
Published as a conference paper at ICLR 2026

COT-EVO: EVOLUTIONARY DISTILLATION OF CHAIN-
OF-THOUGHT FOR SCIENTIFIC REASONING

Kehua Feng1,2, Keyan Ding1,2∗, Zhihui Zhu1, Lei Liang3, Qiang Zhang1,2∗, Huajun Chen1,2∗
1Zhejiang University 2ZJU-Hangzhou Global Scientific and Technological Innovation Center
3AntGroup
{kehuafeng, dingkeyan}@zju.edu.cn

ABSTRACT

While chain-of-thought (CoT) distillation from advanced large language models
(LLMs) has proven effective in general reasoning tasks, it struggles in scientific
domains where even advanced models often produce incorrect or superficial rea-
soning due to high complexity and specialized knowledge requirements. Directly
distilling from such flawed outputs results in low-quality training data and limits the
performance of smaller student models. To overcome this, we propose COT-EVO,
an evolutionary CoT distillation framework. It begins by constructing a diverse
pool of reasoning trajectories from multiple LLM thinkers, enriches them with
automatically retrieved domain knowledge, and iteratively refines the trajectories
using novelty-driven selection, reflective recombination and mutation. The refine-
ment is guided by a fitness function that evaluates answer correctness, coherence,
and effective knowledge utilization. This results in a high-quality CoT dataset
tailored for scientific reasoning. We employ this evolved dataset to fine-tune a
compact model, which achieves state-of-the-art performance on scientific reasoning
benchmarks. Our work establishes a scalable approach to synthesizing high-fidelity
scientific reasoning data from diverse and fallible LLMs.

1 INTRODUCTION

Recent advances in reasoning large language models (LLMs), such as DeepSeek-R1 (Guo et al., 2025)
and OpenAI-o1/o3 (Jaech et al., 2024), have demonstrated that leveraging long and structured chains
of thought (CoTs) leads to remarkable improvements in complex reasoning tasks. CoT distillation
from advanced teacher models has proven effective in general domains (Ye et al., 2025; Hu et al.,
2025). However, when applied to scientific domains, even the strongest LLMs frequently generate
erroneous or superficial reasoning paths due to the increasing complexity and specialization of
scientific tasks (Liu et al., 2025; Li et al., 2025). This raises a critical need for more fine-grained CoT
distillation approaches tailored to the unique requirements of scientific reasoning.

Existing work has made significant progress in optimizing CoT distillation. Some approaches
focus on enhancing intra-chain quality in single-teacher settings by compressing reasoning token
length (Wang et al., 2025; Lu et al., 2025) or identifying intermediate error states (Luo et al., 2025).
Others employ multi-teacher to aggregate diverse reasoning paths and select the most suitable CoT
for each sample (Zhu et al., 2024; Xu et al., 2025). While these methods have enriched the landscape
of CoT distillation, they overlook two critical aspects that are particularly consequential in scientific
reasoning tasks: 1) single-teacher optimization may introduce bias (Xu et al., 2025), and merely
pruning redundant or erroneous steps does not ensure accurate knowledge usage in the core thought;
2) multi-teacher framework increases diversity but lacks the flexibility to refine the internal logic of
CoTs at a fine-grained level.

To address these limitations, we propose COT-EVO, an evolutionary CoT distillation framework.
Distinct from prior work that merely selects or transfers a single promising reasoning path per
sample, COT-EVO performs intra-chain aggregation, dynamically integrating thoughts from multiple
CoTs to synthesize a single, high-quality chain. Specifically, COT-EVO begins by generating a
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Figure 1: Overview of COT-EVO. (a) Multi-thinker CoT initialization constructs a diverse pool of
candidates. (b) Novelty-driven candidate selection evaluates them via a composite fitness function
and retains promising trajectories. (c) Reflective recombination and mutation generate new offspring
CoTs through targeted operations. (d) These modules form the iterative COT-EVO optimization loop,
which evolves compact, accurate, and domain-reliable CoTs for downstream training.

diverse candidate pool of CoTs using multiple LLMs and prompting strategies, optionally augmented
with external knowledge. Each candidate is then scored by a fitness function measuring answer
correctness, reasoning length appropriateness, and knowledge usage accuracy. Rather than greedily
picking the top candidates, COT-EVO employs a novelty-driven selection mechanism that jointly
rewards quality and behavioral diversity. Finally, reflective recombination and mutation operators
integrate or revise reasoning steps across candidates to produce improved offspring chains. Iterating
this evaluation–selection–variation–update loop yields a compact yet high-fidelity set of evolved
CoTs for downstream training.

Our contributions can be summarized as follows:

• We introduce the first intra-chain multi-trajectory aggregation framework for CoT distillation,
enabling fine-grained integration of reasoning steps within a single chain.

• We propose an evolutionary CoT distillation approach that integrates novelty-driven selec-
tion, reflective recombination, and mutation to iteratively refine reasoning trajectories.

• We construct an evolved CoT dataset and demonstrate that our method significantly improves
the performance of student models on scientific reasoning tasks.
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2 RELATED WORK

Long CoT Distillation Long CoTs have been shown to significantly enhance LLMs’ reasoning
ability, as evidenced by models like DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1/o3 (Jaech
et al., 2024). Distilling such trajectories from strong teacher models into smaller ones has become
a common strategy to boost reasoning efficiency under limited computation (Ye et al., 2025; Hu
et al., 2025). To improve quality, prior work has explored intra-chain optimization, e.g., compressing
reasoning token length or pruning erroneous steps (Wang et al., 2025; Luo et al., 2025), and inter-
chain (i.e., multi-teacher) strategies, e.g., aggregating multiple reasoning paths from different teachers
or prompting paradigms (Chain-of-Thought (Wei et al., 2022), Tree-of-Thought (Yao et al., 2023),
or Program-of-Thought (Chen et al., 2022)) (Zhu et al., 2024; Xu et al., 2025; Lei et al., 2025).
Despite these advances, existing methods remain limited in scientific domains, where ensuring both
factual accuracy and logical rigor is critical. To this end, we introduce COT-EVO, which applies
an evolutionary, fine-grained intra-chain aggregation strategy to combine and refine reasoning steps
across CoTs, yielding more reliable and domain-accurate scientific reasoning trajectories.

Reasoning in Scientific Domains With the rapid progress of LLMs in mathematics and code,
recent efforts have turned to evaluating their capabilities in scientific domains. Benchmarking
efforts have shifted focus from high school-level exams such as MMLU (Hendrycks et al., 2020),
CEval (Huang et al., 2023), and AGIEval (Zhong et al., 2023), to more advanced scientific tests
including GPQA (Rein et al., 2024), SciEval (Sun et al., 2024), and SciKnowEval (Feng et al., 2024),
and further to domain-intensive tasks such as BioMaze (Zhao et al., 2025a), BioProBench (Liu
et al., 2025), and ChemCoTBench (Li et al., 2025), which emphasize reasoning over memorization,
covering areas from biological protocols to molecular design. Moreover, developing specialized
scientific LLMs to tackle complex downstream tasks has emerged as a promising direction (Zhao et al.,
2025b; Bai et al., 2025). In this paper, we aim to provide a generalizable CoT distillation framework
that generates high-quality reasoning trajectories adaptable to diverse scientific applications.

3 COT-EVO: EVOLUTIONARY COT DISTILLATION

In this section, we present COT-EVO, a novel evolutionary framework tailored for CoT distillation
in scientific reasoning tasks. Let Dori = {(xi, yi)}Ni=1 denote the original training dataset without
CoT. For each xi, the goal of COT-EVO is to generate high-fidelity, compact CoTs for downstream
training by leveraging a diverse candidate pool P = {t1, t2, . . . , tn} produced from a collection of
LLM thinkers L. Through iterative refinement guided by carefully crafted reward signals, COT-EVO
evolves these candidates into more accurate and domain-reliable reasoning chains.

Following the principle of genetic algorithm, COT-EVO consists of four core modules: 1) multi-
thinker CoT initialization (Section 3.1), 2) novelty-driven candidate selection (Section 3.3), 3)
reflective CoT recombination and mutation (Section 3.4), and 4) fitness function definition (Section
3.2). We summarize the optimization loop of COT-EVO in Section 3.5. Figure 1 provides an overview
of COT-EVO, and the full COT-EVO algorithm is formalized in Algorithm 1.

3.1 MULTI-THINKER COT INITIALIZATION

A key to the success of evolutionary algorithms lies in constructing an initial candidate pool P that is
both diverse and promising. To this end, we employ a two-stage approach.

CoT Generation We first assemble a collection of LLM thinkers L = {l1, l2, . . . , lm}, where
each li may represent: 1) reasoning-based LLMs from different model families or scales, e.g.,
DeepSeek-R1 (Guo et al., 2025), Qwen3-235B-A22B (Yang et al., 2025), and Qwen3-32B; or 2)
instruction-tuned LLMs with varying prompting strategies, e.g., Tree-of-Thought (Yao et al., 2023),
Chain-of-Thought (Wei et al., 2022), and backward reasoning. Formally, for query x ∈ Dori, each
trajectory ti ∈ PG is generated by

ti = li(x), i = 1, 2, . . . ,m. (1)

Knowledge Augmentation Considering the high specialization of scientific domains, a model’s
internal knowledge alone is often insufficient. Therefore, we collect additional knowledge required for
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each query x using a prompt-based automated approach. Specifically, for each QA pair (x, y) ∈ Dori,
we prompt an advanced proprietary model Θ to perform reflective reasoning from y to identify the
knowledge necessary for solving x, and then abstract it into general, context-independent snippets
Kx. We then randomly select a subset of thinkers, and provide each chosen thinker lj with Kx as
additional context, resulting in a knowledge-enhanced CoT tj ∈ PK represented as

tj = lj(x,Kx), j = 1, 2, . . . , n−m. (2)

This approach results in an initial candidate pool P = PG ∪ PK that maximizes both cognitive
difficulty (Cai et al., 2025) and strategic diversity, simulating a broad coverage of the solution space.

3.2 FITNESS FUNCTION

We evaluate each candidate trajectory t using a composite fitness score that captures 1) answer
correctness, 2) reasoning-length appropriateness, and 3) correctness of knowledge usage.

Exact Match We use a task-specific external script to check whether the candidate’s final answer
exactly matches the ground truth. The exact match score is binary:

sEM =

{
1 if exact match,

0 otherwise.
(3)

Length Appropriateness We compute token lengths from scientific reasoning datasets (e.g., Llama-
Nemotron-Science (Bercovich et al., 2025)) and set the 15% and 85% percentiles as lower and upper
bounds, since responses shorter than the 15% threshold often miss key knowledge, while those
beyond the 85% threshold tend to be verbose. Thus, the length appropriateness score is defined as

sLEN =


0.0 if len(t) < 15% percentile,
0.5 if len(t) > 85% percentile,
1.0 otherwise.

(4)

This encourages concise reasoning while avoiding under-explained outputs.

Knowledge Usage Correctness We employ an LLM-as-a-Judge (Zheng et al., 2023) evaluator to
assess the accuracy of the knowledge applied in the core thought of t. Given the reference knowledge
Kx and the CoT t, the judge assigns a categorical score

sKNOW = Judge(Kx, t), sKNOW ∈ {1, 2, 3, 4, 5}. (5)

The final fitness function of t combines the three components with weighted contributions:

R(t) = sEM + λ1sLEN + λ2sKNOW, (6)

where λ1 and λ2 control the relative importance of length and knowledge usage.

3.3 NOVELTY-DRIVEN CANDIDATE SELECTION

While the initial pool P obtained in Section 3.1 offers substantial diversity in reasoning trajectories,
selecting candidates solely based on the highest fitness scores can lead to premature convergence
toward a narrow set of CoTs. To mitigate this, COT-EVO employs a novelty-driven selection
mechanism, inspired by Novelty Search with Local Competition (NSLC) (Lehman & Stanley, 2011),
which simultaneously promotes two complementary objectives: (i) encouraging distinct reasoning
patterns, and (ii) rewarding local quality improvements.

Behavioral Embedding We first embed each CoT t ∈ P into a d-dimensional behavioral space
through a mapping b : P → Rd capturing its structural or semantic reasoning features:

zt = b(t) ∈ Rd. (7)

In practice, we instantiate b(·) using Qwen3-Embedding-8B (Zhang et al., 2025).
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Novelty Score To quantify distinctiveness, we compute trajectory t’s average distance to its k
nearest neighbors Nk(t) in behavioral space:

N(t) =
1

k

∑
t′∈Nk(t)

∥∥zt − zt′
∥∥
2
. (8)

Larger N(t) values correspond to more differentiated reasoning styles.

Local Competition Score Given a fitness functionR(t) (defined in Section 3.2) that assesses the
correctness and quality of a trajectory t, we evaluate t’s relative improvement over its neighbors:

L(t) =
1

k

∑
t′∈Nk(t)

(
R(t)−R(t′)

)
+
, (a)+ = max(a, 0). (9)

Here, L(t) rewards local superiority within the same behavioral region.

Pareto-Based Selection We treat each (N(t), L(t)) pair as a bi-objective performance vector
g(t) = (N(t), L(t)). Define a (strict) Pareto-dominance relation g(t′) ≻ g(t), if N(t′) ≥N(t) ∧
L(t′) ≥ L(t) with at least one strict inequality. The Pareto front is then

Ft = { t ∈ P | ∄ t′ ∈ P s.t. g(t′) ≻ g(t) }. (10)

From Ft, parent candidates are sampled with probability

p(t) =
L(t) + ε∑

t′∈Ft

(
L(t′) + ε

) , ε > 0, (11)

where the parameter ε ensures numerical stability and slightly favors trajectories with higher local
performance while maintaining diversity.

3.4 REFLECTIVE COT RECOMBINATION AND MUTATION

To further evolve reasoning trajectories, COT-EVO adopts a reflective approach for recombination and
mutation, enabling models to incorporate useful strategies from peers or revise their own reasoning
patterns.

CoT Recombination. Recombination is triggered only if to yields an incorrect final answer (i.e.,
sEM(to) = 0). Unlike standard genetic algorithms, our crossover operates on a single target CoT to
with guidance from a strategy provider tp. Let Cr denote the recombiner (defaulting to lo ∈ L that
produced to).

Step 1: Identify binding point. We decompose tp into distinct thoughts using transition keywords (Chai
et al., 2025) (see Appendix A6 for details), then apply Cr to select the endpoint of the last reasonable
thought as the binding point B:

B = Cr(tp, transition keywords). (12)

Step 2: Cross-chain recombination. We employ Cr to extract unique steps and knowledge from tp
absent in to, denoted by I, and let Cr generate a new CoT t′ conditioned on the prefix to[: B] and I:

t′ = to[: B] + Cr
(
to[: B], I

)
. (13)

Owing to the limited instruction-following capability of currently reasoning models, if Cr is a
reasoning model, we explicitly insert guiding text immediately after Cr’s initial “<think>” token,
including: 1) “I can receive externally provided information through “<info></info>”, and 2)
“Upon receiving information, I should switch to a new thought and verify and use that information.”

Reflective Mutation. Mutation aims to alter to’s strategy, logic, or expression. Given to and
mutation operatorMu (defaulting to lo), we generate new variants via three modes:

(1) Additive mutation: enrich logical detail, explanations, and domain knowledge:

t′(a) =Mu(to,Add); (14)
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(2) Deletive mutation: prune redundancy, unproductive exploration, or extraneous knowledge:

t′(d) =Mu(to,Delete); (15)

(3) Innovative mutation: diagnoses erroneous logic in to using the correct answer y, then generates a
new trajectory that attempts to avoid the identified mistakes:

t′(c) =Mu

(
Mu(to, Innovate),Delete

)
. (16)

3.5 COT-EVO OPTIMIZATION LOOP

Putting the above modules together, COT-EVO proceeds in an iterative evolutionary loop that progres-
sively refines the candidate pool, which is similar to the standard genetic algorithm Holland (1992).
At each generation, the current pool P produced by the multi-thinker initialization (Section 3.1) is
first evaluated by the fitness functionR(t) (Section 3.2) to obtain the quality scores of all trajectories.
Rather than greedily selecting only the top-scoring CoTs, we apply the novelty-driven selection
mechanism (Section 3.3) to choose a set of parent trajectories that are both diverse in reasoning
behavior and locally competitive. These parents are then passed to the reflective recombination and
mutation operators (Section 3.4) to generate improved offspring trajectories, which inherit useful
strategies or undergo targeted revisions of their reasoning steps. The resulting offspring are merged
with the previous pool, with the lowest-fitness trajectories removed to maintain the population size
npop, forming a new candidate set for the next iteration of the evaluation–selection–variation cycle.
This iterative process continues until convergence or a predefined budget B, yielding an evolved CoT
dataset Devo = {(xi, t

⋆
i , yi)}Ni=1 with t⋆i = argmaxt∈Pxi

R(t) for downstream model training.

4 EXPERIMENTS

4.1 IMPLEMENTATION OF COT-EVO

Our pool of LLM thinkers includes Qwen3-32B-think (Yang et al., 2025), DeepSeek-R1 (Guo et al.,
2025), and Qwen3-235B-A22B-think (Yang et al., 2025), together with three prompting strategies
based on Llama4-Scout-17B-16E (Meta, 2025): backward reasoning (Chen et al., 2024), Chain-of-
Thought (Wei et al., 2022), and Tree-of-Thought (Yao et al., 2023). For knowledge augmentation in
Section 3.1, we employ GPT-5-mini to generate the knowledge snippets Kx. In deploying the fitness
function, we set λ1 = 0.3 and λ2 = 0.1. The optimization loop of COT-EVO uses a fixed population
size of npop = 6 per epoch with a computation budget of B = 5 epochs. During novelty-driven
candidate selection, we set the k-nearest neighbors parameter to k = 2, and from the resulting Pareto
front Ft, parent trajectories are randomly sampled (three per iteration by default) for recombination
and mutation. Consequently, each query can theoretically yield up to 6 + 3× 5 = 21 distinct CoTs.

We apply COT-EVO to three popular open-source LLMs: Qwen3-8B (Yang et al., 2025), Qwen2.5-
7B-Instruct (Team, 2024), and Llama3.1-8B-Instruct (Grattafiori et al., 2024).

4.2 EXPERIMENTAL SETUP

4.2.1 DATASETS

To comprehensively evaluate COT-EVO, we focus on two representative scientific reasoning datasets,
ChemCoTDataset and BioProBench, that capture the challenges of molecular editing and optimization,
and experimental protocol design.

ChemCoTDataset (Li et al., 2025): This dataset contains 14K samples tailored for chemical reason-
ing. Complex tasks (e.g., molecular design) are decomposed into modular, verifiable operations (e.g.,
substructure addition, deletion, or replacement), ensuring that the reasoning process is transparent and
step-wise. It encompasses four tasks, including molecular understanding (Und.), molecular editing
(Edit), reaction prediction (Reaction), and molecular optimization (Opt.). We use ChemCoTDataset
for training data construction and evaluate on its associated benchmark, ChemCoTBench.

BioProBench (Liu et al., 2025): This benchmark assesses LLMs’ ability to reason over biological
experimental protocols. It transforms 27K real-world protocols into 306K training samples and 3.6K
test samples covering protocol QA (PQA), step ordering (ORD), and error correction (ERR) tasks.
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Table 1: Performance comparison of COT-EVO against baseline distillation methods and original
LLM teachers across BioProBench and ChemCoTBench. Best results are marked in bold, and
second-best results are underlined.

Method

BioProBench ChemCoTBench

PQA ORD ERR Und. Edit Reaction Opt.

Acc. ↑ EM ↑ Acc. ↑ F1 ↑ MAE↓ TMS↑ Acc.↑ Acc.↑ SR↑ FTS↑

LLM Teachers

DeepSeek-R1 0.683 0.448 0.625 0.600 0.560 0.314 0.680 0.783 0.576 0.756
Qwen3-32B-think 0.628 0.434 0.629 0.510 0.575 0.225 0.691 0.472 0.406 0.454
Qwen3-235B-A22B-think 0.669 0.625 0.600 0.683 0.565 0.227 0.880 0.689 0.473 0.658
Llama4-Scout-Backward 0.595 0.202 0.625 0.480 0.850 0.145 0.655 0.650 0.402 0.706
Llama4-Scout-CoT 0.588 0.208 0.600 0.392 0.680 0.187 0.625 0.650 0.364 0.675
Llama4-Scout-ToT 0.593 0.181 0.626 0.539 0.805 0.172 0.610 0.589 0.340 0.634

LLM Students

Llama3.1-8B-Inst 0.468 0.077 0.580 0.452 1.860 0.143 0.615 0.261 0.147 0.173
+ Single Teacher 0.431 0.341 0.586 0.667 0.707 0.260 0.495 0.640 0.269 0.527
+ Multi Teacher 0.474 0.353 0.616 0.665 0.530 0.247 0.573 0.549 0.208 0.504
+ Best-of-K 0.508 0.329 0.527 0.609 0.461 0.226 0.599 0.600 0.294 0.534
+ Retro-Search 0.488 0.121 0.623 0.635 0.533 0.247 0.613 0.492 0.274 0.456
+ TwT 0.499 0.397 0.570 0.459 0.607 0.238 0.597 0.506 0.278 0.433
+ COT-EVO 0.512 0.419 0.657 0.698 0.375 0.250 0.639 0.707 0.340 0.597

Qwen2.5-7B-Inst 0.519 0.227 0.564 0.398 0.620 0.086 0.575 0.178 0.185 0.304
+ Single Teacher 0.518 0.354 0.593 0.649 0.929 0.162 0.533 0.445 0.186 0.538
+ Multi Teacher 0.505 0.370 0.608 0.621 0.536 0.246 0.573 0.548 0.270 0.516
+ Best-of-K 0.538 0.339 0.619 0.570 0.440 0.116 0.487 0.445 0.294 0.460
+ Retro-Search 0.519 0.178 0.613 0.596 0.508 0.187 0.562 0.450 0.248 0.417
+ TwT 0.558 0.358 0.589 0.438 0.752 0.132 0.632 0.442 0.285 0.448
+ COT-EVO 0.551 0.448 0.675 0.671 0.497 0.306 0.664 0.602 0.332 0.577

Qwen3-8B-think 0.602 0.371 0.590 0.419 0.440 0.139 0.612 0.422 0.278 0.352
+ Single Teacher 0.601 0.368 0.616 0.534 0.405 0.268 0.583 0.629 0.375 0.599
+ Multi Teacher 0.603 0.434 0.637 0.616 0.395 0.250 0.647 0.623 0.455 0.424
+ Best-of-K 0.603 0.369 0.608 0.457 0.395 0.173 0.651 0.600 0.365 0.516
+ Retro-Search 0.583 0.279 0.587 0.552 0.540 0.163 0.601 0.303 0.367 0.528
+ TwT 0.475 0.401 0.563 0.466 0.865 0.067 0.540 0.281 0.319 0.300
+ COT-EVO 0.649 0.544 0.645 0.677 0.351 0.358 0.674 0.625 0.437 0.629

For computational efficiency, we use a 20K subset of the training QA pairs for CoT construction
while retaining the full test set for evaluation.

4.2.2 BASELINES

For a comprehensive and fair comparison, we compare COT-EVO with the following baselines:

• LLM Thinkers (Teachers). We also directly evaluate the six LLM thinkers used in our
initialization stage, including DeepSeek-R1, Qwen3-235B-A22B, Qwen3-32B, and Llama4-
Scout-17B-16E with three prompting strategies. These serve as the upper bound references
for evaluating the distillation quality of COT-EVO.

• Base Models. We directly evaluate the original instruct or reasoning LLMs without addi-
tional fine-tuning, serving as a reference to measure the overall gain of COT-EVO.

• Single Teacher (ST). For each LLM thinker, we apply the fitness function (Section 3.2) to
filter its CoTs and retain only those with exact-match correct answers (sEM = 1). We repeat
this process for all thinkers and report the performance of the best individual teacher.

• Multi Teacher (MT). For each query, we aggregate CoTs from all thinkers and directly
select the correct trajectory with the highest fitness score. This representative CoT is used
for training, thereby capturing diversity across teachers. If no correct CoT exists, the query
is discarded.

• Best-of-K (BoK). For each LLM thinker, we sample K = 21 trajectories (matching the
maximum number produced by COT-EVO for a single query), apply rejection sampling
based on the fitness function, and select the correct CoT with the highest score.
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• TwT. TwT (Xu et al., 2025) is a recent multi-teacher distillation framework that uses Dual-
Criteria Rejection Sampling to build a high-quality and diverse CoT corpus from multiple
teacher LLMs, and then progressively distills these reasoning patterns into the student model.
We implement TwT with the same set of LLM thinkers as teachers as in COT-EVO.

• Retro-Search (Retro). Retro-Search (Lu et al., 2025) is an MCTS-inspired search algorithm
that retrospectively explores alternative continuations of a teacher’s reasoning trajectory to
mitigate under-thinking and over-thinking while preserving the correct final answer. We
apply Retro-Search separately to each LLM thinker and report the best student performance.

4.2.3 EVALUATION METRICS

For BioProBench, we evaluate the protocol QA (PQA) task using Accuracy (Acc), the step ordering
(ORD) task using Exact Match (EM), and the error correction (ERR) task using both Acc and F1
score. For ChemCoTBench, we adopt task-specific evaluation metrics. In molecular understanding
(Und.), we apply mean absolute error (MAE) for functional group counting, Tanimoto molecule
similarity (TMS) for Murcko scaffold extraction, and accuracy for the remaining subtasks. Molecular
editing (Edit) is evaluated with accuracy, reaction prediction (Reaction) is assessed by fingerprint
similarity (FTS) with reference molecules, and molecular optimization (Opt.) is measured by success
rate (SR), indicating the generated molecules that achieve the desired property improvement.

4.3 MAIN RESULTS

COT-EVO delivers consistent performance gains over distillation baselines. Table 1 reports the
performance of COT-EVO compared with existing distillation methods. Our approach consistently
outperforms both single-teacher (ST) and multi-teacher (MT) baselines across the two benchmarks.
On BioProBench, COT-EVO yields relative gains of 12.6% over ST and 8.4% over MT, while on
ChemCoTBench the improvements reach 27.0% and 19.3%, respectively. COT-EVO further surpasses
recent strong process-level distillation baselines, including Retro-Search (Retro) and TwT. Notably,
on several tasks, COT-EVO even rivals the performance of the LLM teachers themselves. Such gains
stem from COT-EVO not only filtering out erroneous or redundant reasoning from teachers but also
integrating complementary reasoning strategies across multiple thinkers, yielding distilled CoTs that
are often more accurate and task-aligned than the raw outputs of the teacher LLMs. These results
highlight the overall advantage of evolutionary CoT distillation in producing stronger student models.

The performance gains of COT-EVO go beyond the effect of increased sampling. As described in
Section 4.1, COT-EVO can theoretically generate up to 21 candidate CoTs per query. To examine
whether its superior performance merely stems from this enlarged sampling budget, we compare
COT-EVO with the Best-of-K (BoK) baseline, where each teacher independently samples K = 21
CoTs and selects the best one according to the fitness function. Results in Table 1 demonstrate that
COT-EVO substantially outperforms BoK, confirming that the improvements arise from higher-quality
CoT evolution rather than brute-force data scaling.

Table 2: Comparison of data utilization (Pass),
reasoning quality (Quality) and win rate (WR)
across distillation baselines and COT-EVO.

Method BioProBench ChemCoTDataset

Pass Quality WR Pass Quality WR

ST 0.375 6.741 0.329 0.349 5.702 0.319
MT 0.536 6.776 0.374 0.524 5.935 0.390
BoK 0.498 6.763 0.353 0.389 5.571 0.335
Retro 0.446 7.024 0.362 0.413 5.857 0.354

COT-EVO 0.729 8.230 - 0.704 7.847 -

COT-EVO improves both data utilization and
reasoning quality. To validate the source of
these improvements, we analyze how COT-EVO
compares with baseline approaches in terms of
usable data and CoT quality. For data utilization,
we measure the proportion of distilled trajectories
that are correct and usable. For reasoning quality,
we employ GPT-5 as a judge to score CoTs across
five dimensions: knowledge diversity, knowledge
accuracy, reasoning diversity, logical coherence,
and step redundancy. In addition, we conduct
pairwise comparisons between COT-EVO and baseline CoTs, reporting win rates to capture relative
quality. We do not report results for TwT, as it does not directly select CoTs with correct answers,
leading to an unfair comparison. As shown in Table 2, COT-EVO maintains over 70% usable data
while producing CoTs that are more knowledge-rich and logically compact. Furthermore, even the
strongest baseline achieves a win rate below 40%, demonstrating that its gains come not just from
more data, but from better data.
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Figure 2: Comparison of selection strategies. Left: Impact of selection strategies on BioProBench
(average Pass@1 across all tasks). Right: Fitness dynamics across generation epochs, showing both
average and maximum fitness.

4.4 ABLATION STUDY

In this section, we explore the key components and hyperparameters of COT-EVO through a series of
ablation studies. More analysis is provided in Appendix A2.2.

Effectiveness of Selection Strategy. To assess the effectiveness of our proposed novelty-driven
selection (NDS) strategy, we compare it with two straightforward baselines: 1) greedy selection,
which always chooses the candidates with the highest fitness scoreR; and 2) random selection, which
samples candidates uniformly at random. Average Pass@1 results on BioProBench are shown in
Figure 2 (left). Across all three base models, NDS consistently surpasses the baselines. This trend can
be explained by the evolution of fitness scores (Figure 2, right): random selection yields steady but
slow improvements; greedy selection saturates within the first few epochs and often converges to local
optima; in contrast, NDS drives faster and more stable gains, producing progressively higher-quality
CoTs. Importantly, the budget of B = 5 remains well below the saturation point of COT-EVO,
suggesting further room for improvement.

Table 3: Ablation on recombination and mutation.

Method Qwen3-8B Qwen2.5-7B Llama3.1-8B

COT-EVO 0.612 0.579 0.572
w/o Recombination 0.591 0.564 0.553
w/o Mutation 0.568 0.548 0.534

Necessity of Recombination and Mutation.
To evaluate the effectiveness of the core mod-
ules for CoT optimization, we conduct ablation
experiments by testing 1) COT-EVO without
recombination, and 2) COT-EVO without mu-
tation on BioProBench. As shown in Table 3,
removing either module leads to a noticeable performance drop. However, the roles of recombination
and mutation differ in important ways. Recombination primarily enhances the diversity of reasoning
trajectories and promotes better utilization of knowledge; thus, removing this module degrades data
quality and in turn weakens the performance of the student model. Mutation, on the other hand, is
designed to correct errors and reduce redundant reasoning within CoTs. Without this module, the
convergence of COT-EVO is hindered, resulting in fewer usable correct CoTs and consequently a
more significant decline in student models’ performance.
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Figure 3: Impact of budget (left) and population size
(right) on COT-EVO’s distillation performance.

Algorithm Scalability We aim to vali-
date whether the scale of our algorithm
is a key factor affecting distillation perfor-
mance. Specifically, Figure 3 investigates
two major hyperparameters controlling the
scale of COT-EVO: the iteration budget B
and the population size npop. As shown
in Figure 3 (left), increasing the iteration
budget initially leads to clear performance
gains (B ≤ 3), but these improvements
gradually level off in later stages (in con-

9



Published as a conference paper at ICLR 2026

30K 50K 70K 90K
Token Budget

0.4

0.5

0.6

0.7

Sc
or

e

BioProBench (Llama3.1-8B)
MT BoK CoT-Evo

30K 50K 70K 90K
Token Budget

0.4

0.5

0.6

0.7

Sc
or

e

BioProBench (Qwen2.5-7B)
MT BoK CoT-Evo

30K 50K 70K 90K
Token Budget

0.4

0.5

0.6

0.7

Sc
or

e

BioProBench (Qwen3-8B)
MT BoK CoT-Evo

30K 50K 70K 90K
Token Budget

0.3

0.4

0.5

0.6

Sc
or

e

ChemCoTBench (Llama3.1-8B)
MT BoK CoT-Evo

30K 50K 70K 90K
Token Budget

0.3

0.4

0.5

0.6

Sc
or

e

ChemCoTBench (Qwen2.5-7B)
MT BoK CoT-Evo

30K 50K 70K 90K
Token Budget

0.3

0.4

0.5

0.6

Sc
or

e

ChemCoTBench (Qwen3-8B)
MT BoK CoT-Evo

Figure 4: Performance comparison under equal token-budget constraints on BioProBench and
ChemCoTBench across three LLMs, Llama3.1-8B-Instruct, Qwen2.5-7B-Instruct, and Qwen3-8B.

trast to Figure 2). This may be because we always select the highest-fitness CoTs from the candidate
pool; after several epochs, correct and high-fitness CoTs are already obtained, reducing the marginal
benefit of further iterations. A similar trend can be observed in the population-size curves (Figure 3,
right). Empirically, when npop < 5, enlarging the population size enhances the diversity of the initial
candidate pool at each iteration, which facilitates more effective recombination. Overall, increasing
the scale consistently improves COT-EVO’s performance, and near-optimal gains can be achieved
under relatively modest budgets.

Token-Budget Controlled Comparison. To verify that the gains of COT-EVO do not simply stem
from using more tokens, we further compare it with Multi-Teacher (MT) and Best-of-K (BoK) under
the same total distillation token budgets (30K, 50K, 70K, 90K). For BoK, we repeatedly sample
CoTs from a single teacher until the budget is exhausted and then select the best CoT using the same
fitness function as in Section 3.2, reporting the best result across all teachers. For MT, we cycle
through all six teachers in rounds until the same budget is consumed, aggregating their CoTs and
keeping the highest-fitness correct trajectory. For COT-EVO, we run the full evolutionary pipeline but
terminate the loop immediately when the token budget is consumed, selecting the best candidate from
the current population. As shown in Figure 4, COT-EVO consistently surpasses both MT and BoK at
all budget levels, despite operating under identical token constraints. Notably, the performance gap is
already clear in the low- and medium-budget regimes, indicating that evolutionary refinement can
extract substantially more value per token than simple over-sampling and selection. As the budget
grows, all methods improve, but COT-EVO maintains a stable advantage, suggesting that its gains
come from systematically improving CoT quality rather than merely generating more trajectories.
These results confirm that the evolutionary design of COT-EVO provides a more compute-efficient
route to high-quality reasoning traces.

5 CONCLUSION

In this paper, we introduced COT-EVO, an evolutionary framework for chain-of-thought (CoT) distil-
lation that goes beyond prior methods by performing intra-chain aggregation, integrating reasoning
steps from multiple CoTs through an iterative evaluation–selection–variation–update process. This
design yields distilled CoTs that are more accurate, rigorous, and diverse while remaining compact
and efficient for training smaller scientific models. Extensive experiments show that COT-EVO
consistently outperforms existing distillation approaches. Looking forward, we aim to evaluate its
generalization across broader scientific domains, and to enhance the knowledge augmentation stage
by incorporating external resources such as domain databases or structured knowledge graphs, making
COT-EVO more scalable, knowledge-grounded, and practical for real-world scientific applications.
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LIMITATIONS

While COT-EVO demonstrates strong performance in scientific reasoning distillation, it is not without
limitations. First, leveraging multiple LLM thinkers introduces substantial computational and time
costs, as generating and refining diverse trajectories requires repeated sampling and evaluation. This
cost may hinder scalability to very large datasets or resource-constrained environments. Second, our
evolutionary process currently relies on LLM-based reward signals to evaluate reasoning quality;
while effective, these signals may still carry biases, and future work could explore integrating more
verifiable reward signals (e.g., rule-based) to further enhance robustness.
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APPENDIX

A1 ALGORITHM OF COT-EVO

Algorithm 1: COT-EVO: Evolutionary CoT Distillation Framework
Input: Training data (x, y) ∈ Dori, LLM thinkers L, fitness functionR (sEM, sLEN, and sKNOW),

budget B, population size npop
Output: Evolved CoT dataset Devo

// Initialization:
1 P ← ∅;
2 for (x, y) ∈ Dori do
3 obtain Kx via Θ;
4 for li ∈ {l1, . . . , lm} do
5 ti ← li(x) (Eq. 1), si ← R(ti) (Eq. 6), P←P ∪ {(ti, si)};
6 end
7 for lj ∈ {lm+1, . . . , ln} do
8 tj ← lj(x,Kx) (Eq. 2), sj ← R(tj) (Eq. 6), P←P ∪ {(tj , sj)};
9 end

10 end
11 while budget B > 0 and s ∈ P not converged do
12 A ← NoveltySelect(P) ; // select parents (Sec. 3.3)
13 O ← {} ; // offspring set
14 for to ∈ A do
15 draw operator op ∼ Uniform{Recombine,Mutate};
16 if op = Recombine ∧ sEM(to) = 0 then
17 sample strategy provider tp ∼ P;
18 tcand ← Cr(to, tp) ; // recombination (Sec. 3.4)
19 else
20 choose mutation mode m ∼ {Add,Delete, Innovate};
21 tcand ←Mu(to,m) ; // Reflective mutation (Eqs. 14–16)
22 scand ← R(tcand) ; // evaluate offspring
23 O ← O ∪ {(tcand, scand)};
24 end
25 P ← P ∪O ; // Merge offspring into pool
26 keep top-npop trajectories from P by fitness to maintain |P| ≤ npop;
27 B ← B − 1;
28 end

29 return Devo = {(xi, t
⋆
i = argmaxt∈Pxi

R(t), yi)}Ni=1.

A2 ADDITIONAL RESULTS

A2.1 RESULTS FOR INDIVIDUAL TEACHERS

In Section 4, we reported the performance of the Single Teacher (ST) baseline on BioProBench and
ChemCoTBench (Table 1), as well as the reasoning quality of CoTs distilled under the ST setting
(Table 2). These results were obtained by selecting the best-performing teacher as the representative.
In this section, we provide the detailed results for all individual teachers. Specifically, Table A1
presents the performance of all teacher models across all tasks in both benchmarks, while Table A2
reports the quality evaluation of the training CoT data distilled from each teacher LLM.

As presented in Table A1, the two most powerful teacher models, Deepseek-R1 and Qwen3-235B-
A22B-think, demonstrate a significant advantage. The student models distilled from these teachers
outperform those from other teachers on the vast majority of scientific tasks. This suggests that
larger and more capable LLMs, with their superior reasoning abilities, can generate more useful and
higher-quality data during the distillation process. Consequently, the distilled CoTs exhibit more
logical consistency and contain richer knowledge. Furthermore, the results reported in Table A2
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Table A1: Performance comparison of COT-EVO against baseline distillation methods (ST, MT, BoK)
and original LLM teachers across BioProBench and ChemCoTBench. Best results are marked in
bold, and second-best results are underlined.

Teacher

BioProBench ChemCoTBench

PQA ORD ERR Und. Edit Reaction Opt.

Acc. ↑ EM ↑ Acc. ↑ F1 ↑ MAE↓ TMS↑ Acc.↑ Acc.↑ SR↑ FTS↑

Base LLM: Llama3.1-8B-Instruct

DeepSeek-R1 0.431 0.338 0.500 0.667 0.707 0.249 0.467 0.640 0.236 0.510
Qwen3-32B-think 0.424 0.308 0.586 0.641 0.955 0.260 0.487 0.635 0.269 0.469
Qwen3-235B-A22B-think 0.427 0.341 0.542 0.665 0.791 0.156 0.495 0.555 0.200 0.527
Llama4-Scout-Backward 0.429 0.193 0.505 0.553 1.276 0.151 0.482 0.512 0.182 0.506
Llama4-Scout-CoT 0.416 0.235 0.512 0.490 1.218 0.214 0.454 0.471 0.170 0.368
Llama4-Scout-ToT 0.431 0.208 0.558 0.521 1.095 0.173 0.460 0.539 0.196 0.435
COT-EVO 0.512 0.419 0.657 0.698 0.375 0.250 0.639 0.707 0.340 0.597

Base LLM: Qwen2.5-7B-Instruct

DeepSeek-R1 0.515 0.354 0.573 0.604 0.936 0.155 0.533 0.401 0.186 0.535
Qwen3-32B-think 0.506 0.331 0.593 0.584 0.982 0.146 0.500 0.426 0.177 0.414
Qwen3-235B-A22B-think 0.518 0.348 0.563 0.649 0.929 0.162 0.505 0.445 0.185 0.503
Llama4-Scout-Backward 0.516 0.289 0.571 0.536 1.104 0.129 0.495 0.358 0.174 0.538
Llama4-Scout-CoT 0.502 0.308 0.553 0.494 1.033 0.114 0.468 0.370 0.174 0.417
Llama4-Scout-ToT 0.506 0.274 0.580 0.568 1.069 0.138 0.490 0.374 0.182 0.465
COT-EVO 0.551 0.448 0.675 0.671 0.497 0.306 0.664 0.602 0.332 0.577

Base LLM: Qwen3-8B-think

DeepSeek-R1 0.601 0.368 0.569 0.532 0.726 0.204 0.558 0.606 0.327 0.554
Qwen3-32B-think 0.567 0.357 0.616 0.521 0.435 0.268 0.583 0.562 0.337 0.548
Qwen3-235B-A22B-think 0.547 0.361 0.525 0.534 0.405 0.183 0.520 0.550 0.375 0.599
Llama4-Scout-Backward 0.563 0.364 0.577 0.526 0.573 0.165 0.553 0.629 0.315 0.534
Llama4-Scout-CoT 0.546 0.327 0.562 0.475 0.674 0.214 0.568 0.602 0.302 0.525
Llama4-Scout-ToT 0.599 0.350 0.590 0.508 0.640 0.187 0.542 0.548 0.324 0.536
COT-EVO 0.649 0.544 0.645 0.677 0.351 0.358 0.674 0.625 0.437 0.629

Table A2: Comparison of data utilization (Pass), reasoning quality (Quality) and win rate (WR)
across distillation baselines and COT-EVO.

Teacher
BioProBench ChemCoTDataset

Pass Quality WR Pass Quality WR

DeepSeek-R1 0.371 6.609 0.316 0.349 5.702 0.319
Qwen3-32B-think 0.261 6.184 0.286 0.275 4.699 0.290
Qwen3-235B-A22B-think 0.375 6.741 0.329 0.309 5.497 0.292
Llama4-Scout-Backward 0.192 5.610 0.218 0.178 5.225 0.257
Llama4-Scout-CoT 0.127 5.121 0.149 0.251 4.978 0.266
Llama4-Scout-ToT 0.166 5.119 0.165 0.217 4.516 0.218
COT-EVO 0.729 8.230 - 0.704 7.847 -

confirm that these top-tier reasoning LLMs generally achieve higher data utilization (i.e., pass rate)
and superior CoT quality. In contrast, other LLM thinkers that rely on specific prompting strategies,
such as Llama4-Scout-CoT, show a clear gap in data utilization, indicating that reasoning LLMs may
be better at eliciting more comprehensive and complete reasoning.

An interesting nuance can be observed between the top two teachers. On BioProBench, DeepSeek-
R1’s reasoning quality and win rate are slightly lower than those of Qwen3-235B-A22B-think. We
attribute this to DeepSeek-R1 occasionally generating redundant steps, as tasks related to experi-
mental protocols prioritize the causal relationship between steps over the exploration of multiple
possibilities. Conversely, for tasks requiring more fine-grained deliberation, such as molecule editing
in ChemCoTBench, DeepSeek-R1 showcases richer ideas and more rigorous thinking, resulting in a
higher overall quality score on that benchmark.
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Table A3: Sensitivity of CoT-Evo to k (k-nearest neighbors) on Llama3.1-8B-Instruct. Best results
are marked in bold.

Teacher

BioProBench ChemCoTBench

PQA ORD ERR Und. Edit Reaction Opt.

Acc. ↑ EM ↑ Acc. ↑ F1 ↑ MAE↓ TMS↑ Acc.↑ Acc.↑ SR↑ FTS↑

1 0.508 0.395 0.638 0.681 0.427 0.230 0.631 0.653 0.339 0.567
2 (default) 0.512 0.419 0.657 0.698 0.375 0.250 0.639 0.707 0.340 0.597
3 0.502 0.426 0.648 0.693 0.405 0.348 0.669 0.684 0.348 0.595

Table A4: Sensitivity of CoT-Evo to (λ1, λ2) on Llama3.1-8B-Instruct. Best results are marked in
bold.

Teacher

BioProBench ChemCoTBench

PQA ORD ERR Und. Edit Reaction Opt.

Acc. ↑ EM ↑ Acc. ↑ F1 ↑ MAE↓ TMS↑ Acc.↑ Acc.↑ SR↑ FTS↑

0.1, 0.1 0.471 0.408 0.624 0.679 0.415 0.281 0.680 0.618 0.311 0.591
0.3, 0.1 (default) 0.512 0.419 0.657 0.698 0.375 0.250 0.639 0.707 0.340 0.597
0.5, 0.1 0.514 0.415 0.653 0.694 0.480 0.268 0.619 0.656 0.368 0.586
0.3, 0.2 0.525 0.410 0.681 0.668 0.417 0.257 0.607 0.680 0.349 0.567
0.3, 0.3 0.484 0.398 0.533 0.678 0.287 0.168 0.519 0.656 0.268 0.539

A2.2 HYPERPARAMETER ABLATION STUDY

Sensitivity to Population Size and Iteration Budget. To assess the robustness of COT-EVO to
hyperparameter choices, we conduct an ablation study on the population size npop and iteration
budget B. Our default settings, such as npop = 6, are based on two principles: (i) matching the initial
CoT sample size used in the multi-teacher (MT) baseline, so that the initial diversity is comparable
without increasing cost in the first stage, and (ii) empirical evidence (Figure 3, left) suggesting
that performance gains plateau when npop ≥ 5 and B ≥ 3. Beyond these points, performance
improvement diminishes while computational cost rises sharply. This trade-off motivates our choice
of npop = 6 as a practical balance between performance and cost. The results are shown in Table 3,
where we observe that increasing npop and B improves performance but only yields marginal benefits
after the saturation point.

Sensitivity to k-Nearest Neighbors (k). For the novelty-driven selection (NDS) strategy, we set the
default k = 2 for the k-nearest neighbors parameter, as it provides a good balance between stability
and discriminative power. Larger values of k tend to overly smooth local structures, potentially
overshadowing novel, low-frequency strategies, while smaller values (e.g., k = 1) make the distance
metric overly sensitive to noise. As shown in Table A3, we experimented with k ∈ {1, 2, 3}
and observed minimal performance variation across different settings on both BioProBench and
ChemCoTBench, supporting k = 2 as a robust and reproducible default choice.

Sensitivity to Fitness Weights (λ1, λ2). The fitness weights λ1 and λ2 in Eq. (6) reflect the
relative importance of different evaluation criteria in our fitness function. As shown in Table A4,
we performed a coarse grid search over λ1 ∈ {0.1, 0.3, 0.5} and λ2 ∈ {0.1, 0.2, 0.3}, with results
indicating that performance remains stable as long as sEM (exact-match correctness) is given the
highest weight, and sLEN and sKNOW are given comparable smaller weights. When λ2 is too large
(e.g., 0.3), the model tends to select CoTs that use knowledge correctly but do not always reach the
correct final answer, slightly hurting performance. Based on these findings, we chose λ1 = 0.3 and
λ2 = 0.1 as a stable, low-sensitivity default.

A2.3 GENERALIZATION TO NON-SCIENTIFIC DOMAINS

While our primary focus remains on enhancing LLM performance in specialized scientific reasoning
tasks, we also acknowledge the potential for COT-EVO to be applied in more general domains. To
validate the generalizability of our approach, we conducted additional experiments on mathematical
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Table A5: Comparison of model performance (pass1) across various general reasoning benchmarks.
Best results are marked in bold.

Task base ST MT BoK LIMO CoT-Evo

AIME24 13.33 23.08 20.00 25.00 10.00 45.00
AMC23 47.50 70.59 57.89 75.00 75.00 85.71
MATH500 75.40 80.11 86.67 89.20 91.80 88.80
OlympiadBench 36.89 52.17 64.66 67.87 70.75 66.14
CHMath 13.33 37.50 26.67 26.67 43.33 50.00
Gaokao 29.11 59.15 70.27 68.97 72.15 73.41
Kaoyan 30.15 41.14 44.81 40.74 47.24 46.10
GradeSchool 40.48 49.46 54.01 71.31 59.21 60.00
Minerva 49.63 48.36 49.46 51.03 58.22 60.54
GPQA 47.47 40.21 40.96 42.86 50.00 52.87
AVG. 38.33 50.18 51.73 59.64 62.19 64.21

and STEM tasks, using the LIMO dataset (Ye et al., 2025), a curated collection of 800 mathematical
reasoning questions. Following the "Less is More" principle, LIMO’s limited training data has
demonstrated the ability to match the performance of OpenAI’s o1-preview model (Jaech et al., 2024),
which utilizes reinforcement learning.

In these experiments, we used the Qwen2.5-7B-Instruct model as the base model and compared
several distillation baselines mentioned in Section 4.2.2: (1) the base model without training, (2)
Single Teacher (ST), (3) Multi-Teacher (MT), and (4) Best-of-K (BoK). The results are summarized
in Table A5. Notably, ST and MT approaches, due to lower data utilization rates (40.75% and 59.87%,
respectively), showed significant performance gaps compared to COT-EVO. On the other hand,
BoK demonstrated a higher data utilization rate (78.5%) and notable improvements in performance,
particularly in general reasoning tasks, highlighting the importance of more granular distillation
strategies in non-scientific contexts.

Lastly, although the data utilization of LIMO and COT-EVO was similar (100% vs. 95.75%),
COT-EVO outperformed LIMO in terms of reasoning quality. This underscores the crucial role of
data quality in achieving better performance, with COT-EVO demonstrating that the evolutionary
refinement process can generate higher-quality CoTs, even when working with a dataset similar to
that used in LIMO.

A3 IMPLEMENTATION OF FINE-TUNING

In this work, to efficiently fine-tune LLMs, we leverage LLaMA-Factory (Zheng et al., 2024), Deep-
Speed (Rasley et al., 2020) with ZeRO Stage 2 (Rajbhandari et al., 2020), and FlashAttention2 (Dao,
2023) across four NVIDIA A100 (80G) GPUs. We adopt AdamW (Loshchilov, 2017) as the optimizer
with β1 = 0.9, β2 = 0.95, and a weight decay of 0.1. The peak learning rate is set to 2 × 10−5

with 10% warm-up steps followed by cosine decay, a batch size of 32. We set the batch size to 32
and the maximum sequence length to 16,384. Training is conducted for 5 epochs to ensure optimal
performance.

A4 DETAILS OF COT QUALITY EVALUATION

While the student models distilled with COT-EVO achieve the best overall performance, this does not
directly verify the quality of the data generated by COT-EVO. To comprehensively assess the quality
of the synthesized CoTs, we adopt two complementary evaluation strategies: 1) absolute scoring
of individual methods; and 2) pairwise comparison between COT-EVO and baselines. These two
strategies capture both absolute and relative perceptions of CoT quality. The compared distillation
baselines include Single Teacher (ST), Multi Teacher (MT), and Best-of-K (BoK).
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A4.1 ABSOLUTE SCORING

Absolute scoring provides a quantitative measure of how CoTs perform across dimensions of interest.
Motivated by the design and objectives of COT-EVO, we define the following five dimensions for
evaluating reasoning quality:

• Knowledge Diversity: Whether the model recalls or introduces sufficient concepts, theo-
rems, or knowledge fragments to support reasoning or verification.

• Knowledge Accuracy: Whether the knowledge retrieved or cited in reasoning is factually
correct, so as to avoid propagating errors into the student model.

• Reasoning Diversity: Whether the CoT explores meaningful alternative hypotheses or
solution paths, promoting multi-perspective thinking and comprehensive understanding.

• Logical Coherence: Whether the CoT follows a clear, consistent, and error-free logical
progression, avoiding excessive leaps or confusion.

• Step Redundancy: Whether unnecessary or repetitive steps are minimized, yielding concise
yet complete reasoning.

For each CoT under evaluation, we employ GPT-5 as an LLM judge to assess performance along the
above five dimensions and assign an overall integer score ranging from 0 to 10. The full prompt is
provided in Prompt 1.

Prompt 1: Prompt for Absolute Scoring

You are a strict evaluator. Given a reasoning process that leads to the correct answer, your task is to
evaluate the quality of this reasoning process across five dimensions: diversity of knowledge, accuracy
of knowledge application, diversity of thinking, logical coherence, and redundancy of steps. Finally,
provide a quality score.

[Reasoning Start]
{reasoning}
[Reasoning End]

You should strictly follow the instructions below:

1. First, identify all knowledge retrievals and citations within the reasoning chain. Then, leveraging
your extensive knowledge and possibly external resources, judge their accuracy. Simultaneously,
determine whether the knowledge involved in this reasoning chain is diverse enough to help students
learn more. If there is no knowledge application in the reasoning chain, you can ignore this aspect
during the evaluation.

2. Next, read the reasoning process step by step and consider whether the logic between each
step is coherent (e.g., if there are causal relationships). At the same time, judge whether different
thinking methods are employed in the reasoning process, which can contribute to students’ thinking
development.

3. Then, determine whether there are any unnecessary or redundant steps. These steps may merely
repeat previous ones or be meaningless. If they exist, what is the proportion of redundant steps?
You can make a rough estimate.

4. Finally, based on the analysis of the above five dimensions, provide an integer score between
0 and 10. A score of 0 means the reasoning chain has no learning value, indicating issues such
as a large number of reasoning hallucinations, incorrect knowledge, and redundant steps. A score
of 10 represents the highest quality reasoning chain, with accurate knowledge application, diverse
thinking, coherent logic, and low step redundancy. As you are a strict evaluator, please give a score
< 6 for reasoning processes with obvious flaws or those you’re not satisfied with, and a score >= 6
for qualified reasoning processes.

Please carefully analyze the given reasoning process. First, output your evaluation process step by step,
and then output an integer score between 0 and 10 on the last line. Please strictly follow the format
below:
(Your evaluation process here)
[Result]Score[/Result]
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A4.2 PAIRWISE COMPARISON

While absolute scores quantify quality in isolation, they may not fully capture relative improvements
over baselines. To address this, we conduct pairwise comparisons between CoTs distilled by COT-
EVO and those generated by baseline methods.

For fairness, only CoTs with correct answers that were selected for training are included in the
comparison. We again employ GPT-5 as the LLM judge. Specifically, GPT-5 is given a pair of CoTs
(one from COT-EVO, one from a baseline) and asked to decide which trajectory is superior overall
based on the five evaluation dimensions. The prompt is detailed in Prompt 2. Importantly, GPT-5 is
not allowed to declare a tie, i.e., it must select the relatively better CoT. We then report the win rate
of each baseline as the proportion of comparisons in which it was judged superior to COT-EVO.

Prompt 2: Prompt for Pairwise Comparison

You are a strict evaluator. Given two reasoning processes, A and B, both of which lead to the
correct answers, your task is to evaluate the quality of each reasoning process across five dimen-
sions: knowledge diversity, accuracy of knowledge application, thinking diversity, logical coherence,
and step redundancy. Finally, determine which reasoning process has higher quality (there will be no tie).

[Reasoning A Start]
{reasoning_a}
[Reasoning A End]

[Reasoning B Start]
{reasoning_b}
[Reasoning B End]

Please strictly follow the instructions below:

1. First, identify all knowledge retrievals and citations within each reasoning process. Then,
leveraging your extensive knowledge and possibly external resources, determine which one has
higher accuracy. Simultaneously, assess whether the knowledge involved in each reasoning chain is
diverse enough to help students learn more.

2. Next, read the reasoning processes step by step and consider which one has more coherent logic
between steps (e.g., causal relationships). Additionally, judge which reasoning process employs a
wider variety of thinking methods, which can contribute to students’ thinking development.

3. Then, identify if there are any unnecessary or redundant steps. These steps may merely repeat
previous ones or be meaningless. If they exist, estimate which reasoning chain has fewer redundant
steps.

4. Finally, based on the analysis of the above five dimensions, comprehensively determine which
reasoning process, A or B, has higher quality. You should output either 0 or 1, where 0 indicates
that A has higher quality and 1 indicates that B has higher quality.

Please carefully analyze the two given reasoning processes. First, output your evaluation process step
by step, and then output an integer of 0 or 1 on the last line to represent your judgment. Please strictly
follow the format below:
(Your evaluation process here)
[Result]0 or 1[/Result]

The results of these two evaluation strategies are reported in Table 2 of Section 4.3. Since COT-EVO
is not compared against itself, its win rate is omitted. COT-EVO consistently achieves higher absolute
scores, surpassing 8.0 on average, reflecting the robustness of its quality. Moreover, the baselines
achieve win rates below 40% in pairwise comparisons, confirming the significant relative advantage
of COT-EVO.

A5 PROMPTS FOR COT-EVO

This section details the prompts used in the evolutionary process of COT-EVO, as described in
Section 3. These prompts guide the LLMs to perform specific evaluation, recombination, or mutation
tasks on the reasoning CoTs.
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A5.1 FITNESS FUNCTION PROMPTS

As described in Section 3.2, to evaluate the quality of candidate trajectories, we employ an LLM-as-
a-Judge to assess the knowledge usage correctness.

Prompt for knowledge usage correctness evaluation This prompt instructs the LLM judge to
score a given CoT based on its application of the provided reference knowledge, returning a score
from 1 to 5. The details of the prompt can be found in Prompt 3.

Prompt 3: Prompt for Knowledge Usage Correctness Evaluation

You are a meticulous evaluator specializing in scientific reasoning. Given a reasoning chain and a set of
reference knowledge, your task is to evaluate the quality of the reasoning process based solely on how
accurately and effectively it utilizes the provided knowledge. Finally, provide a quality score.

[Reasoning Chain Start]
{reasoning}
[Reasoning Chain End]

[Reference Knowledge Start]
{knowledge}
[Reference Knowledge End]

You should strictly follow the instructions below:

1. First, carefully read the provided reference knowledge to understand the key facts, principles, and
data points. Then, read the entire reasoning chain to understand its overall logic and conclusion.
2. Next, compare the reasoning chain against the reference knowledge step-by-step. Assess the
following: Is the knowledge used accurately and without misinterpretation? Are crucial pieces of
knowledge from the reference correctly applied? Does the reasoning chain introduce any information or
’facts’ that are not supported by the provided knowledge?
3. Finally, based on your analysis of the knowledge application, provide a single integer score between
1 and 5. A score of 1 indicates a complete disregard or fundamental misunderstanding of the reference
knowledge. A score of 5 represents a perfect application of all relevant knowledge without any external
hallucinations. You should adhere to the following scoring rubric:

• Score 5 (Excellent): The reasoning chain perfectly and accurately utilizes all relevant
knowledge from the reference. No misinterpretations or unsupported claims are made.

• Score 4 (Good): The reasoning chain correctly uses most of the key knowledge, but may
have very minor omissions or a slightly imprecise application that does not affect the overall
logic.

• Score 3 (Acceptable): The reasoning chain uses the core knowledge from the reference, but
with noticeable errors, omissions, or misinterpretations that weaken the argument.

• Score 2 (Poor): There is a significant misinterpretation or omission of key knowledge. The
reasoning relies heavily on information outside the reference or gets crucial facts from the
reference wrong.

• Score 1 (Very Poor): The reasoning chain completely ignores the reference knowledge,
fabricates information, or demonstrates a fundamental misunderstanding of the provided
facts.

Please carefully analyze the given reasoning process. First, output your evaluation process step by step,
and then output an integer score between 1 and 5 on the last line. Please strictly follow the format
below:
(Your evaluation process here)
[Result]Score[/Result]

A5.2 COT RECOMBINATION PROMPTS

The goal of recombination is to create superior offspring trajectories that inherit and integrate the
most effective strategies from different parent CoTs, promoting the fusion of diverse thoughts and
knowledge.
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Prompt for Identifying the Binding Point This prompt tasks the recombiner model (Cr) with
analyzing a strategy provider CoT (tp) to identify the endpoint of the last reasonable thought, which
serves as the crossover point. The specific prompt is detailed in Prompt 4.

Prompt 4: Prompt for Identifying the Binding Point

You are a rigorous scientific evaluator. When facing scientific problems, you excel at judging whether
the chain of thought for solving the problem is sufficiently correct and logical, and can keenly identify
the point where errors occur but are no longer corrected. Given a problem, its corresponding chain of
thought (CoT), and the correct answer, your task is to preserve the longest reasonable prefix from the
CoT (i.e., the correct or logically sound skeleton) and delete the portion starting from where errors
or deviations from reasonable reasoning occur. Therefore, you need to locate the first sentence that
exhibits logical errors or significant deviation from correct reasoning and output that sentence exactly
as it appears (ensuring it completely matches the content in the given thought, without rewriting or
summarizing).

[Query Start]
{query}
[Query End]

[CoT Start]
{thought}
[CoT End]

[Answer Start]
{answer}
[Answer End]

### Instructions

You must strictly adhere to the following instructions:

1. Carefully read and analyze the entire reasoning trajectory and logic of the thought, ultilizing the
correct answer to judge the correctness and reasonableness of each step.

2. After analyzing all steps, carefully determine from which sentence the reasoning begins to exhibit
obvious errors and the subsequent reasoning trajectory significantly deviates from the correct
reasoning path (i.e., no longer returns to a reasonable reasoning trajectory). This sentence is the first
sentence that needs to be deleted.

3. Note that if errors occur during reasoning but are eventually corrected through reflection or other
means later, it indicates that the subsequent reasoning trajectory has not deviated, and such errors
can be ignored!

4. You must ensure that the extracted deletion sentence exactly matches the original thought word-
for-word, without any rewriting.

### Output Format

1. You should first analyze the thought step by step and output the judgment of step accuracy to identify
the reasoning prefix to be preserved and the first sentence to be deleted. If the final answer of the given
CoT does not match the correct answer, you must find the first sentence that deviates from the correct
reasoning path, because there has at least one error.
2. At the end of your output, you should output the first sentence to be deleted in the following format
for easy answer extraction:
[RESULT_START]
First sentence to be deleted
[RESULT_END]

Prompt for Extracting Unique Information This prompt instructs the model to perform a compar-
ative analysis between the strategy provider CoT (tp) and the target CoT (to). The goal is to isolate
the unique, valuable reasoning steps and knowledge that present only in the provider tp. The specific
prompt is detailed in Prompt 5.
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Prompt 5: Prompt for Extracting Unique Information

You are an insightful scientific reviewer, adept at discovering and extracting key and useful knowledge
or information. Given a scientific problem, a chain of thought representing the model’s current
progress (CoT_current), a chain of thought from external exploration (CoT_external), and the
corresponding correct answer, your task is to organize and extract the guiding information or knowledge
in CoT_external that can help optimize or improve the reasoning trajectory of CoT_current, based
on the correct answer. This valuable information will be used to guide CoT_current to optimize and
modify its own thinking process to facilitate obtaining the correct answer.

[Query Start]
{query}
[Query End]

[CoT Current Start]
{thought_current}
[CoT Current End]

[CoT External Start]
{thought_external}
[CoT External End]

[Correct Answer Start]
{answer}
[Correct Answer End]

### Instructions
You must strictly follow these instructions:

1. The steps, information or final answer of CoT_external are partially incorrect. You should justify
the correctness of them.

2. Carefully read and analyze CoT_external, and identify all the totally correct knowledge or
information that are missing or incorrectly analyzed in CoT_current based on the correct answer.
You need to ensure this information is useful to guide CoT_current to optimize or improve its
reasoning trajectory.

3. Rewrite each knowledge or information extracted from CoT_external into a self-contained,
generalizable sentence.

4. Ensure that the extracted information is completely correct (please judge based on the correct
answer), genuinely exists, and only exists in CoT_external. Ensure that there are no contradictions
among the extracted information!!!

### Output Format

1. You should first highlight the correct answer, and then output the analysis of CoT_current and
CoT_external to identify useful knowledge or information in CoT_external that is missing or incorrectly
analyzed in CoT_current.
2. Next, you should judge the correctness of each knowledge or information extracted from
CoT_external based on the correct answer. You should delete the incorrect knowledge or information
after the judgement.
3. At the end of the output, you should output the remaining extracted correct knowledge or
information as a list according to the following format:

[RESULT_START]
* knowledge/information-1
* knowledge/information-2
* ...
[RESULT_END]

Prompt for Generating a New Trajectory This is the final synthesis step of recombination. The
prompt guides the model to generate a new reasoning suffix, conditioned on the stable prefix from the
target CoT to and the unique information extracted from the provider tp, thereby creating a novel,
hybrid CoT. The specific prompt is detailed in Prompt 6.

23



Published as a conference paper at ICLR 2026

Prompt 6: Prompt for Generating a New Trajectory

<think>
<tips>Before formally considering the user’s question, let me reiterate my responsibilities: deeply
analyze the user’s inquiry, and set breakpoints when necessary to append additional correct information
for subsequent reasoning. Breakpoints will be wrapped with "<breakpoint>" and "</breakpoint>",
containing key information required for follow-up analysis. I will not treat the content within
breakpoints as prior knowledge, but will revalidate or re-explain them during remaining reasoning steps.
I will ensure contextual continuity before and after breakpoints. I will use detailed and rich thinking
after each breakpoint to ensure the accuracy and comprehensiveness of my reasoning.</tips>

{prefix}

<breakpoint>
I have received the following correct information that I should use to continue my reasoning:

{breakpoint}

I should mention all the information in my follow-up reasoning. I should revalidate or re-explain the
above correct information (within the "<breakpoint>") in my reasoning later. I should continue the
reasoning from the previous context.
</breakpoint>

A5.3 COT MUTATION PROMPTS

Mutation operators are designed for local optimization and error correction. They introduce targeted
variations into a single CoT to fix flaws, enhance quality, and escape suboptimal reasoning patterns.

Prompt for Additive Mutation This prompt instructs the mutation model (Mu) to enrich a given
CoT by elaborating on its reasoning. It is used to add more logical details, deeper explanations, or
relevant domain knowledge where the original CoT was underdeveloped. The specific prompt is
detailed in Prompt 7.

Prompt 7: Prompt for Additive Mutation

You are a reasoning expert rich in professional knowledge and good at thinking. Given a query and
a Chain of Thought (CoT), your task is to add more details to the CoT to make the thinking process
more complete, coherent, and of higher quality. You should ensure that the final CoT includes more
than {word} words.
[Query Start]
{query}
[Query End]

[CoT Start]
{thought}
[CoT End]

### Instructions

You must strictly adhere to the following instructions:
1. Please read the CoT sentence by sentence and identify assertions, assumptions, or conclusions that
lack substantial evidence, collectively referred to as "unverified elements".
2. Leverage your extensive knowledge to add more evidence and details in the context of these
unverified elements, using the same writing style as the original text. Make sure that the final CoT
includes more than {word} words!
3. Ensure that no characters in the reasoning chain are modified, only adding evidence and details. 4.
Output the optimized CoT from the beginning.
5. You should first output "[RESULT_START]", then directly output the optimized CoT, and finally
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output "[RESULT_END]". Do not output other characters. The format is as follows:

[RESULT_START]
Optimized CoT, using the same format as the original CoT
[RESULT_END]

Prompt for Deletive Mutation To improve the signal-to-noise ratio of the reasoning, this prompt
instructs the model to prune a given CoT. It removes redundant steps, unproductive explorations, or
extraneous information, resulting in a more concise and efficient trajectory for student model training.
The specific prompt is detailed in Prompt 8.

Prompt 8: Prompt for Deletive Mutation

You are an insightful scientific critic, adept at identifying unnecessary steps and unusual words or
sentences in a complete scientific reasoning process. Given a scientific query and its corresponding
Chain of Thought (CoT), your task is to identify the core skeleton of the reasoning trajectory and
remove abrupt words and sentences, and steps that are completely unnecessary, meaningless, and do not
advance the reasoning further. Finally, directly output the remaining complete, high-quality, and clear
reasoning trajectory. You should ensure that every character you output truly exists in the original text.

[Query Start]
{query}
[Query End]

[CoT Start]
{thought}
[CoT End]

### Instructions

You must strictly adhere to the following instructions:
1. First, carefully read the CoT to find abrupt words and sentences, and redundant and meaningless
steps that do not advance the reasoning further. DO NOT delete valuable exploratory steps, or necessary
information and knowledge obtained and retrieved in the middle.
2. It should be noted that since the CoT may reference correct answers, tips, or additional information
provided by the user, although these external aids are necessary, the sources of this information,
such as "the user says" or "the tips mention", should not appear in the CoT. Please remove these
information sources (e.g., ’user’, ’tips’, ’correct answer’) and treat the information as the model’s
internal knowledge. If removing these sources causes contextual incoherence, you can add some
details to ensure coherence.
3. Then, directly output the remaining complete, high-quality, and contextually coherent reasoning
trajectory from the beginning. You should ensure that every character you output truly exists in the
original text, i.e., you cannot modify any characters of the given CoT except for the deleted sentences.
Use the original format of the CoT.
4. A complete reasoning trajectory may at least includes 4 core elements: rephrase the query (DO NOT
delete the first few sentences), find the solution step by step, validate the solution, and summarize the
final result.
5. You should output "[RESULT_START]" at the beginning of your response, then directly output the
remaining reasoning trajectory, and output "[RESULT_END]" at the end of your response. The format
is as follows:

[RESULT_START]
Remaining reasoning trajectory here, using the same format as the original CoT
[RESULT_END]

Prompt for Innovative Mutation This operator is a key mechanism for error correction in our
framework. The prompt guides the model to first diagnose the logical fallacies in a faulty CoT by
using the ground-truth answer as a reference, and to summarize them into corrective advice. We then
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incorporate this advice into the original query to generate a new, correct reasoning trajectory that
avoids the identified mistakes. The specific prompt is detailed in Prompt 9.

Prompt 9: Prompt for Innovative Mutation

Given a query, a relevant chain of thought (CoT), and the correct answer, your task is to check the
correctness of each step in the CoT based on the correct answer and find all the critical errors that occur
in the CoT. Finally, write each error as a one-sentence advice to prevent the error from recurring.

[Query Start]
{query}
[Query End]

[CoT Start]
{thought_current}
[CoT End]

[Correct Answer Start]
{answer}
[Correct Answer End]

### Instructions

Please strictly follow the following instructions:
1. First, analyze the correctness of each step in the CoT based on the correct answer.
2. Then, identify all the critical errors that occur in the CoT. This includes using incorrect knowledge,
making wrong inferences, or having faulty intuitions.
3. Summarize each error into a one-sentence advice to prevent the same errors from recurring in
subsequent attempts. DO NOT mention the correct answer in your summary.
4. Output all the summarized errors in a list, strictly following the format below:

[RESULT_START]
* advice-1-summary
* advice-2-summary
* ...
[RESULT_END]
5. Please output "[RESULT_START]" first, then directly output all the summarized advices, and finally
output "[RESULT_END]".

A6 TRANSITION KEYWORDS

In COT-EVO framework, particularly within the CoT Recombination described in Section 3.4, we
need a systematic way to parse a continuous reasoning trajectory into a sequence of discrete, coherent
thoughts. To achieve this, we utilize a predefined set of transition keywords. These keywords act as
linguistic markers that signal a shift, pause, or pivot in the reasoning process. By identifying these
keywords, our framework can effectively segment a long CoT into meaningful, modular thoughts.
This segmentation is a critical prerequisite for identifying a suitable "binding point", enabling the
model to perform more structured and meaningful recombination operations between different
reasoning trajectories. Below is the list of transition keywords employed in COT-EVO.

Transition Keywords in CoT

“Wait”, “But wait”, “Alternatively”, “However”, “Let me”, “Maybe”, “Another”, “Let’s
see”, “Backtrack”, “Going back”, “Okay”, “Alright”, “Hmm”, “Hmmm”, “Not sure”, “Let
me double-check”, “I think”, “Good”, “Got it”, “That’s correct”
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A7 USE OF LLMS

We acknowledge the use of generative AI in this work. Specifically, we employed LLMs to assist
with response quality evaluation in Section 4.3 and to provide editorial support during the preparation
of the manuscript.

A8 CASE STUDIES

To provide a more granular understanding of COT-EVO’s capabilities, this section presents two
detailed case studies from distinct scientific domains: a biophysical protocol sequencing task (Sec-
tion A8.1) and a complex chemical reaction prediction (Section A8.1). In both examples, we observe
that even powerful teacher LLMs fail due to subtle yet critical flaws in their domain-specific knowl-
edge or logical application. These cases are chosen to concretely illustrate how COT-EVO moves
beyond simple distillation. By injecting more accurate domain knowledge and refining the logical
flow, COT-EVO demonstrates its ability to synthesize a superior and correct reasoning path where the
original teachers could not.

A8.1 CASE STUDY ON SEQUENCING A PLANAR LIPID BILAYER PROTOCOL

This case study involves sorting the procedural steps of a complex biophysical experiment (Planar
Lipid bilayer), where the correct order depends on understanding the physical and temporal constraints
of the technique. The teacher models, DeepSeek-R1 and Qwen3-32B-think, both fail due to a shared
logical error. They incorrectly assume that all physical apparatus, such as the Curved Agar Bridges,
must be prepared before forming the delicate lipid bilayer. This reflects a superficial reasoning
process that overlooks the practical vulnerabilities of the experimental setup.

In contrast, COT-EVO demonstrates a superior reasoning capability by introducing accurate, domain-
specific knowledge about the experiment’s constraints. It correctly identifies that the fragile lipid
bilayer must be formed before the agar bridges are put in place to prevent physical disruption. By
integrating this key piece of knowledge, COT-EVO improves the overall reasoning logic, correctly
sequencing the prerequisites (preparing lipids and protein) and the assembly steps. This allows it to
construct a coherent and correct workflow that respects the real-world constraints of the technique,
showcasing its ability to refine flawed initial hypotheses into a logically sound solution.

Case 1: Query

To understand the role of the mitochondrial protein MPV17, whose mutations are linked to
mitochondrial DNA depletion syndrome (MDS), the following protocol is used. The goal is to precisely
measure the channel activity of the Drosophila melanogaster version of this protein (dMpv17) in a
controlled environment using the planar lipid bilayer (PLB) technique.

Please sort the following procedural steps for this experiment in the correct order.
The steps are:
[’dMPV17 Protein Preparation’, ’PLB Formation’, ’Preparation of Curved Agar Bridges’, ’Measure-
ment of dMpv17 Activity in the Presence of Uridine’, ’Lipid Solution Preparation’, ’Channel Activity
Recording’]

- Give me the correct order of the steps as a list of their original indices (start from 0), no other words.

Correct Answer: [4, 0, 1, 2, 5, 3]

Case 1: Summarized reasoning trajectories of LLM thinkers

DeepSeek-R1
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Step 1: Initial Hypothesis on Core Setup

My initial thought is to figure out the order of the core components. I know that to form the bilayer (1),
I first need the lipid solution (4). Then I consider the curved agar bridges (2). I reason that since the
bridges are part of the physical setup, they should be prepared very early, perhaps even before the lipid
solution is made.

Step 2: Incorporating Protein Preparation and First Re-evaluation

Next, I try to fit the protein preparation (0) into the sequence. I get confused about its timing,
initially thinking it might happen after the bilayer is already formed. This creates a logical conflict,
as the protein must be ready before it can be added to the bilayer. I try to resolve this by con-
sidering a few different permutations of the setup steps (bridges, lipids, PLB) and the protein preparation.

Step 3: Self-Correction on Protein and Experimental Steps

I realize my previous thinking was flawed. It’s clear that the protein must be prepared (0) before it is
introduced into the system. It is also logical that you first have to record the baseline channel activity
(5) before you can measure any changes caused by adding uridine (3), as you need a control to compare
against.

Step 4: Formulation of the Final (but flawed) Sequence

With my corrected logic, I establish my final proposed order. I conclude that the full process is: prepare
the protein (0), prepare the agar bridges (2), prepare the lipid solution (4), and then form the PLB (1).
Following the setup, the experiment proceeds with recording baseline activity (5) and then measuring
the effect of uridine (3). This leads me to the final, incorrect answer of [0, 2, 4, 1, 5, 3].

Qwen3-32B-think

Step 1: Establishing the Initial Setup Order

I started by recalling the general experimental flow. My first step was to order the setup components. I
decided that preparing the ’Curved Agar Bridges’ (2) must be the very first step since they are part of
the physical apparatus. After that, I correctly reasoned that the ’Lipid Solution Preparation’ (4) must
come before ’PLB Formation’ (1), because the solution is required to create the bilayer.

Step 2: Sequencing Protein and Recording Steps

Once the bilayer formation was placed, I moved on to the protein and measurement steps. My key error
was thinking that the ’dMPV17 Protein Preparation’ (0) happens after the bilayer is already formed.
Following this step, I correctly ordered the data collection phase: first, the baseline ’Channel Activity
Recording’ (5), and then the specific experiment, ’Measurement of dMpv17 Activity in the Presence of
Uridine’ (3).

Step 3: Final Consolidation and Review

I concluded by putting all the steps together into a single sequence: bridges (2), lipids (4), PLB formation
(1), protein prep (0), recording (5), and the uridine measurement (3). I did a final check, and this order
seemed logical based on my flawed assumption about when the protein is prepared. This led me to
finalize the incorrect answer [2, 4, 1, 0, 5, 3].

Case1: Summarized reasoning trajectories of COT-EVO

Step 1: Establishing the Foundational Prerequisites

I began by considering the standard workflow of a PLB experiment. I determined that the process must
start with the preparation of the essential materials. I identified ‘Lipid Solution Preparation’ (4) as the
logical starting point because the lipid bilayer is the foundational structure of the entire experiment.

28



Published as a conference paper at ICLR 2026

Next, I placed ‘dMPV17 Protein Preparation’ (0) as a crucial, concurrent prerequisite, as the protein
must be purified and correctly folded before any attempt to incorporate it into the membrane.

Step 2: Constructing the Bilayer

With the foundational materials ready, I reasoned that the next step is the formation of the planar lipid
bilayer (PLB) itself (1). This critical process involves using the prepared lipid solution to create a stable,
high-resistance membrane across the aperture in the experimental chamber, which will serve as the host
for the protein channel.

Step 3: Finalizing the Electrophysiological Setup

After the delicate PLB is successfully formed, the next step is to finalize the setup for electrical
recording. Crucially, I placed ‘Preparation of Curved Agar Bridges’ (2) after the PLB is formed.
This is because the agar bridges are part of the final recording circuit and adding them earlier could
physically disrupt the fragile bilayer during its formation. This corrects a major error present in the
other reasoning traces.

Step 4: Recording Baseline Channel Activity

Once the bilayer is formed and the agar bridges are in place, the prepared protein can be introduced,
allowing it to insert into the membrane. The subsequent step is to record the channel’s intrinsic
behavior. I identified this as ‘Channel Activity Recording’ (5), which serves as the essential baseline
measurement against which any changes can be compared.

Step 5: Performing the Experimental Measurement

Finally, with the baseline activity established, the experiment concludes with the specific test condition.
This involves adding uridine to the system and performing the ’Measurement of dMpv17 Activity in
the Presence of Uridine’ (3). I placed this step last because it is a specific experimental intervention
designed to test the compound’s effect on the channel’s baseline function.

Step 6: Consolidating the Final, Correct Sequence

I summarized the entire logical flow: preparing the foundational materials (lipids, then protein), forming
the bilayer, completing the electrical setup (agar bridges), recording a baseline, and finally testing the
experimental variable. This step-by-step construction, respecting the physical and biological constraints
of the technique, leads directly to the correct order: [4, 0, 1, 2, 5, 3].

A8.2 CASE STUDY ON CHEMICAL REACTION PREDICTION

In this case, we present a challenging reaction prediction task involving a Sonogashira coupling.
Both powerful teacher LLMs, DeepSeek-R1 and Qwen3-235B-A22B-think, ultimately fail to predict
the correct product. DeepSeek-R1 correctly identifies the reaction type but makes a critical error
by misinterpreting the heteroaryl triflate as a diazonium salt, leading to an incorrect final structure.
Qwen3-235B-A22B-think performs even more poorly, failing entirely to parse the key reactant and
consequently giving up on the problem, returning a starting material as its answer.

In contrast, COT-EVO demonstrates its ability to synthesize a superior reasoning path. It success-
fully inherits the crucial initial insight from the teachers—correctly identifying the reaction as a
Sonogashira coupling. However, it then corrects their shared, fatal flaw by accurately identifying the
triflate as the leaving group on the heteroaryl electrophile. By combining the correct foundational
steps from its teachers with a new, pivotal insight, COT-EVO not only avoids their errors but also
creates a more accurate and enriched line of reasoning to arrive at the correct chemical product.

Case 2: Query

Given the reactants SMILES and reagents SMILES, your task is to predict the major
product(s) SMILES using your experienced chemical Reaction Prediction knowledge.
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Input:
Reactants SMILES separated by ‘.’
Reagents SMILES separated by ‘.’

Output: Major Product

The output SMILES must be valid and chemically reasonable. Do not provide any additional
information beyond the requested SMILES strings. The answer should be a json format that
includes the major product SMILES:

Question:
Reactants: C#Cc1ccccc1.Cl[Pd](Cl)([PH](c1ccccc1)(c1ccccc1)c1ccccc1)[PH](c1ccccc1)
(c1ccccc1)c1ccccc1.O=c1ccc(OS(=O)(=O)C(F)(F)F)n[nH]1.[Cu]I
Reagents:

Answer:
{
"Major Product": ...
}

Case 2: Summarized reasoning trajectories of LLM thinkers

DeepSeek-R1

Step 1: Initial Analysis and a Key Misidentification

I began by analyzing each reactant to understand its role. I correctly identified the phenylacetylene
(C#Cc1ccccc1), the palladium complex, and the copper(I) iodide ([Cu]I). Based on these components,
I correctly hypothesized that the reaction is likely a Sonogashira coupling. However, I made a critical
error in identifying the third reactant, O=c1ccc(OS(=O)(=O)C(F)(F)F)n[nH]1. I misinterpreted this
molecule as a diazonium salt, focusing on the n[nH] moiety, instead of correctly identifying it as a
heteroaryl triflate where the triflate group (-OS(=O)(=O)C(F)(F)F) is the actual leaving group.

Step 2: Exploring Consequences of the Flawed Premise

Based on my incorrect “diazonium salt” hypothesis, I explored various reaction mechanisms that
were not relevant to the actual problem. I spent considerable effort trying to rationalize how a cyclic
diazonium salt would decompose (e.g., by losing N2 gas) and how the resulting species would couple
with the alkyne. This led to significant confusion as I tried to parse the SMILES string and visualize a
ring-opening or rearrangement that would not actually occur.

Step 3: Acknowledging Contradictions and Reassessing the Goal

During my analysis, I noticed a contradiction in the prompt’s instructions regarding whether to output
the “Major Product” or “Byproduct”. I correctly concluded that the primary goal was to predict the
major product, as shown in the example answer format. I then returned to the chemical problem but was
still hindered by my initial misidentification of the reactant, admitting that the structure was complex
and confusing under my flawed assumption.

Step 4: Formulating a Final Product Based on Misinterpretation

Despite the ongoing confusion, I proceeded to formulate a final answer. I maintained the general
idea of a coupling reaction. However, because I failed to recognize the triflate as the leaving group,
my proposed product, O=c1ccc(OS(=O)(=O)C(F)(F)F)c(C#Cc2ccccc2)[nH]1, incorrectly kept the
triflate group on the molecule. Furthermore, I incorrectly attached the phenylacetylene group to a
carbon atom adjacent to the nitrogen in the ring, rather than at the position of the leaving group.
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Qwen3-235B-A22B-think

Step 1: Initial Analysis of Reactants

I began by attempting to identify each component in the reaction. I correctly recognized phenylacetylene
(C#Cc1ccccc1) and copper iodide ([Cu]I). I also identified the palladium species as a catalyst, though
I expressed some minor confusion about the exact SMILES representation of its triphenylphosphine
ligands.

Step 2: Critical Failure to Interpret the Heteroaryl Electrophile

My reasoning process completely stalled when I tried to parse the SMILES string
O=c1ccc(OS(=O)(=O)C(F)(F)F)n[nH]1. I became fixated on trying to name the specific hete-
rocyclic ring system (speculating about triazoles, tetrazoles, etc.) and got lost trying to count the atoms
to determine the ring size. Critically, I failed to identify the most important feature of this molecule for
the reaction: the triflate group (-OS(=O)(=O)C(F)(F)F) as an excellent leaving group. My inability to
correctly interpret this key reactant prevented me from making any further progress on the reaction
mechanism.

Step 3: Abrupt and Unreasoned Conclusion

My thought process was cut short while I was still struggling to understand the heteroaryl structure.
Without providing any chemical justification or a logical path forward, I gave up on solving the problem.
My final answer, C#Cc1ccccc1, simply returns one of the starting materials, which incorrectly implies
that no reaction takes place.

Case2: Summarized reasoning trajectories of COT-EVO

Step 1: Initial Reactant Analysis and Reaction Hypothesis

My first step is to break down the reactants to understand their roles. I identify C#Cc1ccccc1 as
phenylacetylene, the palladium complex as a catalyst, and [Cu]I as a co-catalyst. Based on this
combination of a terminal alkyne, a palladium catalyst, and a copper co-catalyst, I correctly hypothesize
that the reaction is a Sonogashira coupling.

Step 2: Correctly Identifying the Electrophile and Leaving Group

Next, I analyze the key heteroaryl reactant, O=c1ccc(OS(=O)(=O)C(F)(F)F)n[nH]1. I correctly
identify the crucial feature: the sulfonyloxy group (-OTf) is an excellent leaving group in
cross-coupling reactions. This singular, correct insight is the pivotal step that allows for a successful
prediction.

Step 3: Applying the Correct Mechanistic Principles

I then consider the general mechanism for a Sonogashira coupling, which involves steps like oxidative
addition of the palladium to the electrophile, transmetallation with the copper-activated alkyne, and
reductive elimination. My reasoning correctly applies this mechanism to the actual electrophile, the
heteroaryl triflate.

Step 4: Deducing the Final Product Structure

From the correct application of the mechanism, I deduce that the reaction’s outcome will be the
replacement of the leaving group. The phenylacetylene group will form a new carbon-carbon
bond at the exact position where the sulfonyloxy group was originally attached.

Step 5: Constructing and Confirming the Final Product SMILES

Finally, I translate this structural understanding into the final SMILES string. By correctly replacing the
OS(=O)(=O)C(F)(F)F group with the C#Cc1ccccc1 group, I construct and confirm the valid, chemically
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reasonable SMILES for the major product: O=c1ccc(n[nH]1)C#Cc1ccccc1. This is equivalent to the
correct answer
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