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ABSTRACT

One major obstacle to the general AI agent is the inability to solve new prob-
lems without forgetting previously acquired knowledge. This deficiency is highly
linked to the fact that most reinforcement learning (RL) methods are based upon
the key assumption that the environment transition dynamics and reward func-
tions are fixed. In this paper, we study the continual RL setting by proposing a
general analysis framework of catastrophic forgetting in value-based RL based on
the defined MDP difference. Within this theoretical framework, we first show that
without incorporating any strategies, the Finetune algorithm, one commonly used
baseline regarded as the lower bound a continual RL algorithm can achieve, suffers
from complete catastrophic forgetting. Moreover, the sequential multi-task RL al-
gorithm, normally viewed as one soft upper bound baseline, can lead to an optimal
action-state value function estimator at the cost of almost intractable computation
cost in an online alternating algorithm. Motivated by these results, a practical con-
tinual RL algorithm is proposed by reweighting the historical and current Bellman
targets to trade-off between these lower and upper-bound approaches. We conduct
rigorous experiments in the tabular setting to demonstrate our analytical results,
suggesting the massive potential of our proposed algorithm in real continual RL
scenarios.

1 INTRODUCTION

It is a major challenge to develop general artificial intelligent agents that can continually learn new
tasks while maintaining the knowledge they previously obtained in the historical tasks. This research
issue also referred to continual reinforcement learning (RL) (Khetarpal et al., 2022), has gained
increasing attention in recent years, and efforts to solve it have also grown substantially (Barreto
et al., 2020; Kessler et al., 2022; Kaplanis et al., 2019; Caccia et al., 2022; Kaplanis et al., 2018; Gaya
et al., 2023; Yang et al., 2023; Wolczyk et al., 2022). Developing effective continual RL algorithms
is crucial yet challenging as most successful reinforcement learning algorithms are designed for one
Markov decision processes (MDP) (Sutton & Barto, 2018), where they assume the underlying MDP
is stationary with a fixed reward function and transition dynamics. However, this assumption not
only tends to be violated in practical problems (Chandak et al., 2020), but also limits the generality
of RL algorithms to adaptively solve new problems toward human-level agents.

When addressing continual learning problems (Wixted, 2004), it suggests that, unlike the human
brain, deep neural networks are prone to catastrophic forgetting issue (French, 1999; McCloskey &
Cohen, 1989), where deep nets or agents can quickly perform poorly on the previous tasks when
they are sequentially trained on a series of new tasks. Despite the promising progress of continual
RL to mitigate catastrophic forgetting, we still have a poor understanding of how to clearly define
and solve this problem fundamentally. Recently, a conceptual basis of continual RL was provided
in (Abel et al., 2023) to formalize the notion of “agents can never stop learning”, however, there
still exists an explicit gap between their formalism and the practical algorithm design as well as
fundamental properties of continual learning, such as catastrophic forgetting, plasticity and stability.

In this paper, we study the foundations of continual RL by proposing a general theoretical analysis
framework in this context. Specifically, we leverage the difference of optimal action-state value
functions in the respective MDPs to define the MDPs difference, based on which the catastrophic
forgetting is explicitly characterized. Within this analytical framework in continual RL, we further
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investigate two typical continual RL baselines, i.e., the Finetune and sequentially multi-task learn-
ing algorithms, which are commonly viewed as the lower and upper bound approaches, respectively.
Concretely, we reveal that the Finetune algorithm suffers from complete catastrophic forgetting,
while the sequential multi-task learning is capable of learning an optimal continual Q function es-
timator at the cost of an almost intractable computational cost in an online alternating algorithm.
These results motivate us to propose a practical continual RL algorithm via reweighting previous
and current Bellman targets, leading to a favorable trade-off between the efficacy and computation
burden. The resulting algorithms are theoretically motivated by our analysis framework and explic-
itly balance the plasticity and stability, mitigating catastrophic forgetting. Finally, we concentrate on
experiments on the tabular setting to demonstrate our theoretical results, suggesting the applicability
of our proposed framework and the potential of our proposed algorithms in real applications. Our
contributions are summarized as follows:

• We propose a general analysis framework for continual RL, showing that the catastrophic
forgetting is equivalent to a weighted MDPs difference regarding the optimal Q functions.

• We examine the convergence behaviors of typical continual RL baselines, including the
Finetune and sequentially multi-task learning algorithms, deepening our understanding of
similar continual RL algorithms.

• A theoretically motivated continual RL algorithm is thus proposed via reweighting the
previous and current Bellman targets, which explicitly balances the plasticity and stability.

2 RELATED WORK

Continual RL. Continual learning (CL) (Thrun, 1995; Chen & Liu, 2018) has been one of the
most important milestones on the path to building artificial general intelligence. Existing methods
can be mainly classified into three groups, including rehearsal methods (Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019), regularization-based methods (Ng et al., 1999; Kirkpatrick et al.,
2017; Aljundi et al., 2018) as well as parameter isolation approaches (Xu & Zhu, 2018; Mallya &
Lazebnik, 2018). However, it is less studied about how to develop suitable CL methods into RL
setting (Khetarpal et al., 2022). Even only a few benchmarks have been recently proposed (Wolczyk
et al., 2021; Henderson et al., 2017; Platanios et al., 2020), which still need to be verified widely.
Existing continual RL algorithms are designed from a variety of perspectives, including the synaptic
model (Kaplanis et al., 2018), behavioral cloning that queries all previous policies (Wolczyk et al.,
2022), sparse prompting (Yang et al., 2023) and policy subspace bulding (Gaya et al., 2023). In
summary, the design of continual RL algorithms seeks a trade-off between the performance and
model size (Gaya et al., 2023). However, most of these continual RL approaches tend to be heuristic,
and there still lacks a theoretical analysis framework in a fundamental way.

Ensemble and Reweighted Methods in RL. Reweighted and ensemble methods have suggested
huge success in a wide range of RL problems, including the weighted Q learning (Cini et al.,
2020) that can reduce the bias in target estimates, Anderson Acceleration (Walker & Ni, 2011)
that reweights previous target estimates in the fixed-point iteration to speed up the convergence (Sun
et al., 2021; Li, 2021) and ensemble RL (Lee et al., 2021) that helps reduce the variance in target
estimates. Reweighting past data was used to search for a policy that maximizes future performance
in one single non-stationary MDP (Chandak et al., 2020), while our work is the first to explore the
efficacy of reweighting target estimates in continual RL setting to the best of our knowledge.

3 ANALYSIS FRAMEWORK FOR CONTINUAL RL

3.1 CONTINUAL RL SETTING AND MDPS DIFFERENCE

Consider we have s sequence of T tasks denoted t = 1, ..., T , where each task t is modeled by
a Markov Decision Process (MDP) Mi = ⟨Si,Ai,Pi, Ri, γ⟩, with a set of states Si and actions
Ai, the environment transition dynamics Pi : Si × Ai → P(Si) and the reward function Ri :
Si × Ai → R. In our work, we assume the same state and action space across T tasks. In the
classical continual RL setting, we are seeking a global policy after a sequential training manner
that can generalize favorably across all tasks. When training on each task t, we normally require a
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training budget, including a moderate model size and an allowable computation cost. For practical
continual RL algorithms, having full access to interact with prior MDPs or an arbitrarily large model
size is typically infeasible.

MDPs Difference. The MDPs difference is the foundation basis to analyze continual RL, and its
desirable definition should consider the variation of both reward functions and environment transi-
tion dynamics between two MDPs. Therefore, we use the difference of their optimal Q functions
Q∗(s, a) = maxπ Qπ(s, a) = maxπ Eπ

[∑∞
k=0 γ

kRt+k+1 | St = s,At = a
]

in the definition.
Definition 1. (MDPs Difference) For two MDPsM1,M2 with (S,A, R1, P1, γ), (S,A, R2, P2, γ)
and the optimal Q function Q∗

1, Q
∗
2, the p-norm MDPs difference dp(M1,M2) is defined as

dp(M1,M2) = ∥Q∗
1 −Q∗

2∥p =

(∑
s,a

|Q∗
1(s, a)−Q∗

2(s, a)|p
)1/p

. (1)

Unless otherwise stated, we mainly consider d2 in our analysis. We further define a weighted version
of d2, denoted as d̄p, which has an underlying connection with catastrophic forgetting in RL later.

Definition 2. (Weighted MDPs Difference) The squared 2-norm weighted MDPs difference d̄2 is
defined as d̄22(M1,M2) = ∥Q∗

1 − Q∗
2∥2w =

∑
s,a w(s, a) (Q

∗
1(s, a)−Q∗

2(s, a))
2 with a weight

function w(s, a) for each s, a, where
∑

s,a w(s, a) = 1.

3.2 CATASTROPHIC FORGETTING IN CONTINUAL RL

To have a rigorous and reasonable definition of catastrophic forgetting, we extend the widely ac-
cepted definition in deep learning scenario (Doan et al., 2021) to a value-based RL setting. For
completeness, we have a brief recap about the definition of distribution drift and catastrophic for-
getting in Appendix A. Assume one MDP as a probabilistic model, we have the following definition:

Definition 3. (Drift between two MDPs) We denote Q̂S and Q̂T as estimated Q function after
training from the source MDPMS and the target MDPMT by any algorithm. The resulting target
policy πT is thus obtained following the greedy rule, i.e., πT (·|s) = argmaxa Q̂T (s, a), Thus, the
drift δπT

S,T (MS) with respect to πT between two MDPs is defined as:

δπT

S,T (MS) =

(∑
a

πT (a|s)
(
Q̂S(s, a)− Q̂T (s, a)

)2)
s∈|S|

, (2)

where the drift term δπT

S,T (MS) can be interpreted as the Q function difference weighted by the
target policy πT that determines the proportion of the action a. Note that if we apply a policy π to
explore a specified MDP, the generated trajectories {s, a, r, s′} and the resulting state distribution
µπ are determined by the policy π and the corresponding environment dynamics P . Based on this
fact, we have the following definition of catastrophic forgetting in RL.
Definition 4. (Catastrophic Forgetting between two MDPs) We denote the state distribution µπT

S
obtained by applying the target policy πT into the source MDP MS . The catastrophic forgetting
∆πT

S,T (MS) in RL under ℓ2 norm is defined as

∆πT

S,T (MS) = ∥δπT

S,T (MS)∥µπT
S

=
∑
s

∑
a

µπT

S (s)πT (a|s)
(
Q̂S(s, a)− Q̂T (s, a)

)2
. (3)

As suggested in Eq. 3, the catastrophic forgetting in RL ∆πT

S,T (MS) is a weighted MDP difference
defined in Definition 2, with the weights µπT

S (s)πT (a|s) for each s, a simultaneously depending on
the state distribution in the source MDPMs and the target policy πT obtained eventually.

Catastrophic Forgetting in Continual RL. We next extend the definition of catastrophic forgetting
between two MDPs to the continual RL setting across a set of MDPs in a sequential training manner
by only maintaining one single Q function estimator Q̂Tπ

. Importantly, we allow the queries of Q
functions {Q̂t}t<T to construct the final Q estimator Q̂Tπ

, and hence the final global policy π can
either result from Q̂T immediately obtained after training the T -th MDP (Tπ = T ), or Q̂T+1 (Tπ =
T + 1) that additionally makes use of prior Q functions in an extra time step.
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Definition 5. (Catastrophic Forgetting in Continual RL) We denote our final global policy as
π constructed in the time of Tπ after sequentially training any algorithm on a series of MDP
{Mi}i=1,...,T , where Tπ ∈ {T, T + 1}. The catastrophic forgetting CF(QTπ

) is defined as

CF(QTπ
) =

T∑
t=1

∆π
t,Tπ

(Mt) =

T∑
t=1

∑
s

µπ
t (s)

∑
a

π(a|s)
(
Q̂t(s, a)−QTπ

(s, a)
)2

. (4)

Eq. 4 allows an optimal Q estimator Q̂Tπ by minimizing Q̂Tπ
= argminCF(QTπ

). Again, we
can directly use Q̂T immediately obtained after training the T -th MDP (Tπ = T ) , in which case
CF(QT ) =

∑T−1
t=1 ∆π

t,T (Mt) as ∆π
T,T (MT ) = 0. Alternatively, we can apply an extra transforma-

tion on {Q̂t}Tt=1 in an extra time step instead of Q̂T to construct Q̂Tπ
(Tπ = T + 1). Finally, the

global policy πCL is attained by πCL(·|s) = argmaxa Q̂Tπ
(s, a) based on the greedy rule.

4 BASELINE ANALYSIS: LOWER AND UPPER BOUND ALGORITHMS

Based on the framework in Section 3, we next examine behaviors of two typical continual RL base-
lines, which are regarded as one lower and upper bound that continual RL algorithms can achieve.

4.1 FINETUNE ALGORITHM: A LOWER-BOUND BASELINE (Tπ = T )

The Finetune algorithm follows MDP-wise training via a specific RL algorithm without imposing
any strategy, indicating that the obtained Q function after training the previous MDP serves as the
initialization of Q functions on the current MDP. As such, the global policy is directly developed
based on Q̂T after training on the T -th MDP immediately. Our results show that 1) Convergence:
the estimator Q̂t we obtain in each MDP will converge to the MDP-dependent optimal Q function
Q∗

t regardless of MDPs differences, 2) Convergence rate: the convergence rate on the current MDP
is determined by its MDP difference only with its preceding MDP.

We present our analytical results in the general framework of Neural Fitted Q Iteration (Neural
FQI) (Riedmiller, 2005; Fan et al., 2020) that provides a statistical interpretation of DQN (Mnih
et al., 2015) while capturing its two key features, i.e., the leverage of target network and the expe-
rience replay: Q̂k+1

θ = argminQθ

1
n

∑n
i=1 [yi −Qθ (si, ai)]

2
, where the target yi = r(si, ai) +

γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to update target network Qθ∗ by letting

θ∗ = θ. We apply the Finetune algorithm in the continual RL setting and within each MDP, we
deploy the Neural FQI. The resulting Finetune Neural FQI has the following convergence results:
Theorem 1. (Convergence of Finetune Neural FQI.) Denote Q∗

t as the optimal Q function for the
t-th MDP after the separate training, Q̂k

t as the Q function estimate after the k-th phase of Neural
FQI in the t-th MDP. If Q̂k

t is a consistent estimator, then we have:

(1) sups,a |Q̂k
t (s, a)−Q∗

t (s, a)| ≤ γkd∞(Mt−1,Mt) and ∥Q̂k
t −Q∗

t ∥∞ → 0 as k → +∞.

(2) The iteration complexity is O(log d∞(Mt−1,Mt)
ϵ ) in the t-th MDP given the tolerance error ϵ.

See Appendix B for the detailed proof. Theorem 1 indicates the Q function estimate has a Markov-
like property, whose convergence rate is determined by the MDP difference only between the pre-
ceding and current MDPs regardless of other MDPs. More importantly, the Q function estimator in
the Finetune algorithm in each MDP would asymptotically converge to the MDP-dependent optimal
Q function Q∗

t , suffering from the complete catastrophic forgetting about the knowledge of previous
MDPs. Results in Theorem 1 about the commonly used Finetune algorithm may not be surprising,
but we are the first to rigorously illuminate its convergence behavior.

4.2 SEQUENTIAL MULTI-TASK LEARNING: AN UPPER-BOUND BASELINE (Tπ = T + 1)

The Finetune algorithm analyzed in Theorem 1 serves as the lower-bound baseline as it suffers from
complete catastrophic forgetting. Next, we consider a soft upper-bound baseline called Sequential
Multi-task learning algorithm that has access to the interaction with previous MDPs as well as their
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optimal Q functions in a sequential training manner. Analyzing the behaviors of sequential multi-
task learning algorithms also helps us to answer a fundamental question:

Question: Even if we have access to optimal Q functions for all MDPs, it is tractable to derive the
optimal Q function in continual RL?

Answering this question requires us to investigate the optimality by minimizing the catastrophic
forgetting quantity CF(QTπ

) in Eq. 4 when Tπ = T + 1. In this circumstance, we apply the
Finetune algorithm across all MDPs that helps us to access all optimal Q functions, but we also
conduct a function based on all optimal Q functions, i.e., Qopt = f({Q∗

t }Tt=1), to derive an optimal
Q function estimator. Interestingly, this leads to an implicit optimality equation in terms of the
optimal Q function Q̃ and its policy π as shown in Proposition 1. See Appendix C for the proof.
Proposition 1. (Optimality Equation for Sequential Multi-task Learning) Assume the conditions in
Theorem 1 hold, the optimal estimator Q̃ by minimizing CF(QTπ ) in Eq. 4 satisfies the equation:

Q̃(s, a) =

T∑
t=1

wπ
t (s, a)Q

∗
t (s, a)/

T∑
t=1

wπ
t (s, a), (5)

where wπ
t (s, a) = µπ

t (s)π(a|s) is the weight. Following the greedy rule, π(a∗|s) = 1 if a∗ =

argmaxa′ Q̃(s, a′), otherwise, π(·|s) = 0.

Approximation of wπ
t (s, a). For practical algorithms, the weight wπ

t (s, a) can be approximated by
Monte Carlo, i.e., ŵπ

t (si, ai) =
1
Nt

∑Nt

i=1 1{st=si,at=ai}, where (si, ai) ∼ ρπt is drawn by applying
the policy π in the t-th MDP, and ρπt is the resulting steady state-action distribution. Nt is the number
of Monte Carlo simulations and st, at are in the t-th MDP. Thus, the approximated optimal continual

Q estimator ̂̃Q can be expressed as ̂̃Q(si, ai) =
∑T

t=1 ŵ
π
t (si, ai)Q

∗
t (si, ai)/

∑T
t=1 ŵ

π
t (si, ai).

Online Alternating algorithm. Although the optimal continual Q estimator holds a weighted mean
form in terms of {Q∗

t }, where t = 1, ..., T , it is an implicit equation regarding Q̃(s, a) as wπ
t in the

RHS of Eq. 5 is also determined by Q̃(s, a), i.e., a coupling relationship between π and Q. To solve
this equation, we introduce an online alternating algorithm (Algorithm 1) that alternately updates
the optimal Q function and its resulting policy. However, the algorithm requires the interaction with
all T MDPs to have an accurate evaluation of the weight wπ

t (s, a) for each MDP across t = 1, .., T ,
which is typically intractable in computation, especially for MDPs with large state and action spaces.
We defer Algorithm 1 with the detailed description to Appendix D.

5 CONTINUAL RL VIA REWEIGHTING BELLMAN TARGETS

Motivation. Based on the baseline analysis in Section 4, the lower-bound baseline, the finetune
algorithm, will lead to catastrophic forgetting, while the upper-bound baseline, the sequential multi-
task learning, can result in an optimal Q function estimator in a weighted form of all optimal Q
function, at the cost of an almost intractable computation burden. This motivates us to find a trade-
off between the two baselines to balance the computation cost and catastrophic forgetting. A key
insight is the optimal Q function Q̃ by minimizing the catastrophic forgetting turns out to be a
weighted average of the optimal Q functions for all MDPs as suggested in Eq. 5, it is therefore
theoretically principled to design a continual RL algorithm by reweighting Bellman targets, e.g.,
the (optimal) Q functions for MDPs that the agent has interacted. In addition, our algorithm also
explicitly considers the crucial two characteristics of continual learning, i.e., stability and plasticity:

Stability. Incorporating past Bellman targets, e.g., the target Q functions, in a reweighted form can
guide the current Q function to reuse the knowledge of previous MDPs, maintaining stability.

Plasticity. Incorporating the current Bellman target in the current MDP is necessary to guarantee
the plasticity and helps the algorithm to converge.

5.1 ALGORITHM FRAMEWORK BY REWEIGHTING BELLMAN TARGETS

Recap the updated rule Qk+1(s, a) ← Qk(s, a) + ηk [r(s, a) + γmaxa′ Qk(s
′, a′)−Qk(s, a)]

in the vanilla Q learning, where ηk is the step size in the k-th step. Similarly, we express the
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updating rule in continual Q learning for the t-th MDP via reweighted targets as Qt
k(s, a) ←

Qt
k(s, a) + ηk

[
rt(s, a) + γ

∑t
i=1 αi maxa′ Q̂i(s

′, a′)−Qt
t(s, a)

]
, where we use the weighted tar-

get
∑t

i=1 αi maxa′ Q̂i(s
′, a′) with the weight αi plus the reward rt(s, a) collected in the current

t-th MDP as the target. In the Neural FQI framework, we further have

Q̂k+1
θt

= argmin
Qk

θt

1

n

n∑
i=1

[
ȳti(α)−Qk

θt (si, ai)
]2

, (6)

where the reweighted target is ȳti(α) = rt(si, ai) + γ
∑t

j=1 αj maxa′ Q̂k
j (s

′
i, a

′). Q̂k
t = Qk

θ∗
t

is the
target network in the t-th MDP, serving as the target for the current MDP. The resulting algorithm in
Eq. 6 is a variant of Neural FQI as the reweighted target is fixed within each phase of updating.

Principle of Selecting Optimal α by Balancing Stability and Plasticity. Directly conducting
the algorithm in Eq. 6 may neither lead to the convergence on the t-th MDP, nor minimize the
catastrophic forgetting. We thus choose the optimal α by considering: (1) Stability: to minimize
catastrophic forgetting CF(QTπ

) while incorporating the knowledge from the previous MDPs, and
(2) Plasticity: the convergence guarantee in the current MDP. This involves a fundamental trade-off
as relying on previous knowledge (stability) with an overly small αt tends to yield the divergence
issue (plasticity) on the current t-th MDP of the continual RL algorithm.

5.2 STABILITY: MINIMIZING THE CATASTROPHIC FORGETTING

With a pre-specified weighted form of Q̂Tπ in Eq. 4, the optimized α∗ that minimizes CF(QTπ ) will
leads to ȳti(α

∗) and a bi-level optimization in the Neural FQI framework:

Q̂k+1
θt

(α∗) = argmin
Qk

θt

1

n

n∑
i=1

[
ȳti(α

∗)−Qk
θt (si, ai)

]2
, s.t. α∗(Q̂k

t ) = argmin
α

t∑
i=1

∆π
i,t(Mi;α),

where
∑t

i=1 ∆
π
i,t(Mi;α) =

∑t
i=1

∑
s µ

π
i (s)

∑
a π(a|s)

(
Q̂i(s, a)−

∑t
j=1 αjQ̂

k
j (s, a)

)2
referred

to Eq. 4 by additionally replacing Q̂Tπ
with a pre-specified weighted form

∑t
j=1 αjQ̂

k
j . Similarly,

we also denote Q̂k
t = Qk

θ∗ for brevity, which is used to maintain the plasticity as analyzed later.
However, the resulting lower-level optimization is also computationally expensive as the exact eval-
uation of wπ

t (s, a) = µπ
i (s)π(a|s) in ∆π

i,t(Mi;α) still requires to query and interact with the pre-
vious MDPs. As such, we choose to simply ∆π

i,t(Mi;α) by approximating wπ
t (s, a) by a uniform

distribution, i.e., wπ
t (s, a) ≈ 1

|S||A| :

t∑
i=1

∆π
i,t(Mi;α) ≈

t∑
i=1

∥δki α∥22 = ∥Γkα∥22, (7)

where δki = [Q̂k
i −Q̂k

1 , Q̂
k
i −Q̂k

2 , ..., Q̂
k
i −Q̂k

t ] ∈ R|S×A|×t and Γk = [δT1 , δ
T
2 , ..., δ

T
t ]

T ∈ Rt|S×A|×t

are the constant matrix. As α is also a convex combination, the lower-level optimization with
a quadratic form is convex, which has a unique solution and can be effectively solved by the
commonly-used optimization tool, for example, the CVXOPT toolbox in Python.

Tractable Computation for ΓK . Within each batch update for practical algorithms, |S| in the
dimension of ΓK is reduced to the batch size regardless of large or continuous state space. Moreover,
the Q function is typically not large to avoid the instability issue (Bjorck et al., 2021), and therefore
the corresponding stochastic continual RL algorithm is tractable and effective in computation.

Comparison with Anderson Acceleration. The optimization form in Eq. 7 is similar to the widely
used Anderson Acceleration (Walker & Ni, 2011) technique that can speed up RL algorithms (Sun
et al., 2021; Li, 2021). In Anderson Acceleration, within the Neural FQI framework, weights can
be solved by α∗(Q̂k

t ) = argmin
α

∥∥∥∑t
i=1 αi

(
T Q̂k+1−i

t (s, a)− Q̂k+1−i
t (s, a)

)∥∥∥
2
, aiming at accel-

erating the training on the current MDP by leveraging the information from previous Q functions
in the whole iteration still in the current MDP ranging from Qk

t to Qk−t
t . By contrast, our method

additionally uses the previous Q functions in the previous tasks from different MDPs.

6



Under review as a conference paper at ICLR 2024

5.3 PLASTICITY: CONVERGENCE GUARANTEE

We analyze the convergence of our algorithm within the dynamic programming framework. We start
by introducing a continual learning Bellman Optimality Operator T opt

CL as follows:

T opt
CL Qt(s, a) = E [R(s, a)] +

t∑
i=1

γ
∑
s′

Pa
s,s′αi max

a′
Qi(s

′, a′)

= E [R(s, a)] +

t∑
i=1

γ
∑
s′

Pπ∗

s,s′αiQi(s
′, a′),

(8)

where we let
∑

s′ Pa
s,s′
∑

a′ π∗(a′|s′) =
∑

s′ Pπ∗

s,s′ , omitting a in Pπ∗

s,s′ for brevity, and π∗(·|s′) =
argmaxQi(s

′, ·). In the Neural FQI, we have Qk
t (s, a) = T opt

CL Qk−1
t (s, a) = E [R(s, a)] +∑t

i=1 γ
∑

s′ Pπ∗

s,s′αiQ
k−1
i (s′, a′). In order to guarantee the convergence under continual learning

Bellman Optimality Operator T opt
CL , we have the following Proposition 2 with proof in Appendix E..

Proposition 2. T opt
CL has a γ-linear convergence rate, ∥T opt

CL Qk
t −Qk

t ∥ ≤ γ∥T opt
CL Qk−1

t −Qk−1
t ∥, if

αk = argmin
α
∥T opt

CL Qk−1α−Qk−1αk−1∥, (9)

where Qk−1 = [Qk−1
1 , ..., Qk−1

t ] ∈ R|S×A|t and T opt
CL Qk−1 = [T opt

CL Qk−1
1 , ..., T opt

CL Qk−1
t ].

5.4 PUTTING ALL TOGETHER: CONTINUAL RL ALGORITHM WITH REWEIGHTED TARGETS

Combining two constraints on αk in terms of both stability and plasticity, we introduce the regu-
larization coefficient λ to have a trade-off. The resulting continual RL algorithm with reweighted
Bellman targets within the framework of Neural FQI can be expressed as follows:

Qk+1(αk) = argmin
Qθt

1

n

n∑
i=1

[
ȳti(α

k)−Qk
θt (si, ai)

]2
,

s.t. αk = argmin
α
∥T opt

CL Qkα−Qkαk−1∥+ λ∥Γkα∥2, α ⪰ 0, α⊤1 = 1.

(10)

where λ controls the strength of catastrophic forgetting (stability) over the convergence (plasticity),
which is a fundamental trade-off in continual RL. It turns out that the upper-level optimization is an
iterative regression problem in terms of Qθt given the optimal αk, while the lower level is a recursive
ridge linear regression under the convex combination constraint in terms of αk. The lower-level
optimization is also convex and can be solved efficiently. We can initialize with α0 = [1/t, .., 1/t]⊤.

Relationship with Two Baselines. Our proposed algorithm is motivated by the optimality equation
in Proposition 1 from the upper bound baseline, sequential multi-task learning, as the optimal Q
function in continual RL should be a weighted form of all optimal Q functions in each MDP. Mean-
while, without incorporating the reweighting mechanism about Bellman targets, our algorithm will
degenerate to the lower-bound baseline, the Finetune algorithm.

6 EXPERIMENTS

We conduct our experiments to verify: (1) whether the Finetune algorithm, the lower-bound baseline,
converges to the MDP-dependent optimal Q function and whether the convergence rate is negatively
correlated to the MDP difference as analyzed in Theorem 1, (2) when the sequential multi-task
learning (Sequential ML), the soft upper-bound baseline, can outperform the lower bound baseline,
and (3) whether and when our proposed continual RL algorithm with reweighted Bellman targets
performs better than other baselines. We sequentially apply different continual RL algorithms on a
series of MDPs with different reward functions and environment dynamics.

Environments. Since our analysis and the proposed algorithm are mainly on the tabular setting,
we choose to demonstrate our results on a simple MDP and the GridWorld environment. Due to
the benchmark in continual RL is still less studied, we have not found any other widely accepted
benchmark to test value-based continual RL algorithms. Several benchmarks, including Continual

7
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World (Wolczyk et al., 2021) are designed for policy gradient-based RL algorithms with Soft Actor
Critic (SAC) (Haarnoja et al., 2018) as the basic algorithm, which is not (directly) applicable to our
theoretical results and the proposed value-based RL algorithm.

6.1 CONTINUAL Q LEARNING ON SIMPLE MDPS
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Figure 1: (Left) The simple MDP with different reward functions and environment dynamics.
(Right) Learning curves of vanilla continual Q learning on three MDPs, where Q∗ is evaluated
as the single Q learning on each MDP.

Experimental Setup. For the separate training on the three MDPs, where the MDP structure is
in Figure 1 (Left), we denote its results as V ∗ or Q∗ as the first baseline. Since this MDP can be
well solved by typical searching-based algorithms, we thus evaluate the optimal value function by
leveraging the Floyd algorithm denoted as “Optimal”. We randomly select the reward in each edge,
ranging from (0, 20), (10, 20), and (0, 30) for these three MDPs. In this MDP, when the agent takes
the action “Up”, it will get into the upper state with a certain probability (typically close to 1) and
the other state in the reversed direction otherwise. We select these three transition probabilities as
0.9, 0.8, and 0.9, respectively. In order to demonstrate Theorem 1, we specify different MDP2 with
different reward ranges, i.e., (10, 20), (30, 45), (80, 100), and plot their learning curves on Figure 1
(Right).

Results. As suggested in Figure 1 (Right), the learning speed increases in MDPs 2 and 3 with
lines in green, blue to red lines, as we decrease incremental MDP difference, i.e., d∞(Mt,Mt−1).
However, under sufficient training, the normalized Q function difference ∥Q̂−Q∗∥/∥Q∗∥ tends to
0. These empirical results corroborate results analyzed in Theorem 1.

Average Return MDP1 MDP2 MDP3 Average
Optimal 49.0 (±3.4) 66.3 (±2.6) 128.0 (±33.2) 81.1 (±11.5)

V ∗ 48.6 (±3.7) 66.3 (±2.6) 127.6 (±33.5) 80.9 (±11.7)
Finetune 38.3 (±5.0) 54.9 (±5.3) 127.8 (±33.3) 73.7 (±11.1)

Sequential ML 45.6 (±5.2) 63.8 (±4.2) 119.8 (±33.5) 76.4 (±11.0)
Ours 42.4 (±3.9) 55.2 (±5.9) 125.6 (±33.2) 74.4 (±11.2)

Table 1: Achieved average return of different algorithms in continual RL setting over 20 runs. The
optimal policy of our method is robust to λ = 0.0, 5.0, 10.0 in this simple MDP.

In order to demonstrate the superiority of Sequential ML over the Finetune algorithm, we specify the
reward in the MDP 3 as C − 1

2R1 − 1
2R2, where R1 and R2 are the reward vectors generated in the

first and second MDPs and C is a constant generated in the rage of (40, 80). We do 20 runs across all
algorithms. Results in Table 1 show that our continual RL algorithm performs favorably in-between
the Finetune and sequential multi-task learning algorithms. We also have more experiments in this
setup in Appendix F

6.2 CONTINUAL Q LEARNING ON THE GRID WORLD

Experimental Setup. The GridWorld has been used to evaluate continual RL algorithms in (Ka-
planis et al., 2018). The GridWorld environment is a stochastic MDP, where the same action could
have different outcomes and enter different next states). In particular, the environment moves the
agent in the intended direction with a certain probability P , and with probability 1− P , they move

8
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the agent in a random other direction. We set both the width and height as 10. The state is 2-
dimensional and a more detailed setting description can refer to (Kaplanis et al., 2018). We choose
four MDPs with different transition probabilities P , i.e., 0.75, 0.8, 0.85 and 0.9. As illustrated in
Figure 2 (Left), the agent will receive +100 reward if it encounters the gold, and -100 reward if it en-
counters a bomb. In the four MDPs, we change the locations of gold and bomb from the right-upper
part to the left-lower part gradually. Thus, both reward functions and the environment transitions
would be different.
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Figure 2: (Left) Grid World Environment. (Right) Convergence of the Finetune algorithm on Grid-
World with the relationship of the MDP differences. We sequentially apply the Finetuen algorithm
from MDP1 to the other three MDPs with different MDP differences. Results are averaged over 10
runs. We use a weighted MDP difference (ℓ2) by applying the obtained policy to explore the certain
MDP following the ϵ-greedy rule.

Results. We first demonstrate the conclusion in Theorem 1. As suggested in Figure 2 (Right), the
learning speed decreases as we increase the MDP difference between MDP 2 and MDP1, from the
red, blue to the green lines, indicating that a larger MDP difference would decrease the learning
speed of Finetune algorithm. We also do 5 runs to compare the performance of different continual
RL algorithms. Results in Table 2 suggest that our proposed algorithm performs favorably compared
with the other baselines, in which our algorithm with λ = 18.0 performs best. Notably, the Sequen-
tial ML does not perform well as it suffers form the divergence issue, where the online alternating
algorithm may not converge in the considered iteration steps.

Average Return MDP1 MDP2 MDP3 MDP4 Average
V ∗ 90.7 (±1.3) 93.2 (±4.5) 92.3 (±6.1) 90.7 (±3.9) 90.7 (±1.9)

Finetune -100.0 (±0.0) -100.0 (±0.0) -92.3 (±8.9) 26.2 (±87.0) -66.5 (±23.2)
Sequential ML -93.0 (±5.6) -98.0 (±1.9) -61.2 (±17.3) 18.1 (±67.8) -58.5 (±20.7)
Ours (λ = 0.0) -99.0 (±0.6) 37.4 (±53.7) -102.8 (±3.9) -100.0 (±0.0) -66.1 (±12.9)
Ours (λ = 12.0) -70.2 (±42.3) 42.6 (±44.0) -100.0 (±0.2) -100.0 (±0.0) -56.9 (±18.4)
Ours (λ = 18.0) -48.8 (±67.3) 84.4 (±8.6) -98.0 (±2.2) -99.0 (±0.2) -40.6 (±16.2)

Table 2: Average return with standard deviations of different continual RL algorithms over 5 runs.

7 DISCUSSIONS AND CONCLUSION

In this paper, we are addressing the unsolved issues in the field of continual RL. We begin by
providing a general analysis framework to characterize the catastrophic forgetting in continual RL.
Based on this framework, we also conduct the baseline analysis, including the convergence results
and an optimal continual Q estimator along with an online alternating algorithm. Finally, we propose
a practical continual RL algorithm via reweighted targets. The resulting bi-level and ridge recursive
algorithm has shown promising results in the considered experiments.

There are still some limitations in our analysis as well as our proposed approach. Firstly, we con-
centrate on the tabular setting with a low-dimensional state space, but we have not fully considered
the impact of representation sharing for deep RL algorithms within multiple MDPs in the continual
RL regime. Additionally, our continual RL setting also requires access to the task boundary and
assumes the same state and action spaces across different MDPs. However, the research community
could put more effort into the more challenging task-agnostic setting with arbitrarily different state
and action spaces across various MDPs to get closer to real-world scenarios in the future.
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A DEFINITION OF DISTRIBUTION DRIFT AND CATASTROPHIC FORGETTING

We first introduce the concept of drift in the process of learning a parameterized function f from the
source data distribution τS with the dataset DτS to the target data distribution τT with the dataset
DτT . After learning f on the source dataset DτS , we obtain the estimated function f̂τS . Then we
apply the same model architecture f on the target dataset DτT with any learning algorithms, and
finally we evaluate the drift of the attained f̂τT via δτS→τT defined as (Doan et al., 2021):

δτS→τT (XτS ) =
(
f̂τT (x)− f̂τS (x)

)
(x,y)∈DτS

(11)

Based on the definition of drift, we define the vanilla catastrophic forgetting ∆τS→τT as

∆τS→τT (XτS ) = ∥δτS→τT (XτS )∥22 =
∑

(x,y)∈DτS

(
f̂τT (x)− f̂τS (x)

)2
, (12)

where the catastrophic forgetting can be further simplified as ∆τS→τT =
∥∥ϕ (XτS )

(
ω∗
τT − ω∗

τS

)∥∥2
2

in the Neural Tangent Kernel (NTK) regime (Doan et al., 2021; Jacot et al., 2018), allowing the
proposal of new continual learning approaches. In deep learning, minimizing the catastrophic for-
getting ∆τS→τT is equivalent to minimizing a weighted drift in terms of the prediction function f̂
with the weights determined by the dataset.

B PROOF OF THEOREM 1

Proof. Convergence. We start from the key inequality in Neural FQI, where the Q function is
parameterized via a neural network and iteratively optimized in each phase of each MDP se-
quentially. Since Q̂k

t is a consistent estimator, it converges to its expectation form in probabil-
ity. For simplicity, we consider their expectation form in our proof. We denote Qk+1

t (s, a) =
E [r(s, a)] + γmaxa∈A Es′

[
Qk

θ∗ (s′, a)
]
= T optQk

θ∗(s, a) in the asymptotic case (n → +∞) as
the target Q that guides to estimator Q̂k+1

t . Since Qk
θ∗ = Q̂k

t when periodically updating the target
network, we have Qk

t (s, a) = T optQk−1
θ∗ (s, a) = T optQ̂k−1

t (s, a). Thus, we have

sup
s,a

∣∣∣Q̂k
t (s, a)−Q∗

t (s, a)
∣∣∣

≤ sup
s,a

∣∣∣Q̂k
t (s, a)−Qk

t (s, a)
∣∣∣+ sup

s,a

∣∣Q∗
t (s, a)−Qk

t (s, a)
∣∣

= sup
s,a

∣∣∣Q̂k
t (s, a)−Qk

t (s, a)
∣∣∣+ sup

s,a

∣∣∣T optQ∗
t (s, a)− T optQ̂k−1

t (s, a)
∣∣∣

≤ sup
s,a

∣∣∣Q̂k
t (s, a)−Qk

t (s, a)
∣∣∣+ γ sup

s,a

∣∣∣Q̂k−1
t (s, a)−Q∗

t (s, a)
∣∣∣

≤ sup
s,a

∣∣∣Q̂k
t (s, a)−Qk

t (s, a)
∣∣∣+ γ sup

s,a

∣∣∣Q̂k−1
t (s, a)−Qk−1

t (s, a)
∣∣∣+ γ2 sup

s,a

∣∣∣Q̂k−2
t (s, a)−Q∗

t (s, a)
∣∣∣

. . .

≤
k−1∑
i=0

γi sup
s,a

∣∣∣Q̂k−i
t (s, a)−Qk−i

t (s, a)
∣∣∣+ γk sup

s,a

∣∣∣Q̂0
t (s, a)−Q∗

t (s, a)
∣∣∣

≤
k−1∑
i=0

γiα+ γk sup
s,a

∣∣∣Q̂t−1(s, a)−Q∗
t (s, a)

∣∣∣
≤ 1

1− γ
α+ γk sup

s,a

∣∣∣Q̂t−1(s, a)−Q∗
t (s, a)

∣∣∣
→ γk sup

s,a

∣∣∣Q̂t−1(s, a)−Q∗
t (s, a)

∣∣∣ (no optimization error)

→ 0 (k → +∞)
(13)
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where Q1
t (s, a) = r(s, a) + γmaxa∈A Q̂0

t (s
′, a) in the target estimate in the first phase for the t-th

MDP, and Q̂0
t = Q̂t−1 is the estimated Q function after t − 1-th MDP. We also introduce an upper

bound α of each Neural FQI iteration, which tends to 0 in an ideal case. This is because the experi-
ence buffer induces independent samples {(si, ai, ri, s′i)}i∈[n] and ideally without the optimization
and TD approximation errors, the updating in each phase of Neural FQI is exactly the updating un-
der Bellman optimality operator (Fan et al., 2020). This implies that ∥Q̂k

t −Qk
t ∥∞ → 0 ideally, and

thus their upper bound α converges to 0. The last arrow of proof holds when k → +∞ as long as
∥Q̂t−1 −Q∗

t ∥∞ is bounded or not arbitrarily large.

Putting all together, the proof above indicates that ∥Q̂k
t − Q∗

t ∥∞ → 0 as k → +∞ without the
optimization error in each Neural FQI regardless of the initialization Q̂t−1. As Q̂k

1 → Q∗
1 under

the above conditions, we can easily prove in a recursive way that Q̂k
t → Q∗

t for each t = 1, ..., T

in this Finetune algorithm, i.e., Q̂t = Q∗
t . As such, we further plug this condition into the last two

arrows in the proof above, and therefore, given the k-th phase in the t-th MDP, we have

sup
s,a
|Q̂k

t (s, a)−Q∗
t (s, a)| ≤ γk sup

s,a

∣∣Q∗
t−1(s, a)−Q∗

t (s, a)
∣∣

= γkd∞(Mt−1,Mt),
(14)

where the RHS in terms of Q function is exactly the MDPs difference we define in Definition 1.

Iteration complexity. Let RHS in Eq. 14 be less than ϵ, after taking log transformation, we have:

k log γ + log d∞(Mt−1,Mt) ≤ log ϵ

Finally, we have:

k ≥ C log
d∞(Mt−1,Mt)

ϵ
, (15)

where C = − 1
log γ . This indicates that the iteration complexity is O(log d∞(Mt−1,Mt)/ϵ) given

an ϵ iteration error. In other words, a larger MDP difference between the current and preceding ones
would require a larger number of iterations for Q̂k

t in order to converge to MDP-dependent optimal
Q∗

t in the t-th MDP.

C PROOF OF PROPOSITION 1

Proof. Under the conditions of Theorem 1, where Tπ = T , we have Q̂T = Q∗
T , which suffers

from the complete catastrophic forgetting and is typically not the optimal continual minimizer. By
contrast, with full access to all MDPs, we can further construct a mapping based on previous optimal
Q functions in each MDP (Tπ = T +1) for an optimal one in the sequential multi-task learning. By
plugging Q̂t = Q∗

t , the objective function of Eq. 4 can be simplified as follows

CF(Q) =

T∑
t=1

∑
s

µπ
t (s)

∑
a

π(a|s) (Q∗
t (s, a)−Q(s, a))

2

=

T∑
t=1

∑
s,a

wπ
t (s, a) (Q

∗
t (s, a)−Q(s, a))

2

(16)

where wπ
t (s, a) = µπ

t (s)π(a|s). Since we hope to find the optimal Q estimator in terms of the whole
objective function, the Q function mapping from s, a to the Q is just the inner mapping, we only need
to consider the optimality equation for a specific s, a. Although wπ

t (s, a) is coupled with Q(s, a)
following the greedy rule in terms of the policy π, when we fix wπ

t within a bi-level optimization,
the objective function above is equivalent to a quadratic function regarding Q(s, a). By taking the
derivative of CF(Q) regarding Q(s, a) and then let the gradient equal to 0, for each s, a, it arrives at

T∑
t=1

wπ
t (s, a) (Q

∗
t (s, a)−Q(s, a)) = 0 (17)
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We finally have:

Q̃(s, a) =

T∑
t=1

wπ
t (s, a)Q

∗
t (s, a)/

T∑
t=1

wπ
t (s, a) ∀s, a, (18)

where the restraint is wπ
t (s, a) = µπ

t (s)π(a|s) with π(a∗|s) = 1 if a∗ = argmaxa′ Q̃(s, a′),
otherwise π(a|s) = 0.

D ONLINE ALTERNATING ALGORITHM FOR OPTIMALITY EQUATION OF
SEQUENTIAL MULTI-TASK LEARNING

Algorithm 1 Online Alternating Algorithm for Sequential Multi-task Learning

1: Given the {Q∗
t } for t = 1, .., T , and initialize Q(0). Set the total training steps K, evaluation

step L, and the number of samples Nt for each t = 1, ..., T . Initialize l = 1.
2: while l ≤ L do
3: / * Step 1: Weight Evaluation via π determined by Q(l−1) * /
4: for t = 1 to T do
5: Observe the initial state s0 in the t-th MDP;
6: for i = 1 to Nt do
7: Select ai = argmaxa Q

(l−1)(si, a) via the greedy rule.
8: Perform the action ai on t-th MDP, obtain ri and si+1.
9: Store the transition (si, ai) in the t-th buffer.

10: end for
11: Estimate wπ

t based on samples in the t-th buffer:

ŵπ
t (s, a)←

1

Nt

Nt∑
i=1

1{st=si,at=ai}

12: end for
13: / * Step 2: Q Function Updating * /
14: Sample the batch of transitions (si, ai) from all T buffers.
15: Update Q Function for each (si, ai) via

Q(l)(si, ai)←
T∑

t=1

ŵπ
t (si, ai)Q

∗
t (si, ai)/

T∑
t=1

ŵπ
t (si, ai)

16: l← l + 1
17: end while

The algorithm procedure includes two iterative steps. The first one is the weight evaluation while
fixing the Q̃, in which case, the policy is also fixed. The weight evaluation ŵπ

t (s, a) is typically
proceeding via Monte Carlo method, and a larger number of simulations leads to a more accurate
evaluation at the cost of the more computational cost. The second step is to update the Q function
with the evaluated weights ŵπ

t (s, a) in step one. This procedure requires the online interaction
with all MDPs, and hence it is called an online alternating algorithm. This alternating optimization
in Algorithm 1 is also similar to the policy/value iteration algorithm that interacts between the Q
function and the policy. In our implementation, we select a sufficiently large L to guarantee a
favorable convergence of our online alternating algorithm, although an overly large L will increase
the computational cost significantly.

In summary, in order to leverage all optimal Q functions to seek an optimal Q function estimator in
continual RL, we are required to interact with all MDPs. This additional computation is likely to be
useful in continual learning provided that the weights ŵπ

t (si, ai) can be approximated favorably via
the online alternating algorithm within the computational budget.

E PROOF OF PROPOSITION 2

Directly considering two Qt(s, a) to derive the contraction mapping would be difficult as α de-
pends on the Qt(s, a) and decoupling α and Qt(s, a) is hard. Instead, we consider the following
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convergence rate proof by following (Li, 2021):

∥T opt
CL Qk

t −Qk
t ∥

= ∥E [R(s, a)] +

t∑
i=1

γ
∑
s′

Pπk

s,s′α
k
i Q

k
i (s

′, a′)−Qk
t (s, a)∥

= ∥
t∑

i=1

αk
i

(
E [R(s, a)] + γ

∑
s′

Pπk

s,s′Q
k
i (s

′, a′)−Qk
t (s, a)

)
∥

= γ∥
t∑

i=1

αk
i

∑
s′

Pπk

s,s′Q
k
i (s

′, a′)−
t∑

j=1

∑
s′′

Pπk−1

s,s′′ αk−1
j Qk−1

i (s′′, a′′)

 ∥
= γ∥

t∑
i=1

αk
i

t∑
j=1

αk−1
j

(∑
s′

Pπk

s,s′T
opt

CL Qk−1
i (s′, a′)−

∑
s′′

Pπk−1

s,s′′ Qk−1
i (s′′, a′′)

)
∥

≤ γ∥
t∑

i=1

αk
i

t∑
j=1

αk−1
j

(∑
s′

Pπ∗

s,s′T
opt

CL Qk−1
i (s′, a′)−

∑
s′′

Pπ∗

s,s′′Q
k−1
i (s′′, a′′)

)
∥

= γ∥
t∑

i=1

αk
i

t∑
j=1

αk−1
j

(∑
s′

Pπ∗

s,s′T
opt

CL Qk−1
i (s′, a′)−

∑
s′

Pπ∗

s,s′Q
k−1
i (s′, a′)

)
∥

≤ γ
∑
s

Pπ∗

s,s′∥
t∑

i=1

αk
i

t∑
j=1

αk−1
j

(
T opt

CL Qk−1
i (s′, a′)−Qk−1

i (s′, a′)
)
∥

≤ γ∥
t∑

i=1

αk
i

t∑
j=1

αk−1
j

(
T opt

CL Qk−1
i (s′, a′)−Qk−1

i (s′, a′)
)
∥

= γ∥T opt
CL Qk−1αk −Qk−1αk−1∥

≤ γ∥T opt
CL Qk−1

t −Qk−1
t ∥ (need to be guaranteed)

(19)

where we define T opt
CL Qk

i = Qk
i if i < t and T opt

CL Qk indicates that we apply the operator T opt
CL on

the vector Qk = {Qk}ti=1 in an column-wise way. The first inequality we leverage the inequality
maxx f(x) − maxy g(y) = f(x∗) − g(y∗) ≤ f(x∗) − g(x∗) ≤ maxx f(x) − g(x) if we assume
the difference is positive without loss of generality, and

∑
i bifi −

∑
j bjgj =

∑
i bi(fi − gi).

Qk = [Qk
1 , ..., Q

k
t ]. Thus, in order to guarantee the γ-linear convergence rate, i.e.,

∥T opt
CL Qk

t −Qk
t ∥ ≤ γ∥T opt

CL Qk−1
i −Qk−1

i ∥ (20)

we need to construct the following constraint on αk recursively as follows:

αk = argmin
α
∥T opt

CL Qk−1α−Qk−1αk−1∥, (21)

where we have ∥T opt
CL Qk−1αk − Qk−1αk−1∥ ≤ ∥T opt

CL Qk−1αk−1 − Qk−1αk−1∥ ≤
∥T opt

CL Qk−1
t αk−1

t − Qk−1
t αk−1

t ∥ = αk−1
t ∥T opt

CL Qk−1
t − Qk−1

t ∥ ≤ ∥T opt
CL Qk−1

t − Qk−1
t ∥ and the

second inequality is due to the definition T opt
CL Qk

i = Qk
i if i < t.

F EXPERIMENTS ON MDP

Further, we investigate when “Upper” is significantly superior to “Lower”. Instead of randomly as-
signing rewards in a certain range in the previous setting, we construct a “reverse” reward function
setting in the third MDP in contrast to the reward functions in the first and second MDPs, respec-
tively. In particular, given the reward function in the first and second MDP, we set rewards in the
third MDP as C− r1, C− r2 and C− r1− r2, where c is a pre-specified constant. It is expected that
if the reward function in the three MDPs is C−r1, for example, the “Lower” algorithm will “overfit”
to the last MDP, which is reversed to the reward distribution in the first MDP. Therefore, its perfor-
mance on the first MDP would be undesirable and worse than “Upper” that simultaneously considers
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Figure 3: The first two orange bars for C − r1, C − r2 are calculated on MDP1 and MDP2, respec-
tively. The third bar for C − r1 − r2 is averaged over both MDP1 and MDP2.

all MDPs. We evaluate the difference between “Upper” and “Lower” on either random (rewards are
sampled randomly) and reverse reward, e.g., C − r1, settings and make a detailed comparison.

As suggested in Figure 3, when the reward function in the third MDP is the reverse one of the
previous MDP, “Upper” performs much better than “Lower” as “Lower” only performs based on the
environment of the last MDP, which can be dramatically different from previous environments.
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