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ABSTRACT

Offline learning is a key part of making reinforcement learning (RL) useable in
real systems. Offline RL looks at scenarios where there is data from a system’s
operation, but no direct access to the system when learning a policy. Recent work
on training RL policies from offline data has shown results both with model-free
policies learned directly from the data, or with planning on top of learnt models
of the data. Model-free policies tend to be more performant, but are more opaque,
harder to command externally, and less easy to integrate into larger systems. We
propose an offline learner that generates a model that can be used to control the
system directly through planning. This allows us to have easily controllable poli-
cies directly from data, without ever interacting with the system. We show the per-
formance of our algorithm, Model-Based Offline Planning (MBOP) on a series of
robotics-inspired tasks, and demonstrate its ability to leverage planning to respect
environmental constraints. We are able to find near-optimal polices for certain
simulated systems from as little as 50 seconds of real-time system interaction, and
create zero-shot goal-conditioned policies on a series of environments.

1 INTRODUCTION

Learnt policies for robotic and industrial systems have the potential to both increase existing sys-
tems’ efficiency & robustness, as well as open possibilities for systems previously considered too
complex to control. Learnt policies also afford the possibility for non-experts to program controllers
for systems that would currently require weeks of specialized work. Currently, however, most ap-
proaches for learning controllers require significant interactive time with a system to be able to
converge to a performant policy. This is often either undesirable or impossible due to operating cost,
safety issues, or system availability. Fortunately, many systems are designed to log sufficient data
about their state and control choices to create a dataset of operator commands and resulting system
states. In these cases, controllers could be learned offline, using algorithms that produce a good
controller using only these logs, without ever interacting with the system. In this paper we propose
such an algorithm, which we call Model-Based Offline Planning (MBOP), which is able to learn poli-
cies directly from logs of a semi-performant controller without interacting with the corresponding
environment. It is able to leverage these logs to generate a more performant policy than the one used
to generate the logs, which can subsequently be goal-conditioned or constrained dynamically during
system operation.

Learning from logs of a system is often called ‘Offline Reinforcement Learning’ (Wu et al., 2019;
Peng et al., 2019; Fujimoto et al., 2019; Wang et al., 2020) and both model-free (Wu et al., 2019;
Wang et al., 2020; Fujimoto et al., 2019; Peng et al., 2019) and model-based (Yu et al., 2020; Ki-
dambi et al., 2020) approaches have been proposed to learn policies in this setting. Current model-
based approaches, MOPO (Yu et al., 2020) and MoREL (Kidambi et al., 2020), learn a model to train
a model-free policy in a Dyna-like (Sutton & Barto, 2018) manner. Our proposed approach, MBOP, is
a model-based approach that leverages Model-Predictive Control (MPC) (Rault et al., 1978) and ex-
tends the MPPI (Williams et al., 2017b) trajectory optimizer to provide a goal or reward-conditioned
policy using real-time planning. It combines three main elements: a learnt world model, a learnt
behavior-cloning policy, and a learnt fixed-horizon value-function.

MBOP’s key advantages are its data-efficiency and adaptability. MBOP is able to learn policies that
perform better than the demonstration data from as little as 100 seconds of simulated system time
(equivalent to 5000 steps). A single trained MBOP policy can be conditioned with a reward function,
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a goal state, as well as state-based constraints, all of which can be non-stationary, allowing for easy
control by a human operator or a hierarchical system. Given these two key advantages, we believe
it to be a good candidate for real-world use in control systems with offline data.

We contextualize MBOP relative to existing work in Section 2, and describe MBOP in Section 3.
In Section 4.2, we demonstrate MBOP’s performance on standard benchmark performance tasks
for offline RL, and in Section 4.3 we demonstrate MBOP’s performance in zero-shot adaptation to
varying task goals and constraints. In Section 4.4 we perform an ablation analysis and consider
combined contributions of MBOP’s various elements.

2 RELATED WORKS

Model-Based approaches with neural networks have shown promising results in recent years.
Guided Policy Search (Levine & Koltun, 2013) leverages differential dynamic programming as a
trajectory optimizer on locally linear models, and caches the resulting piece-wise policy in a neural
network. Williams et al. (2017b) show that a simple model-based controller can quickly learn to
drive a vehicle on a dirt track, the BADGR robot (Kahn et al., 2020) also uses Model-Predictive
Path Integral (MPPI) (Williams et al., 2017a) with a learned model to learn to navigate to novel
locations, Yang et al. (2020) show good results learning legged locomotion policies using MPC
with learned models, and (Ebert et al., 2018) demonstrate flexible robot arm controllers leveraging
learned models with image-based goals. Silver et al. (2016) have shown the power of additional
explicit planning in various board games including Go. More recently planning-based algorithms
such as PlaNet (Hafner et al., 2019b) have shown strong results in pixel-based continuous control
tasks by leveraging latent variational RNNs. Simpler approaches such as PDDM (Nagabandi et al.,
2020) or PETS (Chua et al., 2018) have shown good results using full state information both in sim-
ulation and on real robots. MBOP is strongly influenced by PDDM (Nagabandi et al., 2020) (itself
an extension on PETS (Chua et al., 2018)), in particular with the use of ensembles and how they are
leveraged during planning. PDDM was not designed for offline use, and MBOP adds a value func-
tion composition as well as a policy prior during planning to increase data efficiency and strengthen
the set of priors for offline learning. It leverages the same trajectory re-weighting approach used in
PDDM and takes advantage of its beta-mixture of the T trajectory buffer.

Both MoREL (Kidambi et al., 2020) and MOPO (Yu et al., 2020) leverage model-based ap-
proaches for offline learning. This is similar to approaches used in MBPO (Janner et al., 2019)
and DREAMER (Hafner et al., 2019a), both of which leverage a learnt model to learn a model-free
controller. MoREL and MOPO, however, due to their offline nature, train their model-free learner
by using a surrogate MDP which penalizes for underlying model uncertainty. They do not use
the models for direct planning on the problem, thus making the final policy task-specific. MOPO
demonstrate the ability of their algorithm to alter the reward function and re-train a new policy ac-
cording to this reward, but cannot leverage the final policy to dynamically adapt to an arbitrary goal
or constrained objective. Matsushima et al. (2020) use a model-based policy for deployment effi-
cient RL. Their use case is a mix between offline and online RL, where they consider that there is a
limited number of deployments. They share a similarity in the sense that they also use a behavior-
cloning policy πβ to guide trajectories in a learned ensemble model, but perform policy improvement
steps on a parametrized policy initialized from πβ using a behavior-regularized objective function.
Similarly to MoREL and MOPO their approach learns a parameterized policy for acting in the real
system.

The use of a value function to extend the planning horizon of a planning-based policy has been previ-
ously proposed by Lowrey et al. (2018) with the POLO algorithm. POLO uses a ground-truth model
(e.g. physics simulator) with MPPI/MPC for trajectory optimization. POLO additionally learns an
approximate value-function through interaction with the environment which is then appended to op-
timized trajectories to improve return estimation. Aside from the fact that MBOP uses an entirely
approximate & learned model, it uses a similar idea but with a fixed-horizon value function to avoid
bootstrapping, and separate heads of the ensemble during trajectory optimization. BC-trained poli-
cies as sampling priors have been looked at by POPLIN (Wang & Ba, 2019). POPLIN does not use
value bootstrapping, and re-samples an ensemble head at each timestep during rollouts, which likely
provides less consistent variations in simulated plans. They show strong results relative to a series
of model-based and model-free approaches, but do not manage to perform on the Gym Walker envi-
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ronment. Additionally, they are overall much less data efficient than MBOP and do not demonstrate
performance in the offline setting.

Task-time adaptation using model-based approaches has been considered previously in the model-
based literature. Lu et al. (2019) look at mixing model-free and model-based approaches using
notions of uncertainty to allow for adaptive controllers for non-stationary problems. Rajeswaran
et al. (2020) use a game-theoretic framework to describe two adaptive learners that are both more
sample efficient than common MBRL algorithms, as well as being more robust to non-stationary
goals and system dynamics. MBOP is able to perform zero-shot adaptation to non-stationary goals
and constraints, but does not provide a mechanism for dealing with non-stationary dynamics. If
brought into the on-line settings, approaches from these algorithms such as concentrating on recent
data, could however be leveraged to allow for this.

Previous approaches all look at various elements present in MBOP but none consider the full combi-
nation of a BC prior on the trajectory optimizer with a value-function initialization, especially in the
case of full offline learning. Along with this high-level design, many implementation details such as
consistent ensemble sampling during rollouts, or averaging returns over ensemble heads, appear to
be important for a stable controller from our experience.

3 MODEL-BASED OFFLINE PLANNING

Our proposed algorithm, MBOP (Model-Based Offline Planning), is a model-based RL algorithm
able to produce performant policies entirely from logs of a less-performant policy, without ever
interacting with the actual environment. MBOP learns a world model and leverages a particle-based
trajectory optimizer and model-predictive control (MPC) to produce a control action conditioned on
the current state. It can be seen as an extension of PDDM (Nagabandi et al., 2020), with a behavior-
cloned policy used as a prior on action sampling, and a fixed-horizon value function used to extend
the planning horizon.

In this following sections, we introduce the Markov Decision Process (MDP) formalism, briefly
explain planning-based approaches, discuss offline learning, and then introduce the elements of
MBOP before describing the algorithm in full.

3.1 MARKOV DECISION PROCESS

Let us model our tasks as a Markov Decision Process (MDP), which can be defined as a tuple
(S,A, p, r, γ), where an agent is in a state st ∈ S and takes an action at ∈ A at timestep t.
When in state st and taking an action at, an agent will arrive in a new state st+1 with prob-
ability p(st+1|st, at), and receive a reward r(st, at, st+1). The cumulative reward over a full
episode is called the return R and can be truncated to a specific horizon as RH . Generally re-
inforcement learning and control aim to provide an optimal policy function πs : S → A which
will provide an action at in state st which will lead to the highest long-term return: π∗(st) =
argmaxa∈A

∑∞
t=1 γ

tr(st, π
∗(st)), where γ is a time-wise discounting factor that we fix to γ = 1,

and therefore only consider finite-horizon returns.

3.2 PLANNING WITH LEARNED MODELS

A large body of the contemporary work with MDPs involves Reinforcement Learning (RL) Sutton
& Barto (2018) with model-free policies Mnih et al. (2015); Lillicrap et al. (2015); Schulman et al.
(2017); Abdolmaleki et al. (2018). These approaches learn some form of policy network which
provides its approximation of the best action at for a given state st often as a single forward-pass
of the network. MBOP and other model-based approaches Deisenroth & Rasmussen (2011); Chua
et al. (2018); Williams et al. (2017b); Hafner et al. (2019b); Lowrey et al. (2018); Nagabandi et al.
(2020) are very different. They learn an approximate model of their environment and then use a
planning algorithm to find a high-return trajectory through this model, which is then applied to
the environment 1. This is interesting because the final policy can be more easily adapted to new

1This approach is often called Model-Based Reinforcement Learning (MBRL) in the literature, but we chose
to talk more generally about planning with learned models as the presence of a reward is not fundamentally
necessary and the notion of reinforcement is much less present.
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tasks, be made to respect constraints, or offer some level of explainability. When bringing learned
controllers to industrial systems, many of these aspects are highly desireable, even to the expense of
raw performance.

3.3 OFFLINE LEARNING

Most previous work in both reinforcement learning and planning with learned models has assumed
repeated interactions with the target environment. This assumption allows the system to gather
increased data along trajectories that are more likely, and more importantly to provides counter-
factuals, able to contradict prediction errors in the learned policy, which is fundamental to policy
improvement. In the case of offline learning, we consider that the environment is not available dur-
ing the learning phase, but rather that we are given a dataset D of interactions with the environment,
representing a series of timestep tuples (st, at, rt, st+1). The goal is to provide a performant policy
π given this particular dataset D. Existing RL algorithms do not easily port over to the offline learn-
ing setup, for a varied set of reasons well-covered in Levine et al. (2020). In our work, we use the
real environment to benchmark the performance of the produced policy. It is important to point out
that oftentimes there is nevertheless a need to evaluate the performance of a given policy π without
providing access to the final system, which is the concern of Off Policy Evaluation (OPE) Precup
(2000); Nachum et al. (2019) and Offline Hyperparameter Selection(OHS) Paine et al. (2020) which
are outside the scope of our contribution.

3.4 LEARNING DYNAMICS, ACTION PRIORS, AND VALUES

MBOP uses three parameterized function approximators for its planning algorithm. These are:

1. fm : S × A → S × R, a single-timestep model of environment dynamics such that
(r̂t, ŝt+1) = fm(st, at). This is the model used by the planning algorithm to roll out
potential action trajectories. We will use fm(st, at)s to denote the state prediction and
fm(st, at)r for the reward prediction.

2. fb : S ×A → A, a behavior-cloned policy network which produces at = fb(st, at−1), and
is used by the planning algorithm as a prior to guide trajectory sampling.

3. fR : S × A → R is a truncated value function, which provides the expected return over a
fixed horizon RH of taking a specific action a in a state s, as R̂H = fR(st, at−1).

Each one is a bootstrap ensemble (Lakshminarayanan et al., 2017) of K feed-forward neural net-
works, thus fm is composed of f im∀i ∈ [1,K], where each f im is trained with a different weight
initialization but from the same dataset D. This approach has been shown to work well empirically
to stabilize planning (Nagabandi et al., 2020; Chua et al., 2018). Each of the ensemble member
networks is optimized to minimize the L2 loss on the predicted values in the dataset D in a standard
supervised manner.

3.5 MBOP-POLICY

MBOP uses Model-Predictive Control (Rault et al., 1978) to provide actions for each new state as
at = π(st). MPC works by running a fixed-horizon planning algorithm at every timestep, which
returns a trajectory T of length H . MPC selects the first action from this trajectory and returns it as
at. This fixed-horizon planning algorithm is effectively a black box to MPC, although in our case
we have the MPC loop carry around a global trajectory buffer T . A high-level view of the policy
loop using MPC is provided in Algorithm 1.

The MBOP-Policy loop is straightforward, and only needs to keep around T at each timestep.
MPC is well-known to be a surprisingly simple yet effective method for planning-based control.
Finding a good trajectory is however more complicated, as we will see in the next section.

3.6 MBOP-TRAJOPT

MBOP-Trajopt extends ideas used by PDDM (Nagabandi et al., 2020) by adding a policy prior
(provided by fb) and value prediction (provided by fR). The full algorithm is described in Algorithm
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Algorithm 1 High-Level MBOP-Policy
1: Let D be a dataset of E episodes
2: Train fm, fb, fR on D
3: Initialize planned trajectory: T 0 = [00, · · · , 0H−1].
4: for t = 1..∞ do
5: Observe st
6: T t = MBOP-Trajopt(T t−1, st, fm, fb, fr) . Update planned trajectory T t starting at T0.
7: at = T t0 . Use first action T0 as π(st)
8: end for

Algorithm 2 MBOP-Trajopt
1: procedure MBOP-TRAJOPT(s, T, fm, fb, fR, H,N, σ2, β, κ)
2: Set RN = ~0N . This holds our N trajectory returns.
3: Set AN,H = ~0N,H . This holds our N action trajectories of length H.
4:
5: for n = 1..N do . Sample N trajectories over horizon H .
6: l = n mod K . Use consistent ensemble head throughout trajectory.
7: s1 = s, a0 = T0, R = 0
8: for t = 1..H do
9: ε ∼ N (0, σ2)

10: at = f lb(st, at−1) + ε . Sample current action using BC policy.
11: An,t = (1− β)at + βTi=min(t,H−1) . Beta-mixture with previous trajectory T .
12: st+1 = f lm(st,An,t)s . Sample next state from environment model.
13: R = R+ 1

K

∑K
i=1 f

i
m(st,An,t)r . Take average reward over all ensemble members.

14: end for
15: Rn = R+ 1

K

∑K
i=1 f

i
R(sH+1,An,H) . Append predicted return and store.

16: end for

17: T ′t =

∑N
n=1 e

κRnAn,t+1∑N
n=1 e

κRn
, ∀t ∈ [0, H − 1] . Generate return-weighted average trajectory.

18: return T ′
19: end procedure

2. In essence, MBOP-Trajopt is an iterative guided-shooting trajectory optimizer with refinement.
MBOP-Trajopt rolls out N trajectories of length H using fm as an environment model. As fm is
actually an ensemble with K members, we denote the lth ensemble member as f lm. Line 6 of Alg.
2 allows the nth trajectory to always use the same lth ensemble member for both the BC policy and
model steps. This use of consistent ensemble members for trajectory rollouts is inspired by PDDM.
We point out that fm models return both state transitions and reward, and so we denote the state
component as fm(st, at)s and the reward component as fm(st, at)r.

The policy prior f lb is used to sample an action which is then averaged with the corresponding action
from the previous trajectory generated by MBOP-Trajopt. By maintaining T from one MPC step
to another we maintain a trajectory prior that allows us to amortize trajectory optimization over
time. The β parameter can be interpreted as a form of learning rate defining how quickly the current
optimal trajectory should change with new rollout information (Wagener et al., 2019). We did not
find any empirical advantage to the time-correlated noise in Nagabandi et al. (2020), instead opting
for i.i.d. noise.

As opposed to the BC policy and environment model, reward model is calculated using the average
over all ensemble members to calculate the expected return Rn for trajectory n. At the end of
a trajectory, we append the predicted return for the final state and action by averaging over all
members of fR. The decision to take an average of returns vs using the ensemble heads was also
inspired by the approach used in Nagabandi et al. (2020).

Once we have a set of trajectories and their associated return, we generate an average action for
timestep t by re-weighting the actions of each trajectory according their exponentiated return, as in
Nagabandi et al. (2020) and Williams et al. (2017b) (Alg 3, Line 17).
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(a) Performance on RLU RWRL Cartpole Dataset
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(b) Performance on RLU RWRL Quadruped Dataset
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(c) Performance on RLU RWRL Walker Dataset
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(d) Performance on D4RL Adroit Door Dataset

Figure 1: Performance of MBOP on various RLU and D4RL datasets. For each of the above tasks
we have sub-sampled subsets of the original dataset to obtain the desired number of data points. The
subsets are the same throughout the paper. The box plots describe the first quartile of the dataset,
with the whiskers extending out to the full distribution, with outliers plotted individually, using the
standard Seaborn (more info here).

Section 4 demonstrates how the combination of these elements makes our planning algorithm capa-
ble of generating improved trajectories over the behavior trajectories from D, especially in low-data
regimes. In higher-data regimes, variants of MBOP without the BC prior can also be used for goal &
constraint-based control. Further work will consider the addition of goal-conditioned fb and fR to
allow for more data-efficient goal and constraint-based control.

4 EXPERIMENTAL RESULTS

We look at two operating scenarios to demonstrate MBOP performance and flexibility. First we
consider the standard offline settings where the evaluation environment and task are identical to
the behavior policy’s. We show that MBOP is able to perform well with very little data. We then
look at MBOP’s ability to provide controllers that can naturally transfer to novel tasks with the same
system dynamics. We use both goal-conditioned tasks (that ignore the original reward function)
and constrained tasks (that require optimising for the original reward under some state constraint)
to demonstrate the MBOP’s transfer abilities. Accompanying videos are available here: https:
//youtu.be/nxGGHdZOFts.

4.1 METHODOLOGY

We use standard datasets from the RL Unplugged (RLU) (Gulcehre et al., 2020) and D4RL (Fu
et al., 2020) papers. For both RLU and D4RL, policies are trained from offline datasets and then
evaluated on the corresponding environment. For datasets with high variance in performance, we
discard episodes that are below a certain threshold for the training of fb and fR. This is only done
on the Quadruped and Walker tasks from RLU, and only provides a slight performance boost –
performance on unfiltered data for these two tasks can be found in the Appendix’s 5.6. The unfiltered
data is always used for training fs. We perform a grid-search to find optimal parameters for each
dataset, but for most tasks these parameters are mostly uniform. The full set of parameters for
each experiment can be found in the Appendix Sec. 5.2. For experiments on RLU, we generated
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Dataset type Environment BC (Ours) MBOP (Ours) MOPO MBPO

random halfcheetah 0.0± 0.0 6.3 ± 4.0 31.9 ±2.8 30.7 ± 3.9
random hopper 9.0± 0.2 10.8± 0.3 13.3 ±1.6 4.5 ± 6.0
random walker2d 0.1± 0.0 8.1 ± 5.5 13.0 ± 2.6 8.6 ± 8.1

medium halfcheetah 35.0± 2.5 44.6 ±0.8 40.2± 2.7 28.3± 22.7
medium hopper 48.1± 26.2 48.8 ± 26.8 26.5 ± 3.7 4.9 ± 3.3
medium walker2d 15.4± 24.7 41.0 ± 29.4 14.0 ± 10.1 12.7 ± 7.6

mixed halfcheetah 0.0± 0.0 42.3± 0.9 54.0 ± 2.6 47.3 ± 12.6
mixed hopper 9.5± 6.9 12.4± 5.8 92.5 ± 6.3 49.8 ± 30.4
mixed walker2d 11.5± 7.3 9.7± 5.3 42.7 ± 8.3 22.2 ± 12.7

med-expert halfcheetah 90.8± 26.9 105.9 ± 17.8 57.9 ± 24.8 9.7 ± 9.5
med-expert hopper 15± 8.7 55.1± 44.3 51.7 ± 42.9 56.0 ± 34.5
med-expert walker2d 65.5± 40.2 70.2 ± 36.2 55.0 ± 19.1 7.6 ± 3.7

Table 1: Results for MBOP on D4RL tasks compare to MOPO (Yu et al., 2020) and MBPO (Janner et al.,
2019), with values taken from the MOPO paper (Yu et al., 2020). As in Fu et al. (2020), we normalize the
scores according to a converged SAC policy, reported in their appendix. Scores are reported averaged over 5
random seeds, with 20 episode runs per seed. ± is one standard deviation and represents variance due to seed
and episode. We have inserted our BC prior as the BC baseline, and have set performance to 0.0 when it is
negative. We include the performance of behavior cloning (BC) from the batch data for comparison. We bold
the highest mean.

additional smaller datasets to increase the difficulty of the problem. On all plots we also report the
performance of the behavior policy used to generate the data (directly from the episode returns in
the datasets) and label it as the DATA policy. All non-standard datasets will be available publicly.

For RLU the datasets are generated using a 70% performant MPO (Abdolmaleki et al., 2018) policy
on the original task, and smaller versions of the datasets are a fixed set of randomly sampled con-
tiguous episodes (Dulac-Arnold et al., 2020; Gulcehre et al., 2020). D4RL has 4 behavior policies,
ranging from random behavior to expert demonstrations, and are fully described in Fu et al. (2020).
On all datasets, training is performed on 90% of data and 10% is used for validation.

4.2 PERFORMANCE ON RL-UNPLUGGED & D4RL
For experiments on RLU we consider the unperturbed RWRL cartpole-swingup, walker
and quadruped tasks (Tassa et al., 2018; Dulac-Arnold et al., 2020). For D4RL we consider the
halfcheetah, hopper, walker2d and Adroit tasks (Brockman et al., 2016; Rajeswaran
et al., 2017). Results for the RLU tasks as well as Adroit are presented in Figure 1. On the
remaining D4RL tasks, results are compared to those presented by MOPO Yu et al. (2020) in Table
1 for four different data regimes (medium, medium-expert, medium-replay, random). For
all experiments we report MBOP performance as well as the performance of a behavior cloning (BC)
policy. The BC policy is simply the policy prior fb, with the control action as the average ensemble
output. We use this baseline to demonstrate the advantages brought about by planning beyond simple
cloning.

For the RLU datasets (Fig. 1), we observe that MBOP is able to find a near-optimal policy on most
dataset sizes in Cartpole and Quadruped with as little as 5000 steps, which corresponds to
5 episodes, or approximately 50 seconds on Cartpole and 100 seconds on Quadruped. On
the Walker datasets MBOP requires 23 episodes (approx. 10 minutes) before it finds a reasonable
policy, and with sufficient data converges to a score of 900 which is near optimal. On most tasks,
MBOP is able to generate a policy significantly better than the behavior data as well as the the BC
prior.

For the Adroit task, we show that MBOP is able to outperform the behavior policy after training
on a dataset of 50k data points generated by an expert policy (Fig. 1d). For other D4RL datasets,
we compare to the performance of MOPO (Yu et al., 2020). We show that on the medium and
medium-expert data regimes MBOP outperforms MOPO, sometimes significantly. However on
higher-variance datasets such as random and mixed MBOP is not as performant. This is likely
due to the reliance on policy-conditioned priors, which we hope to render more flexible in future
work (for instance using multi-modal stochastic models). There are nevertheless many tasks where
a human operator is running a systems in a relatively consistent yet sub-optimal manner, and one
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may want to either replicate or improve upon the operator’s control policy. In such scenarios, MBOP
would likely be able to not only replicate but improve upon the operator’s control strategy.

4.3 ZERO-SHOT TASK ADAPTATION
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(a) Visualized trajectories for constrained Cartpole.
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Figure 2: The above figures describe performance of MBOP on constrained & goal-conditioned tasks. Fig.
2a illustrates a sequences of frames from the RLU Cartpole task with constrained and unconstrained MBOP
controllers. In the constrained cases MBOP prevents the cart from crossing the middle of the rail (dotted red
line) and contains it to one side. Fig. 2b displays cart trajectories for constrained and unconstrained versions
of the same controller. MBOP can maintain a performant policy (above 750) while respecting these constraints.
Fig. 2c displays goal-conditioned performance on the RLU Quadruped. We ignore the original reward function
and optimize directly for trajectories that maximize a particular velocity vector. Although influence from fB
and fR biases the controller to maintain forward direction, we can still exert significant goal-directed influence
on the policy.
One of the main advantages of using planning-based methods in the offline scenario is that they
are easy to adapt to new objective functions. In the case of MBOP these would be novel objectives
different from those optimized by the behavior policy that generates the offline data. We can easily
take these new objectives into account by computing a secondary objective return as follows: R′n =∑
t fobj(st) where fobj is a user-provided function that computes a scalar objective reward given a

state. We can then adapt the trajectory update rule to take into account the secondary objective:

Tt =

∑N
n=1 e

κRn+κobjR
′
nAn,t∑N

n=1 e
κRn+κobjR′

n

,∀t ∈ [1, H].

To demonstrate this, we run MBOP on two types of modified objectives: goal-conditioned control,
and constrained control. In goal-conditioned control, we ignore the original reward function (κ = 0)
and define a new goal (such as a velocity vector) and optimize trajectories relative to that goal. In
constrained operation, we add a state-based constraint which we penalize during planning, while
maintaining the original objective and find a reasonable combination of κ and κobj.

We define three tasks: position-constrained Cartpole, where we penalize the cart’s position to
encourage it to stay either on the right or left side of the track; heading-conditioned Quadruped,
where we provide a target heading to the policy (Forward, Backwards, Right & Left); and finally
height-constrained Walker, where we penalize the policy for bringing the torso height above a
certain threshold. Results on Cartpole & Quadruped are presented in Figure 2.

We show that MBOP successfully integrates constraints that were not initially in the dataset and
is able to perform well on objectives that are different from the objective of the behavior policy.

8



Published as a conference paper at ICLR 2021

Walker performs similarly, obtaining nearly 80% constraint satisfaction while maintaining a re-
ward of 730. More analysis is available in the Appendix Sec. 5.5.

4.4 ALGORITHMIC INVESTIGATIONS

Ablations To better understand the benefits of MBOP’s various elements, we perform three ablations:
MBOP-NOPP which replaces fb with a Gaussian prior, MBOP-NOVF which removes fR’s estimated
returns, and PDDM which removes both, thus recovering the PDDM controller. We show performance
of these four ablations on the Walker dataset in Fig. 3a. A full set of ablations is available in the
appendix Figures 4 & 5. Overall we see that the full combination of BC prior, value function and
environment model are important for optimal performance. We also see that the PDDM approach
is generally below either of the MBOP-NOPP and MBOP-NOVF ablations. Finally, we note that the
BC prior when used alone can perform well on certain environments, but on others it stagnates at
behavior policy’s performance.
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(a) MBOP ablations’ performance on RLU Walker
Dataset. We observe that MBOP is consistently more
performant than its ablations.
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Execution Speed A frequent concern with planning-based methods is their slower response time
prohibiting practical use. We calculate the average control frequency of MBOP on the RLU Walker
task using a single Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz core and a Nvidia 1080TI and find
that MBOP can operate at frequencies ranging from 106 Hz for h = 4 to 40 Hz for a h = 40, with
BC operating at 362 Hz. Additional values are presented in Appendix Sec. 5.4.

Hyperparameter Stability

We perform a grid sweep over the κ (trajectory
re-weighting) and H (planning horizon) on the
three RLU environments and visualize the ef-
fects on return in Fig. 3b. We observe that
overall MBOPmaintains consistent performance
scores for wide ranges of hyperparameter val-
ues, only really degrading near extreme values.
Additional analysis is present in the Appendix’s
Section 5.5.

5 CONCLUSION

Planning-based methods provide significantly
more flexibility for external systems to interact
with the learned controller. Bringing them into
the offline data regime opens the door to their
use on more real-world systems for which on-
line training is not an option.
MBOP provides an easy to implement, data-
efficient, stable, and flexible algorithm for pol-
icy generation. It is easy to implement because the learning components are simple supervised
learners, it is data-efficient thanks to its use of multiple complementary estimators, and it is flexible
due to its use of on-line planning which allows it to dynamically react to changing goals, costs and
environmental constraints.
We show that MBOP can perform competitively in various data regimes, and can provide easily
adaptable policies for more complex goal-conditioned or constrained tasks, even if the original data
does not provide prior experience. Although MBOP’s performance is degraded when offline data
is multi-modal or downright random, we believe there are a large number of scenarios where the
current operating policy (be it human or automated) is reasonably consistent, but could benefit from
being automated and improved upon. In these scenarios we believe that MBOP could be readily appli-
cable. Future work intends to ameliorate performance by investigating the use of goal-conditioned
policy priors and value estimates, as well as looking at effective ways to perform offline model se-
lection and evaluation. We sincerely hope that MBOP can be useful as an out-of-the-box algorithm
for learning stable and configurable control policies for real systems.
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APPENDIX

5.1 MBOP PERTINENCE TO ROBOTICS

MBOP provides a general model-based approach for offline learning. We have considered only
physics-bound tasks in this paper as the underlying methods (MPC, MPPI) are known to work well
on real systems (Nagabandi et al., 2020; Williams et al., 2015; Kahn et al., 2020). Although this pa-
per does not implement MBOP on actual robots, this is upcoming work, and we believe that by hav-
ing shown MBOP’s performance over 6 different environments (cartpole, walker, quadruped, Adroit,
halfcheetah, hopper) involving under-actuated control, locomotion, and manipulation, MBOP’s po-
tential for applicability on a real systems is promising. More specifically, we believe MBOP provides
a couple key contributions specifically interesting to the robotics community:

• Ability to learn entirely offline without a simulator.
• Ability to constrain policy operation.
• Ability to completely rephrase the policy’s goal according to an arbitrary cost function.

These aspects make MBOP a unique contribution that potentially opens a series of interesting re-
search questions around zero-shot adaptation, leveraging behavior priors, using sub-optimal models,
leveraging uncertainty, and more generally exploring the additional control opportunities provided
by model-based methods that are much more difficult with model-free learnt controllers.

As mentioned above it is our intent to quickly try out MBOP on various robotic systems. If results
are available by the time of CoRL 2020 they will be presented as well.

5.2 PERFORMANCE OF MBOP ABLATIONS AND ASSOCIATED HYPERPARAMETERS

We present mean evaluation performance and associated hyper parameters for runs of MBOP and
its ablations in a set of tables. For RLU: Table 2 for Cartpole, 3 for Quadruped, 4 for Walker. For
D4RL:

# Points Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

5000 CLONING - - - - - 229.2 71.7
5000 MBOP 64 100 2.34 0.8 0.2 803.1 117.7
5000 MBOP-NOPP 128 100 0.23 0.8 0.2 605.8 223.6
5000 MBOP-NOVF 128 100 1.17 0.8 0.2 715.2 183.7
5000 PDDM 128 100 0.7 0.8 0.2 726.6 131.8

25000 CLONING - - - - - 350.7 168.2
25000 MBOP 64 100 0.5 0.8 0.2 792.0 90.4
25000 MBOP-NOPP 64 100 2.3 0.1 0.2 463.6 284.0
25000 MBOP-NOVF 128 100 0.7 0.8 0.2 776.5 128.7
25000 PDDM 128 100 0.7 0.4 0.2 720.2 69.3

100000 CLONING - - - - - 567.4 123.6
100000 MBOP 64 100 2.3 0.8 0.2 834.4 28.6
100000 MBOP-NOPP 64 100 1.4 0.2 0.2 832.1 51.1
100000 MBOP-NOVF 128 100 1.2 1.6 0.2 733.6 150.3
100000 PDDM 128 100 1.2 0.2 0.2 723.5 124.8
200000 CLONING - - - - - 644.3 78.9
200000 MBOP 64 100 0.5 1.6 0.2 840.7 7.5
200000 MBOP-NOPP 64 100 2.3 0.2 0.2 840.6 12.4
200000 MBOP-NOVF 128 100 1.2 1.6 0.2 767.0 83.6
200000 PDDM 128 100 1.2 0.2 0.2 797.6 47.1
500000 CLONING - - - - - 612.0 63.9
500000 MBOP 64 100 1.4 1.6 0.2 845.7 6.7
500000 MBOP-NOPP 64 100 2.3 0.2 0.2 840.6 13.7
500000 MBOP-NOVF 128 100 1.2 1.6 0.2 823.2 44.2
500000 PDDM 128 100 1.2 0.2 0.2 781.9 96.6

Table 2: RLU Cartpole Performance
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# Points Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

5000 CLONING - - - - - 796.0 17.0
5000 MBOP 8 1000 3.8 0.8 0.2 974.1 9.9
5000 MBOP-NOPP 16 1000 1.9 1.6 0.2 561.6 233.2
5000 MBOP-NOVF 16 1000 1.9 0.8 0.2 959.5 15.1
5000 PDDM 32 1000 0.9 1.6 0.2 569.8 26.9

25000 CLONING - - - - - 966.5 10.9
25000 MBOP 8 1000 3.8 0.8 0.2 983.8 3.6
25000 MBOP-NOPP 16 1000 1.9 1.6 0.2 866.6 87.4
25000 MBOP-NOVF 16 1000 1.9 0.8 0.2 983.0 1.6
25000 PDDM 32 1000 0.9 1.6 0.2 728.1 120.7

100000 CLONING - - - - - 966.5 15.1
100000 MBOP 8 1000 3.8 0.8 0.2 989.4 3.2
100000 MBOP-NOPP 16 1000 1.9 1.6 0.2 935.3 35.2
100000 MBOP-NOVF 16 1000 1.9 0.8 0.2 983.8 2.2
100000 PDDM 32 1000 0.9 1.6 0.2 967.1 12.5

200000 CLONING - - - - - 972.9 8.6
200000 MBOP 8 1000 3.8 0.8 0.2 993.3 1.3
200000 MBOP-NOPP 16 1000 1.9 1.6 0.2 984.5 12.1
200000 MBOP-NOVF 16 1000 1.9 0.8 0.2 986.6 1.3
200000 PDDM 32 1000 0.9 1.6 0.2 946.4 29.7

500000 CLONING - - - - - 973.1 5.6
500000 MBOP 8 1000 3.8 0.8 0.2 994.8 0.4
500000 MBOP-NOPP 16 1000 1.9 1.6 0.2 994.0 3.5
500000 MBOP-NOVF 16 1000 1.9 0.8 0.2 984.2 2.2
500000 PDDM 32 1000 0.9 1.6 0.2 965.0 12.0

Table 3: RLU-Quadruped Performance
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# Points Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

10000 CLONING - - - - - 244.5 284.6
10000 MBOP 8 100 3.8 0.2 0.2 251.2 280.4
10000 MBOP-NOPP 32 100 4.7 1.6 0.2 45.7 16.6
10000 MBOP-NOVF 4 100 7.5 0.1 0.2 225.3 275.8
10000 PDDM 8 100 18.8 0.8 0.2 37.0 16.8

14000 CLONING - - - - - 402.4 263.0
14000 MBOP 4 100 37.5 0.1 0.2 489.7 250.3
14000 MBOP-NOPP 32 100 2.8 1.6 0.2 53.1 24.0
14000 MBOP-NOVF 4 100 37.5 0.1 0.2 424.3 266.2
14000 PDDM 32 100 4.7 1.6 0.2 57.4 23.2

23000 CLONING - - - - - 616.7 224.4
23000 MBOP 16 100 1.9 0.2 0.2 679.0 200.2
23000 MBOP-NOPP 8 100 18.8 0.8 0.2 103.0 56.2
23000 MBOP-NOVF 8 100 18.8 0.1 0.2 617.7 220.8
23000 PDDM 32 100 4.7 1.6 0.2 77.6 40.4

41000 CLONING - - - - - 638.0 200.2
41000 MBOP 8 100 3.8 0.2 0.2 752.0 118.0
41000 MBOP-NOPP 8 100 11.3 1.6 0.2 160.9 80.5
41000 MBOP-NOVF 32 100 2.8 0.1 0.2 700.6 97.7
41000 PDDM 32 100 4.7 0.8 0.2 79.5 32.9

50000 CLONING - - - - - 615.7 240.6
50000 MBOP 4 100 7.5 0.4 0.2 775.0 87.1
50000 MBOP-NOPP 4 100 22.5 1.6 0.2 87.4 78.2
50000 MBOP-NOVF 16 100 9.4 0.2 0.2 723.2 103.1
50000 PDDM 32 100 2.8 1.6 0.2 59.4 33.6

250000 CLONING - - - - - 686.8 205.4
250000 MBOP 4 100 7.5 0.4 0.2 844.7 48.4
250000 MBOP-NOPP 4 100 22.5 1.6 0.2 269.1 155.9
250000 MBOP-NOVF 16 100 9.4 0.2 0.2 770.4 115.1
250000 PDDM 32 100 2.8 1.6 0.2 231.3 112.2

1000000 CLONING - - - - - 701.5 190.9
1000000 MBOP 4 100 7.5 0.4 0.2 797.3 229.5
1000000 MBOP-NOPP 4 100 22.5 1.6 0.2 411.2 183.5
1000000 MBOP-NOVF 16 100 9.4 0.2 0.2 814.3 88.4
1000000 PDDM 32 100 2.8 1.6 0.2 308.2 140.3

2000000 CLONING - - - - - 743.6 85.6
2000000 MBOP 4 100 7.5 0.4 0.2 872.4 70.2
2000000 MBOP-NOPP 4 100 22.5 1.6 0.2 823.8 35.5
2000000 MBOP-NOVF 16 100 9.4 0.2 0.2 807.8 44.2
2000000 PDDM 32 100 2.8 1.6 0.2 460.3 117.6

5000000 CLONING - - - - - 759.9 48.2
5000000 MBOP 4 100 7.5 0.4 0.2 908.8 54.3
5000000 MBOP-NOPP 4 100 22.5 1.6 0.2 784.0 140.8
5000000 MBOP-NOVF 16 100 9.4 0.2 0.2 833.5 100.7
5000000 PDDM 32 100 2.8 1.6 0.2 620.1 98.7

Table 4: RLU-Walker Performance
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# Points Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

400 CLONING - - - - - 352.2 942.3
400 MBOP 32 100 0.03 0.05 0 22.7 348.5
400 MBOP-NOPP 16 200 0.01 0.05 0 -54.6 1.0
400 MBOP-NOVF 4 500 0.01 0.05 0 202.3 779.7
400 PDDM 4 500 0.01 0.05 0.2 -52.9 0.6

2000 CLONING - - - - - 2889.5 579.7
2000 MBOP 8 100 0.03 0.05 0 2944.8 398.6
2000 MBOP-NOPP 8 200 0.01 0.05 0 -54.1 0.6
2000 MBOP-NOVF 16 1000 0.03 0.1 0 2903.7 537.2
2000 PDDM 4 500 0.01 0.05 0.2 -53.0 0.6

4000 CLONING - - - - - 3019.1 180.4
4000 MBOP 16 200 0.01 0.05 0 3043.4 64.3
4000 MBOP-NOPP 64 200 0.03 0.4 0 -61.1 2.6
4000 MBOP-NOVF 64 200 0.03 0.05 0 2991.9 302.7
4000 PDDM 4 500 0.03 0.05 0.2 -52.8 0.6

10000 CLONING - - - - - 2980.3 335.3
10000 MBOP 4 100 0.3 0.05 0 3026.1 180.7
10000 MBOP-NOPP 8 500 0.01 0.05 0 -53.5 0.6
10000 MBOP-NOVF 16 100 0.03 0.05 0 2973.6 351.5
10000 PDDM 4 100 0.01 0.05 0.2 -53.1 0.7

50000 CLONING - - - - - 2984.5 313.4
50000 MBOP 4 1000 0.03 0.2 0 3028.2 197.6
50000 MBOP-NOPP 4 100 0.01 0.05 0 -53.4 0.9
50000 MBOP-NOVF 64 100 0.3 0.05 0 3052.2 28.2
50000 PDDM 4 500 0.01 0.1 0.2 -53.0 0.8

200000 CLONING - - - - - 3028.0 26.6
200000 MBOP 8 1000 0.03 0.2 0 2967.0 355.0
200000 MBOP-NOPP 4 500 0.01 0.05 0 -52.9 0.8
200000 MBOP-NOVF 32 500 0.3 0.1 0 3024.2 198.6
200000 PDDM 64 500 0.3 0.2 0.2 -59.7 2.8

400000 CLONING - - - - - 3025.1 21.0
400000 MBOP 16 100 0.3 0.1 0 3000.3 388.4
400000 MBOP-NOPP 64 100 0.03 0.4 0 -61.4 2.1
400000 MBOP-NOVF 16 200 0.3 0.1 0 3019.5 128.9
400000 PDDM 4 1000 0.01 0.1 0.2 -52.9 0.6

1000000 CLONING - - - - - 3004.3 142.3
1000000 MBOP 16 100 0.1 0.2 0 2910.2 579.6
1000000 MBOP-NOPP 64 1000 0.01 0.4 0 -60.7 2.0
1000000 MBOP-NOVF 32 200 0.3 0.1 0 3015.6 241.6
1000000 PDDM 16 100 0.01 0.4 0.2 -54.6 1.7

Table 5: D4RL Door Performance

Dataset Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

med-expert CLONING - - - - - 11012.8 3259.7
med-expert MBOP 2 100 1 0.2 0 12850.7 2160.7
med-expert MBOP-NOPP 2 100 1 0.2 0 -334.1 92.2
med-expert MBOP-NOVF 40 100 1 0.2 0 7220.3 3450.9
med-expert PDDM 2 100 1 0.2 0 -165.2 35.8

mixed CLONING - - - - - -6.0 1.6
mixed MBOP 4 100 3 0.2 0 5135.1 107.9
mixed MBOP-NOPP 4 100 3 0.2 0 -415.7 43.3
mixed MBOP-NOVF 20 100 3 0.2 0 4724.6 542.8
mixed PDDM 20 100 3 0.2 0 -275.6 58.9

medium CLONING - - - - - 4242.4 304.5
medium MBOP 2 100 3 0.2 0 5406.5 96.6
medium MBOP-NOPP 2 100 3 0.2 0 -427.0 79.9
medium MBOP-NOVF 20 100 3 0.2 0 4959.8 85.5
medium PDDM 20 100 3 0.2 0 -331.9 30.1

random CLONING - - - - - -1.0 1.1
random MBOP 4 100 3 0.8 0 768.4 491.2
random MBOP-NOPP 4 100 3 0.8 0 254.0 567.8
random MBOP-NOVF 40 100 3 0.8 0 495.6 534.7
random PDDM 40 100 3 0.8 0 -156.7 110.1

Table 6: D4RL HalfCheetah Performance
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Dataset Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

med-expert CLONING - - - - - 486.6 282.4
med-expert MBOP 10 100.0 3 0.01 0.0 1781.7 1433.8
med-expert MBOP-NOPP 10 100.0 3 0.01 0.0 151.9 30.1
med-expert MBOP-NOVF 80 100.0 3 0.01 0.0 1055.7 1300.4
med-expert PDDM 80 100.0 3 0.01 0.0 123.5 36.3

medium CLONING - - - - - 1556.4 846.7
medium MBOP 4 100.0 0.3 0.01 0.0 1576.7 866.1
medium MBOP-NOPP 4 100.0 0.3 0.01 0.0 124.8 65.2
medium MBOP-NOVF 40 100.0 0.3 0.01 0.0 1479.4 770.0
medium PDDM 40 100.0 0.3 0.01 0.0 104.7 7.8

mixed CLONING - - - - - 308.2 223.2
mixed MBOP 4 100.0 0.3 0.02 0.0 400.5 189.1
mixed MBOP-NOPP 4 100.0 0.3 0.02 0.0 141.1 46.4
mixed MBOP-NOVF 150 100.0 0.3 0.02 0.0 347.7 163.0
mixed PDDM 150 100.0 0.3 0.02 0.0 101.6 36.5

random CLONING - - - - - 289.5 6.0
random MBOP 4 100.0 10 0.4 0.0 350.1 9.5
random MBOP-NOPP 4 100.0 10 0.4 0.0 81.8 42.3
random MBOP-NOVF 15 100.0 10 0.4 0.0 334.4 21.1
random PDDM 15 100.0 10 0.4 0.0 44.2 12.0

Table 7: D4RL Hopper Performance

Dataset Policy Horizon # Samples Kappa Sigma Beta Mean 1-STD

med-expert CLONING - - - - - 3006.0 1844.8
med-expert MBOP 2 1000 1 0.05 0 3222.8 1660.7
med-expert MBOP-NOPP 2 1000 1 0.05 0 -6.0 0.6
med-expert MBOP-NOVF 15 1000 1 0.05 0 2302.7 1981.2
med-expert PDDM 15 1000 1 0.05 0.2 209.4 113.1

mixed CLONING - - - - - 528.7 335.0
mixed MBOP 8 1000 3 0.02 0 447.1 243.8
mixed MBOP-NOPP 8 1000 3 0.02 0 239.3 51.5
mixed MBOP-NOVF 10 1000 3 0.02 0 530.0 228.8
mixed PDDM 10 1000 3 0.02 0 246.0 5.6

medium CLONING - - - - - 706.8 1134.5
medium MBOP 2 1000 0.1 0.2 0 1881.9 1350.7
medium MBOP-NOPP 2 1000 0.1 0.2 0 -9.9 12.8
medium MBOP-NOVF 150 1000 0.1 0.2 0 341.7 504.6
medium PDDM 150 1000 0.1 0.2 0 -2.7 10.3

random CLONING - - - - - 2.7 0.6
random MBOP 8 1000 0.3 0.4 0 371.1 252.3
random MBOP-NOPP 8 1000 0.3 0.4 0 484.5 268.9
random MBOP-NOVF 15 1000 0.3 0.4 0 220.4 124.7
random PDDM 15 1000 0.3 0.4 0 498.9 463.0

Table 8: D4RL Walker2d Performance
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5.3 MBOP ABLATIONS

Full results for the various ablations of MBOP are visualized in Figures 4 and 5.
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Figure 4: Ablation results on multi-sized datasets form RLU and D4RL.
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Figure 5: Performance on D4RL tasks from MBOP.

5.4 EXECUTION SPEED

Policy Horizon Frequency (Hz)

BC N/A 362

MBOP 4 106
MBOP 8 71
MBOP 16 40

Table 9: MBOP maximum control frequencies (steps/second) including simulator time on an Tesla
P100 using a single core of a Xeon 2200 MHz equivalent processor.

Execution speeds on the RLU Walker task in represented in Table 9. We see that we can easily
achieve control frequencies below 10Hz, but cannot currently attain 100Hz with longer horizons.
For lower level control policies for which high-frequency is important, we would suggest distilling
the controller into a task-specific policy similar to MoREL (Kidambi et al., 2020) or MOPO (Yu
et al., 2020).

5.5 MBOP PARAMETERS

All parameters were set as follows except for the D4RL Walker task where we use 15 ensemble
networks.

• # FC Layers : 2

• Size FC Layers : 500
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• # Ensemble Networks : 3
• Learning Rate : 0.001
• Batch Size : 512
• # Epochs : 40

CONTINUED ANALYSIS OF CONSTRAINED TASKS

We can see the height-constrained Walker performance in Figure 6a. MBOP is able to satisfy the
height constraint 80% of the episode while maintaining reasonable performance. Over the various
ablations we have found that MBOP is better able to maintain base task performance for similar
constraint satisfaction rates.
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(a) This figure describes the performance of MBOP on RLU Walker
when constrained to stay below a height threshold. We see that
MBOP is able to increase the rate of respect of the constraint com-
pared to the behavior policy while maintaining similar episode re-
turns.
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Figure 6: Effects of constraints on MBOP performance.

HYPERPARAMETER STABILITY

Figure 7 shows the sensitivity of MBOP and associated ablations to the Beta and Horizon parameters.
Figure 8 shows the effects of Sigma to MBOP and ablations on the RLU datasets. Figure 6b shows
sensitivity to Horizon and Kappa in synchrony.

5.6 IMPACT OF FILTERING POOR EPISODES

As mentioned in the above part of the paper, for RLU / Quadruped and RLU / Walker we exclude
the episodes with lowest returns before training the behavior cloning and value function models. In
this section we report the performances on these environment with various filtering thresholds.

For each of these two environments, and each of the dataset sizes we keep a subset of the initial
dataset by filtering on the top episodes. We experiments with filters varying from the top-1% to the
top-100% (i.e. the entire raw dataset).
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Initial # datapoints Filtered Top Percent Mean 1-STD

5000 1 902 92
5000 5 908 64
5000 10 897 108
5000 20 916 13
5000 40 961 30
5000 60 951 53
5000 80 955 94
5000 90 966 12
5000 100 960 43

25000 1 809 268
25000 5 850 229
25000 10 973 49
25000 20 965 16
25000 40 744 329
25000 60 365 289
25000 80 320 262
25000 90 221 178
25000 100 115 69

100000 1 976 67
100000 5 986 4
100000 10 987 4
100000 20 989 3
100000 40 985 23
100000 60 876 230
100000 80 896 221
100000 90 921 177
100000 100 547 353

200000 1 989 2
200000 5 990 2
200000 10 993 2
200000 20 994 1
200000 40 991 2
200000 60 990 4
200000 80 878 254
200000 90 889 259
200000 100 876 252

500000 1 991 1
500000 5 992 1
500000 10 995 1
500000 20 994 1
500000 40 991 2
500000 60 992 2
500000 80 986 50
500000 90 991 3
500000 100 991 2

Table 10: MBOP performance on RLU / Quadruped with various filtering thresholds for top episodes
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Initial # datapoints Filtered Top Percent Mean 1-STD

50000 1 49 63
50000 5 86 112
50000 10 195 252
50000 20 243 293
50000 40 636 269
50000 60 750 182
50000 80 772 119
50000 90 719 201
50000 100 770 124

250000 1 111 113
250000 5 397 397
250000 10 410 406
250000 20 810 171
250000 40 848 42
250000 60 842 45
250000 80 836 46
250000 90 848 45
250000 100 838 43

1000000 1 154 201
1000000 5 670 348
1000000 10 870 88
1000000 20 858 101
1000000 40 858 63
1000000 60 859 97
1000000 80 851 47
1000000 90 847 53
1000000 100 855 46

2000000 1 618 386
2000000 5 741 348
2000000 10 859 194
2000000 20 876 111
2000000 40 867 62
2000000 60 860 59
2000000 80 888 55
2000000 90 873 60
2000000 100 858 61

5000000 1 639 404
5000000 5 875 179
5000000 10 909 37
5000000 20 907 49
5000000 40 892 60
5000000 60 892 58
5000000 80 853 54
5000000 90 875 63
5000000 100 863 65

Table 11: MBOP performance on RLU / Walker with various filtering thresholds for top episodes
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(b) Sensitivity to Beta parameter on RLU / Walker.
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(c) Sensitivity to Beta parameter on RLU / Cartpole.
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(d) Sensitivity to Horizon parameter on RLU /
Quadruped.
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(e) Sensitivity to Horizon parameter on RLU / Walker.

0 50 100 150 200
0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Data Points = 5000

0 50 100 150 200

200

400

600

800
Data Points = 25000

0 50 100 150 200
Horizon

0

200

400

600

800

Data Points = 100000

0 50 100 150 200
Horizon

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Data Points = 200000

0 50 100 150 200
Horizon

0

200

400

600

800

Data Points = 500000

MBOP
MBOP-NOPP
MBOP-NOVF
PDDM

MBOP sensitivity to Horizon parameter on RLU / Cartpole

(f) Sensitivity to Horizon parameter on RLU / Cartpole.

Figure 7: MBOP sensitivity to Beta & Horizon on RLU datasets.
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(a) Sensitivity to Sigma parameter on RLU /
Quadruped.
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(b) Sensitivity to Sigma parameter on RLU / Walker.
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(c) Sensitivity to Sigma parameter on RLU / Cartpole.

Figure 8: MBOP sensitivity to Sigma on RLU datasets.
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Figure 9: Sensitivity to Horizon x Kappa on RLU environments (full datasets). Legend represents
average episode return.
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