
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARKOVIAN TRANSFORMERS FOR INFORMATIVE
LANGUAGE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) reasoning often fails to faithfully reflect a language
model’s underlying decision process. We address this by introducing a Marko-
vian language model framework that can be understood as a reasoning autoen-
coder: it creates a text-based bottleneck where CoT serves as an intermediate rep-
resentation, forcing the model to compress essential reasoning into interpretable
text before making predictions. We train this system with a GRPO-style policy
gradient algorithm using parallel sampling, a frozen baseline CoT′, within-batch
standardized advantages, and actor-reward (chain-rule) gradients. Our approach
yields large gains on QA tasks (e.g., GSM8K: 20.7% → 54.5%; +33.8 pp; ARC-
Challenge: 47.5% → 76.9%; +29.4 pp). Perturbation analyses across types and
severities show consistently higher sensitivity to CoT edits (typically 52%–82%
of cases favor Markovian), indicating stronger causal reliance on the CoT. Cross-
model evaluation confirms that learned CoTs generalize across architectures, sug-
gesting they capture transferable reasoning patterns rather than model-specific ar-
tifacts.

1 INTRODUCTION

The rapid advancement of language models (LMs) has led to impressive performance on complex
cognitive tasks (Brown et al., 2020). Yet it is often unclear why an LM arrives at a particular con-
clusion (Lamparth & Reuel, 2023; Burns et al., 2023; Gurnee & Tegmark, 2024), causing issues
in high-stakes applications (Grabb et al., 2024; Lamparth et al., 2024; Rivera et al., 2024). Tradi-
tional interpretability methods analyze hidden activations or attention patterns to extract “explana-
tions” (Geiger et al., 2022; Geva et al., 2022; Meng et al., 2022; Casper et al., 2023; Wang et al.,
2022; Lamparth & Reuel, 2023; Nanda et al., 2023). Modern LMs, however, already generate co-
herent text: we might hope prompting the model to articulate its reasoning (“Chain-of-Thought” or
CoT) (Nye et al., 2022; Wei et al., 2022) would yield a faithful record of its thought process.

Unfortunately, CoT explanations can be unfaithful. For example, Turpin et al. (2023) show that
spurious in-context biases often remain hidden in the CoT, and Lanham et al. (2023) find that altering
CoT text may not affect the final answer. Such observations indicate that standard CoTs are not
“load-bearing.”

In this work, we take a pragmatic approach to interpretability, focusing on informativeness over full
faithfulness. Rather than insisting the CoT mirrors the model’s entire internal process, we require
that the CoT alone suffices to produce the final answer. In other words, if we remove the original
prompt and rely only on the CoT, the model should still reach the correct output. This makes the
CoT causally essential and fragile: changing it necessarily alters the prediction.

What distinguishes our approach is the clear distinction between the model relying on its CoT versus
generating more informative CoTs. While traditional approaches train models to generate better-
quality CoTs, they don’t fundamentally change how the model uses them. Our Markovian frame-
work, by contrast, forces the model to process information through the CoT bottleneck, making the
CoT not just informative but causally load-bearing for prediction.

For instance, Llama’s CoT on arithmetic tasks changed dramatically after training. Before training,
it simply listed all numbers and their (incorrect) sum (e.g., “Sum = 76 + 90 + 92 + ... = 2314”). After
training, it performed correct step-by-step calculations (e.g., “calculate 6 + 89 = 95; Next, calculate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

o1=Question s1=“Step-by-step...”

s2=CoT

o2=Answer

uθ(s
′|o, s)

πθ(o|s)

o1 o2 o3

s1 s2 s3

uθ(s
′|o, s) uθ(s

′|o, s)

πθ(o|s) πθ(o|s) πθ(o|s)

Single Observation Observation Sequence

Figure 1: Markovian training as a reasoning autoencoder. Left: Single time-step process from
Question to CoT to Answer, creating a text-based bottleneck where the CoT must capture all in-
formation needed for answer prediction. Right: Causal structure showing the generation of states
from observations and previous states using the state update function uθ(s

′|o, s), and the prediction
of observations from states using the policy πθ(o|s). This architecture forces reasoning through an
interpretable text bottleneck, but prevents direct backpropagation, necessitating RL-based gradient
estimation.

95 + 38 = 133...”), breaking the task into manageable steps that can be verified independently and
enabling accurate answer prediction even when the original question is removed.

Recipient-Specific Compression. A key insight is that an informative CoT can also serve as a
recipient-specific compression of the model’s hidden knowledge: it distills the essential reasoning
into text that another recipient (e.g. a different model or a human) can use to predict the same out-
come. Our experiments confirm that the learned CoTs generalize across interpreters, suggesting that
these textual explanations genuinely encode transferable problem-solving steps rather than model-
specific quirks (Section 5.4).

Contributions.

1. We introduce a Markovian language model framework that structurally enforces Chain-
of-Thought (CoT) generation to be causally essential, ensuring reliance on the CoT for
predictions.

2. We apply this framework to arithmetic problems (Mistral 7B) and the GSM8K
dataset (Cobbe et al., 2021) (Llama 3.1 8B), observing a 33.2% absolute improvement
on GSM8K.

3. We show through systematic perturbation analysis across four model pairs that Markovian
training produces significantly higher sensitivity to CoT perturbations compared to Non-
Markovian approaches, with effect differences ranging from +0.0154 to +0.3276 in log-
probability sensitivity.

4. We demonstrate cross-model transfer: CoTs trained on one model remain informative for
other models. This underscores the CoT’s recipient-specific interpretability and suggests it
captures a shared reasoning strategy.

Section 2 reviews related work, Section 3 details our Markovian framework, and Section 4 describes
the RL training. Section 5 presents empirical results, and Section 6 discusses limitations and future
directions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dataset Before After ∆

GSM8K 20.70% 54.50% +33.80 pp
MMLU 35.92% 32.40% −3.52 pp
Arithmetic 5.50% > 99% ≥ 93.50 pp
SVAMP 21.33% 35.00% +13.67 pp
AQuA 16.54% 20.80% +4.26 pp
ARC-Chal 47.46% 76.87% +29.41 pp

(a) Llama scores across datasets (provided by
user). ∆ reports absolute percentage-point (pp)
gains. (b) Cross-model normalized reward

Figure 2: Left: dataset-wise performance for Llama before vs. after Markovian training. Scores
are fractions of verbatim-correct answers at temperature 0; ∆ is absolute percentage points. Right:
normalized reward lnπθ(ans | CoT) − lnπθ(ans | CoT′) on Wikipedia continuation for multiple
base models (Llama 3.1 8B, Phi-3.5 Mini, Qwen3 4B, Mistral 7B), showing consistent gains in CoT
informativeness across architectures. Together, the table highlights robustness across datasets, while
the plot highlights robustness across model families.

2 RELATED WORK

Prior work shows that CoT prompting can boost performance on reasoning tasks (Wei et al., 2022;
Nye et al., 2022). Whereas typical CoT prompting methods do not alter a pre-trained model’s
parameters, some prior approaches do fine-tune the model for CoT generation (Zelikman et al.,
2022; 2024; DeepSeek-AI et al., 2025). Our work differs by removing the original question or
passage from the answer-prediction context, which enforces a stronger causal reliance on the CoT.

Regarding faithfulness vs. interpretability, some authors discuss how a CoT may fail to reflect the
true reason the LM arrived at its answer (Lanham et al., 2023; Turpin et al., 2023), since small
changes in the CoT do not necessarily change the final prediction. Zhou et al. (2023) analyze
CoT through an information-theoretic lens, finding that CoT can serve as a communication channel
between different parts of a model. We build on these insights by training the model to rely on this
channel exclusively.

Architecturally, our Markovian LM shares structural similarities with state space models like RNNs
(Rumelhart et al., 1986), S4 (Gu et al., 2022), and Mamba (Gu & Dao, 2024), though with a key
difference: MLMs have probabilistic state transitions to model token sampling, which necessitates
gradient estimation methods such as policy gradient (Sutton et al., 1999) rather than direct backprop-
agation. This probabilistic structure also resembles Kalman filters (Å ström, 1965), Deep Variational
Bayes Filters (Karl et al., 2017), Deep Kalman Filters (Krishnan et al., 2015), and Variational Recur-
rent Neural Networks (VRNN) (Chung et al., 2015), though we use categorical rather than Gaussian
distributions for interpretable text generation. Other fine-tuned reasoning models mentioned above
(R1, STaR, and QuietSTaR) have similar structure but allow seeing the full context before generating
state/reasoning tokens, whereas our approach enforces a strict information bottleneck through the
state.

Lyu et al. (2023) also consider restricting the model’s ability to see the original input while generat-
ing the final answer. Their approach, however, involves rewriting the question in a structured formal
language or code that is then executed. Our approach uses natural language for the reasoning state
to preserve interpretability across diverse tasks.

3 MARKOVIAN LANGUAGE MODELS AND INFORMATIVENESS

Here we provide our formalism for Markovian Language Models (MLMs) and define informative-
ness, which we use as a training objective within our novel structural framework.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 MARKOVIAN LANGUAGE MODELS (MLM)

A traditional LM can attend to the entire context when predicting the next token. This makes it
possible for an LM to disregard the CoT or only partially rely on it. We impose a stricter, Markovian
structure1:

Definition 3.1 (Markovian LM). A Markovian Language Model is a tuple M = (O,S, π, u, s1),
where

• O is a set of observations (e.g., questions and answers in a QA task),

• S is a set of states (e.g., CoT reasoning text),

• π : S → ∆(O) is a policy that predicts the next observation from the state alone,

• u : O × S → ∆(S) is a state update function (produces CoT from question and initial
prompt),

• s1 ∈ S is an initial state (starting CoT prompt).

For example, in a math reasoning task, o1 ∈ O might be a question, s1 ∈ S is an initial CoT prompt
like “Let’s solve this step-by-step:”, s2 ∈ S is the generated reasoning chain, and o2 ∈ O is the
answer. The key idea is that π can only see the CoT state s2 when predicting o2, forcing the CoT to
contain all needed information. Intuitively, π is the frozen next-token predictor, and u is the model’s
trainable component that chooses how to produce the CoT from the latest observation and prior
state. In our experiments, π and u share the same underlying transformer but we freeze the weights
for π while fine-tuning those used by u.

3.2 DATA-GENERATING DISTRIBUTION AND REWARD

Let P be the distribution over observations x1, x2, . . . , xT ∈ O. A trajectory τ is generated by:

st+1 ∼ u(st, xt), xt+1 ∼ P (xt+1 | x≤t),

with s1 a fixed initial prompt. We define the reward for a trajectory τ as:

Rθ(τ) =

T∑
t=1

[lnπθ(xt | st)− lnπθ(xt | s′t)] ,

where s′t is generated by a baseline update function u′, e.g., the untrained model. In words, Rθ(τ)
measures how much more likely the correct observation xt is under the trained state st compared to
the baseline state s′t.

3.3 INFORMATIVENESS OBJECTIVE

Conceptually, we aim to ensure that the CoT state serves as a critical bottleneck for information flow,
making it causally essential for predictions. Formalizing this within our Markovian framework, we
define:

J(θ) = Eτ∼P,uθ,u′ [Rθ(τ)] ,

where θ parameterizes uθ. Maximizing J(θ) ensures that the update function uθ produces states
st that are informative about future observations (relative to the baseline u′), thereby enforcing the
CoT’s role as a load-bearing component. We optimize J(θ) with policy gradient or PPO, sampling
observations from P and states from uθ and u′.

1This structure can be viewed as a stochastic variant of a Moore machine where both the transition function
(u) and output function (π) are probabilistic, and the input and output alphabets are identical (O). Alternatively,
an MLM can be formalized as an F-coalgebra where F(S) = P(O) × P(S)O , with P representing probability
distributions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 METHODS

4.1 IMPLEMENTATION AS QUESTION-ANSWER PAIRS

In many tasks like math problem solving, we have T = 2 observations (question and answer) and
implement the abstract MLM with a fixed maximum length for the CoT state. Let V be a token
vocabulary. We set O = VN and S = VK for some N,K ∈ N, where K is the maximum tokens
in the CoT. Note that while we limit the state to a maximum of K tokens for implementation, we do
not enforce fixed-length observations.

Our conceptual arguments rely on K < N , as otherwise the model could simply write the predicted
observation into the state. We satisfy this in our Wikipedia experiments (Sec 5.2), and for other
experiments we find empirically that the model does not learn this undesirable behavior due to the
difficulty of predicting the answer directly without any CoT.

In this setting, we denote our states as s1 = CoTinit and s2 = CoT, where CoTinit is a task-specific
prompt2. With pre-trained LM L, we can implement our update function u and policy π using:

lnuθ

(
s2 = CoT | q, s1 = CoTinit

)
=

K∑
i=1

lnLθ

(
concat(q,CoTinit,CoT<i)

)
[CoTi],

lnπθ(ans | CoT) :=
N∑
i=1

lnLθ

(
concat(CoT, ans<i)

)
[ansi].

Compression viewpoint. Our ”CoT as compression” narrative applies most directly to continua-
tion tasks (e.g., Wikipedia), where the content to be predicted is longer than the CoT, forcing the
model to compress salient context into a short textual bottleneck. For QA tasks, the answer is typi-
cally shorter than the CoT; there we emphasize the CoT’s sufficiency and fragility rather than literal
compression, and use QA as evidence that the training method generalizes across task types.

Crucially, we do not allow the answer generation to attend back to the question q directly; the
question is replaced by the CoT. For each question q, we generate the baseline state s′2 (which we
denote as CoT′ in this setting) by prompting the unmodified pre-trained model with q plus an initial
instruction (e.g., ’Think step-by-step...’), and recording its raw output.

Our reward is:
Rθ = lnπθ(ans | CoT) − lnπθ(ans | CoT′).

4.2 POLICY GRADIENT WITH GRPO-STYLE BASELINE

Markovian training can be understood as training a reasoning autoencoder, where the CoT serves as
a text-based bottleneck between question and answer. Like traditional autoencoders, this architecture
forces information compression, but the intermediate representation is interpretable text rather than
latent vectors. This text bottleneck prevents direct backpropagation and necessitates reinforcement
learning techniques for gradient estimation.

4.2.1 ACTOR REWARD GRADIENTS: THE KEY INNOVATION

Our approach differs fundamentally from standard reinforcement learning by using the same trans-
former with weights θ as both the policy model and the reward model. This creates a crucial mathe-
matical distinction from traditional policy gradient methods.

In classical policy gradient, the reward R(τ) is independent of the policy parameters, leading to the
standard REINFORCE gradient:

∇θEτ∼Pθ
[R(τ)] = Eτ∼Pθ

[R(τ) · ∇θ lnPθ(τ)]

2The exact prompt template varies by task type, with each template specifying the task objective, allowed
CoT length, and an invitation to reason strategically. Full templates are provided in Sec A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

However, in our case, the reward is a function of the same parameters: Rθ(τ) = lnπθ(ans | CoT).
Applying the chain rule:

∇θ Eτ∼Pθ
[Rθ(τ)] = Eτ∼Pθ

[
Rθ(τ)∇θ lnPθ(τ) +∇θRθ(τ)

]
.

This yields two terms: the standard policy gradient (Rθ(τ) · ∇θ lnPθ(τ)) and the direct reward
gradient (∇θRθ(τ)). We include both terms with equal weight in our implementation.

4.2.2 GRPO-STYLE BASELINE WITH LOCAL SUBTRACTION

We implement a policy gradient algorithm inspired by Group Relative Policy Optimization (GRPO),
originally introduced by Shao et al. Shao et al. (2024) in DeepSeek-Math. GRPO eliminates the
critic model from PPO by using group-based advantage estimation, where multiple responses to the
same query provide relative baselines for each other.

However, we add an additional baseline subtraction step before applying GRPO’s batch averag-
ing. We first compute a local baseline using the frozen reference model u′, then apply GRPO-style
standardization within each batch.

4.2.3 PARALLEL SAMPLING STRATEGY

We employ parallel sampling (inspired by GRPO): each training batch contains B copies of the
same question-answer pair (q, a). The trainable model uθ generates diverse reasoning chains
{CoT1,CoT2, . . . ,CoTB} for the identical input through stochastic sampling.

Additionally, we introduce a frozen baseline from the reasoning autoencoder: the unmodified model
u′ generates a single reference CoT′ that provides a local baseline before applying GRPO-style
batch averaging. This frozen baseline represents the ”encoder” component of our reasoning autoen-
coder—capturing the model’s initial reasoning ability before training. The frozen baseline CoT′ is
not part of the original GRPO algorithm—it is our contribution to provide a more stable reference
point.

This approach provides several advantages:

• Reasoning bottleneck: The CoT′ baseline establishes the initial encoding capacity of the
reasoning autoencoder

• Local baseline: The frozen CoT′ provides a consistent reference for measuring informa-
tiveness improvement

• Computational efficiency: Baseline reasoning and answer evaluation are computed once
and replicated

• Stable variance estimation: All samples share the same ground truth, enabling robust
within-batch standardization

4.2.4 IMPLEMENTATION: TWO-TERM LOSS FUNCTION

Our implementation combines both gradient terms from the chain rule derivation above. The loss
function includes:

L = LPG + LAR, LPG = − lnuθ(CoT | q,CoTinit) ·Adetach, LAR = −A.

where A is the standardized advantage (after local baseline subtraction and GRPO-style batch aver-
aging) and Adetach blocks gradients to isolate the policy gradient term.

The first term LPG corresponds to the standard REINFORCE gradient Rθ(τ) · ∇θ lnPθ(τ), while
the second term LAR corresponds to the direct reward gradient ∇θRθ(τ). This enables simultaneous
optimization of CoT generation and answer prediction.

4.2.5 WITHIN-BATCH ADVANTAGE STANDARDIZATION

Instead of historical exponential moving averages, we standardize advantages within each batch:

Ri = lnπθ(ans | CoTi)− lnπθ(ans | CoT′), Ai =
Ri − µbatch

σbatch + ϵ
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Markovian Training with GRPO-Style Batch Baseline

1: Given dataset P of (q, a), trainable actor uθ, frozen baseline u′, answer policy πθ, batch size B
2: for each training batch do
3: Sample (q, a) ∼ P
4: Sample CoTi ∼ uθ(· | q,CoTinit) for i = 1..B (stochastic parallel sampling)
5: Sample baseline CoT′ ∼ u′(· | q,CoTinit) (once per batch)
6: Compute actor answer log-probs ri = lnπθ(a | CoTi)
7: Compute baseline log-prob b = lnπθ(a | CoT′)

8: Normalized rewards Ri = ri − b; standardize within-batch: Ai =
Ri − µ

σ + ϵ
9: Policy gradient loss: ℓPG

i = − lnuθ(CoTi | q,CoTinit) ·Adetach
i

10: Actor-reward gradient: ℓAR
i = −Ai

11: Optional KL penalty: ℓKL
i = 0.1DKL

(
uθ(· | q) ∥u′(· | q)

)
12: Total loss: ℓi = ℓPG

i + ℓAR
i + ℓKL

i ; update θ with 1
B

∑
i ℓi

13: end for

where µbatch = 1
B

∑B
i=1 Ri and σ2

batch = 1
B

∑B
i=1(Ri − µbatch)

2.

This ensures that advantages have zero mean and unit variance within each batch, providing stable
gradients regardless of the absolute reward scale.

5 EXPERIMENTS

We evaluate in two regimes: (i) continuation (Wikipedia), where CoT tokens act as a lossy com-
pression of longer context, and (ii) question–answer datasets (GSM8K, MMLU, SVAMP, AQuA,
ARC, Arithmetic), which validate the general-purpose efficacy of Markovian training even when
the “compression” story is not literal.

5.1 QUESTION–ANSWER TASKS (GSM8K, MMLU, SVAMP, AQUA, ARC, ARITHMETIC)

We evaluate on standard QA-style datasets (GSM8K (Cobbe et al., 2021), MMLU (Hendrycks et al.,
2020), SVAMP (Patel et al., 2021), AQuA (Ling et al., 2017), ARC Challenge (Clark et al., 2018),
and our non-standard multi-step addition task. All QA experiments use the same optimization:
GRPO-style parallel sampling with within-batch standardization and the chain-rule reward (policy-
gradient plus actor-reward gradient), with task-specific default CoT lengths. For arithmetic, each
problem has fifteen random terms in [1, 99]; the model learns to produce step-wise reasoning and
achieves > 99% verbatim-correct answers at T=0.

CoT length defaults. Unless otherwise specified, we use: GSM8K 100, Arithmetic 150,
Arithmetic-Negative 150, MMLU 150. See §4 for objective details.

5.2 WIKIPEDIA CONTINUATION

For Wikipedia continuation (Foundation, 2024), we condition on the first 200 tokens and predict the
next 100 tokens, allowing 50 tokens of CoT. Training uses the same GRPO with chain-rule reward
as in QA. We observe improvements consistent with increased CoT informativeness (cf. Fig. 2), and
§5.3 shows stronger perturbation sensitivity under Markovian training.

5.3 MARKOVIAN VS NON-MARKOVIAN PERTURBATION SENSITIVITY

To provide systematic evidence for the theoretical advantages of Markovian training, we conduct
comprehensive perturbation sensitivity comparisons between Markovian and Non-Markovian model
pairs. This analysis directly evaluates whether the structural constraints in Markovian training lead
to measurably different robustness properties during training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Perturbation Type Degree Mean Effect Difference Overall Consistency Total Comparisons
Delete 20% +0.0144 51.6% 128

40% +0.0513 65.6% 128
60% +0.0719 74.2% 128
80% +0.0986 78.1% 128
100% +0.1210 82.0% 128

Truncate Front 20% -0.0028 42.2% 128
40% +0.0190 56.2% 128
60% +0.0355 63.3% 128
80% +0.0648 76.6% 128
100% +0.0983 81.2% 128

Truncate Back 20% -0.0065 39.8% 128
40% +0.0010 47.7% 128
60% +0.0204 50.8% 128
80% +0.0473 62.5% 128
100% +0.0841 70.3% 128

Character Replace 20% +0.0115 53.1% 128
40% +0.0488 62.5% 128
60% +0.0529 62.5% 128
80% +0.0504 62.5% 128
100% +0.0482 64.1% 128

Table 1: Fresh perturbation comparison between Markovian and Non-Markovian models using fixed
checkpoints (adapter index 400) evaluated on 128 newly sampled Wikipedia continuation examples
per perturbation type and degree. Mean Effect Difference is the average of (Markovian Effect
− Non-Markovian Effect), where Effect is defined as lnP (ans | CoTorig) − lnP (ans | CoTpert).
Consistency is the percentage of examples where the effect difference is positive (Markovian more
sensitive).

5.3.1 EXPERIMENTAL DESIGN

We measure perturbation sensitivity by evaluating fixed Markovian and Non-Markovian checkpoints
on newly sampled Wikipedia examples, regenerating actor CoTs for both models on the same inputs
before computing effects. We test four perturbation types at five severities (20%, 40%, 60%, 80%,
100%):

• Delete: Random token deletion from CoT reasoning

• Truncate Front: Removal of tokens from CoT beginning

• Truncate Back: Removal of tokens from CoT end

• Character Replace: Random character substitution within tokens

The sensitivity measure matches the implementation:

EffectM/NM = lnP (ans|CoToriginal)− lnP (ans|CoTperturbed) (1)
Difference = EffectMarkovian − EffectNon-Markovian (2)

Positive differences indicate greater Markovian sensitivity to CoT perturbations, reflecting stronger
reliance on CoT integrity.

5.3.2 RESULTS SUMMARY

On 128 fresh Wikipedia examples per perturbation type, we find: Delete shows the strongest differ-
ences (mean +0.014 to +0.121 with 52%–82% consistency increasing with severity). Truncations
start near zero or slightly negative at low severities and become positive with higher severities. Char-
acter replacement is consistently positive (+0.011 to +0.053; 63% consistency at higher severities).
Digit replacement has near-zero effects in this setting, matching its minimal character-level impact
on English prose.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 INTERPRETABILITY OF COT GENERATIONS

To probe how well the reasoning generalizes, we evaluated the informativeness of Llama’s trained
CoTs with respect to various other language models on the Wikipedia dataset. Cross-model eval-
uation shows strong correlation between improvements in both the trained model’s and alterna-
tive models’ evaluations of CoT quality throughout training. The normalized log probabilities in-
crease simultaneously across different architectures, demonstrating that Llama is learning to produce
generic CoTs which do not over-fit to the peculiarities of a Llama answer-predictor. Results averaged
across 6 independent training runs confirm this pattern holds consistently.

Figure 3: Cross-model evaluation comparing how different models (Mistral, GPT2, and Phi 3.5
Mini Instruct) utilize Llama 8B’s CoT on GSM8K. Results averaged across 3 training runs with
smoothing window of 40.

This cross-model transferability addresses a key question: “interpretable to whom?” We test across
three distinct model families (Phi (Abdin et al., 2024), Mistral, and GPT2), including GPT2, a sig-
nificantly smaller model that shouldn’t be able to decode sophisticated steganography. The fact that
trained CoTs transfer effectively across this diverse set confirms they contain generalizable reason-
ing patterns rather than model-specific artifacts. Note that the “CoT-as-compression” interpretation
is specific to continuation settings; in QA, our gains indicate that enforcing a load-bearing, sufficient
CoT improves reasoning utility even without a strict compression constraint.

6 DISCUSSION AND LIMITATIONS

Experiments across arithmetic, GSM8K, and Wikipedia show that it is possible to learn informative
and interpretable CoT reasoning via RL on an LM using Markovian training.

We currently verify interpretability on myopic QA and continuation settings. A direct human study
could further validate whether CoTs are genuinely human-interpretable beyond our model-centric
proxies (fragility and cross-model transfer). Nonetheless, we observe substantial gains in CoT
fragility and cross-model transfer, suggesting practical opportunities for improved interpretability.
The Markovian design also naturally extends to multi-turn dialogue by treating the CoT as a re-
current state; after each user message ot we produce the next CoT st+1 via uθ(st+1 | st, ot) and
generate the system’s reply from st+1 alone. We leave multi-turn evaluation to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive supplementary materials including all source
code, training and evaluation scripts, and detailed instructions in the README. The main training
loop (src/train.py) supports (i) GRPO, and alternate training methods such as EI, PG, and
PPO-style clipped objective methods (see Section F for detailed algorithm descriptions) and (ii) all
experimental datasets. We measure fragility of CoT via src/perturbation analysis.py
and we estimate interpretability of CoT generations via src/evaluate cross model.py.

Complete hyperparameter configurations for all Wikipedia continuation experiments are provided
in Table 2.

Models: We support 11 language model architectures with full tokenization and formatting: Llama
3.1 8B Instruct, Llama 3.2 1B Instruct, Mistral 7B Instruct V0.2, GPT-2 (124M), TinyStories (33M),
Phi 3.5 Mini Instruct, Phi-4, Qwen3 4B, Qwen3 14B, Gemma-3 2B, and Gemma-3 Small (9B). All
models use public HuggingFace implementations with LoRA fine-tuning.

Datasets: We support the following task types: (1) arithmetic - randomly generated 15-term addi-
tion problems, (2) arithmetic-negative - addition with negative numbers, (3) GSM8K (Cobbe et al.,
2021), (4) MMLU (Hendrycks et al., 2020), (5) SVAMP (Patel et al., 2021), (6) AQuA (Ling et al.,
2017), (7) ARC-Challenge (Clark et al., 2018), (8) wiki compression - predicting repeated Wikipedia
text, and (9) wiki continuation - next-token prediction on Wikipedia articles. Environment setup in-
structions are provided in the README.

Our experiments were conducted on NVIDIA H100 GPUs through the RunPod cloud service.
We trained and evaluated across multiple tasks and settings, including: QA datasets (GSM8K,
MMLU, SVAMP, AQuA, ARC-Challenge; §5.1), the non-standard multi-step addition task (§5.1),
and Wikipedia continuation (§5.2). We also ran systematic perturbation sensitivity studies (§5.3),
cross-model evaluations (Fig. 3), and hyperparameter/model sweeps (Table 2) across Llama, Mis-
tral, Phi, and Qwen3, and temperatures 1.2/1.3/1.4. We tried various other architectures includ-
ing straight-through estimators through token sampling and the Decision Transformer (Chen et al.,
2021). Taken together, these experiments required substantial compute; the total compute for the
reported experiments was approximately 10,000 GPU-hours. The broader research project, includ-
ing preliminary runs and ablations not reported here, consumed approximately $32,000 in cloud
resources. We provide these figures to help researchers anticipate the resources needed to reproduce
and extend our results.

With these materials, researchers should be able to reproduce our work, including the performance
boost on GSM8K and the perturbation analysis results demonstrating CoT reliance.

REFERENCES

Karl Johan Å ström. Optimal control of markov processes with incomplete state information i, 1965.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, et al. Phi-3 technical report: A highly capable
language model locally on your phone, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
et al. Language models are few-shot learners, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision, 2023.

Stephen Casper, Tilman Rauker, Anson Ho, and Dylan Hadfield-Menell. Sok: Toward transparent
ai: A survey on interpreting the inner structures of deep neural networks, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In Advances in Neural Information Processing Systems, 2021.

Paul Christiano, Ajeya Cotra, and Mark Xu. Eliciting latent knowledge: How to tell if your eyes
deceive you, 2021.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data, 2015.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 2018 Workshop on Machine Reading for Question Answering, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.

Wikimedia Foundation. Wikipedia, 2024.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal structure for interpretable neural networks, 2022.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space, 2022.

Declan Grabb, Max Lamparth, and Nina Vasan. Risks from language models for automated mental
healthcare: Ethics and structure for implementation, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

Wes Gurnee and Max Tegmark. Language models represent space and time, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2022.

Nitish Joshi, Javier Rando, Abulhair Saparov, Najoung Kim, and He He. Personas as a way to model
truthfulness in language models, 2024.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data, 2017.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters, 2015.

Max Lamparth and Anka Reuel. Analyzing and editing inner mechanisms of backdoored language
models, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Max Lamparth, Anthony Corso, Jacob Ganz, Oriana Skylar Mastro, Jacquelyn Schneider, and
Harold Trinkunas. Human vs. machine: Language models and wargames, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Karina
Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson,
Sam McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Tim-
othy Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan
Brauner, Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought rea-
soning, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL), 2017.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2022.

Prateek Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really robust? a case study
on numerical reasoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021.

Juan-Pablo Rivera, Gabriel Mukobi, Anka Reuel, Max Lamparth, Chandler Smith, and Jacquelyn
Schneider. Escalation risks from language models in military and diplomatic decision-making,
2024.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors, 1986.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024.

D. Silver, A. Huang, C. Maddison, et al. Mastering the game of go with deep neural networks and
tree search, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation, 1999.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea Finn. Fine-tuning
language models for factuality, 2023.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. In-
terpretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models, 2022.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. Reference-aware language models, 2017.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024.

Dani Zhou, Enyu Zhou, Kevin Han, and Prashant Kambadur. Understanding chain-of-thought in
llms through information theory, 2023.

A TRAINING STABILITY AND IMPLEMENTATION DETAILS

Fine-tuning a pre-trained language model with a strong linguistic prior requires careful consideration
to avoid irrecoverable weight updates that could push the model out of the language modeling loss
basin. We implement several techniques to enhance training stability for the GRPO objective:

1. Low-Rank Adaptation (LoRA) (Hu et al., 2022):
• Freeze all weights except for small-rank LoRA adapters.
• Use rank 8 with α = 16.

2. Gradient Clipping:
• If the ℓ2 norm of the gradient exceeds 1.0, rescale it to norm 1.0.

3. Within-Batch Advantage Standardization:
• GRPO’s parallel sampling enables robust within-batch standardization, eliminating

the need for historical baselines.
• Each batch provides its own reference distribution for advantage calculation.

4. Actor Reward Weight:
• Set actor reward weight to 1.0 to equally balance policy gradient and direct reward

optimization.
• This enables end-to-end learning through the reward model.

5. Initial CoT Prompt Design:
• Choose CoTinit to guide the model toward meaningful reasoning.
• For arithmetic:

“You will be given an arithmetic problem, which you have [CoT length] tokens to work
through step-by-step. Question:”

• For GSM8K:
“You will be given a reasoning problem, which you have [CoT length] tokens to work
through step-by-step. Question:”

• For Wikipedia continuation:
“Compress your understanding of this text into [CoT length] tokens, then predict the
next [target length] tokens.”

These measures greatly reduce the risk of catastrophic updates and keep the model’s training on
track.

B ADDITIONAL PERFORMANCE ANALYSIS

This section presents additional performance metrics and analysis across our experimental settings.
Fig 4a shows training progress on the Wikipedia continuation task, Fig 4b demonstrates perturbation
effects on arithmetic reasoning, and Fig 3 illustrates cross-model transfer on GSM8K.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Training progress on Wikipedia continuation task
for Llama 8B, showing normalized improvement in
next-token prediction across four independent runs.

(b) Perturbation effects on Mistral 7B arithmetic rea-
soning, showing three types of CoT modifications:
digit changes, character deletions, and right truncation.
Averaged over 4 PPO training runs.

Figure 4: Additional performance analysis across different tasks and metrics. (a) Training perfor-
mance on Wikipedia. (b) Perturbation analysis on arithmetic.

C TRUTHFULNESS AND ELICITING LATENT KNOWLEDGE

Existing methods seek to elicit truthfulness by having an LM cite external authorities (Yang et al.,
2017), produce queries for an external solver such as Python (Lyu et al., 2023), or simulate a truthful
persona (Joshi et al., 2024). Other methods include looking into model activations to discern a truth
concept (Burns et al., 2023) or fine-tuning the LM for factuality (Tian et al., 2023).

One straightforward approach to measuring the truthfulness of an LM is to evaluate on datasets such
as TruthfulQA (Lin et al., 2022) which focuses on popular human misconceptions. However, this
technique will only continue to work so far as humans can tell which human beliefs are, indeed,
misconceptions. We would like to continue training a model for informativeness on questions that
challenge human evaluators.

Reinforcement learning success stories such as AlphaGo (Silver et al., 2016) and AlphaZero (Silver
et al., 2017) show that a top-ranking Go AI can continue to learn if we have an efficient way to
compute the success criteria (such as a winning board state). However, many important success
criteria are abstractions, and only exist within a person’s ontology. This problem is discussed at
length in Christiano et al. (2021), and we will use their example to illustrate the situation.

Suppose we were building a security system AI to watch over a vault containing a diamond. Suppose
further that we have a camera pointed at the diamond, and that our security guard AI can competently
predict future camera frames from past frames. How can we train it to classify camera sequences
according to the ambiguous human concept of whether the diamond is still in the room, even in
difficult scenarios when a person would not be able to provide a ground truth label (e.g., subtle
camera tampering)? If we train the classifier based on scenarios when a person can provide ground
truth labels, then the AI’s video classifier has two valid generalization behaviors: (1) to say whether
it thinks the diamond is still in the room and (2) to say whether the dataset-labeler would think the
diamond is still in the room.

Our approach favors the second generalization behavior by using RL to train the AI to produce
messages such that the person can themselves predict future camera frames. This idea is based on
the following three insights:

• Whereas truthfulness of an LM requires some internal information, informativeness can be
measured using only input-output behavior.

• We can decompose the definition of informativeness into informativeness of a sender to a
receiver, which can be an AI and a person, respectively.

• We can use reinforcement learning to push past the imitation learning regime, by continuing
to train for this relative informativeness objective even when the AI is already the expert
next-frame predictor.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D TRAINING ALGORITHM IMPLEMENTATION AND COMPARISON

This section provides detailed descriptions of the reinforcement learning algorithms implemented
in our codebase for Markovian chain-of-thought training. Our core contribution is the Markovian
training paradigm that optimizes P(answer — CoT) rather than P(answer — question, CoT), creating
a text bottleneck where the chain-of-thought must be causally load-bearing. We implement multiple
optimization approaches to support this paradigm, enabling comprehensive algorithmic comparison.

D.1 ALTERNATE TRAINING ALGORITHMS TESTED

Our codebase implements four distinct reinforcement learning algorithms, each designed to optimize
the informativeness objective for Markovian chain-of-thought generation:

Parallel Sampling with Batch Baseline: Our main algorithmic approach, which uses standardized
batch-wise advantage estimates (mean=0, std=1) without exponential moving average baseline mix-
ing. This differs from standard GRPO by incorporating the Markovian reward constraint where the
same model parameters θ are used for both policy and reward calculation, eliminating the need for
iterative reward model updates.

We also implement three additional training objectives for algorithmic comparison:

Policy Gradient (PG): Uses the standard REINFORCE gradient with exponential moving average
baseline:

LPG = − lnuθ(CoT | q,CoTinit) ·Adetach (3)

where A is the advantage computed from the informativeness reward Rθ = lnπθ(ans | CoT) −
lnπθ(ans | CoT′) and an exponential moving average baseline Vt =

∑t−1
i=1 wiRi with weights

wi = rt−1−i/
∑t−1

j=1 r
t−1−j (parameter r = 0.9).

PPO-style Clipped Objective: Uses the PPO clipping objective (not the full PPO algorithm) to
prevent large policy updates:

LPPO = −min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At) (4)

where rt(θ) = πθ(CoTt)
πθold (CoTt)

is the probability ratio and ϵ = 0.2 is the clipping parameter. Note this
applies clipping within our single-step framework rather than the multi-epoch data collection and
update scheme of standard PPO.

Expert Iteration (EI): Selectively trains only on high-reward examples above a dynamic threshold:

LEI = LPG · I[Rθ > τt] (5)

where τt is computed as µ+ kσ from the running history of rewards, with k = 2.2 standard devia-
tions in our experiments.

D.2 CROSS-MODEL INTERPRETABILITY ANALYSIS

Figure 5 presents the cross-model evaluation analysis that demonstrates the interpretability of CoT
generations across different model architectures. This analysis supports the interpretability claims
in the main paper by showing that learned reasoning patterns generalize across different language
model architectures rather than being model-specific artifacts.

The cross-model transferability shown in Figure 5 addresses the key question of “interpretable to
whom?” by demonstrating that trained CoTs transfer effectively across diverse model families,
confirming they contain generalizable reasoning patterns rather than model-specific artifacts.

E QUALITATIVE ANALYSIS OF GENERATED COTS

This section provides concrete examples of how Markovian training changes the character of gener-
ated chain-of-thought reasoning across different task domains.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Cross-model evaluation showing Llama-3.1-8B-Instruct’s evaluation of Mistral’s CoT
quality throughout training on Wikipedia text prediction. The correlation between improvements
in both models’ evaluations suggests the learned reasoning patterns generalize across architectures
rather than being model-specific artifacts. Each plot is averaged across 6 independent training runs.

E.1 ARITHMETIC TASK EXAMPLE

Here is an example from Llama-3.1-8B-Instruct on the arithmetic task (data:
/root/MarkovianTraining/results/arithmetic/20250925 041804), show-
ing the final actor and baseline reasoning sampled from the training log.

Batch Index 299
Question 1 + 47 + 35 + 58 + 92 + 19 + 37 + 94 + 30 + 81 + 30 + 1 + 66 + 92 + 78
Actor Reasoning 1 + 47 = 48. 48 + 35 = 83. 83 + 58 = 141. 141 + 92 = 233. 233 + 19 = 252. 252

+ 37 = 289. 289 + 94 = 383. 383 + 30 = 413. 413 + 81 = 494. 494 + 30 = 524. 524 + 1
= 525. 525 + 66 = 591. 591 + 92 = 683. 683 + 78 = 761. The answer is 761. Spoiler: to
solve the problem, just add continuously, like a summarized version, to

Baseline Reasoning To solve this problem, you need to add the numbers together step by step. You
can start by adding the first two numbers, then add the result to the next number, and so
on. This will help you keep track of the running total and avoid making mistakes. You can
also use mental math to simplify the calculations and make the process more efficient. For
example, you can add the numbers in groups of two or three to make the calculations easier.
Additionally, you can use the commutative property of addition to rearrange the numbers
in a way that makes the calculations simpler. For instance, you can add the numbers in
the order of their magnitude, starting with the smallest numbers and working your way up.
This will help you avoid having to

Answer 761

E.2 WIKIPEDIA CONTINUATION EXAMPLE

To better understand Llama-3.1-8B-Instruct’s behavior after Markovian training to predict
Wikipedia text, let’s examine a its behavior on the (randomly selected near the end of training)
batch number 12500. The model was given the following Wikipedia article excerpt:

Boones Mill is a town in Franklin County, Virginia, United States. The population
was 239 in 2018, down from 285 at the 2000 census. It is part of the Roanoke
Metropolitan Statistical Area.
History
Boones Mill was incorporated in 1927. It was previously known as ”Boone Mill”

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and ”Boon Mill”. The town is named after Jacob Boon who operated a mill in the
town.
The Boones Mill Norfolk & Western Railway Depot is listed on the National Reg-
ister of Historic Places. https://www.townofboonesmill.org/history
Geography
Boones Mill is located in northern Franklin County at (37.115462, -79.953966),
along U.S. Route 220 at the southern base of the Blue Ridge Mountains. US 220
leads north to Roanoke and south to Rocky Mount, the Franklin County seat.
According to the United States Census Bureau, the town has

Given this context ending with “According to the United States Census Bureau, the town has”, we
can compare the CoT generated by our trained versus an untrained model:

E.2.1 COT AFTER TRAINING:

“The town of Boones Mill is located in Franklin County, Virginia, United States.
US 220 leads north to Roanoke and south to Rocky Mount, the Franklin County
seat. According to the United States Census Bureau, the town has”

E.2.2 COT BEFORE TRAINING:

“The town of Boones Mill is a small, rural community with a rich history and natu-
ral beauty. The town is surrounded by the Blue Ridge Mountains, offering scenic
views and outdoor recreational opportunities. The town’s economy is primarily
based on agriculture and small”

E.2.3 ACTUAL CONTINUATION:

“a total area of , all of it land. The town is in the valley of Maggodee Creek,
a southeast-flowing tributary of the Blackwater River, part of the Roanoke River
watershed. Murray Knob, elevation , rises to the north on the crest of the Blue
Ridge, and the eastern end of Cahas Mountain, at , is 2 miles to the west.”

The trained CoT shows notably different characteristics from the untrained one. The trained CoT
essentially copied the first and last two sentences from the context, making sure to line up the number
of allotted tokens with the end of the last sentence. The untrained model seems to give fairly generic
properties that the actual Boones Mill Wikipedia article does not mention, such as Boones Mill
having an economy primarily based on agriculture. Also, the untrained CoT is not taking the token
limit into account and is setting the evaluator model to be surprised when it glues the CoT to the
answer and has to predict “agriculture and small a total area of , all of it land”.

This example achieved a normalized reward of 0.3438 (in log probability), suggesting that the trained
CoT strategy was indeed helpful for predicting the technical geographic description that followed.

F HYPERPARAMETER TUNING AND EXPERIMENTAL CONFIGURATIONS

Our Wikipedia continuation experiments systematically explored the hyperparameter space across
multiple model architectures and training configurations. Table 2 provides a comprehensive
overview of the hyperparameter settings used in our experiments, extracted directly from the training
logs.

The experimental design explored several key dimensions:

Model Architecture: We evaluated four different language models (Llama, Mistral, Phi, and
Qwen3) to assess the generalizability of our Markovian training approach across different archi-
tectures and parameter scales.

Temperature Scaling: We systematically varied the sampling temperature (1.2, 1.3, 1.4) to study
the effect of generation diversity on Markovian training effectiveness. Higher temperatures encour-
age more diverse CoT generation, potentially leading to more robust reasoning patterns.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Markovian vs Non-Markovian Training: For each model and temperature combination, we con-
ducted paired experiments comparing Markovian training (Markov=Y) versus Non-Markovian train-
ing (Markov=N) to isolate the effects of our approach.

Batch Size Optimization: Batch sizes were tailored to each model’s memory requirements and
computational efficiency, ranging from 6 (Mistral, Llama) to 16 (Phi) based on GPU memory con-
straints and convergence characteristics.

Training Duration: We used two training regimes - shorter runs (10,000 batches) for initial explo-
ration and longer runs (100,000 batches) for comprehensive evaluation. The shorter runs allowed
rapid iteration during hyperparameter search, while longer runs provided robust performance esti-
mates.

The exponential moving average parameter r (0.9) is only used in non-parallel mode for comput-
ing historical baseline values; parallel (GRPO) mode uses batch-wise standardization instead. The
CoT length was fixed at 75 tokens to ensure consistent computational overhead across experiments.
Detailed model and dataset specifications are provided in the Reproducibility Statement below.

Table 2: Hyperparameter configurations for Wikipedia continuation experiments with actual train-
ing duration. Experiments use either GRPO optimization (Parallel=Y) or standard policy gradient
(Parallel=N) with LoRA fine-tuning. The exponential moving average parameter r is only used in
non-parallel mode for baseline computation. ’Actual Lines’ shows the number of log entries, indi-
cating actual training progress.

Model Temp Batch LR Planned Actual Lines KL r Parallel Markov LoRA CoT Len
llama 1.2 6 1.0e-04 100,000 257 0.1 0.9 N Y 8/16 75
llama 1.2 6 1.0e-04 100,000 3,973 0.1 – Y N 8/16 75
llama 1.3 8 1.0e-04 100,000 8,240 0.1 – Y Y 8/16 75
mistral 1.3 10 1.0e-04 100,000 1,064 0.1 0.9 N Y 8/16 75
mistral 1.4 6 1.0e-04 10,000 9,768 0.1 – Y Y 8/16 75
mistral 1.4 6 1.0e-04 10,000 4,151 0.1 – Y N 8/16 75
phi 1.3 16 1.0e-04 100,000 656 0.1 0.9 N Y 8/16 75
phi 1.4 16 1.0e-04 10,000 5,796 0.1 – Y Y 8/16 75
phi 1.4 16 1.0e-04 10,000 5,123 0.1 – Y N 8/16 75
qwen3 1.3 12 1.0e-04 100,000 780 0.1 0.9 N Y 8/16 75
qwen3 1.4 12 1.0e-04 10,000 3,543 0.1 – Y Y 8/16 75
qwen3 1.4 12 1.0e-04 10,000 3,235 0.1 – Y N 8/16 75

The systematic exploration of this hyperparameter space enabled robust evaluation of our Markovian
training approach and provided confidence in the generalizability of our results across different
model architectures and training configurations.

G IMPACT STATEMENT

Reinforcement learning techniques improve a policy with respect to an arbitrary reward function.
But it can be difficult to mathematically specify nuanced human preferences about the policy. Both
reinforcement learning from human feedback (RLHF) (Christiano et al., 2023) and Constitutional
AI (Bai et al., 2022) help people specify and optimize the properties they would like the AI to have.
This increase in controllability makes the AI more of an extension of human intention, for better or
for worse. The approach of this paper is much more targeted – we use RL to specifically increase an
agent foresight – its ability to predict its future observations.

On its face, this seems like it might be just as dependent on human intentions as RLHF and Consti-
tutional AI – if an LM is more knowledgeable, maybe it could use that extra knowledge to deceive
others, for instance. However, better foresight may also give rise to better values, where values are
opinions about how to act such that the collective system can attain better foresight.

18

	Introduction
	Related Work
	Markovian Language Models and Informativeness
	Markovian Language Models (MLM)
	Data-Generating Distribution and Reward
	Informativeness Objective

	Methods
	Implementation as Question-Answer Pairs
	Policy Gradient with GRPO-Style Baseline
	Actor Reward Gradients: The Key Innovation
	GRPO-Style Baseline with Local Subtraction
	Parallel Sampling Strategy
	Implementation: Two-Term Loss Function
	Within-Batch Advantage Standardization

	Experiments
	Question–Answer Tasks (GSM8K, MMLU, SVAMP, AQuA, ARC, Arithmetic)
	Wikipedia Continuation
	Markovian vs Non-Markovian Perturbation Sensitivity
	Experimental Design
	Results Summary

	Interpretability of CoT Generations

	Discussion and Limitations
	Reproducibility Statement
	Training Stability and Implementation Details
	Additional Performance Analysis
	Truthfulness and Eliciting Latent Knowledge
	Training Algorithm Implementation and Comparison
	Alternate Training Algorithms Tested
	Cross-Model Interpretability Analysis

	Qualitative Analysis of Generated CoTs
	Arithmetic Task Example
	Wikipedia Continuation Example
	CoT after Training:
	CoT before Training:
	Actual Continuation:

	Hyperparameter Tuning and Experimental Configurations
	Impact Statement

