term (T), and Venue (V). The authors in this dataset are categorized into four research areas:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: Hyperparameter sensitivity analysis for α, γ, and λ, showing the optimal values (α = 0.5,
γ = 0.5, λ = 0.5) for best node classification performance.

Database, Data Mining, Artificial Intelligence, and Information Retrieval. The network comprises
three types of edges: Paper-Author (P-A), Paper-Term (P-T), and Paper-Venue (P-V).

IMDB: This user-movie interest network includes three types of nodes: Movie (M), Actor (A), and
Director (D). Movies are divided into three genres: Action, Comedy, and Drama. The network has
two types of edges: Movie-Actor (M-A) and Movie-Director (M-D).

ACM: This bibliography network features papers published in venues such as KDD, SIGMOD,
SIGCOMM, MobiCOMM, and VLDB. The heterogeneous graph consists of three node types: Paper
(P), Author (A), and Subject (S). Papers are grouped into Database, Wireless Communication, and
Data Mining. The network contains two types of edges: Paper-Author (P-A) and Paper-Subject (P-S).

Last.fm: This music platform tracks users’ listening activities. The heterogeneous graph includes
three types of nodes: Artist (A), User (U), and Tag (T). The network contains two types of edges:
Artist-User (A-U) and Artist-Tag (A-T).

A.3 HYPER-PARAMETER ANALYSIS

To assess the sensitivity of hyperparameters in KD-HGRL, cross-validation is employed to identify
the optimal values for α, γ, and λ, as illustrated in Figure 6. The parameter α is varied within the
set {0.1, 0.3, 0.5, 0.7, 1.0} to balance the teacher’s local node embeddings and global class-level
centroids. The results show that α = 0.5 provides the best balance, effectively preserving both
local and global structural information. Similarly, γ is tested within the same range, with γ = 0.5
yielding the optimal balance between distillation and classification loss. Finally, λ, which controls
the influence of teacher and student embeddings in the distillation loss, achieves the best performance
at λ = 0.5. These hyperparameter settings maximize performance in both node classification and
link prediction tasks.

A.4 ABLATION STUDY

The ablation study of the KD-HGRL model evaluates three variations: the full KD-HGRL model
with knowledge distillation, the teacher model alone, and the student model without distillation.
As shown in Figure 7, the full KD-HGRL model with knowledge distillation achieves the highest
performance across AUC, AP, and Micro_F1 scores. The teacher model outperforms the standalone
student model, highlighting the effectiveness of knowledge transfer. Additionally, Figure 8 illustrates
the evaluation of the three models based on node representations in the node classification task. These
results underscore the significance of knowledge distillation in enhancing the KD-HGRL framework’s
performance in complex heterogeneous graph scenarios.

In addition, we evaluate the effectiveness of the two views—meta-path (semantic) and topological—in
the teacher model of KD-HGRL. The results, shown in the diagram 9, highlight that the full model,
incorporating both views, consistently outperforms the variants that exclude either view. For both
DBLP and ACM datasets, removing the meta-path view significantly lowers performance, demon-
strating its importance in capturing semantic relationships in heterogeneous graphs. The meta-path
view extracts relevant subgraphs based on node types and their relationships, which is critical for
generating accurate node representations. Meanwhile, the topological view, which captures the local

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

KD-HGRL w/o
Knowledge distillation

KD-HGRL
KD-HGRL w/o
Student view

Figure 7: Performance comparison of KD-HGRL variations on two datasets: (a) DBLP and (b) ACM.

(a) (b) (c)

Figure 8: Performance of KD-HGRL with the variation of the proposed method in ACM dataset. (a)
KD-HGRL-student view, (b) KD-HGRL-student view, (c)KD-HGRL

and global structure of the graph, also contributes to model performance, though its impact is slightly
less than that of the meta-path view. These findings, as illustrated in the diagram, underline the
complementary roles of both views in improving node classification tasks.

KD-HGRL KD-HGRL w/o Meta-path view KD-HGRL w/Topological view

0.8

0.6

0.4

0.2

AUC AP Macro F1
(a)

0.8

0.6

0.4

0.2

AUC AP Macro F1
(b)

Figure 9: Ablation study comparing the impact of the meta-path (semantic) and topological views
on node classification performance (AUC, AP, Macro-F1) for DBLP and ACM datasets. The results
highlight the effectiveness of both views in enhancing model performance.

A.5 MORE EXPERIMENTAL RESULTS

Label Efficiency Evaluation: We assess our proposed method’s performance in limited labeled data
scenarios, highlighting the benefits of knowledge distillation. Node classification experiments on the
DBLP and ACM datasets, with label ratios from 90% to 10%, reveal that our model (KD-HGRL)
consistently maintains strong Micro-F1 scores. For example, on the DBLP dataset, KD-HGRL

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

achieves 94.18 at 90% labeled data, dropping only to 72.00 at 10%. In contrast, semi-supervised
models like HAN and MAGNN experience significant declines, with HAN dropping from 59.72 to
40.00 and MAGNN from 60.29 to 47.00. Similarly, on the ACM dataset, KD-HGRL’s score decreases
from 92.70 to 70.00, while HAN and MAGNN show marked reductions. These results demonstrate
that our method effectively leverages knowledge transfer from the teacher model, utilizing both
labeled and unlabeled data. We report results based on the Micro-F1 metric, as it offers a balanced
evaluation across different classes, particularly in label-scarce environments.

MAGNN HAN HeCO HeMuc HetGPT KD-HGRL

(a) (b)

Figure 10: Node classification performance at different label ratios. (a) DBLP dataset: KD-HGRL
demonstrates a smaller performance drop compared to HAN and MAGNN. (b) ACM dataset: KD-
HGRL consistently outperforms both baseline models, maintaining higher Micro-F1 scores even with
reduced labeled data.

A Comparative Study of Node Classification Models in Low-Label Scenarios In this section,
we present a comparative analysis of various node classification models under low-label scenarios,
focusing on how well each model performs as the availability of labeled data decreases. Node
classification is a key task in graph representation learning, and achieving high performance with
limited labeled data is essential for many real-world applications. To evaluate this, we conducted
experiments on multiple datasets using varying amounts of labeled data, including 5%, 10%, 20%, and
50% label ratios for training. The models evaluated include KD-HGRL, HAN, MAGNN, HeCo, and
HeMue, which represent a mix of knowledge distillation-based, attention-based, and semi-supervised
learning approaches.

As shown in Table 4, KD-HGRL consistently outperforms other models across all label ratios,
demonstrating its ability to maintain strong performance even when the labeled data is minimal. For
instance, with 5% labeled data, KD-HGRL achieves a Micro-F1 score of 64.12, while other models
like MAGNN and HAN lag behind with scores of 44.45 and 43.12, respectively. This highlights
KD-HGRL’s effectiveness in leveraging the knowledge distillation mechanism, where the teacher
model generates robust node representations through self-supervised learning, and the student model
transfers this knowledge to perform the downstream task with minimal labeled data. The HeMu
and HeCo models also show competitive performance in certain cases. Specifically, HeCo achieves
a Micro-F1 score of 51.80 at 5% labeled data, performing better than MAGNN and HAN but still
not reaching the level of KD-HGRL. These models rely more on label-dependent learning, which
limits their ability to generalize well with limited labeled data. For higher label ratios, such as 50%
or 40%, KD-HGRL continues to outperform the other models, though the gap narrows slightly as the
amount of labeled data increases. For example, at 50% labeled data, KD-HGRL achieves a Micro-F1
score of 71.25, whereas HeMue and HeCo score 68.95 and 70.12, respectively. This trend reflects the
robustness of KD-HGRL in leveraging both labeled and unlabeled data through the teacher-student
framework.

Overall, the results presented in Table 4 demonstrate that KD-HGRL offers a significant advantage
in low-label scenarios, effectively utilizing knowledge distillation to achieve strong performance

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

even with very limited labeled data. The ability of the student model to focus on task-specific labels
through the first-hop neighbors of the target node, combined with the rich node representations
learned in the teacher phase, makes KD-HGRL highly effective for node classification in scenarios
where labeled data is scarce.

Table 4: Node Classification Performance in Low-Label Scenarios

Model Metric 50% Train 40% Train 20% Train 10% Train 5% Train
KD-HGRL Micro-F1 71.25 68.21 63.58 58.11 52.12

Accuracy 70.12 67.85 62.77 57.91 51.97
Precision 68.50 66.04 61.01 56.32 50.78

HeMue Micro-F1 68.95 69.58 62.01 56.89 51.12
Accuracy 67.12 69.33 61.22 55.76 50.09
Precision 66.13 68.12 60.34 54.55 48.72

HeCo Micro-F1 70.12 70.81 61.89 57.12 51.80
Accuracy 68.97 69.75 61.11 56.01 50.67
Precision 67.21 68.54 60.34 55.12 49.89

MAGNN Micro-F1 63.67 61.11 55.00 50.78 44.45
Accuracy 62.22 60.45 54.11 49.68 43.12
Precision 60.22 59.01 53.55 48.23 42.89

HAN Micro-F1 62.78 59.12 53.89 49.45 43.12
Accuracy 61.02 58.22 52.11 47.85 41.67
Precision 59.22 57.45 51.78 46.87 40.99

Node clustering and visualization We performed node clustering experiments using the K-Means
algorithm on the node representations generated by the proposed model. The clustering performance
was evaluated using Macro-F1, AUC, and AP metrics, which assess clustering quality, discrimination
power, and precision-recall balance, respectively. As seen in Table 5, the proposed KD-HGRL
consistently outperforms competing models (MAGNN, HAN, HeCo, HeMuc) across all datasets.
For example, in the DBLP dataset, KD-HGRL achieves the highest AUC (76.94) and AP (75.29).
Similarly, in the ACM dataset, it records the best Macro-F1 (73.68) and AUC (71.42), showcasing its
superior ability to produce high-quality, well-separated clusters. Overall, KD-HGRL demonstrates
robust performance across all metrics, outperforming other models and confirming its effectiveness
in generating meaningful node embeddings.

Table 5: Performance Metrics for node clustering with Data Split (60%, 20%, 20%) Across Different
Models

Dataset Metrics MAGNN HAN HeCo HeMuc KD-HGRL

DBLP
Macro-f1 61.32 60.48 66.78 69.01 77.35
AUC 63.89 64.25 68.82 71.02 76.94
AP 62.01 62.78 67.92 70.14 75.29

ACM
Macro-f1 55.67 58.21 63.48 64.92 73.68
AUC 58.85 59.02 65.78 66.51 71.42
AP 57.92 58.34 64.25 65.77 69.82

AMiner
Macro-f1 56.47 59.21 63.79 64.87 71.12
AUC 59.25 60.49 66.93 67.52 72.88
AP 57.58 58.12 63.54 65.14 70.32

Freebase
Macro-f1 59.12 58.97 64.21 65.49 67.92
AUC 60.21 61.02 65.92 66.48 68.74
AP 58.49 59.21 62.49 63.85 67.01

We conduct visualization experiments on the AMiner Freebase DBLP dataset to further illustrate the
proposed method’s clustering performance. By applying t-SNE for dimensionality reduction, we
project the node representations into a two-dimensional space. Nodes are then color-coded using four
distinct colors according to their true labels, providing a clear visual representation of the clustering
results, as depicted in 11.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: t-SNE visualization of node representations on different datasets: (a) Freebase, (b) AMiner,
and (c) DBLP. Nodes are color-coded by true labels, illustrating the clustering performance of the
proposed method.

Evaluating the Node Classification Task split(60%, 20%, 20%): The results of the node classifica-
tion task across four datasets demonstrate that the KD-HGRL model consistently outperforms all
other models across all metrics. In the Freebase dataset, KD-HGRL achieves the highest Micro_F1
score (75.29), AP (73.91), and AUC (72.15). A similar trend is observed in the ACM dataset, where
KD-HGRL attains the best Micro_F1 score (81.45), AP (78.73), and AUC (77.90). In the AMiner
dataset, KD-HGRL again leads with a Micro_F1 score of 75.63, AP of 73.48, and AUC of 71.22.
Finally, in the DBLP dataset, KD-HGRL reaches an exceptional performance, recording the highest
Micro_F1 (90.18), AP (88.22), and AUC (86.11). This indicates that KD-HGRL consistently achieves
superior performance across all datasets and metrics compared to the other models. Evaluating

Table 6: Node Classification

M
od

el
s

Datasets Metrics MAGNN HAN HeCO HeMuc HetGPT KD-
HGRL

Sp
lit

(6
0%

,2
0%

,2
0%

) Freebase

Micro_F1 62.05 62.18 66.23 67.45 73.61 75.29
AP 61.30 61.68 65.24 66.35 71.87 73.91
AUC 60.29 60.56 64.52 65.73 70.94 72.15

ACM

Micro_F1 63.47 63.61 68.21 69.05 78.77 81.45
AP 62.41 62.59 67.45 68.20 76.24 78.73
AUC 61.25 61.49 66.34 67.13 75.01 77.90

AMiner

Micro_F1 61.78 61.95 66.78 67.50 73.82 75.63
AP 60.19 60.34 64.23 65.15 71.01 73.48
AUC 59.12 59.33 63.22 64.12 69.10 71.22

DBLP

Micro_F1 63.95 64.12 69.14 71.45 82.37 90.18
AP 62.99 63.25 67.59 69.25 80.15 88.22
AUC 61.78 61.99 66.27 68.12 78.45 86.11

the Link Prediction Task split(60%, 20%, 20%): The results of the link prediction task based
on the 6/2/2 split, as presented in the table, demonstrate that KD-HGRL consistently outperforms
other models across all datasets and metrics. In the Freebase dataset, KD-HGRL achieves the highest
scores with Micro_F1 of 69.41, AP of 68.09, and AUC of 66.76. Similarly, KD-HGRL records the
best results for the ACM dataset, attaining a Micro_F1 of 75.34, AP of 72.64, and AUC of 71.58. This
trend continues with the AMiner dataset, where KD-HGRL leads with a Micro_F1 of 71.42, AP of
69.34, and AUC of 68.75. In the DBLP dataset, KD-HGRL again achieves the highest performance,
with Micro_F1 of 85.03, AP of 82.24, and AUC of 81.12. Overall, KD-HGRL performs better in link
prediction tasks than other models across all datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Link Prediction Split (60%/20%/20%)

M
od

el
s

Datasets Metrics MAGNN HAN HeCO HeMuc HetGPT KD-
HGRL

Sp
lit

(6
0%

,2
0%

,2
0%

) Freebase

Micro_F1 57.12 57.95 60.24 61.82 67.35 69.41
AP 56.44 56.78 59.12 60.15 65.87 68.09
AUC 55.38 55.92 58.23 59.34 64.34 66.76

ACM

Micro_F1 58.34 58.98 63.12 64.58 72.45 75.34
AP 57.12 57.78 61.23 62.75 70.19 72.64
AUC 56.42 56.90 60.18 61.22 68.12 71.58

AMiner

Micro_F1 56.78 57.45 62.13 62.78 68.57 71.42
AP 55.64 56.12 60.25 61.39 66.91 69.34
AUC 54.34 54.88 58.22 59.13 65.87 68.75

DBLP

Micro_F1 59.95 60.55 65.19 67.35 78.56 85.03
AP 58.88 59.31 63.45 64.79 75.91 82.24
AUC 57.44 57.89 61.23 63.14 73.89 81.12

A.6 TIME COMPLEXITY ANALYSIS

In this section, we provide a time complexity analysis to compare the computational efficiency of var-
ious state-of-the-art models for heterogeneous graph representation learning. The time complexities
of these models are summarized in Table 8, where the following definitions are used:

• |V |: The number of nodes in the graph.

• |E|: The number of edges in the graph.

• d: The dimension of the node embeddings (hidden layer size).

• M : The number of meta-paths utilized in the model.

• N : The number of edge types in the heterogeneous graph.

The table shows the time complexity for each model, considering whether the model uses meta-
paths and distinguishes between different edge types. These two factors significantly impact the
computational requirements of the models. In comparison, other models such as HAN, HeCo, HeMue,

Model Need metapath Distinguish edge type Time Complexity

MAGNN ✓ × O(M · |V | · |E| · d)
OUR (KD-HGRL) ✓ ✓ O(M · |V | · |E| · d+ |V |2 · d)
HAN ✓ × O(M · |V |2 +M · |E| · d)
HeCo ✓ × O(M · |V |2 +M · |E| · d)
HeMue ✓ × O(M · |V |2 +M · |E| · d)
HetGPT ✓ ✓ O(M · |V |2 +N · |E| · d)

Table 8: Comparison of Time Complexities for Different Models

and HetGPT typically have higher time complexity due to the need for comprehensive graph-wide
computations, including the handling of various meta-paths and edge types. HAN and HeCo both
require attention mechanisms and operations over the entire graph structure. These models compute
embeddings by attending to all nodes and their corresponding meta-paths, which results in a time
complexity of O(M · |V |2 +M · |E| · d). The |V |2 term reflects the full graph attention mechanism,
where each node attends to all other nodes, leading to quadratic growth in time complexity as the
number of nodes increases. In addition, the models still need to process the meta-paths and edge
types, resulting in the extra M · |E| · d complexity, where M is the number of meta-paths, |E| is the
number of edges, and d is the dimensionality of the node embeddings.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

HeMuc, a more recent model for heterogeneous graph learning, shares a similar structure with HAN
and HeCo, where it also requires attending to all nodes and handling meta-paths, with an identical
time complexity of O(M · |V |2 + M · |E| · d). These models typically rely on more complex
graph-wide feature learning techniques, which scale poorly as the graph size increases.

HetGPT incorporates a fine-tuning mechanism based on meta and prompt learning, which also requires
processing across the entire graph. The time complexity for HetGPT is O(M · |V |2 +N · |E| · d),
where N represents the number of edge types in the heterogeneous graph. HetGPT’s additional
computational complexity arises from its ability to distinguish edge types, which increases the number
of operations needed for graph processing.

On the other hand, KD-HGRL significantly reduces the computational overhead by separating the
graph representation learning from the downstream task-specific operations. In the teacher phase,
the model computes node embeddings via self-supervised contrastive learning using both semantic
(meta-path-based) and topological views. The complexity for the teacher phase is O(M · |V | · |E| ·d),
which involves processing the entire graph for meta-path learning and neighborhood aggregation.
However, when it comes to the student phase, KD-HGRL benefits from its efficient design. The
student model only requires considering first-hop neighbors of the target nodes, thus reducing the
complexity to O(|V |2 · d) for the final inference. This significantly reduces the computation required,
especially for large graphs, since the student model does not need to process the entire graph but only
operates on local subgraphs.

Thus, while other models like HAN, HeCo, and HetGPT require processing the full graph, including
attention mechanisms or edge-type distinctions, KD-HGRL benefits from its lightweight student
model that focuses on local neighborhoods. This reduction in graph-wide computations significantly
allows KD-HGRL to achieve much faster inference times and computational efficiency when scaling
to larger graphs.

A.7 INFERENCE TIME ANALYSIS

In this section, we present a comparison of the inference times between the teacher and student
models in the proposed KD-HGRL framework. The table below summarizes the inference time (in
seconds) for two common downstream tasks—node classification and link prediction—on the DBLP
and ACM datasets. The teacher model generates rich node embeddings by processing the entire
heterogeneous graph, which results in higher inference time due to its need to compute embeddings
for all nodes, meta-paths, and edge types. In contrast, the student model only processes the target
nodes and their immediate neighbors, leveraging pre-computed embeddings transferred from the
teacher model, leading to much faster inference times.

Task Dataset Teacher Model Inference Time (sec) Student Model Inference Time (sec) Reduction Ratio

Node Classification DBLP 23.50 5.20 77.9%

Node Classification ACM 27.80 6.10 78.0%

Link Prediction DBLP 20.60 4.90 76.2%

Link Prediction ACM 24.10 5.60 76.8%

Table 9: Inference Time Comparison for Teacher and Student Models on DBLP and ACM Datasets

As shown in Table 9, the inference time for the student model is significantly lower than that of the
teacher model across both tasks and datasets. The teacher model requires extensive computation as it
processes the full graph and computes embeddings for all nodes, considering multiple meta-paths and
edge types. On the other hand, the student model operates on a much smaller subgraph, focusing only
on the target nodes and their immediate neighbors. This results in much faster inference times for the
student model, especially in large-scale datasets like DBLP and ACM. The reduction in inference time
is substantial, with the student model achieving up to 78% reduction in computation time compared
to the teacher model. This makes the KD-HGRL framework highly efficient for real-time applications
and large-scale graphs. The results demonstrate the advantage of knowledge distillation in balancing
high performance and computational efficiency, as the student model benefits from the teacher’s rich
embeddings while keeping inference time manageable. This efficiency makes KD-HGRL suitable for
scenarios where real-time predictions or large-scale graph processing is essential, offering a scalable
and computationally efficient approach to graph representation learning.

22

	Introduction
	Preliminary
	Proposed Method
	Teacher Phase: self-supervised Contrastive Learning on Heterogeneous Graphs
	Knowledge Distillation for Node Classification
	Knowledge Distillation for Link Prediction

	Experiments
	Conclusion
	Appendix
	Related Works
	Datasets
	Hyper-Parameter Analysis
	Ablation Study
	More Experimental Results
	time complexity analysis
	Inference Time Analysis

