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Abstract

We propose to solve inverse problems involv-
ing the temporal evolution of physics systems by
leveraging recent advances from diffusion mod-
els. Our method moves the system’s current state
backward in time step by step by combining an ap-
proximate inverse physics simulator and a learned
correction function. Training the learned correc-
tion with a single-step loss is equivalent to a score
matching objective, while recursively predicting
longer parts of the trajectory during training re-
lates to maximum likelihood training of a corre-
sponding probability flow. Our resulting inverse
solver has excellent accuracy and temporal stabil-
ity and, in contrast to other learned inverse solvers,
allows for sampling the posterior of the solutions.

1. Introduction
We target inverse problems to reconstruct the distribution
of initial states for a given end state of a physics system.
This problem is genuinely tough (Zhou et al., 1996; Gómez-
Bombarelli et al., 2018), and existing methods lack tractable
approaches to represent and sample the distribution of states.
Our method builds on recent advances from the field of
diffusion-based approaches (Sohl-Dickstein et al., 2015; Ho
et al., 2020): Based on a given end state of the system, we
predict a previous state by taking a small time step back-
ward in time and repeating this multiple times for a single
inference. The prediction of the previous state depends on
an approximate inverse of the dynamics, a learned update
sθ, and a small Gaussian perturbation.

In contrast to previous diffusion methods, we include do-
main knowledge about the physics process in the form of
an approximate inverse simulator, which replaces the drift
term of diffusion models (Song et al., 2021; Zhang & Chen,
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2021). The learned component sθ corrects any errors that
occur due to numerical issues, e.g., the time discretization,
and breaks ambiguities due to a loss of information in the
simulation over time. Compared to other strategies for con-
ditional sampling and diffusion models, such as classifier
and classifier-free guidance, our method directly embeds
the diffusion into the physics process. All conditioning in-
formation that we consider here is thus already contained in
the state of the process.

The training of sθ is similar to learned correction approaches
for numerical simulations (Tompson et al., 2017; Um et al.,
2020; Kochkov et al., 2021); however, in our method, we tar-
get to learn corrections for the “reverse” simulation. Train-
ing can either be based on single simulation steps or be
extended to rollouts for multiple steps. The latter requires
the differentiability of the inverse physics step. While the
training with single steps directly minimizes a score match-
ing objective, we show that the extension to multiple steps
corresponds to maximum likelihood training of a related
neural ordinary differential equation (ODE). Considering
multiple steps is important for the stability of the produced
trajectories. Feedback from physics and neural network
interactions at training time leads to more robust results.

Figure 1 gives an overview of our method. Our aim is not to
develop a new, generic algorithm for diffusion models but
rather to provide a first demonstration that the combination
of diffusion-based techniques and differentiable simulations
has merit for solving inverse problems. In the following, we
refer to methods using this combination as score matching
via differentiable physics (SMDP). Our main contributions
are: (1) We introduce a reverse physics simulation step into
diffusion models to develop a probabilistic framework for
solving inverse problems. (2) We provide the theoretical
foundation that this combination yields learned corrections
representing the score of the underlying data distribution.
(3) We highlight the effectiveness of SMDP with two chal-
lenging inverse problems.

2. Method Overview
Problem formulation Consider a dataset of trajecto-
ries (x0, ...,xM ), where each xj ∈ RD corresponds to
a discretized state of a numerical simulation at time tj .
tj − tk := ∆t denotes the timestep, and t0 = 0 and
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(a) Training and inference overview. (b) Sliding window and optimizing sθ .

Figure 1: Overview of our method. For training, we fit a neural ODE, the probability flow, to the set of perturbed training
trajectories (a, top). The probability flow is comprised of an approximate reverse physics simulator P̃−1 that contrary
to P moves the state of the system backward in time as well as a correction function sθ. For inference, we simulate the
system backward in time from xT to x0 by combining P̃−1, the trained sθ and Gaussian noise in each step (a, bottom). For
optimizing sθ, our approach moves a sliding window of size S along the training trajectories and reconstructs the current
window (b). Gradients for θ are accumulated and backpropagated through all prediction steps.

tM = T . Moreover, we assume that the temporal evo-
lution of our system can be approximated recursively by
xm+1 = xm +∆tP(xm) +

√
∆t Ftm , where P : RD →

RD is a physics simulator and Ftm a stochastic forcing that
accounts for uncertainties and perturbations. We draw the
initial state x0 from a distribution p0. This then induces
a distribution of states pti for all time steps 0 < i < M .
Our goal is to infer an initial state x0 given a simulation
end state xM , i.e. we want to sample from the distribution
p0( · |xM ). In the first experiment, we consider a Gaussian
stochastic forcing, i.e., the system is described by the SDE
dx = P(x)dt+g(t)dW for a function g : R→ R, whereas
in the second experiment, there is no stochastic forcing but
small noise added to the end state.

2.1. Learned Corrections for Reverse Simulation

In the following, we furthermore assume that we have ac-
cess to an approximate reverse physics simulator P̃−1 :
RD → RD, which moves the simulation state backward in
time (Holl et al., 2022). We train a neural network sθ(x, t)
parameterized by θ such that

xm ≈ xm+1 +∆t
[
P̃−1(xm+1) + sθ(xm+1, tm+1)

]
. (1)

Multi-step loss We define a hyperparameter S, called
sliding window size, and write xi:i+S ∈ RS×D to denote
the trajectory starting at xi that is comprised of xi and the

following S − 1 states. Then, we define the multi-step loss

L(θ) = 1

M
E

[
M−S+1∑
m=0

||xm:m+S−1 − x̂m:m+S−1||22

]
,

where the expectation is computed by drawing a trajectory
x0:M from the training data set. The predicted trajecto-
ries x̂m:m+S−1 are defined recursively by x̂i+S = xi+S

and computing x̂i+S−1−j from x̂i+S−j based on equation
(1). For S = 2, we denote the corresponding loss 1-step
loss, since the prediction only comprises a single previ-
ous simulation state instead of a longer trajectory of states.
Conceptually, the 1-step loss is similar to the training of stan-
dard diffusion models. However, in practice, approaches
that consider a loss based on predicting longer parts of the
trajectories are more successful for training learned cor-
rections (Bar-Sinai et al., 2019; Um et al., 2020; Kochkov
et al., 2021). In appendix A we show how this loss relates
to matching the score ∇x log pt(x) and maximum likeli-
hood training. In our experiments, we leverage the forward
physics simulator P to obtain an approximation for the re-
verse step P̃−1. It is also possible replace P̃−1 by a learned
surrogate model.

2.2. Training and Inference

We start training sθ with the multi-step loss and window
size S = 2 and gradually increase the window size S until a
maximum Smax. For S > 2, the unrolling of the predicted
trajectory includes interactions between sθ and the reverse
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(a) Training (b) Inference (c) 1-step vs. multi-step

Figure 2: Overview of our 1D toy SDE. (a) Training with a data set of trajectories and known temporal dynamics given by
P(x) := −sign(x)x2 and g ≡ 0.1. We estimate the score∇x log pt(x) with our proposed method using an MLP network
for sθ(x, t). Negative values (blue) push down the trajectories, and positive ones (red) push them up. Together with the
dynamics, this can be used to reverse the system as shown in (b) either with the reverse-time SDE or the probability flow
ODE. A successful inversion of the dynamics requires the network sθ to be robust and extrapolate well (c). Inference using
GRID trained with the 1-step loss causes trajectories to explode. Training GRID with the multi-step loss solves this issue.

physics step P̃−1. For inference, we consider the neural
SDE

dx =
[
−P̃−1(x)− C sθ(x, t)

]
dt+ g(t)dW,

which we solve via the Euler-Maruyama method. Sampling
from this SDE yields a posterior distribution. For C = 2
and if the system is described by an SDE, this corresponds
to its reverse-time SDE (Anderson, 1982). Setting C = 1
and excluding the noise gives the probability flow ODE,
which constitutes a unique solution. We denote the ODE
variant by SMDP ODE and the SDE variant by SMDP SDE.

2.3. 1D Toy SDE

As the first experiment we consider a simple quadratic SDE
of the form: dx = −

[
λ1 · sign(x)x2

]
dt + λ2dW , with

λ1 = 7 and λ2 = 0.03. Throughout this experiment, p0 is a
categorical distribution, where we draw either 1 or −1 with
the same probability. The reverse-time SDE that transforms
the distribution pT of values at T = 10 to p0 is given by

dx = −
[
λ1 · sign(x)x2 − λ2

2 · ∇x log pt(x)
]
dt+ λ2dw.

In figure 2a, we show paths from this SDE simulated with
the Euler-Maruyama method. The trajectories approach 0
as t increases. Given the trajectory value at t = 10, it is no
longer possible to infer the origin of the trajectory at t = 0.

This experiment allows us to use an analytic reverse simula-
tor: P̃−1(x) = λ1 · sign(x)x2. This is a challenging prob-
lem because the reverse physics step increases quadratically
with x, and sθ has to control the reverse process accurately
to stay within the training domain, or paths will explode

to infinity. We evaluate each model based on how well the
predicted trajectories x̂0:T match the posterior distribution.
When drawing x̂T randomly from [−0.1, 0.1], we should
obtain trajectories with x̂0 being either −1 or 1 with the
same likelihood. We assign the label −1 or 1 if the relative
distance of an endpoint is < 10% and denote the percentage
in each class by p−1 and p1. As some trajectories miss the
target, typically p−1 + p1 < 1. Hence, we define the pos-
terior metric Q as twice the minimum of p−1 and p1, i.e.,
Q = 2 ·min(p−1, p1) so that values closer to one indicate a
better match of the correct posterior distribution.

Training The training data set consists of 2.500 simulated
trajectories from 0 to T and ∆t = 0.02. For the network
sθ(x, t), we consider a multilayer perceptron (MLP) and,
as a special case, a grid-based discretization (GRID). For
GRID, we discretize the domain [0, T ]× [−1.25, 1.25] and
linearly interpolate the solution. The cell centers are ini-
tialized with 0. We evaluate sθ trained via the 1-step and
multi-step losses with Smax = 10. Details of hyperparame-
ters and model architectures are given in appendix B.

Method Probability flow ODE Reverse-time SDE
Dataset size Dataset size

100% 10% 1% 100% 10% 1%
multi-step 0.97 0.91 0.81 0.99 0.94 0.85
1-step 0.78 0.44 0.41 0.93 0.71 0.75
ISM 0.19 0.15 0.01 0.92 0.94 0.52

Table 1: Posterior metric Q for 1.000 predicted trajectories
averaged over three runs.
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(a) Marker density (b) Velocity field (x)
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(c) Evaluation

Figure 3: Buoyancy flow case. Ground truth shows the marker density and velocity field in the x-direction at different points
of the simulation trajectory from the test set (a, b). We show reconstructions given the simulation end state at t = 0.65 and
provide an evaluation of the reconstructed trajectories based on perceptual similarity (LPIPS) and the reconstruction MSE
for three runs (c).

Better extrapolation and robustness from multi-step loss
See figure 2c for an overview of the differences between
the learned score from MLP and GRID and the effects of
the multi-step loss. Training via GRID shows that most
cells do not get any gradient updates and remain 0. This is
caused by a need for more training data in these regions. In
addition, the boundary of the trained region is jagged and
diffuse. Trajectories traversing these regions can quickly
explode. In contrast, the multi-step loss leads to a consistent
signal around the center line at x = 0, effectively preventing
exploding trajectories.

Evaluation and comparison with baselines As a base-
line for learning the score, we consider implicit score match-
ing (Hyvärinen, 2005, ISM). We train all methods with the
same network architecture. As can be seen in table 1, our
proposed multi-step training performs best or is on par with
the baselines for all dataset sizes and inference types. For
standard deviations, see appendix B.

2.4. Buoyancy-driven Flow with Obstacles

Next, we test our methodology on a more challenging
problem. For this purpose, we consider deterministic sim-
ulations of buoyancy-driven flow within a fixed domain
Ω ⊂ [0, 1]× [0, 1] and randomly placed obstacles. We use
semi-Lagrangian advection for the velocity and MacCor-
mack advection for the hot marker density. The temperature
dynamics of the marker field are modeled with a Boussinesq
approximation. Each simulation runs from time t = 0.0
to t = 0.65 with a step size of ∆t = 0.01. Our method
is trained with the objective of reconstructing a plausible
initial state given an end state of the marker density and
velocity fields at time t = 0.65, as shown in figure 3a and
figure 3b. We place spheres and boxes with varying sizes
at different positions within the simulation domain that do

not overlap with the marker inflow. For each simulation, we
place one to two objects of each category.

Score matching for deterministic systems During train-
ing, we add Gaussian noise to each simulation state xt with
σt =

√
∆t. In this experiment, no stochastic forcing is

used to create the data set, i.e., g ≡ 0. By adding noise to
the simulation states, the 1-step loss still minimizes a score
matching objective in this situation, similar to denoising
score matching; see appendix A.3 for a derivation. In the
situation without stochastic forcing, during inference, our
method effectively alternates between the reverse physics
step, a small perturbation, and the correction by sθ(x, t),
which projects the perturbed simulation state back to the
distribution pt. For the SDE trajectories, C = 2 slightly
overshoots, and C = 1 gives an improved performance.

Training and ablation study Our training data set con-
sists of 250 simulations with corresponding trajectories gen-
erated with phiflow (Holl et al., 2020). Our neural network
architecture for sθ(x, t) uses dilated convolutions (Stachen-
feld et al., 2021). See appendix C for additional training
details. The reverse physics step P̃−1 is implemented di-
rectly in the solver by using a negative step size −∆t for
time integration. For training, we consider the multi-step
formulation with Smax = 20. For the evaluation, we con-
sider a reconstruction MSE and the perceptual similarity
metric LPIPS. The test set contains five simulations. The
SDE version yields good results for this experiment but is
most likely constrained in performance by the approximate
reverse physics step and large step sizes. However, the ODE
version significantly outperforms directly inverting the sim-
ulation numerically (P̃−1 only), and when training without
the reverse physics step (sθ only), as shown in 3c.
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3. Conclusion
We presented a combination of learned corrections training
and diffusion models in the context of physical simulations
and differentiable physics for solving inverse physics prob-
lems. We showed its competitiveness, accuracy, and long-
term stability in two challenging and versatile experiments
and motivated our design choices. We considered two vari-
ants with complementary benefits for inference: while the
ODE variants achieve the best MSE, the SDE variants allow
for sampling the posterior and yield an improved coverage
of the target data manifold.
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A. Proofs and Training Methodology
Below we summarize the problem formulation from the main paper and provide details about the training procedure and the
derivation of our methodology.

Problem setting Let (Ω,F , P ) be a probability space and W (t) = (W1(t), ...,WD(t))T be a D-dimensional Brownian
motion. Moreover, let x0 be a F0-measurable RD-valued random variable that is distributed as p0 and represents the initial
simulation state. We consider the time evolution of the physical system for 0 ≤ t ≤ T modeled by the stochastic differential
equation (SDE)

dx = P(x)dt+ g(t)dW (2)

with initial value x0 and Borel measurable drift P : RD → RD and diffusion g : [0, T ]→ R+. This SDE transforms the
marginal distribution p0 of initial states at time 0 to the marginal distribution pT of end states at time T .

Moreover, we assume that we have sampled N trajectories of length M from the above SDE with a fixed time discretization
0 ≤ t0 < t1 < ... < tM ≤ T for the interval [0, T ] and collected them in a training data set {(x(n)

ti )Mi=0}Nn=0. For simplicity,
we assume that all time steps are equally spaced, i.e., ti+1 − ti := ∆t. Moreover, in the following we use the notation xi:j

for 0 ≤ i < j ≤M to refer to the trajectory (xti ,xti+1 , ...,xtj ).

Assumptions Throughout this paper, we make some additional assumptions to ensure the existence of a unique solution to
the SDE (2) and the strong convergence of the Euler-Maruyama method. In particular:

• Finite variance of samples from p0: Ex0∼p0
[||x0||22] <∞

• Lipschitz continuity of P: ∃K1 > 0 ∀x,y ∈ RD : ||P(x)− P(y)||2 ≤ K1||x− y||2

• Lipschitz continuity of g: ∃K2 > 0 ∀t, s ∈ [0, T ] : |g(t)− g(s)| ≤ K3|t− s|

• Linear growth condition: ∃K3 > 0 ∀x ∈ RD : ||P(x)||2 ≤ K3(1 + ||x||2)

• g is bounded: ∃K4 > 0 ∀t ∈ [0, T ] : |g(t)| ≤ K4

Euler-Maruyama Method Using Euler-Maruyama steps, we can simulate paths from SDE (2) similar to ordinary
differential equations (ODE). Given an initial state Xt0 , we let X̂∆t

t0 = Xt0 and define recursively

X̂∆t
tm+1

← X̂∆t
tm +∆tP(X̂∆t

tm) +
√
∆t g(tm) ztm , (3)

where ztm are i.i.d. with ztm ∼ N (0, I). For ti ≤ t < ti+1, we define the piecewise constant solution of the Euler-
Maruyama Method as X̂∆t

t := X̂∆t
ti . Let Xt denote the solution of the SDE (2). Then the Euler-Maruyama solution X̂∆t

t

converges strongly to Xt.

Lemma A.1. [Strong convergence of Euler-Maruyama method] Consider the piecewise constant solution X̂∆t
t of the

Euler-Maruyama method. There is a constant C such that

sup
0≤t≤T

E[||Xt − X̂∆t
t ||2] ≤ C

√
∆t. (4)

Proof. See Kloeden et al. (1992, 10.2.2)

A.1. 1-step Loss and Score Matching Objective

Theorem A.2. Consider a data set {x(n)
0:m}Nn=1 with trajectories sampled from SDE (2). Then the 1-step loss

Lsingle(θ) :=
1

M
Ex0:M

[
M−1∑
m=0

[
||xm +∆t [−P(xm+1) + sθ(xm+1, tm+1)]||2

]]
(5)
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is equivalent to minimizing the score matching objective

J (θ) :=
∫ T

0

Ext [||∇x log pt(x)− s̃θ(x, t)||22]dt, (6)

where s̃θ(x, t) = sθ(x, t)/g
2(t) as ∆t→ 0.

Proof.

”⇐”: Consider θ∗ such that s̃θ∗(x, t) ≡ ∇x log pt(x), which minimizes the score matching objective J (θ). Then fix a time
step t and sample xt and xt+∆t from the data set. The probability flow solution xp

t based on equation (5) is

xp
t := xt+∆t +∆t [−P(xt+∆t) + sθ(xt+∆t, t+∆t)] . (7)

At the same time, we know that the transformation of marginal likelihoods from pt+∆t to pt follows the reverse-time
SDE (Anderson, 1982)

dx =
[
P(x) + g2(t)∇x log pt(x)

]
dt+ g(t)dW, (8)

which runs backward in time from T to 0. Denote by x̂∆t
t the solution of the Euler-Maruyama method at time t

initialized with xt+∆t at time t+∆t.

Using the triangle inequality for squared norms, we can write

lim
∆t→0

E
[
||xt − xp

t ||22
]
≤ 2 lim

∆t→0
E
[
||xt − x̂∆t

t ||22
]
+ 2 lim

∆t→0
E
[
||x̂∆t

t − xp
t ||22

]
. (9)

Because of the strong convergence of the Euler-Maruyama method, we have that for the first term of the bound in
equation (9)

lim
∆t→0

E
[
||xt − x̂∆t

t ||22
]
= 0 (10)

independent of θ. At the same time, for the Euler-Maruyama discretization, we can write

x̂∆t
t = xt+∆t +∆t

[
−P(xt+∆t) + g2(t+∆t)∇x log pt+∆t(xt+∆t)

]
+ g(t+∆t)

√
∆tzt+∆t, (11)

where zt+∆t is a standard Gaussian distribution, i.e., zt+∆t ∼ N (0, I). Therefore, we can simplify the second term of
the bound in equation (9)

lim
∆t→0

E
[∣∣∣∣x̂∆t

t − xp
t

∣∣∣∣2
2

]
(12)

= lim
∆t→0

Ext+∆t∼pt+∆t,z∼N (0,I)

[∣∣∣∣∣∣∆t g(t+∆t)2 [∇x log pt+∆t(xt+∆t)− s̃θ(xt+∆t, t+∆t)] (13)

+g(t+∆t)
√
∆t z

∣∣∣∣∣∣2
2

]
. (14)

If θ∗ minimizes the score matching objective, then s̃θ∗(x, t) ≡ ∇x log pt(x), and therefore the above is the same as

lim
∆t→0

Ez[||
√
∆t g(t+∆t) z||22] = 0. (15)

Combining equations (10) and (15) yields

lim
∆t→0

E
[
||xt − xp

t ||22
]
= 0. (16)

Additionally, since g is bounded, we even have

E[||
√
∆t g(t+∆t) z||22] ≤ E[||

√
∆tK4 z||22] = E[||K4 z||22]∆t. (17)
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For Lsingle(θ), using the above bound (17) and strong convergence of the Euler-Maruyama method, we can therefore
derive the following bound

Lsingle(θ) =
1

M
E

[
M−1∑
m=0

[
||xm +∆t [−P(xm+1) + sθ(xm+1, tm+1)]||2

]]
(18)

≤ 1

M
M 2

[
C
√
∆t+ Ez[||K4 z||22]∆t

]
, (19)

which implies that Lsingle(θ)→ 0 as ∆t→ 0.

”⇒”: With the definitions from ”⇐”, let θ∗ denote a minimizer such that Lsingle(θ) → 0 as ∆t → 0. This implies that
each summand of Lsingle(θ) also goes to zero as ∆t→ 0, i.e., lim∆t→0 E

[
||xt − xp

t ||22
]
= 0. Note that at least one

minimizer exists as we can choose sθ∗(x, t) ≡ ∇x log pt(x). Again, with the triangle inequality for squared norms,
we have that

lim
∆t→0

E
[
||x̂∆t

t − xp
t ||22

]
≤ 2 lim

∆t→0
E
[
||xt − x̂∆t

t ||22
]
+ 2 lim

∆t→0
E
[
||xt − xp

t ||22
]
. (20)

By the strong convergence of the Euler-Maruyama method and θ = θ∗, we obtain

lim
∆t→0

E
[
||x̂∆t

t − xp
t ||22

]
= 0. (21)

At the same time, for fixed ∆t > 0, we can compute

E
[
||x̂∆t

t − xp
t ||22

]
(22)

= Ext+∆t,z∼N (0,I)[||∆t g(t+∆t)2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)] +
√
∆t g(t+∆t) z||22] (23)

= ∆t g(t+∆t)Ext+∆t,z∼N (0,I)[||∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)] + z||22]. (24)

For fixed xt+∆t, the distribution over z ∼ N (0, I) in equation (24) correspond to a noncentral chi-squared distribution
(Johnson et al., 1995, Chapter 13.4), whose mean can be calculated as

Ez∼N (0,I)

[∣∣∣∣∣∣∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)] + z
∣∣∣∣∣∣2
2

]
(25)

=
∣∣∣∣∣∣∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)]

∣∣∣∣∣∣2
2
+D. (26)

For each ∆t > 0, the above is minimized if and only if∇x log pt+∆t(xt+∆t) = sθ(xt+∆t, t+∆t).

A.2. Multi-step Loss and Maximum Likelihood Training

We now extend the 1-step formulation from above to multiple steps and discuss its relation to maximum likelihood training.
For this, we consider our proposed probability flow ODE defined by

dx = [P(x)− sθ(x, t)] dt (27)

and for ti < tj define p
tj ,ODE
ti as the distribution obtained by sampling x ∼ ptj and integrating the probability flow with

network sθ(x, t) equation (27) backward in time until ti. We can choose two arbitrary time points ti and tj with ti < tj
because we do not require fixed start and end times of the simulation.

The maximum likelihood training objective of the probability flow ODE (27) can be written as maximizing

Exti
∼pti

[log p
ptj

,ODE

ti (xti)]. (28)
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Our proposed multi-step loss is based on the sliding window size S, which is the length of the sub-trajectory that we aim to
reconstruct with the probability flow ODE (27). The multi-step loss is defined as

Lmulti(θ) :=
1

M
Ex0:M

[
M−S+1∑
m=0

[
||xm:m+S−1 − x̂m:m+S−1||22

]]
, (29)

where we compute the expectation by sampling x0:m from the training data set and x̂i:i+S−1 is the predicted sub-trajectory
that is defined recursively by

x̂i+S = xi+S and x̂i+S−1−j = x̂i+S−j +∆t [−P(x̂i+S−j) + sθ(x̂i+S−j , ti+S−j)] . (30)

In the following, we show that the multi-step loss (29) maximizes a variational lower bound for the maximum likelihood
training objective (28).

Theorem A.3. Consider a data set {x(n)
0:m}Nn=1 with trajectories sampled from SDE (2). Then the multi-step loss (29)

maximizes a variational lower bound for the maximum likelihood training objective of the probability flow ODE (28) as
∆t→ 0.

Let µODE
ti (xtj ) denote the solution of the probability flow ODE (27) integrated backward from time tj to ti with initial

value xtj .

For the maximum likelihood objective, we can derive a variational lower bound

Exti

[
log p

tj ,ODE
ti (xti)

]
= Exti

[
log

(
Extj

[
p
tj ,ODE
ti (xti |xtj )

])]
(31)

= Exti

[
log

(
Extj

|xti

[
pti(xti)

ptj (xtj |xti)
p
tj ,ODE
ti (xti |xtj )

])]
(32)

≥ Exti
Extj

|xti

[
log

(
ptj (xtj )

ptj (xtj |xti)
p
tj ,ODE
ti (xti |xtj )

)]
(33)

= Exti
Extj

|xti

[
log

(
ptj (xtj )

ptj (xtj |xti)

)
+ log

(
p
tj ,ODE
ti (xti |xtj )

)]
, (34)

where the inequality is due to Jensen’s inequality. Since only p
tj ,ODE
ti (xti |xtj ) depends on θ, this is the same as maximizing

Exti
Extj

|xti

[
log

(
p
tj ,ODE
ti (xti |xtj )

)]
. (35)

The probability flow ODE is likelihood-free, which makes it challenging to optimize. Therefore, we relax the objective by
perturbing the ODE distributions by convolving them with a Gaussian kernel Gϵ with small ϵ > 0, see, e.g., Kersting et al.
(2020, Gaussian ODE filtering). This allows us to model the conditional distribution p

tj ,ODE
ti |xtj as a Gaussian distribution

with mean µ
tj ,ODE
ti (xtj ) and variance σ2 = ϵ. Then maximizing (35) reduces to matching the mean of the distribution, i.e.,

minimizing

Exti
Extj

|xti

[
||xti − µODE

ti (xtj )||22
]

(36)

independent of ϵ > 0. Since this is true for any time step tj > ti and corresponding simulation state xtj given xti , we can
pick the pairs (xti ,xti+1

), (xti ,xti+2
), (xti ,xti+3

) and so on. Then, we can optimize them jointly by considering the sum
of the individual objectives up to a maximum sliding window size

Exi:j

[
j−1∑
k=i

||xtk − µODE
tk

(xtj )||22

]
. (37)

As ∆t → 0, we compute the terms µODE
tk

(xtj ) on a single trajectory starting at xti with sliding window S covering the
trajectory until xtj via the Euler method, i.e., we can define recursively

x̂i+S = xi+S and x̂i+S−1−j = x̂i+S−j +∆t [−P(x̂i+S−j) + sθ(x̂i+S−j , ti+S−j)] . (38)

By varying the starting points of the sliding window xti , this yields our proposed multi-step loss Lmulti(θ).



Solving Inverse Physics Problems with Score Matching

Figure 4: Variants of training and inference for different physical systems. (a) shows the SDE and reverse-time SDE setup
with the Euler-Maruyama discretization when the system is modeled by an SDE. The diffusion term g(t) is absorbed in the
Gaussian random variable zt ∼ N (0, g(t)2I) and network sθ(x, t). In (b), we assume that the temporal evolution of the
training data is deterministic, i.e., we model the physical system without the diffusion term. However, for inference, we
consider the reverse-time SDE of the same form as in (a), where the diffusion coefficient g(t) is chosen as a hyperparameter
that depends on the noise scale added to the data. Then, in (c), we split the Euler step for the backward direction into a
physics-only update, adding the Gaussian noise z and a denoising step by sθ(x, t).

A.3. Denoising Score Matching for Deterministic Simulations

So far, we have considered physical systems that can be modeled by an SDE, i.e., equation (2). While this problem setup is
suitable for many scenarios, we would also like to apply a similar methodology when the system is deterministic, i.e., when
we can write the problem as an ordinary stochastic equation

dx = P(x)dt. (39)

In the case of chaotic dynamical systems, this still represents a hard inverse problem, especially when information is lost
due to noise added to the trajectories after their generation.

The training setup based on modeling the physics system with an SDE is shown in figure 4a. Figure 4b and 4c illustrate two
additional data setup and inference variants for deterministic physical systems modeled by the ODE (39). While for the toy
experiment in section 2.3 in the main paper, our setup resembles (a), for the buoyancy-driven flow in section 2.4 we consider
(c) as the system is deterministic.

For this variant, the update by −P(x) and sθ(x, t) is separated into two steps. The temporal evolution from ti+1 to ti is
then defined entirely by physics. We apply an additive noise to the system and the update step by sθ(x, t), which can be
interpreted as denoising for a now slightly perturbed state x̃ti . In this case, we show that the network sθ(x, t) still learns the
correct score∇x log pt(x) during training using denoising score matching. We compare the performance of variants (b) and
(c) for the buoyancy-drive flow in appendix C.

When separating physics and score updates, we calculate the updates as

x̂ti = xti+1 −∆tP(xti+1) (40)

x̂noise
ti = x̂ti +

√
∆t g(ti) zti (41)

xti = x̂noise
ti +∆t g2(ti) sθ(x̂

noise
ti , ti), (42)

where zti ∼ N (0, I). If the physics system is deterministic and ∆t is small enough, then we can approximate xti ≈ x̂ti

and for the moment, we assume that we can write

x̂noise
ti = xti +

√
∆t g(ti) zti . (43)

In this case, we can rewrite the 1-step loss Lsingle(θ) from (5) to obtain the denoising score matching loss

LDSM(θ) := E(xti
,xti+1

)

[
||xti − x̂noise

ti −∆t g2(ti) sθ(x̂
noise
ti , ti)||22

]
, (44)
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which is the same as minimizing

E(xti
,xti+1

)

[
||sθ(x̂noise

ti , ti)−
1

∆t g2(ti)
(xti − x̂noise

ti )||22
]
. (45)

Now, the idea presented in Vincent (2011) is that for score matching, we can consider a joint distribution pti(xti , x̃ti) of
sample xti and corrupted sample x̃ti . Using Bayes’ rule, we can write pti(xti , x̃ti) = pσ(x̃ti |xti)pti(xti). The conditional
distribution pσ(·|xti) for the corrupted sample is then modeled by a Gaussian with standard deviation σ =

√
∆t g(ti), i.e.,

we can write x̃ = x+
√
∆t g(ti) z for z ∼ N (0, I) similar to equation (43). Moreover, we can define the distribution of

corrupted data qσ as

qσ(x̃) =

∫
pσ(x̃|x)pti(x)dx. (46)

If σ is small, then qσ ≈ pti and KL(qσ|| pti)→ 0 as σ → 0. Importantly, in this case, we can directly compute the score for
pσ(·|x) as

∇x̃ log pσ(x̃|x) =
1

σ2
(x− x̃). (47)

Moreover, the theorem proven by Vincent (2011) means that we can use the score of the conditional distribution pσ(·|x) to
train sθ(x, t) to learn the score of qσ(x), i.e.

argmin
θ

Ex̃∼qθ

[
||sθ(x, ti)−∇x̃ log qσ(x̃)||22

]
(48)

= argmin
θ

Ex∼pti
,x̃∼pσ(·|x)

[
||sθ(x, ti)−∇x̃ log pσ(x̃|x)||22

]
. (49)

By combining (49) and (47), this exactly equals the denoising loss LDSM(θ) in (45). As qσ ≈ pti , we also obtain that
∇x log qσ(x) ≈ ∇x log pti(x), so the network sθ(x, ti) approximately learns the correct score for pti .

We have assumed (43) that the only corruption for x̂noise
ti is the Gaussian noise. This is not true, as we have

x̂noise
ti = xti +

√
∆t g(ti) zti + (xti+1 −∆tP(xti+1)− xti), (50)

so there is an additional source of corruption, which comes from the numerical errors due to the term xti+1 −∆tP(xti+1)−
xti . The conditional distribution pσ(·|x) is only approximately Gaussian. Ideally, the effects of numerical errors are
dominated by the Gaussian random noise. However, even small errors may accumulate for longer sequences of inference
steps. To account for this, we argue that the multi-step loss Lmulti(θ) should be used. During training, with the separation of
physics update and denoising, the simulation state is first progressed from time ti+1 to time ti using the reverse physics
solver. This only yields a perturbed version of the simulation at time ti due to numerical inaccuracies. Then a small Gaussian
noise is added and, via the denoising network sθ(x, t), the simulation state is projected back to the distribution pti , which
should also resolve the numerical errors. This is iterated, as discussed in section 2 in the main paper, depending on the
sliding window size and location.
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B. 1D Toy SDE
For the 1D toy SDE discussed in section 3.1, we consider the SDE given by

dx = −
[
λ1 · sign(x)x2

]
dt+ λ2dw, (51)

with λ1 = 7 and λ2 = 0.03. The corresponding reverse-time SDE is

dx = −
[
λ1 · sign(x)x2 − λ2

2 · ∇x log pt(x)
]
dt+ λ2dw. (52)

Throughout this experiment, p0 is a categorical distribution, where we draw either 1 or −1 with the same probability. In
figure 5, we show trajectories from this SDE simulated with the Euler-Maruyama method. Trajectories start at 1 or −1 and
approach 0 as t increases.

Neural network architecture We employ a neural network sθ(x, t) parameterized by θ to approximate the score via the
1-step loss, the multi-step loss and implicit score matching (Hyvärinen, 2005, ISM). In all cases, the neural network is a
simple multilayer perceptron with elu activations and five hidden layers with 30, 30, 25, 20, and then 10 neurons for the last
hidden layer.

We use the Adam optimizer with standard hyperparameters as described in the original paper (Kingma & Ba, 2015). The
learning rate, batch size, and the number of epochs depend on the data set size (100% with 2.500 trajectories, 10%, or 1%)
and are chosen to ensure convergence of the training loss.

(a) λ2 = 0 (b) λ2 = 0.03

Figure 5: Trajectories from SDE (51) with λ2 = 0 (a) and λ2 = 0.03 (b).

Training - 1-step loss For the 1-step loss and all data set sizes, we train for 250 epochs with a learning rate of 10e-3 and
batch size of 256. In the first phase, we only keep every 5th point of a trajectory and discard the rest. Then, we again train
for 250 epochs with the same batch size and a learning rate of 10e-4 but keep all points. Finally, we finetune the network
with 750 training epochs and a learning rate of 10e-5.

Training - multi-step loss For the multi-step loss and 100%, we first train with the 1-step loss, which resembles a sliding
window size of 2. We initially train for 1.000 epochs with a batch size of 512 and a learning rate of 10e-3, where we keep
only every 5th point on a trajectory and discard the rest. Then, with a decreased learning rate of 10e-4, we begin training
with a sliding window size of S = 2 and increment it every 1.000 epochs by one until Smax = 10. In this phase, we train on
all points without any removals.

Training - ISM For ISM, we compute the partial derivative ∂sθ(x)i/∂xi using reverse-mode automatic differentiation in
JAX (jax.jacrev). For 100% and 10% of the data set, we train for 2.000 epochs with a learning rate of 10e-3 and batch size
of 10.000. Then we train for an additional 2.000 epochs with a learning rate 10e-4. For 1%, increase the number of epochs
to 20.000.
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(a) ISM learned score. (b) Multi-step learned score.

(c) ISM reverse-time SDE trajectories. (d) Multi-step reverse-time SDE trajectories.

(e) ISM probability flow trajectories. (f) Multi-step probability flow trajectories.

Figure 6: Comparison of Implicit Score Matching (ISM, left) and our proposed training with the multi-step loss (Multi-step,
right). Colormap in (a) and (b) truncated to [-75, 75].

Comparison We directly compare the learned score for the reverse-time SDE trajectories and the probability flow
trajectories between ISM and the multi-step loss in figure 6 trained on the full dataset. The learned score of ISM and the
multi-step loss in figure 6a and figure 6b are visually very similar, showing that our method and loss learn the correct score.
Overall, after finetuning both ISM and the multi-step loss, the trajectories of the multi-step loss are more accurate compared
to ISM. For example, in figure 6e, a trajectory explodes to negative infinity. Also, trajectories from the multi-step loss end in
either −1 or 1, while ISM trajectories are attenuated and do not fully reach −1 or 1 exactly, particularly for the probability
flow ODE.

Results of Table 1 in Main Paper We include the standard deviations of table 1 from the main paper in table 2 above.
The posterior metric Q is very sensitive to the learned score sθ(x, t). Overall, our proposed multi-step loss gives the most
consistent and reliable results.
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Method Probability flow ODE Reverse-time SDE
Dataset size Dataset size

100% 10% 1% 100% 10% 1%
multi-step 0.97±0.04 0.91±0.05 0.81±0.01 0.99±0.01 0.94±0.02 0.85±0.06
1-step 0.78±0.16 0.44±0.13 0.41±0.13 0.93±0.05 0.71±0.10 0.75±0.10
ISM 0.19±0.05 0.15±0.15 0.01±0.01 0.92±0.05 0.94±0.01 0.52±0.22

Table 2: Posterior metric Q for 1.000 predicted trajectories averaged over three runs.
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C. Buoyancy-driven Flow with Obstacles
Training We train all networks with Adam and learning rate 10−4 with batch size 16. We begin training with a sliding
window size of S = 2, which we increase every 30 epochs by 2 until Smax = 20.

Dil-ResNet The Dil-ResNet architecture is described in (Stachenfeld et al., 2021), Appendix A. We concatenate a constant
time channel to the input. Additionally, positional information is added to the network input by encoding the x-position and
y-position inside the domain in two separate channels.

Separate vs. joint updates We compare a joint update of the reverse physics step and corrector function sθ, see figure 4b,
and a separate update of reverse physics step and corrector function, see figure 4c. An evaluation regarding the reconstruction
MSE and perceptual distance is shown in figure 7. Both training and inference variants achieve advantages over “P̃−1 only”
and “sθ only” approaches. Overall, there are no apparent differences for the ODE inference performance but slight benefits
for the SDE inference when separating physics and corrector update.

Additional results We provide more detailed visualizations for the buoyancy-driven flow case in figure 9 and figure 10.
These again highlight the difficulties of the reverse physics simulator to recover the initial states by itself. Including the
learned corrections significantly improves this behavior.

In figure 8, we also show an example of the posterior sampling for the SDE. It becomes apparent that the inferred small-scale
structures of the different samples change. However, in contrast to cases like the heat diffusion example, the physics
simulation in this scenario leaves only little room for substantial changes in the states.

P̃−1 only sθ only joint update separate update0.0
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(a) Reconstruction MSE (t = 40).

P̃−1 only sθ only joint update separate update

10−2

10−1

L
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PS
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=
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)

SMDP SDE
SMDP ODE

(b) Perceptual distance LPIPS (t = 40).

Figure 7: Comparison of separate and joint updates averaged over three runs.
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Figure 8: Comparison of SMDP-SDE predictions and ground truth for buoyancy-driven flow at t = 0.36.
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Figure 9: Predictions for buoyancy-driven flow with obstacles (example 1 of 2).
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Figure 10: Predictions for buoyancy-driven flow with obstacles (example 2 of 2).


