
Published as a conference paper at ICLR 2021

ACTIVE CONTRASTIVE LEARNING OF
AUDIO-VISUAL VIDEO REPRESENTATIONS

Shuang Ma∗
Microsoft
Redmond, WA, USA

Zhaoyang Zeng∗
Sun Yat-sen University
Guangzhou, China

Daniel McDuff
Microsoft Research
Redmond, WA, USA

Yale Song
Microsoft Research
Redmond, WA, USA

ABSTRACT

Contrastive learning has been shown to produce generalizable representations of
audio and visual data by maximizing the lower bound on the mutual information
(MI) between different views of an instance. However, obtaining a tight lower
bound requires a sample size exponential in MI and thus a large set of negative
samples. We can incorporate more samples by building a large queue-based dic-
tionary, but there are theoretical limits to performance improvements even with a
large number of negative samples. We hypothesize that random negative sampling
leads to a highly redundant dictionary that results in suboptimal representations
for downstream tasks. In this paper, we propose an active contrastive learning
approach that builds an actively sampled dictionary with diverse and informative
items, which improves the quality of negative samples and improves performances
on tasks where there is high mutual information in the data, e.g., video classifica-
tion. Our model achieves state-of-the-art performance on challenging audio and
visual downstream benchmarks including UCF101, HMDB51 and ESC50.1

1 INTRODUCTION

Contrastive learning of audio and visual representations has delivered impressive results on various
downstream scenarios (Oord et al., 2018; Hénaff et al., 2019; Schneider et al., 2019; Chen et al.,
2020). This self-supervised training process can be understood as building a dynamic dictionary per
mini-batch, where “keys” are typically randomly sampled from the data. The encoders are trained to
perform dictionary look-up: an encoded “query” should be similar to the value of its matching key
and dissimilar to others. This training objective maximizes a lower bound of mutual information
(MI) between representations and the data (Hjelm et al., 2018; Arora et al., 2019). However, such
lower bounds are tight only for sample sizes exponential in the MI (McAllester & Stratos, 2020),
suggesting the importance of building a large and consistent dictionary across mini-batches.

Recently, He et al. (2020) designed Momentum Contrast (MoCo) that builds a queue-based dic-
tionary with momentum updates. It achieves a large and consistent dictionary by decoupling the
dictionary size from the GPU/TPU memory capacity. However, Arora et al. (2019) showed that
simply increasing the dictionary size beyond a threshold does not improve (and sometimes can even
harm) the performance on downstream tasks. Furthermore, we find that MoCo can suffer when there
is high redundancy in the data, because only relevant – and thus limited – parts of the dictionary are
updated in each iteration, ultimately leading to a dictionary of redundant items (we show this empir-
ically in Fig. 3). We argue that random negative sampling is much responsible for this: a randomly
constructed dictionary will contain more “biased keys” (similar keys that belong to the same class)
and “ineffective keys” (keys that can be easily discriminated by the current model) than a carefully
constructed one. Furthermore, this issue can get aggravated when the dictionary size is large.

In this paper, we focus on learning audio-visual representations of video data by leveraging the
natural correspondence between the two modalities, which serves as a useful self-supervisory signal
(Owens & Efros, 2018; Owens et al., 2016; Alwassel et al., 2019). Our starting point is contrastive
learning (Gutmann & Hyvärinen, 2010; Oord et al., 2018) with momentum updates (He et al., 2020).

∗Equal contribution
1Code is available at: https://github.com/yunyikristy/CM-ACC
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However, as we discussed above, there are both practical challenges and theoretical limits to the
dictionary size. This issue is common to all natural data but is especially severe in video; successive
frames contain highly redundant information, and from the information-theoretic perspective, audio-
visual channels of video data contain higher MI than images because the higher dimensionality –
i.e., temporal and multimodal – reduces the uncertainty between successive video clips. Therefore,
a dictionary of randomly sampled video clips would contain highly redundant information, causing
the contrastive learning to be ineffective. Therefore, we propose an actively sampled dictionary to
sample informative and diverse set of negative instances. Our approach is inspired by active learning
(Settles, 2009) that aims to identify and label only the maximally informative samples, so that one
can train a high-performing classifier with minimal labeling effort. We adapt this idea to construct a
non-redundant dictionary with informative negative samples.

Our approach, Cross-Modal Active Contrastive Coding (CM-ACC), learns discriminative audio-
visual representations and achieves substantially better results on video data with a high amount
of redundancy (and thus high MI). We show that our actively sampled dictionary contains negative
samples from a wider variety of semantic categories than a randomly sampled dictionary. As a re-
sult, our approach can benefit from large dictionaries even when randomly sampled dictionaries of
the same size start to have a deleterious effect on model performance. When pretrained on AudioSet
(Gemmeke et al., 2017), our approach achieves new state-of-the-art classification performance on
UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et al., 2011), and ESC50 (Piczak, 2015b).

2 BACKGROUND

Contrastive learning optimizes an objective that encourages similar samples to have similar repre-
sentations than with dissimilar ones (called negative samples) (Oord et al., 2018):

min
θf ,θh

ExvpX

[
−log

(
ef(x;θf )

ᵀh(x+;θh)

ef(x;θf )
ᵀh(x+;θh) + ef(x;θf )

ᵀh(x−;θh)

)]
(1)

The samples x+ and x− are drawn from the same distribution as x ∈ X , and are assumed to be sim-
ilar and dissimilar to x, respectively. The objective encourages f(·) and h(·) to learn representations
of x such that (x, x+) have a higher similarity than all the other pairs of (x, x−).

We can interpret it as a dynamic dictionary look-up process: Given a “query” x, it finds the correct
“key” x+ among the other irrelevant keys x− in a dictionary. Denoting the query by q = f(x), the
correct key by k+ = h(x+), and the dictionary of K negative samples by {ki = h(xi)}, i ∈ [1,K],

we can express equation 1 in a softmax form, minθq,θk ExvpX
[
−log eq·k

+/τ∑K
i=0 e

q·ki/τ

]
, where θq and θk

are parameters of the query and key encoders, respectively, and τ is a temperature term that controls
the shape of the probability distribution computed by the softmax function.

Momentum Contrast (MoCo) decouples the dictionary size from the mini-batch size by imple-
menting a queue-based dictionary, i.e., current mini-batch samples are enqueued while the oldest
are dequeued (He et al., 2020). It then applies momentum updates to parameters of a key encoder
θk with respect to parameters of a query encoder, θk ← mθk + (1 −m)θq , where m ∈ [0, 1) is a
momentum coefficient. Only the parameters θq are updated by back-propagation, while the parame-
ters θk are defined as a moving average of θq with exponential smoothing. These two modifications
allow MoCo to build a large and slowly-changing (and thus consistent) dictionary.

Theoretical Limitations of Contrastive Learning. Recent work provides theoretical analysis of
the shortcomings of contrastive learning. McAllester & Stratos (2020) show that lower bounds to the
MI are only tight for sample size exponential in the MI, suggesting that a large amount of data are
required to achieve a tighter lower bound on MI. He et al. (2020) empirically showed that increasing
negative samples has shown to improve the learned presentations. However, Arora et al. (2019)
showed that such a phenomenon does not always hold: Excessive negative samples can sometimes
hurt performance. Also, when the number of negative samples is large, the chance of sampling
redundant instances increases, limiting the effectiveness of contrastive learning. One of our main
contributions is to address this issue with active sampling of negative instances, which reduces
redundancy and improves diversity, leading to improved performance on various downstream tasks.
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(a) Cross-Modal Active Contrastive Coding (CM-ACC) (b) Active Sampling

Figure 1: (a) We extend contrastive learning to the cross-modal scenario and adapt momentum
contrast (MoCo) (He et al., 2020) to the dictionary update. Different from all existing work, we
propose an active learning idea to the negative sampling. (b) To sample negatives, we use the
gradient space of our key encoders to estimate the uncertainty of each candidate in audio/visual
pools, and take a diverse set of negatives in that space using the k-MEANS++

INIT algorithm.

3 APPROACH

3.1 CROSS-MODAL CONTRASTIVE REPRESENTATION LEARNING

Our learning objective encourages the representations of audio and visual clips to be similar if they
come from the same temporal block of a video. LetA = {a0, · · · , aN−1} and V = {v0, · · · , vN−1}
be collections of audio and visual clips, where each pair (ai, vi) is from the same block of a video.
We define query encoders fa and fv and key encoders ha and hv for audio and visual clips, respec-
tively, with learnable parameters {θaq , θvq} for the query encoders and {θak , θvk} for the key encoders.
These encoders compute representations of audio and visual clips as queries and keys,

qv = fv(v
query), kv = hv(v

key), qa = fa(aquery), ka = ha(akey) (2)

We train our encoders to perform cross-modal dictionary look-up, e.g., given a query video clip
vquery, we find the corresponding audio clip akey from a dictionary Da. Adapting MoCo (He et al.,
2020) to our cross-modal setup, we implement a queue-based dictionaryDa that stores keys of audio
clips {kai }Ki=1, where K is the dictionary size. We compute the contrastive loss and backpropagate
the gradients only to the visual query encoder fv and update the parameters θvq . For the audio
encoder ha, we apply the momentum update (He et al., 2020),

θak ← mθak + (1−m)θaq (3)

The parameter θaq is not updated in this contrastive coding step; we update it during the audio-to-
visual step (similar as above with the opposite modalities). Here we explain the visual-to-audio step
only; we perform bi-directional contrastive coding and train the whole model end-to-end.

3.2 ACTIVE SAMPLING OF NEGATIVE INSTANCES: UNCERTAINTY AND DIVERSITY

The quality of negative samples is crucial in contrastive learning. Existing work typically adopts
random negative sampling. However, we want a diverse set of negative samples so that comparisons
between positive and negative pairs are the most informative they can be. Motivated by active learn-
ing (Settles, 2009), we propose a gradient-based active sampling approach to improve the quality
of negative samples. In active learning, the learner chooses samples that seem maximally informa-
tive and queries an oracle for labels to obtain an optimal solution with a minimal labeling budget.
Adapting this to our setting, we can empower the learner to choose the maximally informative neg-
ative samples to construct a dictionary; the main question is how to measure the informativeness of
samples without labels.

One way to measure informativeness is through the lens of uncertainty: If a model is highly uncertain
about its prediction of a sample, we can ensure the maximum update to the model by including the
sample in a mini-batch (conversely, if the uncertainly is low for all samples in a mini-batch, the
model update will be small). Ash et al. (2020) showed that gradients of a loss function with respect
to the model’s most confident predictions can approximate the uncertainty of samples, demonstrating
its effectiveness in active learning. They provide a theoretical justification by showing that gradient
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norms of the last layer of a neural network with respect to pseudo-labels provides a lower bound
on gradient norms induced by any other labels. In this work, we use gradients of the last layer to
measure the uncertainty and encourage our model to include samples that have the highest gradient
magnitudes to constitute a dictionary.

While the uncertainty of each individual samples is important, the diversity of samples is also a
critical measure of informativeness. Intuitively, it is possible that a model is highly uncertain about
samples from particular semantic categories, but constructing a mini-batch of samples from just
those categories can severely bias gradients and ultimately lead to a bad local minima. There are
several principled approaches to ensure diversity, e.g., submodular optimization (Fujishige, 2005)
and Determinantal Point Processes (DPP) (Macchi, 1975; Kulesza & Taskar, 2011). Unfortunately,
those methods are typically inefficient because of the combinatorial search space (Nemhauser et al.,
1978; Gilks et al., 1995). In this work, instead of using the expensive solutions, we opt to the
fast solution of Ash et al. (2020) and use the initialization scheme of the k-MEANS++ seeding
algorithm (Arthur & Vassilvitskii, 2007) to sample a diverse set of negative samples.

3.3 CROSS-MODAL ACTIVE CONTRASTIVE CODING

Algorithm 1 describes our proposed cross-modal active contrastive coding (we provide a simplified
version here; we include a more detailed version and another version without active sampling in
Appendix). At a high-level, we initialize the dictionaries Dv and Da with K randomly drawn sam-
ples from V and A, respectively (lines 3-4). For each epoch, we construct “negative candidate
pools” Uv and Ua with N random samples from V and A, respectively (lines 6-7). For each
iteration within an epoch, we actively select the most informative negative samples Sv and Sa from
the pools Uv and Ua, respectively, and enqueue them into the dictionaries Dv and Da, respectively
(lines 9-21). We then perform cross-modal contrastive coding, update the parameters of query
encoders θvq and θaq via backpropagation, and apply momentum updates to the parameters of key
encoders θvk and θak (lines 22-27).

Algorithm 1 Cross-Modal Active Contrastive Coding
1: Require: Audio-visual clips A, V ; encoders fv , fa, hv , ha; dictionary size K; pool size N ; batch size M
2: Initialize parameters, θvq , θvk, θ

a
q , θ

a
k v Uniform(0, 1)

3: Draw random dictionary, Dv ← {v1, · · · , vK} v V , Da ← {a1, · · · , aK} v A
4: Encode dictionary samples, kvi ← hv(vi), ∀vi ∈ Dv , kai ← ha(ai), ∀ai ∈ Da
5: for epoch = 1 to #epochs: do
6: Draw random pool, Uv ← {v1, · · · , vN} v V , Ua ← {a1, · · · , aN} v A
7: Encode pool samples, kvn ← hv(vn), ∀vn ∈ Uv , kan ← ha(an), ∀an ∈ Ua
8: for t = 1 to #mini-batches: do
9: Draw mini-batch, Bv ← {v1, · · · , vM} v V , Ba ← {a1, · · · , aM} v A

10: . Active sampling of negative video keys for Dv
11: Encode mini-batch samples, qai ← fa(ai), ∀ai ∈ Ba
12: Compute pseudo-labels, ỹvn ← arg max p(ŷvn|vn, Ba), ∀vn ∈ Uv\Dv
13: Compute gradients gvn using the pseudo-labels ỹvn, ∀n ∈ [1, N ]
14: Obtain Sv ← k-MEANS++

INIT ({gvn : vn ∈ Uv\Dv},#seeds = M)
15: Update Dv ← ENQUEUE(DEQUEUE(Dv), Sv)
16: . Active sampling of negative audio keys for Da
17: Encode mini-batch samples, qvi ← fv(vi), ∀vi ∈ Bv
18: Compute pseudo-label, ỹan ← arg max p(ŷan|an, Bv), ∀an ∈ Ua\Da
19: Compute gradients gan using the pseudo-labels ỹan, ∀n ∈ [1, N ]
20: Obtain Sa ← k-MEANS++

INIT ({gan : an ∈ Ua\Da},#seeds = M)
21: Update Da ← ENQUEUE(DEQUEUE(Da), Sa)
22: . Cross-modal contrastive predictive coding
23: Encode mini-batch samples, kvi ← hv(vi), ∀vi ∈ Bv , kai ← ha(ai), ∀ai ∈ Ba
24: Compute p(yvi |vi, ai, Da) and p(yai |ai, vi, Dv), ∀i ∈ [1,M ]
25: . Update model parameters
26: Update parameters of query encoders θvq and θaq with backpropagation
27: Momentum update parameters of key encoders θvk and θak
28: end for
29: end for
30: return Optimal solution θvq , θvk, θ

a
q , θ

a
k
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Active sampling. To measure uncertainty, we define a pseudo-label space induced by the queries
from the other modality, and take the gradient of the last layer of a query encoder with respect to the
most confident prediction, which we call the pseudo-label ỹ. For instance, in the case of sampling
negative video keys from the pool Uv (lines 10-15), we compute the pseudo-posterior of a
video key vn ∈ Uv\Da,

p(ŷvn|vn, Ba) =
exp(kvn · qaj )∑M
i=1 exp(kvn · qai )

,∀j ∈ [1,M ] (4)

whereBa is the current mini-batch of audio queries and defines the pseudo-label space. Note that we
consider only the samples in Uv\Dv to rule out samples already inDv . Intuitively, this computes the
posterior by the dot-product similarity between vn and all qai ∈ Ba, producing an M -dimensional
probability distribution. We then take the most confident class category as the pseudo-label ỹvn
(line 12) and compute the gradient according to the cross-entropy loss

gvn =
∂

∂θlast
LCE (p(ŷvn|vn, Ba), ỹvn) |θ=θaq (5)

where θlast is the parameters of the last layer of θ (in this case, θaq of the audio query encoder ha).
Intuitively, the gradient gvn measures the amount of change – and thus, the uncertainty – vn will
bring to the audio query encoder ha.

One can interpret this as a form of online hard negative mining: The gradient is measured with
respect to the most probable pseudo-label ỹvn induced by the corresponding audio query qaj . When
we compute the contrastive loss, the same audio query will be maximally confused by vn with its
positive key v+ per dot-product similarity, and vn in this case can serve as a hard negative sample.

Next, we obtain the most diverse and highly uncertain subset Sv ⊆ Uv\Dv using the initialization
scheme of k-MEANS++ (Arthur & Vassilvitskii, 2007) over the gradient embeddings gv (line 14).
The k-MEANS++ initialization scheme finds the seed cluster centroids by iteratively sampling points
with a probability in proportion to their squared distances from the nearest centroid that has already
been chosen (we provide the exact algorithm in the Appendix). Intuitively, this returns a diverse set
of instances sampled in a greedy manner, each of which has a high degree of uncertainty measured
as its squared distances from other instances that have already been chosen. Finally, we enqueue
Sv into Dv and dequeue the oldest batch from Dv (line 15). We repeat this process to sample
negative audio keys (lines 16-21); this concludes the active sampling process for Dv and Da.

Cross-modal contrastive coding. Given the updated Dv and Da, we perform cross-modal con-
trastive coding. For visual-to-audio coding, we compute the posteriors of all video samples vi ∈ Bv
with respect to the negative samples in the audio dictionary Da,

p(yvi |vi, ai, Da) =
exp(qvi · kai /τ)∑K
j=0 exp(qvi · kaj /τ)

,∀i ∈ [1,M ] (6)

where the posterior is defined over a cross-modal space with one positive and K negative pairs
(line 24). Next, we backpropagate gradients only to the query encoders fv and fa (line 26),

θvq ← θvq − γ∇θLCE(p(yv| · ), yvgt)|θ=θvq , θ
a
q ← θaq − γ∇θLCE(p(ya| · ), yagt)|θ=θaq (7)

while applying momentum update to the parameters of the key encoders hv and ha (line 27),

θvk ← mθvk + (1−m)θvq , θ
a
k ← mθak + (1−m)θaq (8)

The momentum update allows the dictionaries to change their states slowly, thus making them con-
sistent across iterations. However, our cross-modal formulation can cause inconsistency in dictio-
nary states because the gradient used to update query encoders are not directly used to update the
corresponding key encoders. To improve stability, we let the gradients flow in a cross-modal fash-
ion, updating part of fv and ha using the same gradient signal from the contrastive loss. We do this
by adding one FC layer on top of all encoders and applying momentum update to their parameters.
For example, we apply momentum update to the parameters of the FC layer on top of ha using the
parameters of the FC layer from fv . We omit this in Alg. 1 for clarity but show its importance in our
ablation experiments (XMoCo (w/o fcl) in Table 1).
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# Approach Pretrain Obj. UCF101 HMDB51 ESC50 Gains
1© Scratch - 63.3 29.7 54.3
2© Supervised Supervised 86.9 53.1 78.3
3© SMoCo Uni. rand. 70.7 35.2 69.0
4© XMoCo (w/o fcl) Cross rand. 72.9 (↑2.2) 37.5 (↑2.3) 70.9 (↑1.9) ∆( 4©− 3©)
5© XMoCo Cross rand. 74.1 (↑1.2) 38.7 (↑1.2) 73.0 (↑2.1) ∆( 5©− 4©)
6© CM-ACC (w/o fcl) Cross active 75.8 (↓1.4) 39.1 (↓1.5) 77.3 (↓1.9) ∆( 6©− 7©)
7© CM-ACC Cross active 77.2 (↑3.1) 40.6 (↑1.9) 79.2 (↑6.2) ∆( 7©− 5©)

Table 1: Top-1 accuracy of unimodal vs. cross-modal pretraining on downstream tasks.

4 RELATED WORK

Self-supervised learning has been studied in vision, language, and audio domains. In the image
domain, one popular idea is learning representations by maximizing the MI between different views
of the same image (Belghazi et al., 2018; Hjelm et al., 2018; Tian et al., 2019; He et al., 2020). In
the video domain, several approaches have exploited the spatio-temporal structure of video data to
design efficient pretext tasks, e.g. by adopting ordering (Sermanet et al., 2017; Wang et al., 2019b),
temporal consistency (Dwibedi et al., 2019), and spatio-temporal statistics (Xu et al., 2019; Wang
et al., 2019a; Han et al., 2019). In the language domain, the transformer-based approaches trained
with the masked language model (MLM) objective has been the most successful (Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019). Riding on the success of BERT (Devlin et al., 2019), several
concurrent approaches generalize it to learn visual-linguistic representations (Lu et al., 2019; Li
et al., 2020; Su et al., 2019; Tan & Bansal, 2019; Li et al., 2019). CBT (Sun et al., 2019a) and
VideoBERT (Sun et al., 2019b) made efforts on adapting BERT-style pretraining for video.

Besides vision and language signals, several approaches learn audio-visual representations in a self-
supervised manner (Owens et al., 2016; Arandjelovic & Zisserman, 2017; Owens & Efros, 2018;
Owens et al., 2016). Recently, audio-visual learning has been applied to enable interesting appli-
cations beyond recognition tasks, such as sound source localization/separation (Zhao et al., 2018;
Arandjelovic & Zisserman, 2018; Gao et al., 2018; Gao & Grauman, 2019a;b; Ephrat et al., 2018;
Gan et al., 2020; Zhao et al., 2019; Yang et al., 2020) and visual-to-sound generation (Hao et al.,
2018; Zhou et al., 2018). The work of Owens & Efros (2018), Korbar et al. (2018), and Alwassel
et al. (2019) are similar in spirit to our own, but our technical approach differs substantially in the
use of active sampling and contrastive learning.

Hard negative mining is used in a variety of tasks, such as detection (Li et al., 2020), tracking
(Nam & Han, 2016), and retrieval (Faghri et al., 2017; Pang et al., 2019), to improve the quality of
prediction models by incorporating negative examples that are more difficult than randomly chosen
ones. Several recent work have focused on finding informative negative samples for contrastive
learning. Wu et al. (2020) show that the choice of negative samples is critical in contrastive learning
and propose variational extension to InfoNCE with modified strategies for negative sampling. Iscen
et al. (2018) propose hard examples mining for effective finetuning of pretrained networks. Cao et al.
(2020) utilize negative sampling to reduce the computational cost. In the context of audio-visual self-
supervised learning, Korbar et al. (2018) sample negatives under the assumption that the smaller
the time gap is between audio and visual clips of the same video, the harder it is to differentiate
them (and thus they are considered hard negatives). Our proposed approach does not make such
an assumption and estimates the hardness of negatives by directly analyzing the magnitude of the
gradients with respect to the contrastive learning objective.

5 EXPERIMENTS

Experimental Setting. We use 3D-ResNet18 (Hara et al., 2018) as our visual encoders (fv and hv)
in most of the experiments. We also use R(2+1)D-18 (Tran et al., 2018) to enable a fair comparison
with previous work (see Table 4). For audio encoders (fa and ha), we adapt ResNet-18 (He et al.,
2016) to audio signals by replacing 2D convolution kernels with 1D kernels. We employ Batch
Normalization (BN) (Ioffe & Szegedy, 2015) with the shuffling BN (He et al., 2020) in all our
encoders. All models are trained end-to-end with the ADAM optimizer (Kingma & Ba, 2014) with
an initial learning rate γ = 10−3 after a warm-up period of 500 iterations. We use the mini-batch
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Batch Size = 32 Batch Size = 64 Batch Size = 128

-- Random Sampling
-- Active Sampling (Feat Embed)
-- Active Sampling (Grad Embed)

Figure 2: Effects of random sampling and active sampling on the number of categories.

size M = 128, dictionary size K = 30 × 128, pool size N = 300 × 128, momentum m = 0.999,
and temperature τ = 0.7. We used 40 NVIDIA Tesla P100 GPUs for our experiments.

We pretrain our model on Kinetics-700 (Carreira et al., 2019) and AudioSet (Gemmeke et al., 2017)
when comparing with state-of-the-art approaches. For Kinetics-700, we use 240K randomly se-
lected videos that contain the audio channel. On AudioSet, we use both a subset of 240K randomly
selected videos and the 1.8M full set. For our ablation study, we use Kinetics-Sound (Arandjelovic
& Zisserman, 2017) that contains 22K videos from 34 classes that are potentially manifested both
visually and audibly, and thus provides a relatively clean testbed for ablation purposes. As for down-
stream tasks, we evaluate our models on action recognition using UCF101 (Soomro et al., 2012) and
HMDB51 (Kuehne et al., 2011), and on sound classification using ESC50 (Piczak, 2015b).

Unimodal vs. cross-modal pretraining. To validate the benefits of cross-modal pretraining, we
compare it to its unimodal counterparts. We pretrain our model on Kinetics-Sound with a randomly
sampled dictionary (similar to MoCo (He et al., 2020)); we call this XMoCo. For the unimodal case,
we pretrain two models on visual clips and audio clips, respectively; we call these SMoCo. We also
compare ours with a model trained from scratch (Scratch), and a model pretrained on Kinetics-
Sound in a fully-supervised manner (Supervised). Lastly, we include XMoCo (w/o fcl) that
is identical to XMoCo except that we do not include the additional FC layers on top of the encoders.
All these models are finetuned end-to-end on each downstream task using the same protocol.

Table 1 shows the top-1 accuracy of each downstream task. We observe that all the self-supervised
models outperform Scratch on all downstream tasks, suggesting the effectiveness of pretraining
with contrastive learning. We also see that our cross-modal objective outperforms the unimodal
objective (∆( 4©- 3©)). The comparisons between XMoCo vs. XMoCo (w/o fcl) and CM-ACC
vs. CM-ACC (w/o fcl) show the effectiveness of the additional FC layer on top of the encoders
(∆( 5©- 4©), ∆( 6©- 7©)). When adding the FC layer, the performance further improves on all three
benchmarks. This shows the importance of letting the gradients flow in a cross-modal fashion.
Finally, the performance gap with the full-supervised case shows there is still room for improvement
in the self-supervised approaches.

Next, we compare the number of unique categories the sampled instances originally belong to, using
the ground-truth labels provided in the dataset. Our logic is that the more categories the samples
come from, the more diverse and less redundant the samples are. We train these on UCF-101 over
300 iterations with different mini-batch sizes, M ∈ {32, 64, 128}. Fig. 2 shows that active sampling
selects more categories than random sampling across all three mini-batch sizes. AtM = 128, active
sampling (with gradient embedding) covers 60-70% of categories on UCF101, which is substantially
more diverse than random sampling (30-40%). (A plot showing the probability of sampling unique
negatives (instances from different categories) is shown in Appendix Figure 4.) While both sampling
schemes perform similarly in early iterations, active sampling starts choosing more diverse instances
as the training progresses; this is because the gradient embedding becomes more discriminative with
respect to the uncertainty.

Random vs. active sampling. To validate the benefit of active sampling over random sampling, we
compare models pretrained with different sampling approaches on downstream tasks. As shown in
Table 1, our CM-ACC outperforms the XMoCo, which uses random sampling, by large margins, i.e.
3.1%, 1.9%, and 6.2% on UCF101, HMDB51, and ESC50, respectively (∆( 7©- 5©)).
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Pretrain Objective Embedding Space UCF101 HMDB51 ESC50
Cross-modal active Feature Embedding 74.5 38.2 75.1
Cross-modal active Gradient Embedding 77.2 (↑2.7) 40.6 (↑2.4) 79.2 (↑4.1)

Table 2: Top-1 accuracy on downstream tasks: feature- vs. gradient-based embedding.

UCF101 HMDB51
M=32 M=64 M=128 M=32 M=64 M=128

Random 61.9 63.1 66.9 33.1 33.8 35.8
OHEM 50.2 (-11.7) 60.8 (-2.3) 65.7 (-1.2) 26.8 (-6.3) 30.1 (-3.7) 33.2 (-2.6)
Active 78.0 (+16.1) 78.9 (+15.8) 79.2 (+12.3) 41.2 (+8.1) 42.3 (+8.5) 42.6 (+6.8)

Table 3: Online hard example mining (OHEM) (Shrivastava et al., 2016) vs. our active sampling

Feature vs. gradient embedding. We compare two ways to do active sampling: using gradient
embeddings (Eqn. 5) and feature embeddings (the outputs from ha and hv) when selecting the
seed centroids with k-MEANS++. Fig. 2 shows that gradient embeddings produce a more diverse
set of negative samples than feature embeddings; this is consistent across all three batch sizes.
Table 2 shows that this diversity helps achieve better downstream performances across all three
benchmarks. Fig. 5 (in Appendix) provides further insights, showing that the samples with high
gradient magnitudes tend to be more informative negative samples.

From a theoretical aspect, the gradient norm induced by each candidate with computed pseudo labels
estimates the candidates influence on the current model. The gradient embeddings convey informa-
tion both about the model’s uncertainty and potential update direction upon receiving a candidate.
However, such messages are missing from the feature embeddings. This shows the importance of
considering both uncertainty and diversity when selecting random samples: the k-MEANS++ ensures
the diversity in the sample set, but without the uncertainty measure we lose important discriminative
information from the candidates.

Online hard example mining vs. active sampling. We compare our approach to online hard
example mining (OHEM) (Shrivastava et al., 2016), which constructs negative samples by explicitly
choosing the ones that incur high loss values. Specifically, we compute the pseudo-labels for all keys
(negative sample candidates) with a given mini-batch of queries. We then compute the classification
loss based on these pseudo labels and select the top M keys with the highest loss values. We
pretrain the models on Kinetics-700 (Kay et al., 2017) and report the top-1 accuracy on UCF101
(Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011). We use the same architecture and hyper-
parameters; the only difference is the sampling approach.

Table 3 shows OHEM is generally less effective than both random sampling and our active sampling.
Intuitively, OHEM promotes the dictionary to contain the most challenging keys for a given mini-
batch of queries. Unfortunately, this causes OHEM to produce a redundant and biased dictionary,
e.g., negative samples coming from a particular semantic category. Our results show that, when M
(mini-batch size) is small, the performance of OHEM is even worse than random sampling, although
the gap between OHEM and random sampling decreases as M increases. We believe this is because
OHEM has a higher chance of selecting similar negative instances. When M is large, this issue
can be mitigated to some extent, but the performance still falls behind ours by a large margin. This
suggests the importance of having a diverse set of negative samples, which is unique in our approach.

Comparisons with SOTA. Table 4 shows our approach outperforms various self-supervised ap-
proaches on action recognition. For fair comparisons, we group the SOTA approaches by different
pretraining dataset sizes, i.e. small-scale (UCF/HMDB), medium-scale (Kinetics), and large-scale
(AudioSet). Our gains are calculated according to this grouping. As we can see, our approach
outperforms SOTA approaches across all groups. Compared with GDT (Patrick et al., 2020), the
current top performing model on cross-modal self-supervised learning, our model outperforms it by
1.6 % on UCF101 and 1.1 % on HMDB51. Table 5 shows audio classification transfer results. For
Kinetics and AudioSet (240K), our model outperforms the current state-of-the-art, AVID (79.1%)
by 0.1% and 1.8% on Kinetics and AudioSet 240K, respectively. Our approach also outperforms
AVID (89.2%) pretrained on AudioSet (1.8M) by 1.6%.
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Method Architecture Pretrained on (size) UCF101 HMDB51
Scratch 3D-ResNet18 - 46.5 17.1
Supervised (Patrick et al., 2020) R(2+1)D-18 Kinetics400 (N/A) 95.0 70.4
ShufflAL (Misra et al., 2016) CaffeNet UCF/HMDB 50.2 18.1
DRL (Buchler et al., 2018) CaffeNet UCF/HMDB 58.6 25.0
OPN (Lee et al., 2017) VGG UCF/HMDB 59.8 23.8
DPC (Han et al., 2019) 3D-ResNet18 UCF101 60.6 -
MotionPred (Wang et al., 2019a) C3D Kinetics400 (N/A) 61.2 33.4
RotNet3D (Jing & Tian, 2018) 3D-ResNet18 Kinetics400 (N/A) 62.9 33.7
ST-Puzzle (Kim et al., 2019) 3D-ResNet18 Kinetics400 (N/A) 65.8 33.7
ClipOrder (Xu et al., 2019) R(2+1)D-18 Kinetics400 (N/A) 72.4 30.9
CBT (Sun et al., 2019a) S3D & BERT Kinetics600 (500K) 79.5 44.6
DPC (Han et al., 2019) 3D-ResNet34 Kinetics400 (306K) 75.7 35.7
SeLaVi (Asano et al., 2020) R(2+1)D-18 Kinetics400 (240K) 83.1 47.1
AVTS (Korbar et al., 2018) MC3 Kinetics400 (240K) 85.8 56.9
XDC (Alwassel et al., 2019) R(2+1)D-18 Kinetics400 (240K) 84.2 47.1
AVID (Morgado et al., 2020) R(2+1)D-18 Kinetics400 (240K) 87.5 60.8
GDT (Patrick et al., 2020) R(2+1)D-18 Kinetics400 (N/A) 89.3 60.0
AVTS (Korbar et al., 2018) MC3 AudioSet (240K) 86.4 –
AVTS (Korbar et al., 2018) MC3 AudioSet (1.8M) 89.0 61.6
XDC (Alwassel et al., 2019) R(2+1)D-18 AudioSet (1.8M) 91.2 61.0
AVID (Morgado et al., 2020) R(2+1)D-18 AudioSet (1.8M) 91.5 64.7
GDT (Patrick et al., 2020) R(2+1)D-18 AudioSet (1.8M) 92.5 66.1

Ours

3D-ResNet18 UCF101 69.1 (+8.5) 33.3 (+8.3)
3D-ResNet18 Kine.-Sound (14K) 77.2 (+16.6) 40.6 (+15.6)
3D-ResNet18 Kinetics700 (240K) 90.2 (+0.9) 61.8 (+1.0)
3D-ResNet18 AudioSet (240K) 90.7 (+1.4) 62.3 (+1.5)
3D-ResNet18 AudioSet (1.8M) 94.1 (+1.6) 66.8 (+0.7)
R(2+1)D-18 AudioSet (1.8M) 93.5 (+1.0) 67.2 (+1.1)

Table 4: Comparison of SOTA approaches on action recognition. We specify pretraining dataset and
the number of samples used if they are reported in the original papers (N/A: not available).

Method Architecture Pretrained on (size) ESC50
Random Forest (Piczak, 2015b) MLP ESC50 44.3
Piczak ConvNet (Piczak, 2015a) ConvNet-4 ESC50 64.5
ConvRBM (Sailor et al., 2017) ConvNet-4 ESC50 86.5
SoundNet (Aytar et al., 2016) ConvNet-8 SoundNet (2M+) 74.2
L3-Net (Arandjelovic & Zisserman, 2017) ConvNet-8 SoundNet (500K) 79.3
AVTS (Korbar et al., 2018) VGG-8 Kinetics (240K) 76.7
XDC (Alwassel et al., 2019) ResNet-18 Kinetics (240K) 78.0
AVID (Morgado et al., 2020) ConvNet-9 Kinetics (240K) 79.1
AVTS (Korbar et al., 2018) VGG-8 AudioSet (1.8M) 80.6
XDC (Alwassel et al., 2019) ResNet-18 AudioSet (1.8M) 84.8
AVID (Morgado et al., 2020) ConvNet-9 AudioSet (1.8M) 89.2
GDT (Patrick et al., 2020) ResNet-9 AudioSet (1.8M) 88.5

Ours ResNet-18
Kinetics700 (240K) 80.2 (+1.1)
AudioSet (240K) 80.9 (+1.8)
AudioSet (1.8M) 90.8 (+1.6)

Table 5: Comparision of SOTA approaches on audio event classification.

6 CONCLUSION

We have shown that random sampling could be detrimental to contrastive learning due to the redun-
dancy in negative samples, especially when the sample size is large, and have proposed an active
sampling approach that yields diverse and informative negative samples. We demonstrated this on
learning audio-visual representations from unlabeled videos. When pretrained on AudioSet, our ap-
proach outperforms previous state-of-the-art self-supervised approaches on various audio and visual
downstream benchmarks. We also show that our active sampling approach significantly improves
the performance of contrastive learning over random and online hard negative sampling approaches.
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A DETAILS ON DATA PROCESSING

We preprocess video frames by sampling at 10 FPS and applying random cropping, horizontal flip-
ping, gray-scaling, and temporal jittering. We resize video frames to 3-channel images of 224×224;
we set the clip length to 16 frames during pretraining, and 32 frames during finetuning on down-
stream tasks. For audio channel, we extract mel-spectrograms from the raw waveform using the
LibROSA library and get a 80× T matrix with 80 frequency bands; T is proportionate to the length
of an audio clip. We then segment the mel-spectrogram according to the corresponding video clips
to ensure temporal synchrony. We treat the mel-spectrograms as an 80-channel 1D signal.

As for downstream tasks, we evaluate our models on action recognition using UCF101 (Soomro
et al., 2012) and HMDB51 (Kuehne et al., 2011), and on sound classification using ESC50 (Piczak,
2015b). UCF101 contains 13K video clips from 101 action categories, HMDB51 contains 7K video
clips from 51 categories, and ESC50 has 2K audio clips from 50 categories. UCF101 and HMDB51
have 3 official train/test splits, while ESC50 has 5 splits. We conduct our ablation study using
split-1 of each dataset. We report our average performance over all splits when we compare
with prior work.

B ADDITIONAL EXPERIMENTS

Effect of mutual information. We investigate the impact of the amount of MI on contrastive learn-
ing using the Spatial-MultiOmniglot dataset (Ozair et al., 2019). It contains paired images (x, y)
of Omniglot characters (Lake et al., 2015) with each image arranged in an m × n grid (each grid
cell is 32 × 32 pixels). Let li be the alphabet size for the ith character in each image, then the MI
I(x, y) =

∑mn
i=1 logli. This way, we can easily control the MI by adding or removing characters.

We follow the experimental protocol of Ozair et al. (Ozair et al., 2019), keeping the training dataset
size fixed at 50K and using the same alphabet sets: Tifinagh (55 characters), Hiragana (52), Gujarati
(48), Katakana (47), Bengali (46), Grantha (43), Sanskrit (42), Armenian (41), and Mkhedruli (41).
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Figure 3: The effect of a) mutual information (Spatial-MultiOmniglot) and b) dictionary size on the
accuracy of classification (UCF101).

Fig. 3(a) shows the results as the number of characters (and thus the MI) increases. We see that
all approaches achieve nearly 99% accuracy with less than 3 characters; this is the case when
the exponent of the MI is smaller than the dataset size (50K), i.e., eI(x,y) = 55 with one char-
acter, eI(x,y) = 2, 860 with 2 characters. However, starting from 3 characters, the performance of
the regular MoCo (SMoCo) drops significantly; this is because the exponent of the MI (=137,280
(55×52×48)) is much larger than the dataset size. Although our model also drops performance
when the MI is increased, it outperforms the other approaches by a large margin. We also observe
that XMoCo outperforms SMoCo in mild conditions (1-5 characters) but performs nearly the same
as SMoCo with severe conditions (6-9 characters). This suggests that, while cross-modal prediction
helps to learn good representations, it also suffers with the same issue when the MI is large, thus
adopting active sampling is beneficial.

Effect of dictionary size. Fig. 3 (b) shows how the dictionary size affects downstream task per-
formance. Here we pretrain our model on Kinetics-700 and finetune it on UCF-101. Overall, all
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three approaches benefit from large dictionaries up to a threshold (at about 103), which is consistent
with previous empirical findings (He et al., 2020). However, both XMoCo and SMoCo starts deteri-
orating performance after about 104 (which is consistent with previous theoretical claims of Arora
et. al (Arora et al., 2019)), whereas ours do not suffer even after 104. This suggests that there are
performance limits by simply increasing the size of a randomly-sampled dictionary, and also shows
the benefit of our active sampling approach.

Effect of pretraining dataset sizes. We investigate the effects of the size of pretraining datasets,
using Kinetics-Sound (22k), Kinetics (240K), and AudioSet (1.8M). We vary pretraining conditions
while using the same protocol to finetune the models end-to-end on downstream tasks.

Table 6 shows that our model benefits from pretraining on video data, and that the performance
improves as we use a large pretraining video dataset (Kinetics and AudioSet) than the relatively
smaller dataset (Kinetics-Sound). Notably, our approach even outperforms the fully-supervised pre-
training approaches by pretraining on a larger video dataset (1.0%, 3.6%, and 8.5% improvement on
UCF101, HMDB51, and ESC50, respectively.)

Approach Dataset UCF101 HMDB51 ESC50

Supervised

ImageNet (1.2M) 82.8† 46.7† –
Kinetics-Sound (22K) 86.9∗ 53.1∗ 78.3∗

Kinetics400 (240K) 93.1† 63.6† 82.3∗

CM-ACC
Kinetics-Sound (22K) 77.2 40.6 77.3
Kinetics700 (240K) 90.2 (-2.9) 61.8 (-1.8) 79.2 (-3.1)

AudioSet (1.8M) 94.1 (+1.0) 67.2 (+3.6) 90.8 (+8.5)

Table 6: Top-1 accuracy of CM-ACC pretrained on different datasets vs. fully-supervised counter-
parts (Supervised). †: the results are excerpted from Patrick et al. (2020), ∗: our results.

Diversity of random vs. active sampling. To compare the diversity of the chosen negatives by ran-
dom vs. active sampling, we plot the probability of them on sampling of unique negatives (instances
from different categories). The more categories the samples come from, we get more diverse and
less redundant samples. We train these on UCF-101 over 300 iterations with different mini-batch
sizes, M ∈ {32, 64, 128}. As shown in Figure 4, the active sampling selects more categories than
random sampling across all three mini-batch sizes. AtM = 128, active sampling (with gradient em-
bedding) covers 60-70% of categories on UCF101, which is substantially more diverse than random
sampling (30-40%).
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Figure 4: Probability of sampling unique nega-
tives (instances from different categories) in the
random vs. active sampling conditions. We com-
pute the probabilities by averaging the number of
unique categories across iterations and dividing
them by their batch size.

C VISUALIZATION OF NEGATIVE INSTANCES

Figure 5 shows negative instances selected by active sampling and random sampling when we use
audio clips as the query. We visualize the center frames of the selected video clips. We can see that
our approach selects more challenging examples than the random sampling approach. For instance,
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given a query opening bottle, our approach selected video clips from the same or similar
semantic categories, e.g. drinking shot and opening bottle. Given snowboarding,
our approach selected more video clips related to categories containing the snow scene, e.g. ice
fishing, snow kiting, and tobogganing.
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Figure 5: Center frames of video clips and their gradient norms selected by active sampling and
random sampling.

Furthermore, we also find that our approach selects more diverse negative samples. For exam-
ple, given a query snowboarding, active sampling selected video clips from 4 different cate-
gories related to the snow scene: (ice fishing, playing ice hockey, snow kiting,
and tobogganing). In comparison, the random sampling approach yields fewer semantic cate-

16



Published as a conference paper at ICLR 2021

gories in general. This suggests that our active sampling approach produces more ‘challenging’ and
‘diverse’ negative instances than the random sampling approach.

To clearly investigate the relationship between negative samples and their gradient magnitudes, we
show the gradient norm of each visualized sample in Figure 5. We can see that hard negatives tend
to have larger gradient norms than easy negatives. Given a query Playing guitar, video clips
containing the concept of “playing instruments” yield the higher gradient norms, i.e. playing
violin (333.87) and tapping guitar (301.35), while concepts that are easy to discriminate,
e.g., riding a camel yield a significantly smaller gradient norm (5.92). This provides evidence
showing the gradient magnitude is effective in measuring the uncertainty of the current model, i.e.,
highly-uncertain samples (hard negatives) tend to yield gradients with larger magnitudes, while
highly-confident samples (easy negatives) tend to have smaller gradient magnitudes.

D WHEN WOULD CROSS-MODAL CONTRASTIVE LEARNING FAIL?

In general, cross-modal video representation learning is based on an assumption that the natural cor-
respondence between audio and visual channels could serve as a useful source of supervision. While
intuitive, this assumption may not hold for certain videos in-the-wild, which may cause the model
to learn suboptimal representations. To investigate when our approach succeeds and fails, we con-
duct a post-hoc analysis by using thehttps://www.overleaf.com/project/5ded2abe1c17bc00011e5da8
ground-truth semantic category labels provided in Kinetics-700 (Carreira et al., 2019) (which is
not used during pretraining). Specifically, we use our pretrained model to solve the audio-visual
contrastive pretext task (Eqn.(7) in the main paper) and keep track of the prediction results (cor-
rect/incorrect). We then average the pretext task accuracy over 100 randomly chosen samples for
each action category.
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Figure 6: Distribution of Kinetics-700 (Carreira et al., 2019) categories sorted by the prediction
accuracy.

Figure 6 shows the top-10 and bottom-5 classes by using both audio (left) and video (right) as the
query. We observe that, the top ranked classes for both audio and video are the activities that have
highly correlated visual-audio signals. For instance, playing bass guitar, play piano,
and play violin are all activities related to music. The correlation of audio-visual signals for
these activities are obvious; such highly correlated signals are easier to be learned in a cross-modal
manner. On the contrary, the bottom ranked classes are those that have subtle audio-visual correla-
tion, e.g. tossing coin, shaking hand, looking at phone, and hugging. We also
investigate the distribution of hard-easy classes with that reported in Kinetics-700 (Carreira et al.,
2019) learned by the I3D-RGB model (Carreira & Zisserman, 2017). Interestingly, we find that some
hard classes (e.g. karaoke and recording music) are listed in our top ranked classes. We
suspect that, when only learned within visual modality, some classes with cluttered or complected
spatial information will bring difficulties for classification. While, as our cross-modal approach can
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leverage information from both auditory and visual information, so our model does not limited by
such problems.

Algorithm 2 Cross-Modal Active Contrastive Coding (Detailed version of Algorithm 1)
1: Require: Audio-visual clips A, V ; encoders fv , fa, hv , ha; dictionary size K; pool size N ; batch size M
2: Initialize parameters, θvq , θvk, θ

a
q , θ

a
k v Uniform(0, 1)

3: Draw random dictionary, Dv ← {v1, · · · , vK} v Random(V ), Da ← {a1, · · · , aK} v Random(A)
4: Encode dictionary samples, kvi ← hv(vi), ∀vi ∈ Dv , kai ← ha(ai), ∀ai ∈ Da
5: for epoch = 1 to #epochs: do
6: Draw random pool, Uv ← {v1, · · · , vN} v Random(V ), Ua ← {a1, · · · , aN} v Random(A)
7: Encode pool samples, kvn ← hv(vn), ∀vn ∈ Uv , kan ← ha(an), ∀an ∈ Ua
8: for t = 1 to #mini-batches: do
9: Draw mini-batch, Bv ← {v1, · · · , vM} v V , Ba ← {a1, · · · , aM} v A

10: . Active sampling of negative video keys for Dv
11: Encode mini-batch samples, qai ← fa(ai), ∀ai ∈ Ba
12: for ∀vn ∈ Uv\Dv: do
13: Compute pseudo-posterior, p(ŷvn|vn, Ba)← exp(kvn·q

a
j )∑M

i=1 exp(kvn·qai )
,∀j ∈ [1,M ]

14: Compute pseudo-label, ỹvn ← arg max p(ŷvn| · )
15: end for
16: Compute gradient, gvn ← ∂

∂θlast
LCE (p(ŷvn| · ), ỹvn) |θ=θaq ,∀n ∈ [1, N ]

17: Obtain Sv ← k-MEANS++
INIT ({gvn : vn ∈ Uv\Dv},#seeds = M)

18: Update Dv ← ENQUEUE(DEQUEUE(Dv), Sv)
19: . Active sampling of negative audio keys for Da
20: Encode mini-batch samples, qvi ← fv(vi), ∀vi ∈ Bv
21: for ∀an ∈ Ua\Da: do
22: Compute pseudo-posterior, p(ŷan|an, Bv)← exp(kan·q

v
j )∑M

i=1 exp(kan·qvi )
, ∀j ∈ [1,M ]

23: Compute pseudo-label, ỹan ← arg max p(ŷan| · )
24: end for
25: Compute gradient, gan ← ∂

∂θlast
LCE (p(ŷan| · ), ỹan) |θ=θvq , ∀n ∈ [1, N ]

26: Obtain Sa ← k-MEANS++
INIT ({gan : an ∈ Ua\Da},#seeds = M)

27: Update Da ← ENQUEUE(DEQUEUE(Da), Sa)
28: . Cross-modal contrastive predictive coding
29: Encode mini-batch samples, kvi ← hv(vi), ∀vi ∈ Bv , kai ← ha(ai),∀ai ∈ Ba
30: Compute p(yvi |·) =

exp(qvi ·k
a
i /τ)∑K

j=0 exp(qvi ·k
a
j /τ)

, p(yai |·) =
exp(qai ·k

v
i /τ)∑K

j=0 exp(qai ·k
v
j /τ)

,∀i ∈ [1,M ]

31: . Update model parameters
32: Update θvq ← θvq − γ∇θLCE(p(yv| · ), yvgt)|θ=θvq , θaq ← θaq − γ∇θLCE(p(ya| · ), yagt)|θ=θaq
33: Momentum update θvk ← mθvk + (1−m)θvq , θak ← mθak + (1−m)θaq
34: end for
35: end for
36: return Optimal solution θvq , θvk, θ

a
q , θ

a
k

Algorithm 3 k-MEANS++
INIT Seed Cluster Initialization

1: Require: Data X of N samples; number of centroids K
2: Choose one centroid uniformly at random, C[0]← x v Random(X)
3: for k = 1 to K − 1: do
4: . Compute a cumulative probability distribution with a probability in proportion to their squared dis-

tances from the nearest centroid that has already been chosen
5: for n = 0 to N − 1: do
6: Compute the squared distance, D[n]← (min dist(X[n], C))2

7: end for
8: Compute the cumulative probability distribution, P ← cumsum(D)

sum(D)

9: . The next centroid is chosen using P (X) as a weighted probability distribution
10: Choose one centroid at random, C[k]← x v P (X)
11: end for
12: return C containing K centroids
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Algorithm 4 Cross-Modal Contrastive Coding without Active Sampling
1: Require: Audio-visual clips A, V ; dictionary Dv; encoders fv , fa, hv , ha;

dictionary size K; mini-batch size M ; learning rate γ; momentum m
2: Initialize parameters, θvq , θvk, θ

a
q , θ

a
k v Uniform(0, 1)

3: Load a dictionary at random, Da ← {v1, · · · , vK} v Random(V )
4: Load a dictionary at random, Dv ← {a1, · · · , aK} v Random(A)
5: Encode dictionary samples, kvi ← hv(vi), ∀vi ∈ Da, kai ← ha(ai), ∀ai ∈ Dv
6: for epoch = 1 to #epochs: do
7: for t = 1 to #mini-batches: do
8: Load a mini-batch of visual clips, Bv ← {v1, · · · , vM} v V
9: Load a mini-batch of audio clips, Ba ← {a1, · · · , aM} v A

10: . Update dictionaries
11: Encode mini-batch samples, kvi ← hv(vi), ∀vi ∈ Bv
12: Encode mini-batch samples, kai ← ha(ai),∀ai ∈ Ba
13: Update Dv ← ENQUEUE(DEQUEUE(Dv), Bv)
14: Update Da ← ENQUEUE(DEQUEUE(Da), Ba)
15: . Cross-modal contrastive predictive coding
16: Encode mini-batch samples, qvi ← fv(vi), ∀vi ∈ Bv
17: Encode mini-batch samples, qai ← fa(ai),∀ai ∈ Ba
18: Compute the posterior, p(yvi |vi, ai, Dv) =

exp(qvi ·k
a
i /τ)∑K

j=0 exp(qvi ·k
a
j /τ)

, ∀i ∈ [1,M ]

19: Compute the posterior, p(yai |ai, vi, Dv) =
exp(qai ·k

v
i /τ)∑K

j=0 exp(qai ·k
v
j /τ)

, ∀i ∈ [1,M ]

20: . Update model parameters
21: Update θvq ← θvq − γ∇θLCE(− log p(yv| · ), yvgt)|θ=θvq
22: Update θaq ← θaq − γ∇θLCE(− log p(ya| · ), yagt)|θ=θaq
23: Momentum update θvk ← mθvk + (1−m)θvq
24: Momentum update θak ← mθak + (1−m)θaq
25: end for
26: end for
27: return Optimal solution θvq , θvk, θ

a
q , θ

a
k
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