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Abstract

Table question answering is a popular task that001
assesses a model’s ability to understand and in-002
teract with structured data. However, the given003
table often does not contain sufficient informa-004
tion to answer the question, necessitating the005
integration of external knowledge. Existing006
methods either convert both the table and ex-007
ternal knowledge into text, which neglects the008
structured nature of the table; or they embed009
queries for external sources in the interaction010
with the table, which complicates the process.011
In this paper, we propose a simple yet effec-012
tive method to integrate external information in013
a given table. Our method first constructs an014
augmenting table containing the missing infor-015
mation and then generates a SQL query over016
the two tables to answer the question. Experi-017
ments show that our method outperforms strong018
baselines on three table QA benchmarks.019

1 Introduction020

Tables are ubiquitous types of information sources021

that have attracted significant attention in the NLP022

community. Researchers have developed models to023

perform various tabular tasks, including table ques-024

tion answering (QA) (Pasupat and Liang, 2015;025

Chen et al., 2020c; Nan et al., 2022), table fact veri-026

fication (Chen et al., 2020b; Aly et al., 2021), table-027

to-text generation (Parikh et al., 2020; Chen et al.,028

2020a; Nan et al., 2021), etc. A critical challenge029

in these tasks is that tables often lack sufficient in-030

formation for the task at hand, which necessitates031

the integration of additional knowledge. For ex-032

ample, in Figure 1, to answer the question ‘How033

many chords have a root not based on a sharp or034

flat note?’, a model needs to have the knowledge of035

whether each root is based on a sharp or flat note,036

which is not provided in the table and can only be037

obtained from external sources.038

Existing methods for integrating information039

from tables and external sources can be mainly040

categorized into two groups. The first method, ex- 041

emplified by Program-of-Thought (Chen et al., 042

2023), linearizes the table into text and combines 043

it with external knowledge in textual format (Xie 044

et al., 2022; Chen, 2023). However, the linearized 045

table no longer has the structured format, making 046

it difficult to retrieve required values from the table 047

and perform comparisons and calculations. 048

An alternative, Binder (Cheng et al., 2023), 049

combines the symbolic language execution with 050

large language models (LLMs). It interacts with the 051

table through symbolic language like SQL, which 052

maintains the structured format. Part of the SQL 053

query is replaced with an LLM query that extracts 054

knowledge from the LLM for further SQL execu- 055

tion. For instance, in Figure 1 (b), the method 056

queries LLMs for whether each root is sharp or 057

flat and uses the results as a filtering criterion in a 058

SQL statement. However, it requires the model to 059

learn to embed LLM queries in the standard SQL 060

language, which differs substantially from the SQL 061

statements the model has been trained on. As a 062

result, it is more likely to generate syntactically 063

wrong statements that lead to execution errors. 064

In this paper, we propose a simple yet effective 065

method for combining external knowledge with a 066

given table. As shown in Figure 1 (c), our method 067

starts by analyzing the additional information re- 068

quired for answering the question. It then queries 069

a knowledge source for the information and orga- 070

nizes the results in a tabular format. This newly 071

created table augments the original table with addi- 072

tional information, and a SQL query is generated 073

to obtain the answer from the two tables. Such 074

an augment-then-generate pipeline eliminates the 075

need to embed LLM queries in SQL statements 076

while preserving the structured format of the table. 077

We evaluate our method on three table QA 078

datasets that require different types of external 079

knowledge (Chen et al., 2021; Zhu et al., 2021; Pa- 080

supat and Liang, 2015). Our method outperforms 081
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Figure 1: Comparison between Program-of-Thought, Binder, and our method.

or matches strong baselines on all datasets. Par-082

ticularly, it demonstrates significant improvements083

over Program-of-Thought in questions with large084

tables or require complex tabular operations, and085

compared to Binder, it exhibits fewer execution086

errors and achieves better performance.087

2 Related work088

Table QA task combines structured data reasoning089

with text understanding. Traditional methods parse090

questions into executable commands to retrieve and091

process data from the table to obtain answers (Be-092

rant et al., 2013; Yin and Neubig, 2017; Zhong093

et al., 2017; Shaw et al., 2020; Yu et al., 2018).094

However, these methods require question-related095

information to present the table in a rigorous for-096

mat, which is limited when applied to web tables097

that often do not have a clean schema. Recent098

works pre-train neural models on large-scale tab-099

ular data, and directly encode tables and generate100

answers in an end-to-end fashion (Liu et al., 2022;101

Xie et al., 2022; Herzig et al., 2020; Yin et al., 2020;102

Zhao et al., 2022; Deng et al., 2020). To reduce the103

training cost, some works leverage LLMs to read104

and reason over tables (Chen, 2023; Pourreza and105

Rafiei, 2023; Sui et al., 2024).106

Although end-to-end methods excel on table QA107

benchmarks, their predictions lack interpretability108

and are not robust to input perturbations (Yang109

et al., 2022). For this reason, recent works com-110

bine LLMs with symbolic language execution. Par-111

ticularly, Cheng et al. (2023) incorporates func-112

tion calls to LLMs in SQL statements. Ye et al.113

(2023) decomposes the question and table into sub-114

problems solvable by SQL queries. Chen et al.115

(2023) generates the reasoning process as Python116

programs. A recent work (Wang et al., 2024) dy-117

namically updates the table in the reasoning pro-118

cess. They employ LLMs to iteratively generate 119

operations such as selecting a subset of rows or 120

adding a new column, and the final resulting table 121

is fed to LLMs to generate the answer. However, 122

their chain of operations is prone to error propa- 123

gation, while our method retains the original table 124

content and augments it with required information. 125

3 Methodology 126

3.1 Problem Formulation 127

Given a natural language question Q, a table T , 128

and a knowledge source S, the task is to generate a 129

correct answer for the question. Crucially, T might 130

not contain all the necessary information to answer 131

the question, which necessitates the use of S to 132

obtain additional information. In this paper, we 133

consider S to be either a relevant text document or 134

an LLM that we can query. 135

3.2 Overall Framework 136

Our method contains three steps, as illustrated in 137

Figure 1 (c). The detailed instructions and exam- 138

ples for each step are listed in Appendix A. 139

Step 1: Analyze question. An LLM is instructed 140

to analyze the given question and table to determine 141

what additional information is needed to answer 142

the question. We instruct the LLM to first list out 143

all the necessary information for answering Q. For 144

each piece of information, it then determines if 145

the information is present in T or not. The output 146

of this step is a list of queries that can be later 147

used to obtain additional information from S, or 148

empty if no additional information is needed. For 149

example, in Figure 1 (c), the model outputs ‘Is the 150

root based on a sharp or flat note?’. Additionally, 151

for information that needs to be obtained based on 152

the table, the LLM will also specify which columns 153
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are needed, e.g., it specifies that the query needs to154

be answered for each row in the ‘Root’ column.155

Step 2: Construct augmenting table. Using out-156

put queries from step 1, the LLM then obtains cor-157

responding information from the source S. Specifi-158

cally, when S is a text document, this step is similar159

to the reading comprehension task where the LLM160

needs to extract answers to the queries from the161

document. When S is an LLM, this step resembles162

a QA task where the LLM needs to directly answer163

the query. Finally, the obtained information is orga-164

nized into a separate table that can complement the165

existing table T . Figure 1 (c) shows an example166

where a new table of two columns is constructed.167

It is worth mentioning that this step is flexible and168

can be easily extended to other types of sources S.169

Step 3: Generate SQL query. With the original170

and newly constructed tables, the LLM then gener-171

ates a SQL query that can be executed to obtain the172

answer to the question. Importantly, the two tables173

contain sufficient information for answering Q, and174

the LLM can generate a standard SQL query, which175

is easier and more similar to its pre-training data.176

4 Experiments177

We evaluate our method on table QA benchmarks,178

focusing on two types of questions that might re-179

quire external knowledge from different sources.180

• Open-domain knowledge where external infor-181

mation comes from an open domain. We use the182

embedded knowledge in LLMs as the source.183

• Closed-domain knowledge where all informa-184

tion is within a given table and a text document185

containing all related external knowledge.186

We will discuss the common experiment settings187

in Section 4.1 and individual experiments for each188

type in Sections 4.2 and 4.3 respectively.189

4.1 Experiments Setup190

Implementation details. We prompt an LLM191

with detailed instructions and in-context examples192

for all three steps in our method. To feed the ta-193

ble to the LLM for question analysis (Step 1) and194

generating SQL queries (Step 3), we linearize the195

table by concatenating columns with special tokens196

(e.g., ‘|’) following previous works (Chen et al.,197

2023). We use GPT-3.5-turbo-1106 as the back-198

bone LLM and greedy decoding (i.e., temperature199

is 0) for our method and all baselines. For a fair200

comparison, we use the same number of in-context201

examples as baselines (details in Appendix A).202

Baselines. We compare with five LLM-based 203

baselines. ∂ End-to-End that directly outputs the 204

answer given the table, question, and optionally the 205

text document. ∑ Table-CoT (Chen, 2023) that 206

uses the chain-of-thought prompting (Wei et al., 207

2022) to additionally output the reasoning chain. 208

∏ Dater (Ye et al., 2023), π Binder (Cheng et al., 209

2023), and ∫ Program-of-Thought (PoT) (Chen 210

et al., 2023) that combine LLMs with symbolic 211

language execution (details in Section 2). Particu- 212

larly, since Binder does not generate the reasoning 213

chain, we include an improved variant with chain- 214

of-thought prompting, denoted as Binder+CoT. 215

Metrics. We use exact match rate (EM) between 216

predicted and ground-truth answers as the metric 217

and use the same evaluation code across methods. 218

4.2 Open-Domain Knowledge 219

Datasets. We evaluate on WIKITQ dataset (Pasu- 220

pat and Liang, 2015), which requires complex table 221

reasoning for the question. According to Shi et al. 222

(2020), around 20% of WIKITQ questions are not 223

answerable by SQL queries, which are likely to re- 224

quire additional knowledge not present in the table. 225

We test all methods on the full test set, containing 226

4344 samples. 227

Results. Table 1 presents the EM. There are two 228

observations from the table. First, methods that in- 229

volve program execution are generally better than 230

those that do not, highlighting the value of accurate 231

data retrieval or processing. Second, our method 232

achieves the best performance, showing its effec- 233

tiveness. To further evaluate scalability across table 234

sizes, Figure 2 plots the performance breakdown 235

by the number of tokens in the table. As can be 236

observed, our method and Binder+CoT are the only 237

methods that maintain performance on large tables, 238

whereas methods that rely on LLMs to extract infor- 239

mation from linearized tables such as Table-CoT 240

and PoT suffer significant performance degradation 241

on large tables. This illustrates the advantage of 242

SQL queries when interacting with the table. 243

Comparison with Binder+CoT. To further ver- 244

ify whether our augment-then-generate pipeline 245

leads to easier and more accurate SQL genera- 246

tion over the best-performing baseline Binder+CoT 247

(hereafter Binder), we compare the two methods 248

on the subset of questions not solvable by pure 249

SQL identified by Shi et al. (2020), which rely 250

more on the integration of external knowledge. Fig- 251
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Test EM

End-to-End 50.78
Table-CoT (Chen, 2023) 52.42

PoT (Chen et al., 2023) 53.02
Dater (Ye et al., 2023) 46.89
Binder (Cheng et al., 2023) 35.45
Binder+CoT 52.09
Ours 55.69

Table 1: Exact match on WIKITQ test set. Methods in
the bottom panel involve program execution.

Figure 2: Performance grouped by table length.

ure 3 shows the EM and percentage of execution252

errors, where our method demonstrates a more253

pronounced improvement. To better pinpoint the254

cause of performance difference, we add a post-255

processing step for Binder, where we extract the256

LLM queries from the SQL statement generated257

by Binder, query LLMs for desired information258

and add it as a new column in the original table,259

and re-generate a standard SQL (without LLM260

queries) based on the augmented table. This variant261

(dubbed Binder-separate) improves the EM and262

reduces execution errors over Binder, which vali-263

dates our hypothesis that combining LLM queries264

with SQL complicates the generation, leading to265

more syntax errors in generated programs. Notably,266

our method still incurs fewer execution errors than267

Binder-separate, which is likely due to the fact268

that our method generates more augmentations for269

the table, thus reducing the complexity of required270

SQL (see Appendix C.1 for details and examples).271

In Appendix B, we also compare our method272

with a recent work Chain-of-Table (Wang et al.,273

2024). Results show that our method achieves 1.85274

higher EM when using GPT3.5-0613 as the back-275

bone LLM, demonstrating its effectiveness despite276

being simpler and not requiring sequential opera-277

tions. Please refer to Appendix B for details.278

4.3 Closed-Domain Knowledge279

Datasets. We evaluate on TATQA (Zhu et al.,280

2021) and FinQA (Chen et al., 2021). Questions in281

Figure 3: Comparison between our method and Binder.

TATQA FINQA

End-to-End 35.50 34.18
Table-CoT (Chen, 2023) 34.91 39.87
PoT(Chen et al., 2023) 61.14 54.43

Ours 63.12 53.80

Table 2: Exact match on TATQA and FINQA.

these datasets involve a table and a financial report, 282

and the answer often requires arithmetic operations 283

in addition to table understanding ability. We filter 284

the datasets to only include questions that require 285

both table and report to answer (details in Table 5). 286

Results. Table 2 presents the results. Binder and 287

Dater are not included because the original paper 288

did not evaluate on these datasets and extension to 289

this setting requires substantial modification. There 290

are two observations. First, our method and PoT sig- 291

nificantly outperform the other two baselines that 292

do not involve program executions, which shows 293

the benefits of leveraging programs when questions 294

require arithmetic calculations. Second, although 295

the input tables are much smaller, which is bene- 296

ficial for PoT, our method is on par with PoT on 297

FINQA and outperforms it by 2 EM on TATQA. A 298

further performance breakdown by the number of 299

table cells required to answer a question in Figure 300

4 shows that our method is more effective on ques- 301

tions that require information from multiple cells, 302

indicating that our method is more likely to general- 303

ize to complex questions. Furthermore, it is easier 304

to locate and correct errors made by our method 305

as it only requires inspection of the generated SQL 306

queries, whereas PoT requires checking the whole 307

table contents (see examples in Appendix C.2). 308

5 Conclusion 309

We propose a simple method that augments a table 310

by creating a new table that contains information 311

from external sources. The LLM then generates a 312

SQL query to answer the question. Experiments on 313

three table QA benchmarks show that our method 314

outperforms or matches strong baselines. 315
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6 Limitation316

There are several limitations in this work that need317

to be further improved. First, our framework re-318

lies on the LLM’s ability to generate correct SQL319

statements. If the LLM has limited SQL generation320

ability, such as Llama2 in Appendix B, the perfor-321

mance of our method will be affected. In addition,322

we only evaluate our method on integrating exter-323

nal knowledge from two different sources. The324

generalizability of our method to other knowledge325

sources remains to be assessed.326

7 Potential Risks and Use of Data327

In this paper, we propose a method for the table328

QA task that combines LLMs with SQL queries.329

Each step of our method is interpretable, which330

allows users to easily verify the correctness of each331

step. Thus the potential risks of our method can332

be considerably reduced. However, it is also im-333

portant to note that our method relies on LLMs to334

obtain additional information. Particularly, when335

the LLM is used as the external source, it might336

encounter the hallucination issue, where the LLM337

generates wrong information for the question. It338

is thus crucial to not fully trust the output from339

the LLM and compare it with reliable information340

sources to check the correctness of augmented in-341

formation.342

The datasets used in this paper are downloaded343

from the official websites. All datasets are under344

CC-BY-4.0 license and are consistent with their in-345

tended use. Table 5 lists the statistics of employed346

datasets.347
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A Implementation Details552

For all methods on all three datasets, we use the553

greedy decoding for generation, i.e., temperature554

equals 0. Table 3 lists other generation parame-555

ters of our method. Table 5 shows the statistics of556

datasets used in this paper.557

A.1 Open-domain Knowledge558

For the open-domain knowledge setting on WIK-559

ITQ, since our method generates queries that will560

be asked for every single row in one or more561

columns, the constructed augmenting table will al-562

ways have the same number of rows as the original563

table. For simplicity, we directly join the two ta-564

bles based on the row index before feeding them to565

LLMs to generate the SQL statement in step 3. In566

other words, the newly constructed table is joined567

on the original table as additional columns, and568

the SQL statement will be generated based on the569

joined table. Figures 11 and 12 show the detailed570

instruction used for this step and a demonstration571

of the in-context example. For step 2, we use the572

same instruction and in-context examples as Cheng573

et al. (2023) to query LLMs for required informa-574

tion. An example is shown in Figure 13. For step 3,575

we provide LLMs with in-context examples along576

with a one-sentence instruction, as illustrated in577

Figure 14. We use the evaluation code in Cheng578

et al. (2023) to calculate EM for all methods.579

A.2 Closed-domain Knowledge580

For the closed-domain setting on TATQA and581

FINQA, we feed both the text document and the582

table to the LLM to provide enough context. To583

save the inference cost, we merge steps 1 and 2584

together such that the model analyzes the required585

additional information and then extracts them from586

WIKITQ TATQA FINQA

top_p 1.0 1.0 1.0
max_output_tokens 512 512 512
num_shots 8 8 4

Table 3: Parameters for our greedy generation (sections
4.2 and 4.3).

GPT3.5 Llama2

Augmentation SQL Augmentation SQL
generation generation generation generation

temperature 0.6 0.4 0.8 0.4
top_p 1.0 1.0 1.0 1.0
sampling_n 3 2 or 4 4 3 or 4
max_output_tokens 512 512 256 256
num_shots 8 8 8 8

Table 4: Generation parameters for our ensemble model
on WIKITQ (Appendix B). Augmentation generation
and SQL generation correspond to the step 1 and 3 in
our method.

the document in a single run. We instruct the model 587

to extract information in a JSON format that can 588

be easily organized into a table. Figures 15 and 589

16 show the detailed instruction used and a demon- 590

stration of the in-context example on TATQA, and 591

Figures 18 and 19 show the same for FINQA. For 592

step 3, we provide the original table and the newly 593

constructed table if available to LLMs. Figures 594

17 and 20 show a demonstration of the in-context 595

examples on TATQA and FINQA respectively. 596

To select questions for evaluation, we only use 597

those that require both the table and the document. 598

Specifically, for TATQA, we select questions that 599

have answer_from=table-text, and for FINQA, 600

we select those whose ground truth evidence con- 601

tains at least one table row and one document sen- 602

tence. We follow Chen et al. (2023) to calculate 603

the EM. 604

B Comparison with Chain-of-Table 605

We additionally compare with Chain-of-Table 606

(Wang et al., 2024) on WIKITQ. Since their 607

implementation is not available at the submis- 608

sion time of this paper, we use the same dataset 609

and backbone LLMs as theirs and directly com- 610

pare with the numbers reported in their paper. 611

Specifically, we use GPT-3.5-turbo-16k-0613 612

and Llama2-13b-chat (Touvron et al., 2023) as 613

backbone LLMs and evaluate on the full test set of 614

WIKITQ. Since their sequential operations require 615

multiple queries for LLMs, we consider the major- 616

ity vote of execution results from N SQL queries 617

as our final prediction. To generate these SQL 618
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WIKITQ WIKITQ SQL unsolvable TATQA FINQA

# questions 4344 625 507 158
Split Test Dev Dev Test
# table rows 25.4 28.0 9.7 6.8
# table tokens 571.7 685.7 119.1 86.2
Knowledge source S LLMs LLMs Document Document

Table 5: Summary of the datasets used in this paper.

# generated samples EM

GPT3.5

Binder 50 56.74
Chain-of-Table  25 59.94
Ours (6 SQLs) 11.4 61.05
Ours (12 SQLs) 17.4 61.79

Llama2

Binder 50 30.92
Chain-of-Table  25 42.61

Ours (12 SQLs) 19.82 34.00
Ours (16 SQLs) 23.82 35.34

Table 6: Exact match on full WIKITQ test set. # gen-
erated samples denotes the total number of generated
samples to answer one question.

queries, we sample m different outputs for step619

1 (i.e., m different augmentations), and for each620

augmentation, we sample k SQL queries. The total621

number of generated samples for each question is622

m+ ↵m+mk, where ↵ is the percentage of step623

1 outputs that actually need additional information.624

Table 4 lists the parameters for generation.625

The results are shown in Table 6. As can be ob-626

served, our method outperforms Chain-of-Table627

and Binder when using GPT3.5 as the backbone628

LLM, despite using fewer LLM queries. When us-629

ing Llama2, Chain-of-Table achieves better per-630

formance than Binder and our method. We hypoth-631

esize that the performance difference is due to the632

limited SQL generation ability of Llama2. An im-633

portant difference is that Chain-of-Table feeds634

the final table to LLMs and directly asks LLMs635

to generate the answer, whereas Binder and our636

method prompt LLMs to generate SQL queries and637

execute to get the answer, which is affected more638

when the LLM has limited SQL generation ability.639

In fact, the generated SQL of our method contains640

32.9% of execution errors when using Llama2 as641

the LLM, compared to that of 8.7% when using642

GPT3.5. However, our method still outperforms643

Binder on Llama2, demonstrating the benefits of644

our augment-then-generate pipeline.645

Figure 4: Performance decomposition by the number of
table cells needed to answer the question.

C Additional Examples 646

C.1 Comparison with Binder 647

In this section, we elaborate on the com- 648

parison between our method, Binder, and 649

Binder-separate. In Figure 3, it can be observed 650

that our method achieves better performance and 651

exhibits fewer execution errors than Binder. More- 652

over, Binder-separate, which separates the SQL 653

generation and LLM queries in Binder, reduces 654

its execution errors, validating our hypothesis that 655

integrating LLM queries in SQL generation could 656

lead to more syntax errors. Figures 5 and 6 show 657

two examples where Binder encounters execu- 658

tion errors when trying to generate a SQL state- 659

ment with LLM queries, whereas our method and 660

Binder-separate correctly generate SQL state- 661

ments to answer the question. 662

Our method also incurs fewer execution errors 663

than Binder-separate, which can be ascribed 664

to the fact that our method generates more aug- 665

mentations for the table, which significantly re- 666

duces the complexity of required SQL statements. 667

Figure 7 illustrates one such example, where 668

Binder-separate gets errors because the required 669

information is missing from the table, whereas our 670

method correctly answers the question based on 671

the augmented table. In fact, our method generates 672

augmentations for 72.3% of the questions, while 673

Binder only includes LLM queries for 6.1% of the 674

questions, showing that our method also benefits 675
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the augmentation of additional information.676

C.2 Comparison with PoT677

We now provide more examples for the comparison678

between our method and PoT. Figure 4 shows the679

performance breakdown by the number of cells re-680

quired to answer the question. Based on the figure,681

our method is more effective on questions that re-682

quire multiple table cells for the answer. Figures 8683

and 9 show two such examples, where our method684

selects the correct values from the table to perform685

calculations, but PoT retrieves wrong values from686

the table, despite generating programs with correct687

logic. According to Chen et al. (2023), this type of688

value grounding errors take up 47% of the errors689

made by PoT. Moreover, correcting these errors re-690

quires manual efforts to look into the contents of691

the table, which is time-consuming when the table692

is large.693

On the contrary, Figure 10 shows an example694

question that only requires a single cell from the695

table. PoT correctly selects the answer but our696

method selects the value in the wrong column.697

However, correcting this error requires only manual698

inspection of the generated SQL statement, which699

is much more efficient than checking the whole700

table contents.701

Binder:
SELECT `first issued` FROM t1 ORDER BY 
LENGTH(QA("map@alphanumeric digits"; CONCAT(`serial 
format`, `serials issued`))) DESC LIMIT 1

Question: name the year of the license plate that has the largest amount of 
alphanumeric digits

row_id first issued serials format serials issued 
0 1955 a-12345 none
1 1958 abc-123 aaa-1 to bzz-999

…
9 2008 abc1234 aaa0001 to present

Ours:
Step 1: How many alphanumeric digits are there in the serial format?
Step 2: Augmented table:

row_id first issued serials 
format 

serials 
issued alphanumeric_digits

0 1955 a-12345 none 6

1 1958 abc-123 aaa-1 to 
bzz-999 6

…

9 2008 abc1234 aaa0001 to 
present 7

(sqlite3.OperationalError) near "CONCAT": syntax error

Execution result: 2008 ✓

Step 3:
SELECT `first issued` FROM t1 ORDER BY 
`alphanumeric_digits` DESC LIMIT 1

Figure 5: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs for un-
solvable parts. However, the statement leads to an ex-
ecution error. Our method augments the table with an
additional column and correctly generates a SQL state-
ment to answer the question.
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Binder:
SELECT ABS(QA("map@date of creation"; `time created` 
WHERE `map or catalog` = '5 star prediction device') 
- QA("map@date of creation"; `time created` WHERE 
`map or catalog` = 'han comet diagrams'))

Question: what is the difference between the five star prediction device’s date 
of creation and the han comet diagrams’ date of creation?

row_id Time created map or catalog
0 1000 bc wu xian star map
1 168 bc 5 star prediction device

…
133 193 bc han comet diagrams

Ours:
Step 1: None
Step 2: None

(sqlite3.OperationalError) near "`time created`": 
syntax error

Binder-separate:
Added column: None

Execution result: 25  ✓

Execution result: 25  ✓

SQL:
SELECT ABS(
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= '5 star prediction device') - 
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= 'han comet diagrams'))

Step 3:
SELECT ABS(
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= '5 star prediction device') - 
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= 'han comet diagrams'))

Figure 6: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs. However,
the statement leads to an execution error. Our method
and Binder-separate correctly generate a pure SQL
statement to answer the question.

SQL:
SELECT DISTINCT `driver`, `nationality` FROM t1 WHERE 
`driver` = 'jarno trulli'

Binder:
SELECT 'jarno trulli' FROM t1 WHERE `driver` = 
'jarno trulli’

Question: jarno trulli was not french but what nationality?

row_id pos driver points
0 1 fernando alonso 10.0
1 2 jarno trulli 8.0

…
19 ret patrick friesacher nan

Ours:
Step 1: What is the nationality?
Step 2: Augmented table:

(sqlite3.OperationalError) no such column: nationality

Execution result: jarno trulli  ✘
Binder-separate:
Added column: None

row_id pos driver points nationality
0 1 fernando alonso 10.0 spanish
1 2 jarno trulli 8.0 italian

…
19 ret patrick friesacher nan austrian

Execution result: italian  ✓

Step 3:
SELECT `nationality` FROM t1 WHERE `driver` = 
'jarno trulli'

Figure 7: An example question in WIKITQ. Binder
generates a SQL statement without syntax error, but it
does not query LLMs for additional knowledge, result-
ing in a wrong answer. Since the original SQL state-
ment generated by Binder does not augment the table
with additional information, the question is not answer-
able using pure SQL, leading to an execution error in
Binder-separate. Our method augments the table and
correctly answers the question.

Question: by what percent did the balance of tax benefits increase between the 
beginning of 2016 and the end of 2018?

Program-of-Thought:
balance_beginning_2016 = 166.8
balance_end_2018 = 127.1
percent_increase = ((balance_end_2018 - 
balance_beginning_2016) / balance_beginning_2016) * 100
ans = percent_increase

row_id 2018 2017 2016

0 balance at beginning of 
fiscal year 148.9 166.8 106.6

1 additions related to purchase 
accounting ( 1 ) 3.4 7.7 16.5

…
8 balance at end of fiscal year 127.1 148.9 166.8

Ours:
SELECT 
    ((SELECT `2018` FROM t1 WHERE `row_id` = 8)
     - 
    (SELECT `2016` FROM t1 WHERE `row_id` = 0))
     /
    (SELECT `2016` FROM t1 WHERE `row_id` = 0) * 100
Execution result: 19.23  ✓

Execution result: -23.80  ✘

Figure 8: An example question in FINQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Identifying the error re-
quires looking into the table contents manually. Our
method correctly selects the values and answers the
question.
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Program-of-Thought:
net_deferred_tax_assets_2018 = 26062
net_deferred_tax_assets_2019 = 83615
ans = (net_deferred_tax_assets_2019 - 
net_deferred_tax_assets_2018) / 
abs(net_deferred_tax_assets_2018) * 100

Question: What was the percentage change in the Net deferred tax assets (liabilities) 
between 2018 and 2019?

row_id 2019 2018
0 deferred tax assets: none none
12 total deferred tax assets 83615 26062

…

18 net deferred tax assets 
(liabilities) 48218 -1221

Execution result: -4049.06  ✓

Execution result: 220.83  ✘
Ours:
SELECT 
    ((CAST(`2019` AS REAL) - CAST(`2018` AS REAL)) / 
CAST(`2018` AS REAL)) * 100 AS percentage_change
FROM t1 
WHERE `row_id` = 18

Figure 9: An example question in TATQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Our method correctly
selects the values and answers the question.

Program-of-Thought:
product_revenue_variance_2019_vs_2018 = 2296

Question: What was the product revenue variance in dollars for 2019 vs 2018?

row_id july 27, 2019 
(1)

2019 vs. 2018 
(variance in dollars)

0 revenue: none none
12 product 39005 2296

…
5 total 51904 2574

Execution result: 39005  ✘

Execution result: 2296  ✓
Ours:
SELECT `july 27, 2019 (1)` FROM t1 WHERE `row_id` = 1

Figure 10: An example question in TATQA that re-
quires a single table cell to answer. PoT correctly re-
trieves the value from the table. Our method mistakenly
selects the value. However, the error is easy to be spot-
ted and corrected by inspecting the SQL statement.
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Task Description:
Your task is to prepare a table for SQL query generation in order to answer a specific
question. This may require modifying the table by adding extra columns. These new
columns are created based on natural language questions , with each question applied
individually to every row in the existing columns. The goal is to transform existing
data into a format that �s suitable for SQL operations , or to incorporate additional
information into the table.

Procedure:
1. Evaluate the Table and Question: Assess if the table , in its current format , is
suitable for generating a SQL query to answer the given question.
2. Determine Additional Columns:

- If the table is already suitable for the SQL query , simply output "None"
- If the table requires modifications , identify and define the necessary changes.

Specifically , add new columns where each row �s value is derived from a natural language
question applied to the relevant columns. Use the format:

�new_column � = @(" question "; [relevant_columns ]),
where �question � is the question asked for each row to derive the new column �s

contents , and �relevant_columns � are the existing columns that provide the information
needed for the question.

Response Format:
Begin your response with "Transformation :" and include:
- Solution outline: Describe a step -by-step reasoning chain of how to answer the
question.
- Further analysis: Determine if modifications are required for each step.
- Final output: List each required additional column in the specified format , each on a
new line. If no modifications are needed , output "None".

Figure 11: System prompt used for augmentation generation (Step 1) on WIKITQ.

Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score
0 2007-9-6 rca dome l 41-10
1 2007-9-16 raymond james stadium l 31-14
2 2007-9-24 louisiana superdome l 31-14
*/

Q: what number of games were lost at home?
Transformation:
Solution outline:
1. Find the losing games.
2. Find the games at home.
3. Count the number of games that satisfy both conditions.
Further analysis:
For step 1, we need information in �result/score � column. We need to parse if it �s a win
or loss. We will add a column called �is_loss �.

For step 2, we need information in �game site � column. We need additional information on
whether it�s a home game or not. We will add a column called �is_home_game �.

Step 3 can be done with a SQL query.
Final output:
�is_loss � = @("Is it a loss ?"; [result/score])
�is_home_game � = @("Is it the home court of New Orleans Saints ?"; [game site])

Figure 12: A demonstration of the in-context example used for augmentation generation (Step 1) on WIKITQ.
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Give a database as shown below:
Table: 1963 International Gold Cup
/*
row_id driver
0 jim clark
1 richie ginther
2 graham hill
3 jack brabham
4 tony maggs
*/
Q: Answer question "What is his/her country ?" row by row.
Output:
/*
row_id driver
0 jim clark scotland
1 richie ginther united states
2 graham hill england
3 jack brabham australia
4 tony maggs south africa
*/

Figure 13: A demonstration of the in-context example used for querying additional information (Step 2) from LLMs
on WIKITQ.

Read the following table and write a SQL query to answer the question:
Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text ,
is_loss text ,
is_home_game text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score is_loss is_home_game
0 2007-9-6 rca dome l 41-10 yes no
1 2007-9-16 raymond james stadium l 31-14 yes no
2 2007-9-24 louisiana superdome l 31-14 yes yes
*/

Q: what number of games were lost at home?
SQL: To answer the question , we need following steps:
1. Find the losing games by �is_loss � column.
2. Find the games at home by �is_home_game � column.
3. Count the number of games that satisfy both conditions.
Final SQL query:
���
SELECT COUNT (*) FROM t1 WHERE �is_loss � = �yes � AND �is_home_game � = �yes �
���

Figure 14: A demonstration of the in-context example used for SQL generation (Step 3) on WIKITQ.
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Task Description:
You are tasked with analyzing a provided table and an accompanying report to answer a
specific question. This involves assessing whether the table contains all necessary
information for answering the question. If additional information is needed , you must
extract this from the report and create a supplementary table. Your primary focus is on
the analysis and information extraction process , which will facilitate in forming a SQL
query to answer the question.

Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Information for Additional Table Creation:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: �{"column_name ": [value1 , ...], ...}�

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution outline: Describe the step -by-step outline for answering the question.
- Further analysis: Determine whether each step �s information is available in the
existing table or needs to be extracted from the report.
- Final output: Extract necessary information from the report in JSON format as
described above; if no additional information is needed , output "None".

Notes:
- You may extract information with any number of columns and rows. However , all columns
should have the same number of values.
- Make the JSON self -explanatory. Use descriptive column names , add context where needed
, and include units in column names to prevent ambiguity.
- Avoid creating columns with empty or NaN values.

Figure 15: System prompt used for constructing augmenting table (Steps 1 and 2) on TATQA.
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Report:
NOTE 5 - PROPERTY AND EQUIPMENT
The Company owned equipment recorded at cost , which consisted of the following as of
December 31, 2019 and 2018:
Depreciation expense was $80 ,206 and $58 ,423 for the years ended December 31, 2019 and
2018, respectively
Tables:
row_id | filledcolumnname | 2019 | 2018
0 | computer equipment | 137763 | 94384
1 | furniture and fixtures | 187167 | 159648
2 | subtotal | 324930 | 254032
3 | less accumulated depreciation | 148916 | 104702
4 | property and equipment , net | 176014 | 149330

Question: What is the ratio of depreciation expense to accumulated depreciation of
property and equipment in 2019?
Analysis:
Solution outline:
1. Find the amount of depreciation expense and accumulated depreciation of property and
equipment in 2019.
2. Calculate the ratio.
Further analysis:
For step 1, the accumulated depreciation is mentioned in the table in row 3. But the
depreciation expense is missing from the table. So we need to extract it from the report
.
Step 2 can be done with a SQL query.
Final output:
{" depreciation_expense_2019 ": ["$80 ,206"]}

Figure 16: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
TATQA.
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Report:
NOTE 5 - PROPERTY AND EQUIPMENT The Company owned equipment recorded at cost , which
consisted of the following as of December 31, 2019 and 2018: Depreciation expense was
$80 ,206 and $58 ,423 for the years ended December 31, 2019 and 2018, respectively
Tables:
CREATE TABLE t1(

row_id int ,
filledcolumnname text ,
2019 int ,
2018 int)

/*
All rows of the table:
SELECT * FROM t1;
row_id filledcolumnname 2019 2018
0 computer equipment 137763 94384
1 furniture and fixtures 187167 159648
2 subtotal 324930 254032
3 less accumulated depreciation 148916 104702
4 property and equipment , net 176014 149330
*/

CREATE TABLE t2(
row_id int ,
depreciation_expense_2019 int)

/*
All rows of the table:
SELECT * FROM t2;
row_id depreciation_expense_2019
0 80206
*/

Q: What is the ratio of depreciation expense to accumulated depreciation of property and
equipment in 2019?

SQL: Reasoning process:
We need following steps to answer the question:
1. Get the depreciation expense in 2019 from t2.
2. Get the accumulated depreciation in 2019 from t1, which is in row 3.
3. Calculate the ratio.
Final SQL query:
���
SELECT

(SELECT �depreciation_expense_2019 � FROM t2 WHERE �row_id � = 0) /
CAST(( SELECT �2019� FROM t1 WHERE �row_id � = 3) AS REAL)
AS depreciation_ratio

FROM t1
LIMIT 1
���
Units: ""

Figure 17: A demonstration of the in-context example used for SQL generation (Step 3) on TATQA.
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Task Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Missing Information from Report:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: �{"column_name ": [value1 , ...], ...}�

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution formula: Write a formula to calculate the answer.
- Further analysis: Determine for each variable in the formula whether it is available
in the table or needs to be extracted from the report.
- Final output: For variables not in the table , extract them from report in JSON format
as described above; if all variables are in the table , output "None".

Notes:
- Make the JSON self -explanatory. Use descriptive column names and include units in
column names to prevent ambiguity.

Figure 18: System prompt used for constructing augmenting table (Steps 1 and 2) on FINQA.

Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
row_id | period | total number ofsharespurchased[a] | averageprice paidpershare | total
number of sharespurchased as part of apublicly announcedplan or program [b] | maximum
number ofshares that may yetbe purchased under the planor program [b]
0 | oct . 1 through oct . 31 | 3087549 | 107.59 | 3075000 | 92618000
1 | nov . 1 through nov . 30 | 1877330 | 119.84 | 1875000 | 90743000
2 | dec . 1 through dec . 31 | 2787108 | 116.54 | 2786400 | 87956600
3 | total | 7751987 | 113.77 | 7736400 | n/a

Question: what percent of the share repurchases were in the fourth quarter?
Analysis:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3 of the table
share_repurchase_whole_year is not in the table , so we need to extract it from the
report
Final output:
{" share_repurchase_whole_year ": [33035204]}

Figure 19: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
FINQA.
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Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
CREATE TABLE t1(

row_id int ,
period text ,
total number ofsharespurchased[a] int ,
averageprice paidpershare real ,
total number of sharespurchased as part of apublicly announcedplan or program [b]
int ,
maximum number ofshares that may yetbe purchased under the planor program [b] text)

/*
All rows of the table:
SELECT * FROM t1;
row_id period total number ofsharespurchased[a] averageprice paidpershare
total number of sharespurchased as part of apublicly announcedplan or program [b]
maximum number ofshares that may yetbe purchased under the planor program [b]
0 oct . 1 through oct . 31 3087549 107.59 3075000 92618000
1 nov . 1 through nov . 30 1877330 119.84 1875000 90743000
2 dec . 1 through dec . 31 2787108 116.54 2786400 87956600
3 total 7751987 113.77 7736400 n/a
*/

CREATE TABLE t2(
row_id int ,
share_repurchase_whole_year int)

/*
All rows of the table:
SELECT * FROM t2;
row_id share_repurchase_whole_year
0 33035204
*/

Q: what percent of the share repurchases were in the fourth quarter?
SQL:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3, column �total number ofsharespurchased[a]�
of t1
share_repurchase_whole_year is in row 0, column �share_repurchase_whole_year � of t2
Final SQL query:
���
SELECT

CAST(( SELECT �total number ofsharespurchased[a]� FROM t1 WHERE �row_id � = 3) AS REAL
) /
(SELECT �share_repurchase_whole_year � FROM t2 WHERE �row_id � = 0) * 100

���

Figure 20: A demonstration of the in-context example used for SQL generation (Step 3) on FINQA.
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