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Abstract

Variational inference with natural-gradient descent often shows fast convergence in practice,
but its theoretical convergence guarantees have been challenging to establish. This is
true even for the simplest cases that involve concave log-likelihoods and use a Gaussian
approximation. We show that the challenge can be circumvented for such cases using
a square-root parameterization for the Gaussian covariance. This approach establishes
novel convergence guarantees for natural-gradient variational-Gaussian inference and its
continuous-time gradient flow. Our experiments demonstrate the effectiveness of natural
gradient methods and highlight their advantages over algorithms that use Euclidean or
Wasserstein geometries.

1 Introduction

Variational inference (VI) is widely used in many areas of machine learning and can provide a fast approxima-
tion to the posterior distribution (Jaakkola & Jordan, 1997; Wainwright et al., 2008; Graves, 2011; Kingma &
Welling, 2013). VI works by formulating Bayesian inference as an optimization problem over a restricted class
of distributions which is then solved, for example, by using gradient descent (GD) (Graves, 2011; Ranganath
et al., 2014; Blundell et al., 2015). A faster alternative is to use natural-gradient descent (NGD) (Amari,
1998) which exploits the information geometry of the posterior approximation and often converges much
faster than GD, for example, see Figure 1(a), Khan & Nielsen (2018, Fig. 1b), or Lin et al. (2019, Fig. 3).
The updates can often be implemented using message passing (Knowles & Minka, 2011; Hoffman et al., 2013;
Khan & Lin, 2017) and sometimes even as Newton’s method or deep-learning optimizers (Khan et al., 2017;
2018; Salimans & Knowles, 2013). Due to this, there has been a lot of interest in NGD based VI (Honkela
et al., 2008; Hensman et al., 2012; Salimbeni et al., 2018; Osawa et al., 2019; Adam et al., 2021; Khan & Rue,
2023).

Despite their fast convergence, little has been done to understand the theoretical convergence properties of
NGD, and its continuous counterpart, which we call natural-gradient (NG) flow. Instead, most works focus
on GD (Alquier et al., 2016; Domke, 2019; 2020; Domke et al., 2024; Kim et al., 2024). For NGD, Khan
et al. (2016) derived convergence results for general stochastic, non-convex settings. Still, their convergence
rates are slow and there is plenty of room for improvement, especially for concave log-likelihoods. For such
likelihoods, recently, Chen et al. (2023) studied the continuous-time flow. There are also some studies on
stochastic NG variational inference; for example, Wu & Gardner (2024) prove non-asymptotic convergence
rates for conjugate likelihoods. However, the conjugacy assumption limits their applicability to more general
settings. Both in discrete and continuous time, however, there is a gap between theory and practice for
convergence guarantees of NGD.

A major difficulty in obtaining stronger convergence guarantees for NGD and NG flow lies in a subtle technical
issue: commonly used parameterizations can often destroy the concavity property of the log-likelihood
(Chérief-Abdellatif et al., 2019, Sec. 4.3). It is well-known that the expectation of a concave log-likelihood for
a Gaussian approximation is not concave with respect to either the covariance or precision matrix, but only
with respect to the Cholesky factor of the covariance (Challis & Barber, 2013). Therefore, commonly used
parameterizations, such as natural or expectation parameterization of the exponential family, destroy the
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Figure 1: (a) Natural-gradient descent (circle) converges much faster (in just 1 step) than algorithms that use
Euclidean (cross) or Wasserstein (star) geometries which take 10 and 470 iterations respectively. The illustration is on
a 2-D Bayesian linear regression (quadratic loss in the background for all three figures). The 3 methods are taken
from Khan & Rue (2023); Ranganath et al. (2014); Lambert et al. (2022b), (b) For smaller step-sizes (of the order
ρ = 10−5 or less), SR-VN and VN perform almost identically, (c) For larger step-sizes they start to differ, step-size for
VN here is 1.

concavity property and prohibit the application of tools from convex optimization to analyze the properties
of NGD. Our goal in this paper is to address this issue.

We circumvent this problem by considering variational-Gaussian inference that is defined by the square root of
the Gaussian covariance matrix. We show that discretizing the NG flow with this square-root parameterization
results in an NGD update based on the Cholesky factor. This idea was proposed by Tan (2025), though it
was also previously explored in a broader context by Lin et al. (2023; 2024). Our method extends this idea
to include any square-root parameterization. This way of parameterizing helps maintain the concavity of
log-likelihood functions, which in turn facilitates convergence guarantees for both NG flow and NGD. The
key contributions of our work are outlined as follows:

• We prove that the NG flow exhibits an exponential convergence rate for a strongly concave log-
likelihood, as stated in Theorem 1. When discretized using the square-root parameterization, this
aligns with the update provided by Tan (2025, Theorem 1). The proof of convergence hinges on
establishing a Riemannian Polyak-Łojasiewicz (PL) inequality, which is shown to be valid when the
lowest eigenvalue of the metric tensor is bounded.

• We prove an exponential rate of convergence (Theorem 2) for NGD using Cholesky and under
strongly-concave log-likelihood; the proof extends to any square-root parameterization.

• We present empirical results showcasing the fast convergence of NGD, attributed to its Newton-like
update. These results are illustrated in Figure 2 and Figure 3. It is important to highlight that
our experiments employ the piecewise bounds described in (Marlin et al., 2011) for computing
expectations. This raises the question of how the resulting bias affects NGD convergence. To address
this, we include a discrete-time analysis with bias in our supplementary section, see Theorem 3 in
Appendix D. The reason for our preference for the piecewise over the stochastic implementation is
justified in Appendix E.

Our proof addresses the additional challenges posed by the non-smoothness of entropy and does not require
any proximal or projection operators such as those used by Domke (2019); Domke et al. (2024). Our results
can be useful for further research on proving such results for generic NGD updates. The use of square-roots
could lead to suboptimal convergence, for instance, it may not converge in one step for quadratic problems
(as shown in Figure 1(a)), but this only implies that even better results are possible for the general case. We
provide an insight into why this happens in Section 3.5, noting that square-root-based updates essentially
compute an approximate estimate of the inverse of the preconditioning matrix that is used in Newton’s
method.
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2 Variational Inference

The goal of variational inference is to approximate the posterior distribution by a simpler distribution, such
as the Gaussian distribution. Given a Bayesian model with n likelihoods, denoted by p(Di|θ) for the i’th data
example with parameter θ, and a prior p(θ) over the parameters, Bayesian inference aims to find the posterior
p(θ | D1,D2, . . . ,Dn). In variational inference, we aim to find an approximation qτ (θ) to the posterior by
solving the following problem over the space τ ∈ Ω of the valid variational parameters,

min
τ∈Ω

Eqτ (θ)[ℓ(θ)] + γ KL [qτ (θ)∥p(θ)] , (1)

where we denote ℓ(θ) = −
∑n

i=1 log p(Di|θ), KL[·∥·] to be the KL divergence, and γ > 0 is a scalar parameter
commonly referred to as the temperature. When γ = 1, the objective is referred to as the negative evidence
lower bound (ELBO) (Jaakkola & Jordan, 1997; Blei et al., 2017), which is also the focus of our analysis.
The value of γ plays a crucial role in shaping the posterior variance. If γ is set too high, it can result in large
variance and unstable training. Conversely, if γ is too low, it may cause the posterior to collapse, providing
minimal practical benefits (Shen et al., 2024b).

In many problems, the negative log-likelihood (NLL) ℓ(θ) is convex; it could also be an arbitrary loss function,
giving rise to generalized posterior (Zhang, 1999; Catoni, 2007). The regularizer, denoted by R(θ) = − log p(θ),
too is chosen to be convex. Popular examples include Bayesian linear and logistic regressions, as well as
Gaussian process models. In such cases, a more convenient form is used to separately define two terms
as the expected log-loss and negative-entropy respectively, that is f(τ ) = Eqτ (θ)[ℓ(θ) + γR(θ)], H(τ ) =
Eqτ (θ)[log qτ (θ)]. Using these, we can rewrite Equation (1) by expanding the KL divergence as

min
τ∈Ω
L(τ ) where L(τ ) := f(τ ) + γH(τ ), (2)

and where the first term involves the expectation of a convex loss function while the second term is the
entropy. This reformulation allows us to connect VI to a wide variety of problems in supervised, unsupervised,
and reinforcement learning which can be formulated as a minimization of the form

min
θ∈Rp

ℓ̄(θ) where ℓ̄(θ) := ℓ(θ) + γR(θ). (3)

VI approaches can be seen as a variant of such problems where instead of finding a single minimizer θ∗,
we seek a parametric distribution qτ ∗(θ) by solving Equation (2). This is closely related to techniques in
robust or global optimization that use qτ (θ) to smooth the loss and mitigate the influence of local minima
(Mobahi & Fisher III, 2015; Leordeanu & Hebert, 2008; Hazan et al., 2016), often with γ taking a value
of 0. This approach is also referred to as Variational Optimization (VO) (Staines & Barber, 2012). VO
can lead us to the minimum θ∗ because, for γ = 0, L(τ ) is an upper bound on the minimum value of ℓ̄,
that is, minθ ℓ̄(θ) ≤ minτ∈Ω L(τ ). Therefore minimizing L(τ ) minimizes ℓ̄(θ), and when the distribution q
puts all its mass on θ∗, we recover the minimum value. Problem 2 with γ = 0 is also encountered across
various other domains, including random search (Baba, 1981), stochastic optimization (Spall, 2005), and
evolutionary strategies (Beyer, 2001). In this context, qτ (θ) serves as the ‘search’ distribution employed to
locate the global minimum of a black-box function, ℓ(θ). Notably, in the realm of reinforcement learning, this
distribution can take on the form of a policy distribution designed to minimize the expected value-function
ℓ(θ) (Sutton et al., 1998), sometimes incorporating entropy regularization techniques (Williams & Peng, 1991;
Teboulle, 1992; Mnih et al., 2016).

3 Background on NGD for VI

We will review VI using GD and NGD methods and discuss the NG flow and NGD with the Cholesky factor,
and for both, we will provide convergence guarantees in the later sections.

3.1 Variational Gaussian Inference with GD

Throughout, we will focus on VI with a Gaussian distribution qτ (θ) := N (θ |m, V) where m ∈ Rd is the
mean, V ∈ Rd×d is the covariance. The variational parameter τ = (m, V) is only defined within the set of
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valid parameters Ω′ – the set of τ where V is positive definite, that is Ω′ = {(m, V) : m ∈ Rd, V ≻ 0 ∈ Rd×d}.
The problem 2 can then be rewritten as, minm,V L(m, V). The function L is differentiable under mild
conditions on the interior of Ω′ even when ℓ is not differentiable, as discussed by Staines & Barber (2012).
This makes it possible to apply gradient-based optimization methods to optimize it. A straightforward
approach to minimize L is to use Gradient Descent (GD) as shown below,

GD: Vt+1 = Vt − ρ∇VL(mt, Vt), mt+1 = mt − ρ∇mL(mt, Vt), (4)

where ρ > 0 is a step size. This approach is often referred to as the black-box VI (BBVI) in the literature
(Ranganath et al., 2014), and offers simple and convenient updates to implement using modern automatic-
differentiation methods and the reparameterization trick (Graves, 2011; Blundell et al., 2015; Titsias &
Lázaro-Gredilla, 2014). Unfortunately, such direct gradient-descent methods can be slow in practice.

3.2 Variational Gaussian Inference with NGD

An alternative approach is to use natural-gradient descent which exploits the information geometry (Amari,
2016) of q to speed up convergence. Given the Fisher information matrix (FIM) (Amari, 2008) of qτ (θ), that
is Fτ = Eqτ (θ)[∇τ log qτ (θ)(∇τ log qτ (θ))⊤], which is positive-definite for all τ ∈ Ω in our setting, the NGD
for VI in the natural-parameter space (with τ as natural parametrization) is given as follows (Khan & Rue,
2023):

NGD: τt+1 = τt − ρF−1
τt
∇τL(τt). (5)

The preconditioning of the gradient by the FIM leads to proper scaling in each dimension which often leads to
faster convergence. A notable connection between NGD for 2 and Newton’s method for 3 was established by
Khan et al. (2017; 2018) in the case of a Gaussian distribution with mean m and the precision S, which is the
inverse of the covariance S = V−1. Denoting the expected gradient and the expected Hessian, respectively,
as:

gt = Eθ∼N (mt,Vt)[∇θ ℓ̄(θ)], Ht = Eθ∼N (mt,Vt)[∇2
θ ℓ̄(θ)]. (6)

The resulting updates,

VN: St+1 = (1− γρ)St + ρHt, mt+1 = mt − ρ(St+1)−1gt, (7)

referred to as the variational Newton (VN) update, optimize 2 instead of 3. The standard Newton’s update
for problem 3 is recovered by approximating the expectations at the mean m and using step-size ρ = 1 when
γ = 1; see Khan & Rue (2023). Since the precision S lies in a positive-definite matrix space, the update 7
may violate this positivity constraint of the parameter space Ω (Khan & Nielsen, 2018). For example, this
happens when the loss ℓ(θ) is non-convex.

3.3 Natural Gradient Flow

The NG flow minimizes the KL divergence functional on a parameterized manifold of Gaussian densities – the
objective stated in Equation (1). That is, NG flow is a continuous time update of the NGD (Equation (5))
that is,

dτt

dt
= −F−1

τt
∇τL(τt) = −F−1

τt
∇τ KL

[
qτ (θ) || p(θ | D)

]
. (8)

The updates for the NG flow in τ = (m, V) parameterization were provided in Chen et al. (2023, Equation
(4.18)) as:

dVt

dt
= Vt −VtHtVt,

dmt

dt
= −Vtgt. (9)

Upon discretization, this results in the VN update. Refer to Appendix B for a comparison of the V updates, as
obtained from VN. However, due to the non-convex nature of KL even with concave log-likelihood for (m, V)
parameterization (see further discussion in Section 3.6), we instead focus on analyzing the NG flow in the
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Algorithm 1 Square-Root Variational Newton (SR-VN)
1: Parameter: Step-size ρ > 0 is chosen using Equation (54); tril is defined in Equation (10).
2: Initialize (m0, C0) to satisfy Assumption 1
3: for t = 0, . . . , T do
4: Update gt and Ht using Equation (6)
5: Ct+1 ← Ct − ρCt tril[C⊤

t HtCt − γI]
6: mt+1 ←mt − ρCtC⊤

t gt

7: end for

square-root parameterization, that is τ = (m, C) ∈ Ω, where Ω = {(m, C) : m ∈ Rd, V = CC⊤ ≻ 0 ∈ Rd×d}
under the assumption that C is square and lower-triangular with positive real diagonal entries, ensuring its
invertibility. Let us define a function that takes the lower-triangular part of a matrix and halves its diagonal,
that is

tril[A]ij :=

 Aij i > j,
1
2 Aii i = j,
0 i < j.

(10)

Then, to derive flow equations for the Cholesky factor, we first note from Murray (2016, Equation (7)) that
the derivative of the Cholesky factor Ct can be obtained from the derivative of the covariance Vt = CtC⊤

t as

dCt

dt
= Ct tril[C−1

t

dVt

dt
C−⊤

t ], (11)

which after using Equation (9) leads to the following flow equations:

dCt

dt
= Ct tril[I−C⊤

t HtCt],
dmt

dt
= −CtC⊤

t gt. (12)

In Theorem 1, we prove the convergence of the flow dynamics in Equation (12) under the concave log-
likelihood. Importantly, the NG flow remains the same regardless of the parameterization, and therefore the
flow dynamics in Equation (9) and Equation (12) trace out the same trajectory on the Gaussian manifold.
Hence, we focus on square-root parametrization solely for its theoretical convenience in proving convergence.

3.4 Square-Root Variational Newton (SR-VN)

In this section, we introduce a different NGD update called square-root variational Newton (SR-VN), outlined
in Algorithm 1, which utilizes the Cholesky factor C of the covariance matrix V. SR-VN is derived through
a forward Euler discretization of the NG flow defined in square-root parameterization (Equation (12)). The
resultant update aligns with independently proposed updates by Tan (2025), who defined a VN-like update
using the Cholesky factor, given as

Ct+1 = Ct − ρCt tril[C⊤
t ∇CL(mt, Ct)], mt+1 = mt − ρCtC⊤

t ∇mL(mt, Ct).

Now, as calculated in Equation (36) in Appendix A.2, we have

∇CL(mt, Ct) = (Ht − γ(CtC⊤
t )−1)Ct. (13)

Finally, by seeing that ∇mL(mt, Ct) = gt, we can rewrite the updates from Tan (2025, Theorem 1) as

SR-VN: Ct+1 = Ct − ρCt tril[C⊤
t HtCt − γI], mt+1 = mt − ρCtC⊤

t gt, (14)

allowing us to immediately see that these updates indeed come from a direct forward Euler discretization of
Equation (12). In Theorem 2, we establish convergence guarantees for SR-VN. We also note here that other
updates based on the Cholesky factor have been considered in the literature, for example, see (Sun et al.,
2009; Salimbeni et al., 2018; Glasmachers et al., 2010).
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3.5 SR-VN as an Approximation of VN

It is interesting to see that SR-VN performs a Newton-like update in m 14, but does not require a matrix
inversion of the preconditioner (such as the inversion of Hessian in VN 7). This makes it easier to implement
and analyze. However, we show in Appendix B that, in reality, SR-VN computes an approximation of the
inverse and is therefore only suboptimal compared to VN. Looking at Figure 1(b), we can see that when the
step-size is very small, SR-VN and VN converge to the same dynamics because they both approximate the
NG flow. However, the quadratic offset introduced by the inverse approximation used in SR-VN leads it to
perform suboptimally compared to VN. VN, on the other hand, computes the full inverse of the FIM defined
using natural parameters (Equation (5)), and it shows its superiority by achieving one-step convergence in
Figure 1(c) when the step-size is larger, specifically when it is set to 1.

3.6 Variational Parameters and Convexity

NGD updates are often written in the natural-parameter space 5, but this can destroy the convexity of
the problem. Specifically, given a convex function ℓ̄(θ), it is well-known that Eθ∼N (m,V)[ℓ̄(θ)] is jointly
convex w.r.t. m and the Cholesky factor C of V, but not w.r.t V or its inverse (Challis & Barber, 2013;
Domke, 2019). That is, even for the simplest convex cases, such as logistic regression, the convexity is lost in
the natural and expectation parameter spaces. For example, given n training data points {xi, yi}n

i=1 with
xi ∈ Rd and yi ∈ {−1, +1}, in Bayesian logistic regression we minimize the following loss that contains the
ℓ2-regularization with regularization constant β > 0:

ℓ̄lg(θ) =
n∑

i=1

[
log(1 + exp{yi(θ⊤xi)}

]
+ β

2 ∥θ∥
2 (15)

The Hessian takes the form ∇2
θ ℓ̄lg(θ) = XDX⊤ + βI, where X = [x1, . . . , xn]⊤ ∈ Rn×d is the data

matrix, D ∈ Rd×d is a diagonal matrix such that Dii = σ(θ⊤xi)(1 − σ(θ⊤xi)) with the sigmoid function
σ(z) = 1/(1 + e−z). Given this form of the Hessian, it is clear that the Hessian is positive-definite (and hence
regularized logistic loss is δ-strongly convex), however, the expected loss Eθ∼qτ (θ)[ℓ̄lg(θ)] is non-convex in
natural and expectation parameterizations, or even in the (m, V) parameterization of the Gaussian.

This issue makes it harder to analyze convergence guarantees of NGD in Equation (5) in general, and therefore
for the algorithm given in Equation (7). The same is true for the NG flow in Equation (9), because KL is
non-convex in τ = (m, V). The issue is specifically noted by Chérief-Abdellatif et al. (2019) for NGD. They
analyze the convergence of online VI by using tools from convex optimization, but their proof techniques do
not extend to NGD because of the loss of convexity in the natural or expectation parameters. Our goal in
this paper is to address this challenge. Our key idea is to simply switch to the square-root parameterization
where the convexity properties are preserved. We consider specific NGD variants that use such square-root
parameterization and derive strong convergence guarantees for them. Additionally, by leveraging the strong
convexity of the log-likelihood we show that KL functional satisfies a Riemannian PL inequality in square-root
parameterization, which eventually leads us to prove convergence for NG flow.

4 Assumptions

We will use the following assumptions for our analysis.
Assumption 1 (Initialization). We initialize Algorithm 1 with τ0 = (m0, C0) = (m0, C0I) for a constant
C0 > 0 and m0 ∈ Rd.
Assumption 2 (Strong Convexity). We assume that the negative log-likelihood ℓ̄(θ) is δ-strongly-convex in
θ, that is, ∇2

θ ℓ̄(θ) ≽ δI. Then, from (Domke, 2019, Theorem 9) L(m, C) is δ-strongly-convex in square-root
parametrization τ = (m, C), that is

L(τ ′) ≥ L(τ ) + ⟨∇τL(τ ), τ ′ − τ ⟩+ δ

2 ∥τ
′ − τ∥2 (16)
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Assumption 3 (Lipschitz Gradient). We assume that the negative log-likelihood ℓ̄(θ) is M -Lipschitz in θ,
that is, ∇2

θ ℓ̄(θ) ≼ M I. Then, from (Domke, 2019, Theorem 1) L(m, C) is M -Lipschitz-smooth in square-root
parametrization τ = (m, C), that is

L(τ ′) ≤ L(τ ) + ⟨∇τL(τ ), τ ′ − τ ⟩+ M

2 ∥τ
′ − τ∥2 (17)

Assumption 4 (Bounded Iterates). Let the iterates generated at time t ∈ N0 from Algorithm 1 be Ct. Then
the following two statements are true.

1. There exist constants 0 < ξl ≤ ξu <∞ such that ξl ≤ ∥Ct∥F ≤ ξu for all t ≥ 0.

2. There exists a constant λmin > 0 such that Vt ≽ λminI for all t ≥ 0.

Remark 1. The largest singular value of Vt (that is, ∥Vt∥) can be upper bounded using Assumption 4 as
follows: ∥Vt∥ =

∥∥CtC⊤
t

∥∥ ≤ ∥Ct∥2 ≤ ∥Ct∥2
F ≤ ξ2

u.

Assumptions 2 and 3 hold for commonly encountered loss functions, e.g. the ℓ2-regularized logistic loss
15. Assumption 4 ensures that the updates remain bounded throughout optimization, and enforces the
positive-definiteness of V.

The assumptions hold for Logistic Regression. We saw in Section 3.6 that the Hessian of the logistic
loss takes the form XDX⊤ + βI, where the diagonal matrix D has entries bounded between 0 and 1/4. Hence,
the Hessian of the regularized logistic loss is bounded as long as the data matrix X is bounded (which is
often the case), i.e., βI ≼ H ≼ ζI where ζ = λmaxXDX⊤ + β. This validates the assumption of a bounded
square root, as stated in part 1 of Assumption 4. Additionally, Assumption 2 and part 2 of Assumption 4 are
met because regularized logistic regression is δ-strongly convex. Therefore, Assumptions 1–4 apply to the
original VN’s V update when working with the regularized logistic loss. As confirmed empirically, the same
conclusion extends to the SR-VN’s C update.

5 Analysis

In this section, we will analyze the convergence guarantees for the NG flow (Equation (12)) and SR-VN
(Algorithm 1). We will do this by applying tools from convex optimization, considering a set of assumptions
related to boundedness and convexity. To prove convergence, we need Assumption 2 and part 2 of Assumption 4
for the NG flow, and Assumptions 1–4 for SR-VN.

5.1 Flow Convergence with Riemannian PL

We first show that, under the assumption of strongly convex NLL (Assumption 2), the KL functional satisfies
a local Riemannian PL inequality in the square-root parameterization (refer to Lemma 2). This result paves
the way for proving the convergence of the NG flow, as outlined in Theorem 1.

We first state the following lemma that ensures that the FIM is bounded, and thus well-behaved, which is
crucial for our entire analysis. The detailed proof for all the stated results can be found in Appendix C.
Lemma 1 (Bounded FIM eigenvalues). For τ = (m, C), given Assumptions 4, we conclude that

λg
min

(
Id×d 0

0 Id2×d2

)
≼ F−1

τ ≼ λg
max

(
Id×d 0

0 Id2×d2

)
,

where

λg
min = min

{
λmin,

λ2
min
2

}
, and λg

max = ξ2
u. (18)

We know that any minimizer qτ∗(θ) = N (θ|m∗, V∗) satisfies (Khan & Rue, 2023; Lambert et al., 2022a)

Eθ∼qτ∗ (θ)[∇θ ℓ̄(θ)] = 0, and V−1
∗ = Eθ∼qτ∗ (θ)[∇2

θ ℓ̄(θ)]. (19)
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Existence of limit points. The limit points m∗, C∗ exist because of the strong convexity assumption
(Assumption 2) which implies there exists a τ ∗ = (m∗, C∗) that uniquely minimizes L. The existence of this
τ ∗ can be argued using the fact that L is continuous and coercive and Ω (the set of τ ′s) can be extended to
a closed set (but the minimizer can be shown to lie inside Ω due to Equation (19)). Then, a global minimum
exists due to the Weierstrass extreme value theorem.

As a consequence of Lemma 1, one can prove the following lemma, given that NLL is strongly-convex, which
establishes a PL inequality where we measure the magnitude of the gradient in the (natural) Riemannian
geometry. This will be needed to prove the convergence guarantees for the Riemannian gradient flow and
descent.
Lemma 2 (Riemannian PL Inequality). The KL functional satisfies a local Polyak-Łojasiewicz (PL) inequality
with PL constant µ = δλg

min, that is,∥∥∥∥∇τ KL
[
qτ (θ) || p(θ | D)

]∥∥∥∥2

F−1
τ

≥ 2µ

(
KL
[
qτ (θ) || p(θ | D)

]
−KL

[
qτ∗(θ) || p(θ | D)

])
. (20)

Remark 2. Lemma 2 is a ’local‘ PL inequality because it only holds for the chosen parametrization. This is
because of the use of strong-convexity of ELBO for its proof (see Appendix C.2), which only holds for (m, C)
parametrization. Since one does not know if convexity will hold in all parametrizations there is no guarantee
that the PL inequality will hold globally.

Once the Riemannian PL condition is established, we can derive a convergence rate using a standard Lyapunov
function analysis. As mentioned earlier, this analysis can be modified to incorporate a bias term as shown in
Appendix D.
Theorem 1. Under Assumptions 2 and 4, the NG flow dynamics defined in Equation (12) satisfy

KL
[
qτt

(θ) || p(θ | D)
]
−KL

[
qτ∗(θ) || p(θ | D)

]
≤ e−2µt

(
KL
[
qτ0(θ) || p(θ | D)

]
−KL

[
qτ∗(θ) || p(θ | D)

])
.

5.2 Convergence of SR-VN

Under Assumption 1–2, we give what we believe are the first rigorous convergence guarantees for optimizing
2 using Algorithm 1. Specifically, we show an exponential rate of convergence for Algorithm 1, as stated in
Theorem 2, with a detailed proof provided in Appendix C.4. The literature has suggested various updates, as
seen in references Lin et al. (2019; 2021b;a); Khan & Rue (2023). It is also worth highlighting that our proof
extends to generic NGD algorithms that use any square-root parametrization. The proof technique used to
derive Theorem 2 can easily be adapted to prove convergence for these other variants and is omitted here to
avoid redundancy.
Theorem 2 (Global Convergence). Given Assumptions 1–4 and considering the limit points m∗ and C∗ in
Equation (19), the updates provided by Algorithm 1 satisfy

L(mt+1, Ct+1)− L(m∗, C∗) ≤ (1− 2ηδ)t+1(L(m0, C0)− L(m∗, C∗)), (21)

where

η = min
{

λminρ− Mρ2ξ4
u

2 ,

√
5
2ρξ2

l −
5ρ2ξ4

uM

4

}
. (22)

For convergence, we require that 0 < (1− 2ηδ) < 1. This constraints the step-size ρ > 0 to satisfy certain
conditions. The permissible step-sizes satisfying the above constraint are discussed in Appendix C.5, along
with the time complexity of SR-VN in Equation (57).
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Figure 2: For small-scale LIBSVM datasets, we show the training ELBO and test NLL w.r.t number of iterations
(left and middle panel) and time (right panel). The min and max of the plotted values are displayed around their
averages (taken over five random initializations). We also subtracted the min values achieved (for both training and
testing) over all iterations from all three methods and only plotted the resulting values. We can see that, in most
cases, SR-VN and VN perform similarly while BW-GD tends to be slower. However, sometimes SR-VN could also be
slower than the two, for example, see Appendix F.3.
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Figure 3: Comparison on large-scale datasets.

6 Experiments

In this section, we present results on the Bayesian logistic regression problem introduced in 15 to optimize 2,
where we compare SR-VN to two other methods, namely 1) BW-GD Lambert et al. (2022b, Algorithm 1)
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and 2) Variational Newton in Equation (7). The BW-GD updates are given as:

BW-GD: mt+1 = mt − α EN (mt,Vt)[∇θ ℓ̄(θ)],
Mt = I− α

(
EN (mt,Vt)[∇2

θ ℓ̄(θ)]− St

)
, Vt+1 = MtVtMt

where α > 0 is the step-size. Due to space constraints, details of all the datasets used and the setting
of various algorithmic parameters for these methods are given in Appendix F. The additional results and
experiments are provided in Appendix F.2.

6.1 Bayesian logistic regression

We run our experiments on both small-scale and large-scale datasets to compare the aforementioned methods.
The way we measure the performance of methods is via two metrics: the negative ELBO on the training
dataset and the NLL on the test dataset. We report the average of the NLL over all test points, i.e. we
compare the NLL on the test set computed as follows:

∑n
i=1 log(1+exp{yi(θ̂⊤xi)}/ntest where θ̂ is parameter

estimate and ntest is the number of examples in the test set.

Datasets. We consider eight different LIBSVM datasets1 (Chang & Lin, 2011), consisting of five small and
three large-scale datasets. The description of these datasets is provided in Table 2 of Appendix F. Here, we
show results for two small-scale datasets (see Figure 2), namely Diabetes-scale (n = 768, d = 8, ntrain = 614)
and Mushrooms (n = 8124, d = 112, ntrain = 6499). For large-scale datasets (see Figure 3), we show MNIST
(n = 70, 000, d = 784, ntrain = 60, 000), Covtype-scale (n = 5, 81, 012, d = 54, ntrain = 5, 00, 000), and Phishing
(n = 11055, d = 68, ntrain = 8844) datasets. All these datasets fall in the case where n > d. For the d > n
case, we choose the Leukemia dataset (n = 38, d = 7129, ntrain = 34) and show time plots to be inclusive
of all possible different settings. Note that different datasets use binary labels other than {−1, +1}, we
mapped them all to the same labels so that loss evaluation is uniform across all datasets. All experiments are
performed on NVIDIA GeForce RTX 3090 GPUs.

We can observe that in the majority of instances, SR-VN performs similarly to VN and both of them are
always better than BW-GD. Most often, VN is slightly better than SR-VN, indicating its superiority, and
motivating its analysis as a future work. As a side note, one can observe that the wall-clock time shoots
up for SR-VN in the rightmost panel of Figure 2. The reason for this lies in the difference between the
computational complexity of algorithms presented, this is discussed in more detail in Appendix F.1.

7 Related Works

NGVI. NGVI approximates intractable posterior distributions by employing natural gradients, which
consider the geometry of the parameter space, instead of standard gradients to update the variational
parameters (Hoffman et al., 2013). This approach is believed to lead to more robust and efficient optimization
(Amari, 1998), especially when dealing with complex models and high-dimensional data (Shen et al., 2024a).
Deterministic NGVI (Honkela et al., 2008; 2010; Godichon-Baggioni et al., 2024), in contrast to its stochastic
counterpart, computes the exact natural gradient at each iteration. This can be computationally more
demanding but can also lead to more accurate and stable updates. When feasible, the benefit of this approach
is that one can use a constant step-size.

Convergence Analysis. While NGVI has shown promising empirical performance−for example, in latent
Dirichlet allocation topic models (Hoffman et al., 2013), Bayesian neural networks(Khan & Nielsen, 2018;
Khan et al., 2018; Osawa et al., 2019; Shen et al., 2024a), probabilistic graphical models (Johnson et al.,
2016), and large-scale Gaussian processes (Hensman et al., 2013; 2015; Salimbeni et al., 2018)−the theoretical
analysis of its convergence rates is still an active area of research (Theis & Hoffman, 2015). Existing works
often focus on specific model classes or makes simplifying assumptions to derive convergence guarantees. For
instance, (Wu & Gardner, 2024) showed that stochastic NGVI, exhibits a non-asymptotic convergence rate of
O(1/T ) for conjugate models, where T represents the number of iterations. This rate is comparable to SGD,

1Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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but stochastic NGVI often has has better constants in the convergence rate, leading to faster convergence
in practice (Khan & Nielsen, 2018). However, for non-conjugate models, stochastic NGVI with canonical
parameterization operates on a non-convex objective, making it challenging to establish a global convergence
rate. In the context of Gaussian process models, (Tang & Ranganath, 2019) demonstrated the effectiveness
of natural gradients in both conjugate and non-conjugate scenarios, showing potential for faster convergence
compared to traditional gradient-based methods.

Despite these advancements, a comprehensive understanding of the convergence behavior of NGVI in general
settings remains an open question (Regier et al., 2017). This is partly due to the difficulty in analyzing NGD
for commonly-used parameterizations that can destroy the concavity of the log-likelihood (Chérief-Abdellatif,
2020). Our work addressed this issue by considering a square-root parameterization for variational Gaussian
inference, which helps maintain the concavity of the log-likelihood and facilitates the convergence analysis.
We proved an exponential convergence rate for both NG flow and NGD under this parameterization, bridging
the gap between theory and practice for NGD convergence guarantees. Similar efforts to analyze NGD
convergence have been made by Khan et al. (2016) for general stochastic, non-convex settings and (Chen
et al., 2023) for continuous-time flow with concave log-likelihoods. However, these studies either have slow
convergence rates or focus on restrictive settings, leaving room for improvement in more general cases.

Parameterization Choices. The choice of parameterization plays a crucial role in the effectiveness of
NGVI (Lin et al., 2019). Different parameterizations can lead to different geometries in the parameter space,
affecting the trajectory of the optimization process. Studies have explored various parameterizations for NGVI,
including natural and expectation parameters (Honkela et al., 2010; Khan & Rue, 2023; Godichon-Baggioni
et al., 2024). Ko et al. (2024) proposed an alternative approach based on a score-based divergence that
can be optimized by a closed-form proximal update for Gaussian variational families with full covariance
matrices. They proved that in the limit of infinite batch size, the variational parameter updates converge
exponentially quickly to the target mean and covariance. Our work focused on square-root parameterizations
for variational Gaussian inference, extending the idea introduced by Tan (2025) who utilized the Cholesky
factor. This parameterization helps maintain the concavity of log-likelihood functions, which in turn facilitates
convergence guarantees for both NG flow and NGD. While this approach may lead to suboptimal convergence
in some cases, it provides a valuable framework for analyzing and understanding the convergence behavior of
deterministic NGVI.

8 Discussion and Conclusion

In this paper, we studied the performance of NG flow and NGD for optimizing the ELBO, a popular objective
function in VI. Our findings indicate that the success of these methods is heavily influenced by the choice
of parameterization and the intrinsic geometry of the optimization landscape. Motivated by the need for
a principled convergence analysis, we focused on a square-root parameterization for variational Gaussian
inference. This approach, building upon the work of Domke (2019), has the promise of preserving the
concavity of the log-likelihood, a property often lost in traditional parameterizations. By preserving concavity,
we were able to establish theoretical guarantees for the convergence of both NG flow and NGD under this
parameterization, thus bridging a gap between theoretical analysis and practical implementation of NGD.

Our empirical evaluations further validated the benefits of the square-root parameterization. We observed
that it generally performs comparably to the standard natural parameterization, exhibiting fast convergence
due to its Newton-like update. Moreover, our experiments, particularly the toy (ill-conditioned) problem in
Figure 1, highlighted the role of the square-root parameterization in maintaining stable updates, especially in
scenarios where traditional parameterizations might be sensitive to parameter choices or errors in the Fisher
information matrix estimation.

Despite the advancements, challenges and open questions remain. Our findings pave the way for future
research in several key directions, this includes extending our analysis to stochastic NGVI−common in
real-world settings−to study how noise influences optimization and whether the square-root parameterization
remains effective, along with the validity of key assumptions (e.g., Assumptions 2-4) for more complex
applications like deep learning.
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Broader Impact Statement

Our work makes several contributions: i) we propose a theoretical analysis using a square-root parameterization
for the Gaussian covariance, which we expect can encourage further research into establishing convergence
guarantees for natural-gradient variational inference, particularly for cases involving concave log-likelihoods. ii)
Our experimental results reveal that natural gradient methods outperform algorithms relying on Euclidean or
Wasserstein geometries, showcasing their practical advantages in terms of convergence speed and effectiveness,
which could impact the development of more robust inference algorithms in probabilistic modeling.
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A Gradient Calculations

This section focuses on showing calculations that lead to the gradients used to prove results in the main
paper. In Appendix D in Khan & Rue (2023), the gradients used to define VN were calculated using the
moment parametrization (which we will define in a bit) τ = µ = (µ1, µ2), i.e. gradient of the objective L(µ)
were calculated under this parameterization. The goal of this section is to use these gradients to derive the
gradients w.r.t τ = (m, V) and τ = (m, C) parameterizations.

Before we begin, it is useful to learn about the two important parameterizations for the Exponential family.
The first one is called moments or mean/expectation parameters, and are given as:

µ1 = m ∈ Rd, µ2 = S−1 + mm⊤ ∈ Sd
++, (23)

where Sd
++ = {X ∈ Rd×d : X = X⊤, X ≻ 0} is the set of symmetric positive-definite matrices. The second

parametrization is given via the natural parameters as

λ1 = Sm ∈ Rd, λ2 = −1
2S ∈ Sd

++, (24)

The way these two parameterizations are interrelated is via the following relation

µ = ∇λH∗(λ) ⇐⇒ ∇µH(µ) = λ, (25)

where H∗(λ) is a convex function, and its convex conjugate H(µ) returns the entropy2 of the Gaussian
distribution given its moments µ. These details are explained in Chapter 3 in Wainwright et al. (2008), see
also the paper by Malagò & Pistone (2015).

A.1 Gradients in (m, V) Parametrization

Now let us look at the derivatives of f w.r.t µ1 and µ2, but first we note that:

∇µ1H(µ) = λ1
25,24= Sm, (26)

Let us define

g(τ ) := Eθ∼qτ [∇θ ℓ̄(θ)], H(τ ) := Eθ∼qτ [∇2
θ ℓ̄(θ)],

where τ = (m, V) when qτ = N (m, V), and when this is the case, we omit writing g(m, V), H(m, V) in
favour of only writing g, H. Then, in Equation 10 in Khan & Rue (2023), it is given that:

∇µ1f(µ) = Eθ∼N (m,V)[∇θ ℓ̄(θ)]− Eθ∼N (m,V)[∇2
θ ℓ̄(θ)]m = g−Hm. (27)

Combining the above two equations we get:

∇µ1L(µ) = ∇µ1

(
Eθ∼N (m,V)[ℓ̄(θ)] + γH(µ)

)
(28)

= ∇µ1Eθ∼N (m,V)[ℓ̄(θ)] + γ∇µ1H(µ) (29)
= g−Hm + γSm, (30)

and from Equation 11 in Khan & Rue (2023), we have

∇µ2L(µ) = 1
2(H− γS) (31)

2We take H(µ) as the negative entropy in this paper.
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This further leads to

(∇mL(µ))i = ∂L(µ)
∂mi

= ∂L
∂µ1

⊤ ∂µ1

∂mi
+ tr

(
∂L
∂µ2

⊤ ∂µ2

∂mi

)

=
(

∂L
∂µ1

)⊤

i

+
∑
k,l

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂mi

)
lk

=
(

∂L
∂µ1

)⊤

i

+
∑
k ̸=i

(
∂L
∂µ2

⊤
)

ki

mk +
∑
l ̸=i

(
∂L
∂µ2

⊤
)

il

ml + 2
(

∂L
∂µ2

⊤
)

ii

mi

=
(

∂L
∂µ1

)⊤

i

+ 2
∑
k ̸=i

(
∂L
∂µ2

⊤
)

ki

mk + 2
(

∂L
∂µ2

⊤
)

ii

mi

= (∇µ1L)⊤
i + 2 (∇µ2Lm)i︸ ︷︷ ︸

i-th row

⇒ ∇mL = ∇µ1L+ 2∇µ2Lm
30,31=

(
g−Hm + γSmt

)
+ 2
(

1
2(H− γS)⊤m

)
= g. (32)

Similarly,

(∇VL(µ))ij = ∂L(µ)
∂Vij

= ∂L
∂µ1

⊤ ∂µ1

∂Vij
+ tr

(
∂L
∂µ2

⊤ ∂µ2

∂Vij

)

=
∑
k,l

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂S−1
ij

)
lk

=
(

∂L
∂µ2

⊤
)

ji

=
(

∂L
∂µ2

)
ij

,

⇒ ∇VL = ∇µ2L

⇒ ∇(S)−1L(µ) =
(

∂L(µ)
∂µ2

)⊤
∂µ2

∂(S)−1

= 1
2(H− γS). (33)

A.2 Gradients in (m, C) Parametrization

Let us represent L(µ(C)) as L(µ1, µ2(C)) where µ1 = m (independent of C) and µ2(C) = V = CC⊤. Using
the chain rule for composite matrix functions given in Equation 1884 in Dattorro (2015) combined with
Equation 137 in Petersen & Pedersen (2012), we arrive at

∇CL(µ(C)) = tr
(
(∇µ1L(µ))⊤ (∇Cµ1(C))

)
+ tr

(
(∇µ2L(µ))⊤ ∇Cµ2(C)

)
= tr

(
(∇µ2L(µ))⊤ ∇Cµ2(C)

)
,

which leads to
∂L(µ(C))

∂Cij
= tr

(
∂L
∂µ2

⊤ ∂µ2

∂Cij

)
.
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Note that ∂µ2
∂C is a fourth-order tensor whose entries are

∂(CC⊤)kl

∂Cij
=


Clj k = i, l ̸= i

2Cij k = i, l = i

Ckj k ̸= i, l = i

0 else.

(34)

where we used the expression (CC⊤)kl =
∑

n CknC⊤
nl =

∑
n CknCln. Then

∂L(µ(C))
∂Cij

= tr
(

∂L
∂µ2

⊤ ∂µ2

∂Cij

)

=
∑
k,l

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂Cij

)
lk

=
∑

k=i,l ̸=i

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂Cij

)
lk

+
∑

k=i,l=i

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂Cij

)
lk

+
∑

k ̸=i,l=i

(
∂L
∂µ2

⊤
)

kl

(
∂µ2

∂Cij

)
lk

=
∑
l ̸=i

(
∂L
∂µ2

⊤
)

il

Clj + 2
(

∂L
∂µ2

⊤
)

ii

Cij +
∑
k ̸=i

(
∂L
∂µ2

⊤
)

ki

Ckj

=
∑

l

(
∂L
∂µ2

⊤
)

il

Clj +
∑

k

(
∂L
∂µ2

⊤
)

ki

Ckj

=
(

∂L
∂µ2

⊤
C
)

ij

+
(

∂L
∂µ2

C
)

ij

.

Therefore, we conclude that
∂L(µ2(C))

∂C = (∇µ2L)⊤C + (∇µ2L)C = 2(∇µ2L)C, (35)

⇒ ∂L(µ2(C))
∂C

31= HC− γ(C⊤)−1 (36)

as ∇µ2L = ∇VL = (∇VL)⊤.

B SR-VN as an Approximation of VN (Detailed)

For γ = 1, the update of St from VN in Equation (7) can be rewritten in terms of Vt as,

V−1
t+1 = (1− ρ)V−1

t + ρHt

= (1− ρ)C−⊤
t C−1

t + ρHt

= C−⊤
t

(
(1− ρ)I + ρC⊤

t HtCt

)
C−1

t

⇒ Vt+1 = Ct

(1− ρ)

(
I + ρ

(1− ρ)C⊤
t HtCt

)−1

︸ ︷︷ ︸
Inverse

C⊤
t

This above inverse can be approximated using the following truncated Neumann series for any symmetric
matrix A,

(I + A)−1 = I−A + A2 +O(∥A∥3).
to give

Vt+1 ≈
Ct

(1− ρ)

[
I− ρ

(1− ρ)C⊤
t HtCt +

(
ρ

(1− ρ)

)2
C⊤

t HtCtC⊤
t HtCt

]
C⊤

t
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Let us define, Wt = C⊤
t HtCt, Ŵt = tril[Wt], and make use of the following identity: W = Ŵt + Ŵ⊤

t to
arrive at

Vt+1 ≈
Ct

(1− ρ)

[
I− ρ

(1− ρ)

[
Ŵ⊤

t + Ŵt

]
+
(

ρ

(1− ρ)

)2 [
Ŵ⊤

t + Ŵt

]2
]

C⊤
t

= Ct

(1− ρ)

[(
I− ρ

2(1− ρ)Wt

)2
+ 3

4

(
ρ

(1− ρ)

)2
W2

t

]
C⊤

t

(a)
≈ Ct

[
(1 + ρ)I− ρWt

]
C⊤

t +O(ρ2), (37)

where (a) comes from also expanding (1− ρ)−1 = 1 + ρ + ρ2 +O(ρ2), at all occurrences.

Now, let us write down the update for Vt+1 using the updates from SR-VN 14 (writing α for the step-size
for SR-VN here). We have

Vt+1 = Ct+1C⊤
t+1

= (Ct − αCt tril[C⊤
t HtCt − I])(Ct − αCt tril[C⊤

t HtCt − I])⊤

= Ct

[((
1 + α

2

)
I− α tril[C⊤

t HtCt]
)((

1 + α

2

)
I− α tril[C⊤

t HtCt]
)⊤
]

C⊤
t

= Ct

[((
1 + α

2

)
I− αŴt

)((
1 + α

2

)
I− αŴt

)⊤
]

C⊤
t

= Ct

[
I + α(I− [Ŵt + Ŵ⊤

t ]) + α2

(
I− 2[Ŵt + Ŵ⊤

t ] + 4ŴtŴ⊤
t

4

)]
C⊤

t

= Ct

[
(1 + ρ)I− ρWt

]
C⊤

t +O(ρ2) (38)

where α is chosen to be ρ. Comparing Equation (37) with Equation (38) shows that the two updates for V
only match up to the first order. The presence of a quadratic difference in Equation (38) arises due to an
alternative approximation of the inverse, highlighting the distinctions in the update methods and exposing
the less-than-optimal nature of SR-VN.

C Analysis Proofs

Table 1: Vectorization Notation for a square matrix A.

Ā (def)= lower triangular matrix derived from A by replacing all supra-
diagonal elements by zero

diag(A) (def)= diagonal matrix derived from A by replacing all non-diagonal
elements by zero

¯̄A (def)= ¯̄A− Ā− diag(A)/2
vec(A) (def)= vector obtained by stacking the columns of A in order from left to

right
vech(A) (def)= vector obtained from vec(A) by omitting supra-diagonal elements.

K (def)= commutation matrix such that K vec(A) = vec(A⊤)
L (def)= elimination matrix such that L vec(A) = vech(A)
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C.1 Proof of Lemma 1

Proof. In (Tan, 2025, Lemma 1), the inverse FIM in (m, C) parametrisation has the following form:

F−1
τ (m, C) =

(
F−1

m 0
0 F−1

C

)
=
(

V 0
0 F−1

C

)
, (39)

where, given N = (K + Id2)/2,

F−1
C = 1

2L(Id ⊗C)L⊤(LNL⊤)−1L(Id ⊗C⊤)L⊤. (40)

Let us work first to prove the LHS of the claim. From part 2 of Assumption 4, we first see that F−1
m = V ≽ λminI.

For F−1
C , we proceed as follows:∥∥F−1

C
∥∥

2 ≥
1

∥FC∥2

(T an, 2025, Lemma 1(i))= 1
∥2L(I⊗C−⊤)N(I⊗C−1)L⊤∥2

.

Now, notice that ∥N∥2 ≤
1
2 (∥K∥2 + ∥Id2∥2) ≤ 1 since ∥K∥2 ≤ 1, while K being a permutation matrix. Since

L is also form of a permutation matrix (with additional zeros at appropriate places), we have that ∥K∥2 ≤ 1.
Combining these facts with the norm inequality, we obtain∥∥F−1

C
∥∥

2 ≥
1

∥2L(I⊗C−⊤)N(I⊗C−1)L⊤∥2
≥ 1

2 ∥L∥2
2 ∥N∥2 ∥I⊗C−⊤∥2 ∥I⊗C−1∥2

≥ 1
2 ∥I⊗C−⊤∥2 ∥I⊗C−1∥2

(a)
≥ 1

2 ∥C−1∥2
2

≥ λ2
min
2

(
∵
∥∥C−1∥∥2

2 ≥
∥∥V−1∥∥

2 = 1
λmin

)
where (a) comes from using ∥A⊗B∥2 ≤ ∥A∥2 ∥B∥2 , ∀A, B ∈ Rd×d, and

∥∥B⊤
∥∥

2 = ∥B∥2.

Now let us prove the RHS of the claim. From Remark 1, we have F−1
m = V ≼ ξ2

uI. For F−1
C , we use the norm

inequality as follows: ∥∥F−1
C
∥∥

2 ≤
1
2 ∥L∥

4
2
∥∥(LNL⊤)−1∥∥

2 ∥Id ⊗C∥2
∥∥Id ⊗C⊤∥∥

2

≤ 1
2
∥∥(LNL⊤)−1∥∥

2 ∥C∥
2
2

Assumption 4
≤ ξ2

u

2
∥∥(LNL⊤)−1∥∥

2 (41)

Let us see how the operator LNL⊤ : Rd(d+1)/2 → Rd(d+1)/2 acts on vech(A) ∈ Rd(d+1)/2. By definition, we
have

(LNL⊤) vech(A) =
(

L K + Id2

2 L⊤
)

vech(A)

= 1
2((LKL⊤) vech(A) + (LL⊤)︸ ︷︷ ︸

Id(d+1)/2

vech(A))

= 1
2(LK vec(Ā) + vech(A)), (∵ L⊤ vech(A) = vec(Ā))

= 1
2(L vec(Ā⊤) + vech(A)), (∵ K vec(Ā) = vec(Ā⊤))

= 1
2(vech(Ā⊤) + vech(A))), (∵ L vec(Ā⊤) = vech(Ā⊤)), (42)
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where Equation (42) implies that the operator LNL⊤ is equivalent to halving the sub-diagonal entries while
keeping the diagonal of the matrix A intact. Therefore, LNL⊤ has eigenvalues between 1/2 and 1, which
implies that its inverse has eigenvalues bounded between 1 and 2, leading to

∥∥(LNL⊤)−1
∥∥

2 ≤ 2. Thus, after
plugging in Equation (41) this bound, we have∥∥F−1

C
∥∥

2 ≤ ξ2
u, (43)

allowing us to complete the proof of the main claim.

C.2 Proof of Lemma 2

Proof. Notice that Equation (20) is equivalent to

∥∇τL(τ )∥2
F−1

τ
≥ 2µ (L(τ )− L(τ∗)) , (44)

because KL
[
qτ (θ) || p(θ)

]
can be written as

KL
[
qτ (θ) || p(θ)

]
= −1/2 log(det V) + Eθ∼N (m,V)[ℓ̄(θ)] + const. 2= L(τ ) + const.

Then simply note that by Lemma 1, we obtain that

∥∇τL∥2
F−1

τ
≥ λg

min ∥∇τL∥2 16
≥ 2δλg

min

(
L(m, C)− L(m∗, C∗)

)
where now µ = δλmin is indeed the desired the PL constant.

C.3 Proof of Theorem 1

Proof. For conciseness, we will refer KL
[
qτt

(θ) || p(θ | D)
]

= KLt throughout the proof. Let us define the

Lyapunov function E(t) = e2µt(KLt−KL∗), then

Ėt = 2µe2µt(KLt−KL∗) + e2µt⟨∇τ KLt, τ̇ ⟩ 8= e2µt(2µ(KLt−KL∗)− ∥∇τ KLt∥2
F−1

τ
)

Lemma 2
≤ 0.

The energy functional E(t) is therefore monotonically decreasing, and hence

E(t) = e2µt(KLt−KL∗) ≤ E(0) = KL0−KL∗ (45)

C.4 Proof of Theorem 2

Proof. From Assumption 3, we start by writing the following Taylor expansion for L(m, C) when both m
and C change.

L(mt+1, Ct+1) ≤ L(mt, Ct) +∇mL(mt, Ct)⊤(mt+1 −mt) + tr((∇CL(mt, Ct))⊤(Ct+1 −Ct))

+ M

2 ∥mt+1 −mt∥2
2 + M

2 ∥Ct+1 −Ct∥2
F . (46)

By plugging in values from 14 in the joint Taylor expansion above, we arrive at:

L(mt+1, Ct+1)− L(mt, Ct)

≤ −(∇mL(mt, Ct)⊤(ρCtC⊤
t ∇mL(mt, Ct)) + Mρ2

2
∥∥CtC⊤

t ∇mL(mt, Ct)
∥∥2︸ ︷︷ ︸

A

−ρ tr
(

(∇CL(mt, Ct))⊤ Ct
¯̄Ht

)
+ Mρ2

2 ∥Ct
¯̄Ht∥2

F︸ ︷︷ ︸
B

, (47)
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where ¯̄Ht = tril[C⊤
t ∇CL(mt, Ct)]. Using the following facts

−∇mL(mt, Ct)⊤CtC⊤
t ∇mL(mt, Ct) ≤ −λmin ∥∇mL(mt, Ct)∥2∥∥CtC⊤

t ∇mL(mt, Ct)
∥∥ ≤ ∥∥CtC⊤

t

∥∥ ∥∇mL(mt, Ct)∥
Remark 1
≤ ξ2

u ∥∇mL(mt, Ct)∥

and applying the lower for bound λmin assumed in Assumption 4 to term A, we arrive at

A ≤ −λminρ ∥∇mL(mt, Ct)∥2 + Mρ2ξ4
u

2 ∥∇mL(mt, Ct)∥2
,

which then gives us

A ≤ ωm ∥∇mL(mt, Ct)∥2
, (48)

where
ωm = Mρ2ξ4

u

2 − λminρ.

Now for term B, let us first look at the following term by repeatedly applying the matrix norm inequality
(∥AB∥F ≤ ∥A∥F ∥B∥F ) to obtain

∥Ct
¯̄Ht∥2

F ≤ ∥Ct∥2
F

∥∥∥ ¯̄Ht

∥∥∥2

F

(a)
≤ ∥Ct∥2

F

(
2
∥∥H̄
∥∥2

F
+ 1

2 ∥diag(H)∥2
F

)
(b)
≤ ∥Ct∥2

F

(
2 ∥H∥2

F + 1
2 ∥diag(H)∥2

F

)
≤ ∥Ct∥2

F

(
2 ∥H∥2

F + 1
2 ∥H∥

2
F

)
= 5

2 ∥Ct∥2
F ∥H∥

2
F

= 5
2 ∥Ct∥2

F

∥∥C⊤K̄
∥∥2

F
≤ 5

2 ∥Ct∥4
F

∥∥K̄
∥∥2

F

(c)
≤ 5

2 ∥Ct∥4
F ∥K∥

2
F

= 5
2 ∥Ct∥4

F ∥∇CL(mt, Ct)∥2
F ,

where (a) comes from using the fact that ∀A, B ∈ RD×D, we have ∥A−B∥2
F ≤ 2 ∥A∥2

F + 2 ∥B∥2
F , and

choosing A = H̄ and B = diag(H)/2. In (b) and (c) we have used
∥∥Ā
∥∥

F
≤ ∥A∥F , as Ā is a lower triangular

form obtained by sending all supra-diagonal elements of A to zero. For the first term in B, we have

tr
(

(∇CL(mt, Ct))⊤ Ct
¯̄Ht

)
≤ ∥∇CL(mt, Ct)∥F ∥Ct

¯̄Ht∥F (∵ tr(AB) ≤ ∥A∥F ∥B∥F )

≤
√

5
2 ∥Ct∥2

F ∥∇CL(mt, Ct)∥2
F

This leads us to finally obtain

B ≤ −
√

5
2ρ ∥Ct∥2

F ∥∇CL(mt, Ct)∥2
F + 5Mρ2

4 ∥Ct∥4
F ∥∇CL(mt, Ct)∥2

F

Now using the bounds in Assumption 4, we arrive at

B ≤ ωC ∥∇CL(mt, Ct)∥2
F (49)

where

ωC = 5ρ2ξ4
uM

4 −
√

5
2ρξ2

l .

Now plugging 48 and 49 in 47 to get

∆t+1 −∆t ≤ ωm ∥∇mL(mt, Ct)∥2 + ωC ∥∇CL(mt, Ct)∥2
F

⇒ ∆t+1 −∆t ≤ −η
∥∥∇(m,C)L(mt, Ct)

∥∥2
, (50)
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where η = min{−ωm,−ωC} and we require that η > 0. Now from Assumption 2, by joint δ-strongly convexity
of L in (m, C), we have

L(mt, Ct)− L(m∗, C∗) ≤ 1
2δ

∥∥∇(m,C)L(mt, Ct)
∥∥2

⇒ ∆t ≤ 1
2δ

∥∥∇(m,C)L(mt, Ct)
∥∥2

⇒ ∆t
50
≤ 1

2ηδ
(∆t −∆t+1)

⇒ ∆t+1 ≤ (1− 2ηδ)∆t (51)

from which we can conclude that we can indeed obtain a descent for L in (m, C) if we require

0 < 1− 2ηδ < 1⇒ 0 < η <
1
2δ

(52)

This would further lead us to the global convergence as

∆t+1 ≤ (1− 2ηδ)t+1∆0. (53)

C.5 Permissible Step Sizes for SR-VN

Theorem 2 requires the condition 0 < η < 1
2δ to hold. This might prompt the reader to inquire whether a

specific step size η can be determined to ensure the fulfillment of this condition. We answer this question
below in the context of a constant step size that we also employ in our experimental work.

Constant step size. Let λmax = ξ2
u be the upper bound for the largest eigenvalue of Vt, as derived in

Remark 1, then Equation (22) becomes

η = min
{

λminρ− Mρ2ξ4
u

2 ,

√
5
2ρξ2

l −
5ρ2ξ4

uM

4

}
.

Note that both arguments inside the min above are quadratics in ρ. Let us choose ρ such that

ρ ≤ max{ρ1, ρ2}, (54)

where

ρ1 = λmin

λ2
maxM

and ρ2 =
√

2
5

ξ2
l

Mξ4
u

are the extremal points of the quadratic equations in the first and second terms inside the min, respectively.
Choosing ρ = ρ1 for the first argument and ρ = ρ2 for the second argument yields

η ≤ min
{

λ2
min

2λ2
maxM

,
ξ4

l

2Mξ4
u

}
. (55)

In order to ensure that the rate of convergence is contractive, we require (1− 2ηδ) < 1, that is 0 < 2ηδ < 1.
With the choice above, η is obviously positive, so let us focus on 2ηδ < 1 =⇒ η < 1

2δ . From the first quantity
in the min appearing in Equation (55), we need

λ2
min

2λ2
maxM

<
1
2δ

=⇒ λ2
min

λ2
max
· δ

M
< 1. (56)

The quantity λmin
λmax

is a lower bound on the inverse condition number of the preconditioning matrix Vt and is
thus upper bounded by 1. Since M is the smoothness constant of L(m, C), then the quantity δ

M is upper
bounded by the inverse condition number of the Hessian of L(m, C) which is itself upper bounded by 1.
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This means that Equation (56) is always satisfied with the proposed choice of step size. The same argument
applies to the second quantity in the min appearing in Equation (55).

Intuition: We here give an intuitive explanation for the choice of the step size ρ. By Theorem 2, we see that
the speed of convergence is exponential with respect to time t. The contraction factor Ct := (1− 2ηδ)t+1

directly depends on the choice of step size through η defined in Equation (22). From the latter equation, one
can observe that larger step sizes can be used if the objective function is smoother (which is controlled by
M). In turn, larger step sizes allow for faster convergence as the algorithm takes larger steps towards the
minimum, which means that (1− 2ηδ) is smaller and therefore Ct contracts at a faster rate.

Complexity Calculation. To compute the complexity, we require L(mt, Ct)− L(m∗, C∗) ≤ ϵ, meaning
from Equation (21) we must have

(1− 2ηδ)t(L(m0, C0)− L(m∗, C∗)) ≤ ϵ =⇒ t ≤ log(ϵ/(L(m0, C0)− L(m∗, C∗)))
log(1− 2ηδ) .

Now using Equation (55), we arrive at

t ≥ min

 log(ϵ/(L(m0, C0)− L(m∗, C∗)))
log(1− δ

M

λ2
min

λ2
max

)
,

log(ϵ/(L(m0, C0)− L(m∗, C∗)))
log(1− δ

M

ξ4
l

ξ4
u

)

 , (57)

where the switching of inequality happens because the log(·) term in the denominator is negative for both
terms inside min.

D Biased SR-VN Convergence

Definition 1 (Biased Gradient Oracle). A map g : Rd+d×d ×D → Rd s.t.

ĝ(τ ) = g + bg(τ ). (58)

for a bias bg : Rd+d×d → Rd

Definition 2 (Biased Hessian Oracle). A map H : Rd+d×d ×D → Rd×d s.t.

Ĥ(τ ) = H + bH(τ ). (59)

for a bias bH : Rd+d×d → Rd×d

We assume that the bias is bounded:
Assumption 5. (Bounded biases) There exists constants 0 ≤ mg, mH < 1, and ζ2

m, ζ2
H ≥ 0 such that

1. ∥bg(τ )∥2 ≤ mg ∥∇mL(mt, Ct)∥2 + ζ2
g , ∀τ ∈ Rd+d×d.

2. ∥bH(τ )C∥2
F ≤ mH ∥∇CL(mt, Ct)∥F + ζ2

H , ∀τ ∈ Rd+d×d.

With the prerequisites established, we now present our theorem demonstrating the convergence of the biased
SR-VN update. This bias may arise from estimating the expectation using piecewise bounds presented in
Marlin et al. (2011).
Theorem 3 (With Bias Convergence). Given Assumptions 1–5 and considering the limit points m∗ and C∗
in Equation (19), the updates provided by Algorithm 1 satisfy

L(mt+1, Ct+1)− L(m∗, C∗) ≤ (1− 2ηδ)t+1(L(m0, C0)− L(m∗, C∗)) + ωmζ2
g + ωCζ2

H ,

Proof. Following similar steps, we can arrive at the following versions of Equation (48) and Equation (49)

A ≤ ωm

∥∥∥Ĥt

∥∥∥2
, B ≤ ωC ∥∇CL(mt, Ct)∥2

F , (60)
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where ∇CL(mt, Ct) = (Ĥt − γ(CtC⊤
t )−1)Ct. Now using Assumption 5, one can get

A ≤ ωm

∥∥∥Ĥt

∥∥∥2
= ωm ∥Ht + bg(τt)∥2 ≤ ωm

(
∥Ht∥2 + ∥bg(τt)∥2

)
≤ ωm

(
(1 + mg) ∥Ht∥2 + ζ2

g

)
. (61)

Similarly,

B ≤ ωC ∥∇CL(mt, Ct)∥2
F = ωC

∥∥∥∥(Ht + bH(τt)− γ(CtC⊤
t )−1

)
Ct

∥∥∥∥2

F

≤ ωC

∥∥∥∥(Ht − γ(CtC⊤
t )−1

)
Ct

∥∥∥∥2

F

+ ωC ∥bH(τt)Ct∥2
F

= ωC

(
∥∇CL(mt, Ct)∥2

F + ∥bH(τt)Ct∥2
F

)
≤ ωC

(
(1 + mH) ∥∇CL(mt, Ct)∥2 + ζ2

H

)
(62)

Now plugging 61 and 62 in 47 to get

∆t+1 −∆t

≤ ωm(1 + mg) ∥∇mL(mt, Ct)∥2 + ωC(1 + mH) ∥∇CL(mt, Ct)∥2
F + ωmζ2

g + ωCζ2
H (63)

⇒ ∆t+1 −∆t ≤ −η
∥∥∇(m,C)L(mt, Ct)

∥∥2 + ωmζ2
g + ωCζ2

H , (64)

where η = min{−ωm(1 + mg),−ωC(1 + mH)} and we require that η > 0. Now from Assumption 2, by joint
δ-strongly convexity of L in (m, C), we have

L(mt, Ct)− L(m∗, C∗) ≤ 1
2δ

∥∥∇(m,C)L(mt, Ct)
∥∥2

⇒ ∆t ≤ 1
2δ

∥∥∇(m,C)L(mt, Ct)
∥∥2

⇒ ∆t
64
≤ 1

2ηδ
(∆t −∆t+1) + 1

2ηδ
(ωmζ2

g + ωCζ2
H)

⇒ ∆t+1 ≤ (1− 2ηδ)∆t + ωmζ2
g + ωCζ2

H (65)

Remark 3. It is worth noting that the piecewise method for computing expectations, given in Marlin et al.
(2011), involves computing a 1-D integral which one can compute below numerical float precision. In other
words, the bias with piecewise bounds can be made arbitrarily small by increasing the number of pieces. The
bias is therefore very small, and hence the terms ζ2

g and ζ2
H are negligible which shows that SR-VN converges

as long as this holds.

E Piecewise versus stochastic implementation

In this section, we make a comparison between the piecewise and the stochastic implementation of the
expectation in ELBO, see Figure 4. This plot highlights why the piecewise implementation is a more accurate
and faster representation of the deterministic algorithm we analyzed, and thus the preferred choice for the
experiments carried out in the paper.
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Figure 4: The provided comparison highlights the differences between the piecewise implementation and the (minibatch
+ MC sampling) stochastic implementation for SR-VN. The results clearly demonstrate that the stochastic approach
is much slower compared to the piecewise method. Additionally, while the stochastic implementation converges to a
slightly higher ELBO, the piecewise implementation reaches a more accurate solution more rapidly. These findings are
based on iterates averaged over 5 different initializations. The dataset taken is the same as displayed in Figure 5,
taken with different n’s.

F Experiments Detail

For all experiments, we first use grid search to tune model hyper-parameters, where the search is performed in
a specific range of values. The resultant values were then fixed during our experiments. The statistics of the
datasets and the model hyper-parameters used are given in Table 2. In practice, implementing deterministic
NGD is often feasible by employing piecewise analytical linear and quadratic bounds to compute expected
values. For example, please refer to (Marlin et al., 2011). Our experiments adopt this technique and replicate
the setup outlined in (Khan & Lin, 2017).

Table 2: Dataset Statistics and Model Hyperparameters

Dataset β N d Ntrain
Step Sizes

VN SQ-VN BW-GD
Australian-scale 10−5 690 14 552 5× 10−3 5× 10−3 4.4× 10−3

Diabetes-scale 10−2 768 8 614 5× 10−3 5× 10−3 9× 10−4

breast-cancer 10−1 683 10 546 9× 10−3 6× 10−3 6.3× 10−3

Mushrooms 10−2 8124 112 6499 2.5× 10−4 2.5× 10−4 8.5× 10−5

Phishing 10−2 11055 68 8844 4× 10−4 4× 10−4 8× 10−5

MNIST 10−1 70000 784 60000 5× 10−6 5× 10−6 10−6

Covtype-scale 2× 10−2 581012 54 500000 10−5 10−5 10−6

Leukemia 2× 10−1 38 7129 34 5× 10−6 5× 10−6 1.5× 10−6
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F.1 Runtime comparison

It is worth noting that each algorithm differs in computational complexity not because of the training data
size—which is the same across all—but due to its specific update operations after computing the expected
gradient g and Hessian H. Since these quantities cost the same for each method, we focus on the subsequent
matrix/vector steps.

Figure 5: We compared the run times of all three algorithms across increasing dimensions while keeping the number
of data points (n) fixed. The run times were averaged over 1000 iterations per algorithm. The theoretical run
times, derived in our rebuttal answer, are functions of d and are plotted to reflect the floating point operations. The
results indicate that the run times can vary significantly among the algorithms, depending on the specific data and
dimensionality.

1. Complexity for VN:

• S update: scalar multiplication + matrix addition → O(2d2).
• m update: matrix inversion→ O(d3), plus matrix-vector product→ O(d2), plus matrix addition
→ O(d2), for a total O(2d2 + d3).

• Overall cost: O(d3 + 4d2).

2. Complexity for SR-VN:

• C update: includes C⊤HC (O(d3)) plus some matrix additions/subtractions (O(d2)) and
multiplications (O(d3)).

• m update: CC⊤ multiplication (O(d3)) plus matrix-vector products (O(d2)).
• Overall cost: O(3 d3 + 9

2 d2 + d
2 ).

3. Complexity for BW-GD:

• m update: scalar multiplication + matrix subtraction → O(3d2).
• M update: two matrix additions + scalar operations → O(2d2).
• V update: matrix inversion→ O(d3) plus two matrix multiplications→ O(2d3), totaling O(3d3).
• Overall cost: O(3d3 + 5d2).

These matrix/vector operations can dominate the wall-clock time for each algorithm. To illustrate how
runtime scales in practice, we compare VN, SR-VN, and BW-GD in Figure 5 as the dimension grows,
highlighting their differing execution costs.
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F.2 Algorithmic Details and Additional Results

In Table 3, we provide descriptive statistics for different metrics achieved by each algorithm when it is run
for every dataset considered.

Table 3: Performance Comparison on different Datasets

Dataset Algorithm Train ELBO Test NLL Test Accuracy Time (sec)

Australian-scale
VN 196.82 54.61 0.877 0.53

BW-GD 196.82 54.61 0.877 0.53
SQ-VN 196.82 54.61 0.877 0.53

Diabetes-scale
VN 301.18 79.72 0.74 0.7

BW-GD 301.18 79.72 0.74 0.49
SQ-VN 301.18 79.72 0.74 0.53

Breast-cancer
VN 52.86 13.62 0.956 0.61

BW-GD 52.86 13.62 0.956 0.61
SQ-VN 52.86 13.62 0.956 0.61

mushrooms
VN 57.51 6.69 1.0 1.04

BW-GD 78.41 7.02 0.999 1.04
SQ-VN 53.56 6.43 0.999 1.05

Leukeumia
VN 339.41 727.96 0.706 0.36

BW-GD 564.65 796.76 0.676 0.38
SQ-VN 339.38 727.99 0.706 0.37

Phishing
VN 1267.77 334.19 0.938 0.99

BW-GD 1377.645 349.10 0.933 0.97
SQ-VN 1268.06 333.37 0.939 0.98

MNIST
VN 6317.52 1017.64 0.989 0.22

BW-GD 6367.23 1102.34 0.988 0.23
SQ-VN 6301.87 1012.37 0.989 0.2

Covtype-scale
VN 27066.64 10741.37 0.745 0.95

BW-GD 28036.23 11259.20 0.714 0.98
SQ-VN 27065.02 10740.73 0.745 0.91
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F.3 Iteration Plots with Accuracy

0 2000 4000
Iteration

10 3

10 1

101

103

Tr
ai

ni
ng

 E
LB

O

VN
SR-VN
BW-GD

0 2000 4000
Iteration

10 4

10 1

102

Te
st

 N
LL

0 2000 4000
Iteration

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

20 1045 2070 3095
0.85

0.90

0.95

Zoomed

Breast-cancer-scale

0 1000 2000 3000
Iteration

10 3

10 1

101

103

Tr
ai

ni
ng

 E
LB

O

0 1000 2000 3000
Iteration

10 4

10 2

100

102

Te
st

 N
LL

0 1000 2000 3000
Iteration

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

20 875 1730 2585
0.82

0.84

0.86

0.88
Zoomed

Australian-scale

0 2000 4000
Iteration

10 3

10 1

101

Tr
ai

ni
ng

 E
LB

O

0 2000 4000
Iteration

100

101

Te
st

 N
LL

0 2000 4000
Iteration

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

20 1252 2484 3716
0.68

0.70

0.72

0.74

0.76

Zoomed

Diabetes-scale

0 2000 4000 6000 8000
Iteration

101

102

103

104

105

Tr
ai

ni
ng

 E
LB

O

0 2000 4000 6000 8000
Iteration

101

103

105

Te
st

 N
LL

0 2000 4000 6000 8000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

20 2470 4920 7370

0.6

0.8

1.0
Zoomed

Mushrooms

Figure 6: Plots with respect to the number of iterations for small-scale datasets.
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Figure 7: Plots with respect to the number of iterations for large-scale datasets.
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F.4 Time Plots with Accuracy
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Figure 8: Plots with respect to time for small-scale datasets.
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Figure 9: Plots with respect to time for large-scale datasets.
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G Comparing Geometries: SR-VN vs. Alternatives

In this section, we discuss two complementary comparisons for SR-VN: (1) a theoretical analysis of its
convergence rate relative to BW-GD, and (2) an empirical evaluation against an enhanced method tailored
for the BW geometry.

Theoretical rates comparison, SR-VN vs BW-GD: To estimate the convergence rate for BW-GD, we
refer to (Lambert et al., 2022b, Theorem 4), which—under the assumption of strong log-concavity—provides
an exponential rate in the Wasserstein distance once we ignore the variance term because of its deterministic
nature. Consequently, in terms of asymptotic guarantees, BW-GD and SR-VN both exhibit exponential
convergence rates. However, the specific details—namely, which geometry (Fisher–Rao vs. Wasserstein) is
deployed, and which measure (KL in parameter space vs. Wasserstein distance in probability space) is
analyzed—separate these methods apart. As a result, establishing a theoretical comparison is challenging,
leading us to focus on experimental evidence in the next section.

Additional experimental comparisons. Although BW-GD is a natural baseline for SR-VN in the BW
geometry, more recent studies have proposed improved and more stable stochastic BW methods (e.g., Diao
et al. (2023); Liu et al. (2024)). We focus here on Liu et al. (2024), which uses SVGD and has demonstrated
better performance than Diao et al. (2023). Specifically, we implemented a deterministic version of (Liu
et al., 2024, Algorithm 1)—i.e., replacing sample estimates with the full expectation—and refer to this
method as SVGD-density. It is worth mentioning that Liu et al. (2024) demonstrated improvements in the
stochastic setting compared to BW-GD. However, since we focus on the deterministic implementation here, it
remains unclear whether the same advantages apply—this is precisely what we aim to address next.

We evaluated SVGD-density (using various step sizes) on the same 2D Bayesian linear regression problem
from Figure 1, as shown in Figure 10 (upper). Additionally, we tested it on the Bayesian Logistic Regression
scenario in Figure 3, as shown in Figure 10 (lower). In both plots, SVGD-density shows the slowest convergence
among the compared algorithms. Although it can approach the performance of BW-GD, given a finely tuned
step size e.g. in Figure 10 (upper), its performance is generally worse compared to SR-VN or VN.
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Figure 10: Comparison of SVGD-density: Bayesian linear regression (top) and Bayesian logistic regression (bottom).
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