Marginalized Bundle Adjustment:
Multi-View Camera Pose from Monocular Depth Estimates

Shengjie Zhu'? *  Ahmed Abdelkader!
'Google

Abstract

Structure-from-Motion (SfM) is a fundamental 3D vi-
sion task for recovering camera parameters and scene ge-
ometry from multi-view images. While recent deep learn-
ing advances enable accurate Monocular Depth Estima-
tion (MDE) from single images without depending on cam-
era motion, integrating MDE into SfM remains a challenge.
Unlike conventional triangulated sparse point clouds, MDE
produces dense depth maps with significantly higher error
variance. Inspired by modern RANSAC estimators, we pro-
pose Marginalized Bundle Adjustment (MBA) to mitigate
MDE error variance leveraging its density. With MBA,
we show that MDE depth maps are sufficiently accurate
to yield SoTA or competitive results in SfM and camera
relocalization tasks. Through extensive evaluations, we
demonstrate consistently robust performance across vary-
ing scales, ranging from few-frame setups to large multi-
view systems with thousands of images. Our method high-
lights the significant potential of MDE in multi-view 3D vi-
sion. Code is available at https://marginalized-
ba.github.io/.

1. Introduction

Structure-from-Motion (SfM) is a fundamental method in
3D vision for recovering 3D scene geometry (as point
clouds) and camera parameters (intrinsics and extrinsics)
from multi-view images. Its versatility has fueled a wide
range of applications, including 3D reconstruction [23],
robot navigation [26], camera re-localization [24], neural
rendering [44], etc. Classical SfM pipelines operate by
identifying sparse 2D correspondences from image pairs
to jointly optimize 3D point positions and camera poses
via Bundle Adjustment (BA). However, reliance on explicit
feature matching makes these systems prone to failure in
scenes with low texture or limited parallax, and thus com-
promises reconstruction accuracy.

Unlike classic SfM that relies on motion cues to infer ge-
ometry, deep learning advances now enable the inference of
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structure independently of motion via Monocular Depth Es-
timation (MDE) [5, 48]. Despite the availability of this rich
structural prior, its integration into multi-view pipelines re-
mains an open challenge. Crucially, dense MDE predictions
remain underutilized. Existing works typically use them
only to initialize sparse keypoints, discarding the dense data
in favor of traditional BA refinement [7, 62, 74]. Mean-
while, alternative learning-based methods face other limita-
tions. Scene coordinate regression methods [8—10] require
expensive scene-specific fine-tuning. Methods formulating
BA as network inference [72-74] suffer from high memory
footprints that limit scalability. Finally, other approaches
that train a depth model during BA [62] are too memory-
intensive to leverage large SoTA foundation MDE models.

This raises a key question: how can dense MDE pre-
dictions be leveraged for multi-view pose estimation? The
challenge is that monocular depth maps yield dense but
high-variance point clouds, failing to meet the requirements
of classical SfM for sparse, accurate features (Fig. 1). To
bridge this gap, we propose a “Motion-from-Structure” ap-
proach that directly recovers camera motion from dense
structural information provided by MDE. To faithfully
showcase MDE for multi-view pose estimation, we avoid
per-pixel refinement entirely, intervening only to resolve
scale ambiguity through per-frame affine corrections.

To handle dense, high-variance inputs, we draw inspi-
ration from RANSAC. Conventional RANSAC relies on
discrete inlier counting. Despite being robust, it is non-
differentiable and sensitive to the chosen error threshold. To
overcome this limitation, we leverage the dense projective
residuals induced by MDE’s dense depth predictions. In this
setting, we observe that the inlier count for a given threshold
7 corresponds (in the limit) to the Cumulative Distribution
Function (CDF), F'(7), for that empirical residual distribu-
tion. Based on this insight, we formulate a robust BA objec-
tive that maximizes the Area Under the Curve (AUC) of this
empirical CDF (Fig. 3). This effectively integrates informa-
tion across a range of thresholds to marginalize out the error
threshold in BA, hence the name Marginalized Bundle Ad-
justment (MBA).
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Figure 1. Marginalized Bundle Adjustment (MBA). Our method registers monocular depth maps into a consistent 3D coordinate system.
Red camera icons indicate the viewpoints of registered depth maps. Monocular depth provides a strong structural prior, yet its predictions
are inherently high-variance, as reflected by the noisy appearance of the reconstructed point cloud. This makes classical Bundle Adjustment
designed for accurate sparse point cloud ill-suited. We therefore introduce a RANSAC-inspired Bundle Adjustment objective that leverages
the depth maps’ density to robustly accommodate their variance. Although depth-derived point clouds have lower visual fidelity, our
experiments show that monocular depth already supports SOTA or competitive performance on diverse SfM benchmarks, as exemplified
ScanNet [15], IMC2021 [6], and ETH3D [6]. It highlights significant potential of monocular depth models for multi-view vision tasks.

Since analytical AUC maximization is intractable, we
derive a differentiable surrogate loss. Notably, this formu-
lation generalizes MAGSAC [2], a special case of our loss
if its assumed Chi-squared distribution is replaced with the
empirical residual distribution. Our marginalized objective
is general to serve as a robust scoring function in RANSAC,
where it matches the performance of MAGSAC++ [3] on
the two-view essential matrix estimation.

We integrate the MBA objective into a flexible, coarse-
to-fine framework applicable to both SfM and camera re-
localization. This pipeline is designed to accept various ro-
bust loss functions, where we opt to skip conventional com-
ponents such as feature tracking and triangulation to high-
light the benefits of MDE on its own. Through the power of
monocular depth priors, our results show state-of-the-art or
competitive results on multiple indoor and outdoor bench-
marks. Additionally, the method proves highly scalable, ca-
pable of performing global BA over thousands of frames
using a distributed cluster (Table 1), which validates the vi-
ability of MDE-based methods for large-scale reconstruc-
tion. We summarize our contributions as follows:

e First framework integrating general MDE models into
SfM and re-localization tasks across varying scales.

* Novel and principled RANSAC-inspired objective func-
tion designed to handle dense, high-variance depth priors.
This formulation is versatile and applicable to two-view
RANSAC and multi-view Bundle Adjustment.

* SoTA or competitive performance on indoor & outdoor,
small & large scale, SfM and re-localization benchmarks.

2. Related Work

Dense Depth Map and Point Cloud Estimation. Re-
cent depth foundation models [31, 33, 51, 83] enable rel-
atively accurate metric depth maps inference in-the-wild [5,
48, 49]. Methods [31, 64, 80] augment monocular depth
with video. Next, monocular point cloud models includ-
ing MoGe [76, 77] directly regress 3D point cloud instead
of depth map, augmenting depth learning with intrinsic
prior. Further, binocular point cloud models [75, 84] such
as DUSt3R [79] and MASt3R [34] integrate motion prior
via regressing spatially aligned point clouds. Yet, shown
in Fig. 1, aforementioned models are inherently dense and
high-variance. Our Marginalized BA function is designed
to accommodate these characteristics. To our knowledge,
we are also the first generalizable framework that extends
depth and point cloud models to multi-view vision tasks.

RANSAC. RANSAC algorithms [2] robustly estimate low-
DoF parameters under noise. Our work extends the
RANSAC philosophy from low-DoF two-view tasks to the
high-DoF multi-view problems. Namely, we handle noisy
inputs from high-variance network regressions including
dense depth maps. Several RANSAC variants [2, 67] have
improved scoring function by moving from binary [22] to
continuous formulations. MAGSAC [2] smooths binary



Dataset ‘ ScanNet [14] Tanks&Temples [30] ETH3D [59] IMC2021 [6] 7-Scenes [60] Wayspots [9]
Tmages 391 1,106 76 25 8,000 1,157
Pairs 21,982 210,894 1,571 300 282,209 666,598

Table 1. Maximum Size of Pose Graph in each benchmarked dataset. The nodes and edges are its images and co-visible image pairs.

counting function by integrating residuals against a chi-
squared prior distribution. We propose a generalized for-
mulation that maximizes inlier counts aggregated at multi-
ple residual thresholds. In essential-matrix estimation, our
strategy matches MAGSAC++’s performance [2].

Deep Learning for Multi-view Pose Estimation. Tra-
ditional SfM pipelines like COLMAP [56] have been
improved by learned image matching models, including
PixSfM [40], DF-SfM [28], and Dense-SfM [32]. Sub-
sequent works incorporates 3D priors. For example,
FlowMap [62] formulates SfM as a self-supervised depth
learning task, while MASt3R-SfM [18] introduces a ded-
icated point cloud aggregation strategy for models like
DUSt3R [79] and MASt3R [34]. More recently, the en-
tire SfM pipeline has been reformulated as an end-to-end
learning problem [72-74]. However, high memory foot-
print typically limits these approaches to small-scale sce-
narios. In the related task of camera re-localization, meth-
ods often train a network to map images to world coordi-
nates but usually require scene-specific fine-tuning [1, 10].
To our knowledge, MBA is the first framework to success-
fully apply general-purpose MDE models to both small and
large-scale SfM problems. Notably, when using DUSt3R
as its MDE model, MBA achieves higher accuracy than the
specialized MASt3R-SfM pipeline (Tab. 3).

3. Method

We propose an MDE-based approach for multi-view pose
estimation. As shown in Fig. 1, our pipeline keeps the
depth maps fixed, and applies only affine corrections to
account for the depth scale ambiguity. Our core contribu-
tion is a marginalized BA (MBA) objective that effectively
leverages dense depth map predictions with high variance.
In this section, we present our approach in the context of
SfM, and defer the minor adaptations required for camera
re-localization and two-view RANSAC towards the end.

3.1. System Overview

Problem Definition. Given as input an unordered collec-
tion of N RGB frames {I;};c[n], we optimize for camera
intrinsics K ={K;} and extrinsics P = {P;}. To do so, we
precompute N depth maps D = {D; =Np(I;)} and pair-
wise correspondence maps C = {C; ; =Nc(L;,1;),i # j},
where Np and N denote pre-trained depth and correspon-
dence models, respectively (see examples in Fig. 4). We
jointly optimize per-frame affine corrections A = {«;, §; |
i < N} for each depth map, producing scale-ambiguity

corrected depth maps:

D; = a;-D; + f;. (1
Optimization Objective. Denote X = {P, K, A} as the
set of all variables to optimize, and X; = (P;, K;, A;), we
define the objective as maximizing a scoring function S:

X* = argmax S(X|D,C).

X=(P,K,A)

2

We define S as the summation of a suitable quality function
Q over frame pairs (I;, I;) over the pose graph G:

SX|D,0)= Y QX:X;|D;D;,Cij). 3
(i,5)€9

The pose graph G (defined in Sec. 3.3) connects co-visibile
frame pairs with enough high-confidence correspondences.
Algorithm Pipeline. In Fig. 2, we subsample dense depth
and correspondence into a data matrix. Outlined in Sec. 3.3,
with initialized intrinsics, extrinsics, and depth affine cor-
rections, we sequentially execute coarse and fine stage STM.
Two stages are mostly same except for employing different
pose graphs. Each stage applies gradient descent with fixed
iterations. In the following Sec. 3.2, we first describe our
core algorithm: the marginalized BA objective for dense,
high-variance network regressions.

3.2. Marginalized Bundle Adjustment (MBA)

We begin with a naive yet robust binary quality function to
realize the Eq. (3) quality function. Despite its robustness,
the binarized function is non-differentiable and sensitive to
the single threshold selected. Hence, we propose a smooth
form integrating over multiple thresholds.

Subsample Dense Depth and Correspondence. For each
co-visible frame pair of the pose graph G, we sample a fixed
number x of paired pixels. Specifically, between frame i
and j, we sample x depth pixels on frame ¢ and x i-to-j
correspondence pixels. We apply random sampling with
replacement over the correspondences with a confidence
score at least x yielding a data matrix of size |€| X k x 5,
where £ denotes the edges of G.

Projective Residuals. We define the residual r; ;. as the
2D discrepancy in the k' sampled correspondence c;. ik €
C, ;. Denoting ¢; ; 1 as (pi j .k, Gij,k) € Ii X Ij, we write

“)

where the operator 7;_,; projects the pixel p; ;1 in frame
I; to the frame I; with its affine-aligned depth value in D/,

riga = ||mis; (D}lpijk]) — Qi,j,k’ 91
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Figure 2. System Overview. With N RGBs, the system consumes dense depth maps and pairwise correspondence inferred by pretrained
models. The system outputs intrinsics, extrinsics, and frame-wise depth affine corrections scalars. A sparse N x N pose graph is built from
co-visible frames using correspondences. Dense inputs are subsampled into a data matrix of |£| X k x 5 (graph edges count) for scalable
multi-GPU optimization. After initialization, the Bundle Adjustment proceeds from coarse to fine. In coarse stage, the BA objective is
evaluated and summed over “star-shaped” subgraph G; of each frame i. One subgraph includes itself plus its co-visible neighbors, marked
as one colored row in coarse pose graph. Fine stage computes with full graph. The BA applies gradient descent for fixed iterations.

from Eq. (1). Pixel g; ; 1 is the corresponding pixel of p; ; 1.
The projection is defined by the camera intrinsics K;, K;
and extrinsics P;, P; [27]. Other robust norms may also be
used in Eq. (4), e.g., the Cauchy function used in [57].
Binary Quality with a Threshold. We start realizing
Eq. (3) with a robust binary quality function:

S'@x|per)= > (Zn[ri,j,k@]) (5)

(i,7)€G \k€r

where the variable 7 is the residual threshold and function
1(+) is the indicator function. Intuitively, a depth pixel is
considered an inlier if its projective residual is below the
threshold 7. The binarized scoring function in Eq. (5) is
widely used in RANSAC algorithms [22] for its robust-
ness on overly-sampled noisy inputs. RANSAC algorithm
mostly addresses low Degree-of-Freedom (DoF) problem
including essential matrix estimation [46]. In contrast,
multi-view pose estimation problem solves multiple poses,
possessing a significantly larger solution space. This ne-
cessitates a continuous scoring function to enable iterative
optimization whereas S® from Eq. (5) is discrete.

CDF as Smoothed Quality. The dense depth maps provide
enough samples of projective residuals to utilize their dis-
tributional properties. Let R denote the set of all residuals.
We model the residual r as a random variable following an
empirical distribution R estimated with kernel density esti-
mation (KDE) [61]. This gives residual r distribution R:

r~R=KDE(R), R={r; ;x| (i,7) € G, [k] € k}.
(6)
Please see Fig. 3 for an example distribution. Denote p(r)
and F(7) = Pr[r < 7] as the probability distribution func-
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Figure 3. CDF and PDF of empirical residual distribution R. In
Eq. (8), our BA maximizes the area-under-the-curve of R’s CDF
curve up a maximum threshold. The BA automatically formulates
a smoothed categorization of inliers versus outliers. The forward

and backward computation ( Eqn. 10 & 11 ) at the residual 7 is
succinctly defined as indexing the curve at F'(r) and p(r).

tion (PDF) and cumulative distribution function (CDF) of
R, respectively. The binary scoring function at threshold 7
in Eq. (5) is approximated as the CDF function at value 7.

S'X|D,C,r)=> Arin <7~ |[R|-F(r). ()
1,5,k

Marginalizing Thresholds. We generalize Eq. (5) by ex-
tending from single to multiple thresholds. We integrate
Eq. (5) up to a maximum threshold 7;,,x, beyond which a
residual is safely considered an outlier.

S"(X|D,C)= [ SX|D,C,r)dr
0

~ |R| F(r)dr. ®)
0



Figure 4. Dense Depth and Correspondence are inputs to our multi-view pose estimation system. We benchmark pose performance with
depth map under diverse imaging conditions. Figures (a) to (e) include ScanNet [14] indoor images, T&T [30] and ETH3D [58] high
resolution images, IMC2021 [6] internet-collected images, and Wayspots [9] flipped image. Fig. (f) visualizes dense correspondence.

Intuitively, depth pixels from dense depth maps vary at
noise levels. In Eq. (5), a large threshold 7 aids to regis-
ter camera at approximately correct locations while a small
T improves accuracy but risks local minima. On the other
hand, Eq. (8) leverages benefits from setting both small and
large thresholds. Mathematically, it computes the area un-
der a truncated CDF curve, as outlined in Fig. 3.
Marginalized Bundle Adjustment (MBA) Objective.
Practically, we use a histogram-based KDE implementa-
tion. This renders Eq. (8) as a summation over a finite set
of T thresholds with 7;, = % - Tiax.

S™X|D,C)= Y S"x|D.Cm)
0<i <T

Q

T
Tmax
IR| - = 2_% F(r). O
MBA Forward. In Fig. 3, to maximize Eq. (9), we pro-
pose a surrogate loss with pixel-wise forward and backward
functions (plus a negative sign). Intuitively, Eq. (9) provides
a smooth differentiable loss wrapped over each residual:

1
Lyvpa = Kl Z —F(ri k) Lrije < Tmax]-  (10)
igk

MBA Backward. Correspondingly, the backward is:

OLvBA 1
N N I _ 11
O |R|p(7’m7k) [T,k < Tmax] (11)

Discussion. Despite employing Eq. (10) as loss, our opti-
mization objective is Eq. (9). We prove its effectiveness via
applying Eq. (9) as a scoring function to a two-view pose
estimation with RANSAC. In Tab. 8, our scoring function
performs comparable to SoOTA method [2] with dense im-
age correspondence inputs. Notably, MAGSAC [2] scoring
function becomes a special case of Eq. (10) as replacing its
assumed chi-squared distribution with the empirical distri-
bution R. See more details in Supp. Sec. 6.

Robustness. As a RANSAC inspired objective function,
the proposed loss function Eq. (9) inherits its robustness.
From the backward function Eq. (11), the gradient of ex-
treme residual values, i.e., those of low probability, is sup-
pressed, as shown in Fig. 3. After convergence, the noise
level of each depth pixel is implicitly captured by its resid-
ual probability, enabling BA to automatically distinguish in-
liers from outliers without a dedicated neural network.
Scalability. Shown in Fig. 2, our approach maintains an
|€| % k x 5 matrix. It allows scaling up by parallelizing com-
putation across multiple GPUs. In Tab. 1, we enable global
BA over large-scale pose graph involving 8, 000 frames and
564, 418 co-visible frame pairs. This significantly surpasses
recent methods including FlowMap [62], VGG-SfM [73],
and PoseDiffusion [72], which run out of memory when
processing more than 200 frames [18].

3.3. SfM Pipeline

The section outlines the sequentially executed, initializa-
tion, coarse-stage SfM, and fine-stage SfM processes. We
also describe extension to camera re-localization.

Pose Graph Construction. As shown in Fig. 2, we con-
struct an undirected pose graph G from a set of co-visible
frame pairs (I;, ;). Co-visibility between two frames is
measured as the percentage of pixels that are visible in both
views, computed from correspondence maps C; ; € C. We
include an edge g; ; € G if the co-visibility score exceeds a
threshold v, resulting a sparse pose graph.

Intrinsic Initialization. Each frame, we run DUSt3R [79]
with two identical frames to extract a dense point cloud,
then initialize per-frame intrinsics via RANSAC-based cal-
ibration [86]. If a shared intrinsic is assumed, we initialize it
using the median focal length. See details at Supp. Sec. 7.6.
Camera Pose and Depth Adjustment Initialization. We
construct a spanning tree from the pose graph G using a
greedy strategy. The root node is chosen as the frame with
the highest degree. At each step, we add a new node that
maximizes the total degree of the tree. For each new frame
i, we identify a registered, co-visible frame j. Using pro-
jection from frame j to i, we initialize the 6-DoF camera
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Figure 5. Camera Re-localization on 7-Scenes and Wayspots.
Green and blue mark predicted and groundtruth odometry. We
present challenging sequences of repetitive, textureless images.
The images exhibit (1) scale changes, (2) flipping, and (3) a lack
of distinguishable depth references. Consequently, the model pre-
dicts sub-optimal depth maps. Surprisingly, despite these signifi-
cant challenges, depth maps still support accurate camera poses.

pose P;, with translation magnitude estimated following a
Five-Point algorithm-based method. From the reverse pro-
jection ¢ to j, we estimate depth scale adjustment s;. The
depth bias [; is initialized to zero.

Coarse-Stage SfM. Suppose the frame ¢ is poorly regis-
tered, its corresponding residual r; ; ;. exhibits significantly
large values. Due to the robustness property of Eq. (11), the
residuals with larger values are automatically suppressed
with smaller gradients, see outliers at Fig. 3. These charac-
teristics cause poorly registered frames to become “stuck”
in a local minimum. We propose a graph decomposition
strategy to mitigate the occurrence of early local minima.
For the graph G, we decompose it into a N subgraphs G;:

G=> G Gi={V &}, (12)
iEN
where V; = {Il} UN(Ii) and &; = {(Ii, Ij) | Ij S N(IZ)}
Each subgraph G; consists of the i-th frame I; and its neigh-
boring frames A/ (I;). In Fig. 2, we visualize each subgraph
as a row of color in the sparse pose graph.

Beyond subgraph decomposition, we apply logarithmic
operation to the L2 norm residual in Eq. (4) to enhance its
robustness to large residuals from poorly registered frames.
This renders the coarse-SfM BA forward function as:

Leoarse = —% Z HTI’L” Z Fy(Pig) - WFijk < Tmanl » (13)
i (4:k)€G:

where 7; j , = log(1+7; ;) and F} is the CDF for the em-
pirical distribution of logged residuals over the subgraph G;.
Variable R?; is the set of valid pixels included in subgraph
G; up to a predefined maximum 7.

Fine-Stage SfM. As shown in Fig. 2, we use L2 norm BA
objective, with forward and backward functions defined in
Eq. (10) and Eq. (11), respectively. We evaluate over the
entire graph. For both the coarse and fine stages, BA runs by
applying gradient descent with a fixed number of iterations.
Extension to Camera Re-localization. In Fig. 5, camera
re-localization estimates the poses of unregistered query im-
ages given a set of registered map frames. We extend to it

with two changes. (1) Intrinsic initialization is skipped as
provided. The poses and depth adjustments are initialized
using the map frame with the highest visibility. (2) The pose
graph includes both map and query frames. Gradients for
map frames are disabled. We use groundtruth depth map of
map frames if provided. Otherwise, we estimate depth maps
using MDE, e.g., the Wayspots map-free re-localization [9].

Extension to RANSAC. Using parallelized GPU imple-
mentation, we initialize 64 minimal solutions choosing the
maximizer according to Eq. (9). Details in Supp.Sec. 7.1.

4. Experiments

We benchmark our method’s pose accuracy on two funda-
mental 3D vision tasks: Structure-from-Motion and cam-
era re-localization. For the SfM task we evaluate using
small-scale ETH3D [59] IMC2021 [6], ScanNet [14], and
T&T [30] datasets. For camera re-localization we evaluate
using the 7-Scenes [60] and Wayspots [9] datasets. Unless
otherwise specified, we use the SOTA model DUSt3R [79]
as the default monocular depth estimator, while also sup-
porting other MDEs (see Tab. 5 and Supp. Tab. 13). Fol-
lowing [79], we feed DUSt3R with two identical images
and extract the z-channel of the resulting point cloud as the
depth map. We use RoMa [20] for dense correspondence.

Implementation Details. We optimize coarse and fine
stages using Adam [29] for total 50k iterations with a learn-
ing rate of le-3. We sample x = 200 pixels at each frame
pair. We set maximum residual value to Tinax = 10 for the
coarse BA objective, Eq. (13), and Tjm,x = 20 for the fine BA
objective, Eq. (5). We include image pairs with v > 15%
of their pixels co-visible. Correspondences with confidence
x > 0.2 are considered valid. More in Supp.Sec. 7.6.

4.1. Structure-from-Motion Evaluations

Benchmark on ETH3D. ETH3D [59] contains unordered,
high-resolution indoor and outdoor images with precisely
calibrated groundtruth camera poses. In Table 2 we follow
the protocol of MASt3R-SfM [18] in reporting the relative
rotation accuracy (RRA) and relative translation accuracy
(RTA) of poses at a fixed threshold. We achieve SoTA
with substantial improvement in Tab. 2. We outperform
the classic COLMAP [56], DF-SfM [28], and the scene-
coordinate regression based method ACE-Zero [10]. We
also outperform the learning-base VGG-SfM [73], and its
counterparts FlowMap [62] and MASt3R-SfM [18], using
depth maps and point clouds respectively. Notably, we out-
perform MASt3R-SfM using the same depth estimator of
DUSt3R and a less-performant RoMa correspondence esti-
mator. Our experiments indicate that the zero-shot monoc-
ular depth map already produces comparable or better per-
formance than classic SfM algorithms.



Scene COLMAP [56] | ACE-Zero[10] | FlowMap [62] | VGG-SfM[73] | DF-SfM[28] | MASt3R-SfM [18] | MBA (Ours)

RRA RTA | RRA RTA | RRA RTA | RRA RTA | RRA RTA | RRA RTA RRA  RTA
courtyard 56.3  60.0 | 4.0 1.9 75 3.6 | 505 512 | 80.7 748 | 89.8 64.4 94.7  94.7
delivery area | 34.0 281 | 27.4 19 | 294 238 | 220 196 | 825 820 | 83.1 81.8 83.1  83.0
electro 53.3 485 | 169 7.9 25 1.2 | 799 586 | 828 812 | 100.0 955 95.6 782
facade 922 900 | 745 641 | 157 168 | 57.5 48.7 | 80.9 826 | 743 75.3 100.0  99.2
kicker 873 8.2 | 262 168 | 1.5 15 | 1000 97.8 | 935 91.0 | 100.0  100.0 | 100.0  98.9
meadow 0.9 0.9 3.8 0.9 3.8 29 | 1000 962 | 56.2 581 | 58.1 58.1 100.0  58.1
office 369 323 | 09 0.0 09 15 | 649 421 | 711 545 | 100.0 985 100.0  86.2
pipes 308 286 | 9.9 1.1 6.6 121 | 100.0 97.8 | 725 615 | 100.0  100.0 | 100.0  96.7
playground | 17.2  18.1 | 3.8 2.6 2.6 28 | 373 408 | 705 70.1 | 100.0  93.6 94.7 938
relief 16.8 16.8 | 168 170 | 69 7.7 | 59.6 57.9 | 329 329 | 342 40.2 100.0 989
relief 2 1.8  11.8 | 7.3 5.6 84 28 | 699 703 | 409 39.1 | 574 76.1 100.0  98.9
terrace 100.0  100.0 | 5.5 2.0 | 332 241 | 387 296 | 100.0 99.6 | 100.0  100.0 | 100.0 100.0
terrains 1000 995 | 158 45 | 123 138 | 704 549 | 1000 919 | 58.2 52.5 100.0  95.4
Average | 490 478 | 164 9.7 | 101 88 | 654 589 | 742 70.7 | 81.2 79.7 | 97.3  90.2

Table 2. Structure-from-Motion benchmark on ETH3D dataset [59] in metrics RRA (@5°) and RTA (@5°) following MASt3R-SfM
evaluation protocol. See performance with other MDE models at Supp.Tab. 13. See detailed evaluation protocol at Supp.Sec. 7.5

Type \ Method AUC@3° AUC@5° AUC@10°
SIFT+NN + COLMAP [56] cver'i6 24.87 34.47 45.94
SIFT + NN + PixSfM [41] iccva 26.45 35.73 47.24
Detector-Based D2Net + NN + PixSfM [4 1 Jiccvar 10.27 13.12 17.25
R2D2 + NN + PixSfM [41] iccvar 32.44 42.55 55.01
SP + SG + PixSfM [41] iccvan 46.30 58.43 71.62
LoFTR + PixSfM [41] iccvar 44.06 56.16 69.61
Detector-Free LoFTR + DF-SfM [28] cver2s 46.55 58.74 72.19
AspanTrans. + DF-SfM [28]cvers 46.79 59.01 72.50
MatchFormer + DF-SfM [28]cver2s 45.83 57.88 71.22
Dense Matchin. DKM + Dense-SfM [32]cver2s 48.65 61.09 74.37
s RoMa + Dense-SfM [32]cver2s 48.48 60.79 73.90
VGG-SM [73 ]ever2s 45.23 58.89 73.92
Deep-based VGGT [74] cveras 39.23 52.74 71.26
VGGT [74] + BA cvers 66.37 75.16 84.91
Point-Based Mast3r-SfM [18]v2s 42.26 54.53 67.97
B Dense-StM + Mast3r-SfM [18]ovss  44.98 57.09 70.09
MDE | MBA (Ours) 4729 60.37 74.59

Table 3. Structure-from-Motion on IMC2021 [6] dataset in AUC
metric. We are comparable or better than Dense-SfM, DF-StM,
Mast3r-StM, PixSfM, VGG-SfM and VGGT without BA.

Benchmark on IMC2021. The IMC2021 [6] dataset fea-
tures internet images of tourist landmarks, organized into
1,020 subsets each containing 5, 10, or 25 images. Fig. 1
shows example results of London Bridge. Despite includ-
ing challenging elements including sky, river, tourists and
trees, MDE depth maps still enable competitive pose perfor-
mance. Table 3 presents quantitative results on IMC2021.
Our method performs second to VGGT [74] + BA at
AUC@10° and competitive results at other thresholds. We
outperform the learning based methods VGG-SfM [73], and
FlowMap [62] while consistently outperforming MASt3R-
SfM [18]. Our method also ranks similarly with SoTA clas-
sic method Dense-SfM [32] while outperform others in-
cluding COLMAP [56], PixSfM [41], and DF-SfM [28].
We observe that VGGT+BA significantly improves perfor-
mance, suggesting BA remains a necessary component for
foundation feed-forward SfM models. We contribute a new

Method Inference ‘ RRA@51 RTA@S51 ATE| Registration T
Cut3R [75] cveras - 18.8 25.8 0.017 100.0
Spann3R [71] spvs s 22.1 30.7 0.016 100.0
SLAMB3R [42] cvirs § 20.3 24.7 0.015 100.0
VGGT-SLAM [43] axivas 5 57.3 67.9 0.008 100.0
Light3R-SfM [21] cver2s E 52.0 52.8 0.011 100.0
SAIL [16] axivas 70.4 74.7 0.008 100.0
GLOMAP [47] eccvas 75.8 76.7 0.010 100.0
ACEQ [10] ecevas 56.9 57.9 0.015 100.0
DF-SfM [28] cvmeas s 69.6 69.3 0.014 76.2
FlowMap [62] wvas F 31.7 35.7 0.017 66.7
VGGSIM [73] cvrs 8 - - - 0.0
MAS3R-SIM [18] spvs 8, 49.2 54.0 0.011 100.0
DROID-SLAM [66] eutrs 21 o 31.3 40.3 0.021 100.0
SAIL-OPT [16] axivas 71.5 T 0.008 100.0
MBA (ours) 1.7 77.0 0.009 100.0

Table 4. Structure-from-Motion on Tanks&Temple [30] dataset.

Method | Depth | Corres. | ACC@3®  ACC@s° ACC@10°

COLMAP [56] | - | SuperPoint [17] | 0.342 0.505 0.670
ZoeDepth [5] | RoMa [20] 0.372 0.586 0.811
DUSt3R [79] | RoMa [20] 0.403 0.615 0.820

MBA (Ours) UniDepth [48] | RoMa [20] 0.407 0.612 0.823
DUSER [79] | MASER [34] 0.384 0.596 0.811
UniDepth [48] | MAS®3R [34] 0.393 0.598 0.817

Table 5. Structure-from-Motion on the ScanNet dataset [14].

BA objective that exploits the density of per-pixel regres-
sions. It potentially applies to recent feed-forward systems
including VGG-SfM, VGGT , and Light3R-SfM [21] that
already output dense depth maps or point clouds. Finally,
we scale to large optimization problem (Tab. 1) while feed-
forward baselines FlowMap and VGG-SfM run out of mem-
ory with more than 200 views [18].

Benchmark on Tanks&Temples. T&T [30] is a large-
scale SfM benchmark including 21 scenes, of around 300
images each, with pseudo-groundtruth from COLMAP. We
follow concurrent work SAIL [16] in evaluation, where VG-
GSfM fails to converge on this benchmark. Our MDE-
anchored method performs better or on-par with both feed-
forward and optimization baselines; see Tab. 4.



Category Method ‘ Average (deg/cm)

EM AS [55]pamris 5.1/2.46
HLoc [53]cver'1o 3.4/1.07
SC-wLS [81]ecev22 6.6/1.45
E2E NeuMaps [65]cver2s 3.1/1.()9
PixLoc [54]CVPR'21 2.9/0.98
ACE [9]cver2s 2.8/0.93
SCR DSAC* [8]pamr22 2.7/1.41
HSCNet [37]cver20 2.7/0.90
HSCNet++ [78]ucvas 2.29/0.81
APR MAREPO [13]cver24 ‘ 3.2/1.54
MDE MBA (Ours) \ 2.7/0.92

Table 6. Camera relocalization performance benchmark on the
7-Scenes dataset [60]. Per-scene results are in Supp.Tab. 15.

Benchmark on ScanNet. We further evaluate different
combinations of MDE and correspondence models on Scan-
Net at Tab. 5. We compare with COLMAP only on frames
it successfully registers, and our MDE-based SfM system
still outperforms it on this large-scale SfM benchmark.

Benchmark on FastMap. We additionally compare to
SoTA classic SfMs [36, 47] on large scenes in Supp.Tab. 12.

4.2. Camera Re-Localization Evaluations

Benchmark on 7-Scenes. For the task of camera relocal-
ization on 7-Scenes, we follow DUSt3R and MAREPO [13]
in categorizing baselines into four groups: feature match-
ing (FM), end-to-end (E2E), scene coordinate regression
(SCR), and absolute pose regression (APR). We follow
DUSt3R in using DIR [25] retrieving the top 200 query-to-
query and query-to-map images in evaluating our method.
Table 6 presents relocalization metrics, ranking our method
second to HSCNet++ [78], while outperforming ACE [9],
DSAC* [8], MAREPO [13], and HLoc [53]. Note that our
method is scene-agnostic, whereas HSCNet++ is a scene-
specific approach. We note too that our method is a multi-
view approach that assumes multiple test images are avail-
able, while baselines operate on each query independently.

Benchmark on Wayspots. Wayspots [9] is a map-free
camera relocalization dataset comprised of handheld smart-
phones images. Unlike 7-Scenes, it does not provide
groundtruth depth map for map images. We estimate depth
maps for query and map images with DUSt3R and con-
struct a pose graph via exhaustive image matching. Table 7
presents our results on Wayspots. Compared to baselines,
we directly use rotated images without alignment ( See ex-
ample at Fig. 5), yet still achieve SoTA performance. This
highlights our method’s ability to leverage the generaliza-
tion power of the MDE model. Baselines may face chal-
lenge as the scene-specific finetuning is nevertheless con-
strained to the texture and lighting conditions of the video.

Scene MAREPO [13] DSAC*[8] ACE[9] MBA (Ours)

Cubes 71.8% 83.8% 97.0% 75.1%
Bears 80.7% 82.6% 80.7% 100%
Winter Sign 0.0% 0.2% 1.0% 9.3%
Inscription 37.1% 54.1% 49.0% 28.3%
The Rock 99.8% 100% 100% 100%
Tendrils 29.3% 25.1% 34.9% 51.5%
Map 55.1% 56.7% 56.5% 45.1%
Square Bench 70.7% 69.5% 66.7% 58.6%
Statue 0.0% 0.0% 0.0% 0.0%
Lawn 34.2% 34.7% 35.8% 85.0%
Average-Accuracy | 47.9% 50.7% 52.2% 55.29%

Table 7. Camera relocalization benchmark on the Wayspots [9].

MegaDepth ScanNet
Method | AUCQ — 524 10°1 20°1 | 5°1 10°1 20° 7
LoFTR [63] cver2i 528  69.2 81.2 22.1 40.8 57.6
PDC-Net+ [68] tpamr2s 51.5 67.2 78.5 20.3 394 57.1
DKM [19] cver2s 604 749 85.1 294 507 68.3
PMatch [85] cver2s 61.4 75.7 85.7 29.4 50.1 67.4
RoMa [20] cver2s 62.6 76.7 86.3 31.8 534 70.9

RoMa [20] + MAGSAC++[3] | 68.0 79.8 880 | 329 546 713
RoMa [20] + MBA (Ours) 66.9 79.3 87.6 324 541 71.0

Table 8. RoMa benchmark of two-view pose estimation with
RANSAC on MegaDepth-1500 [38] and ScanNet-1500 [15].

4.3. Ablation Study

MDE Model. Our method accomodates different MDEs,
and performance consistently improves with stronger ones.
On ScanNet (Tab. 5), replacing ZoeDepth with UniDepth
increases Acc@3° from 0.396 to 0.439. A similar improve-
ment is observed on ETH3D; see Supp.Tab. 13.

Two-View RANSAC. Shown in the Tab. 8, the RANSAC-
inspired scoring function Eq. (8) serves as an alternative
scoring function in RANSAC, showing a comparable per-
formance with the SOTA method MAGSAC++ [3].
Algorithmic Choices. In Supp.Tab. 10, we compare dif-
ferent optimization schemes and further demonstrate that
increasing the sampling density yields marginal improve-
ments in pose estimation accuracy. Finally, we compare
the MBA loss to conventional robust loss functions [45, 57]
where MBA loss consistently outperforms others.

5. Conclusion

We introduced “Marginalized Bundle Adjustment” (MBA),
a multi-view pose estimation method that leverages monoc-
ular depth estimators (MDE). Our core contribution is a
RANSAC-motivated BA objective enabled by dense net-
work predictions. Our method scales to large datasets
and generalizes across scenes, highlighting the potential of
MDE in multi-view pose estimation task.

Limitations. Our use of a first-order optimizer leads
to higher runtime compared to other SfM baselines.
Beyond depth estimation models, it would be interest-

ing to investigate a tight integration of our proposed
MBA with feed-forward foundation models such as VGGT.
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