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DYNTOPO: DYNAMIC TOPOLOGICAL SCENE GRAPH
FOR ROBOTIC AUTONOMY IN HUMAN-CENTRIC ENVI-
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Figure 1: The proposed Dynamic Topological Scene Graph is a holistic unified graph integrating
global layouts and local dynamics. Integrating such graphs into reasoning, robotics can manage
autonomy in dynamic large scenes.

ABSTRACT

Autonomous operation of service robotics in human-centric scenes remains chal-
lenging due to the need for understanding of changing environments and context-
aware decision-making. While existing approaches like topological maps offer
efficient spatial priors, they fail to model transient object relationships, whereas
dense neural representations (e.g., NeRF) incur prohibitive computational costs
in updating. At this point, we propose the Dynamic Topological Scene Graph
(DynTopo) which introduces dynamic components and relationships into persistent
topological layouts for embodied robotic autonomy. Our framework constructs
the global topological layouts from posed RGB-D inputs, encoding room-scale
connectivity and large static objects (e.g., furniture), while environmental and
egocentric cameras populate dynamic information with object position relations
and human-object interaction patterns. A holistic unified architecture is conducted
by integrating the dynamics into the global topology using semantic and spatial con-
straints, enabling seamless updates as the environment evolves. An agent powered
by large language models (LLMs) is employed to interpret the unified graph, infer
latent task triggers, and generate executable instructions grounded in robotic affor-
dances. We conduct complex experiments to demonstrate DynTopo’s superior scene
representation effectiveness. Real-world deployments validate the system’s practi-
cality with a mobile manipulator: robotics autonomously complete complex tasks
with no further training or complex rewarding in a dynamic scene as cafeteria as-
sistant. See https://anonymous.4open.science/r/DynTopo-80C6
for video demonstration and more details.
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1 INTRODUCTION

Recent advancements in embodied intelligence have enabled robotics to interact with complex
environments Werby et al. (2024); Maggio et al. (2024); Hou et al. (2025a), yet employing them
autonomously working in human-centric dynamic scenes remains challenging. A critical barrier lies
in enabling robotics to (1) efficiently manage multimodal scene information, (2) reason about ongoing
activities in rapidly changing environments, and (3) autonomously generate and execute tasks based on
evolving environmental changes and situational awareness. Robotics struggle with the unpredictability
of human-centric environments where object states, spatial relationships, and task requirements shift
continuously. These limitations stem from fundamental gaps in scene-understanding architectures
that fail to unify persistent scene knowledge with perceptual updates.

To conduct scene understanding, researchers have explored topological maps as memory-efficient and
easily-queriable structural priors Blochliger et al. (2018); Gomez et al. (2020); Zhang (2015); Zhang
et al. (2015); Garrote et al. (2018). However, such approaches exhibit critical shortcomings: Static
graph nodes cannot model transient object relationships (e.g., utensils moved during cooking), while
rigid hierarchies collapse under concurrent updates to entities with varying dynamism (static furniture
vs. frequently manipulated items). This creates a representational mismatch between the robotics
internal world model and the actual environment state, particularly in zones of high human activity.
On the other hand, dense scene representations such as Neural Radiance Field (NeRF) Mildenhall
et al. (2020) and Gaussian Splattings (GS) Kerbl et al. (2023) series approaches have explored
introducing temporal embeddings and editing the representations to manage the dynamics Wu et al.
(2024); Attal et al. (2023); Cao & Johnson (2023); Fridovich-Keil et al. (2023). However, most of
these dense representations are computationally intensive to update and their dense volumetric nature
hinders efficient querying for downstream tasks Hou et al. (2025a).

Recent works turn to separately represent scene components according to spatial attributes which
is inspiring Hou et al. (2025a); Werby et al. (2024); Maggio et al. (2024). Topo-Field Hou et al.
(2025a) leverages sparse topological map to represent the scene layouts and dense neural field for
content details. Although this pipeline achieves efficiency in down-stream tasks while remains enough
semantics and geometries, it can not manage dynamics based on the static scene assumption. Scene
graph generation methods partially mitigate this by inferring object relationships from monocular
observations Yang et al. (2023b). PSG4D Yang et al. (2023a), as an example, has demonstrated the
ability to generate scene relation graph and help robotics reasoning. Yet these frameworks remain
myopic because they lack mechanisms to maintain global spatial context, historical state tracking,
or embodied agent perspectives. Without integrating global scene context, robotics possess limited
understanding ability beyond its immediate perceptual range. Concequently, it is hard for them to
execute long-horizon tasks in large-scale real-world environments.

Therefore, we aim to introduce a unified dynamic topology architecture updating as the scene
evolves. Such scene representation integrates large-scale layouts with dynamic components based on
spatiotemporal attributes. As shown in Fig. 1, the scene graph encodes both rarely changing elements
(e.g. architectural layouts, large furniture) globally and dynamic transient objects (e.g., small items,
humans), considering their evolving relationships. The dynamic topological scene graph extends the
temporal expressiveness of traditional topology, while the global topology provides spatial priors to
expand the perceptual horizon of localized relations. This dual enhancement equips robotics with
robust autonomy in dynamically evolving scenes.

Specifically, this work proposes Dynamic Topological Scene Graph (DynTopo), a holistic unified
scene graph which helps robotics understand and reason about the complex human-centric environ-
ments for self-driven embodied autonomy. From posed RGB-D inputs, we construct topological
architecture capturing layout-level semantics and huge objects that are rarely moved, while localized
video streams from embodied cameras or environmental cameras populate dynamic updates of the
topology with object affordance and human interaction states. The topology updates are conducted
according to the semantic and spatial constraints of scene components. To bring the proposed
scene graph into robotic deployment, we integrate large language models (LLMs) as reasoners that
interpret the unified graph, infer latent task triggers (e.g., unwashed dishes → initiate cleanup),
generate executable instructions, and adapt plans as the graph evolves. The conducted DynTopo is
validated through complex experiments to show its superior effectiveness. Further, real-world robotic
deployments are conducted for embodied autonomy demonstration.
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Our key contributions can be concluded as:

• We propose Dynamic Topological Scene Graph (DynTopo) for human-centric scene under-
standing. It is a holistic graph with a unified representation, which introduces dynamic scene
components and relationships into topological layouts.

• We employ spatiotemporal constrained layout topology construction with open-set relation
prediction and update the dynamics with geometric and semantic priors. An LLM-powered
agent is employed to interpret, reason, and utilize this graph for robotic affordances.

• We conduct complex evaluations and provide real-world experimental results, demonstrating
the practical viability of our approach that equips robotics with autonomy in extended
dynamically evolving scenes.

2 RELATED WORKS

2.1 DYNAMIC SCENE REPRESENTATION

Representing dynamic scenes has been an essential challenging extension for scene representation.
Works like T-NeRF Gao et al. (2021); Li et al. (2021; 2022); Du et al. (2021); Park et al. (2021b;a)
extended NeRF Mildenhall et al. (2020) with additional time dimension or latent code. Gaussian
Splatting (GS) series, as an explicit approach, also tried to adapt to dynamics Kerbl et al. (2023);
Wu et al. (2024); Yang et al. (2023c); Li et al. (2024). However, dense representations are often
computationally intensive and face challenges on efficient querying for downstream tasks Hou et al.
(2025a). Unlike detailed scene reconstruction, topology-based representations address efficiency by
abstracting environments into sparse graphs. Recent hierarchical representation approaches, such as
HOV-SG Werby et al. (2024) and Topo-Field Hou et al. (2025a), introduce object-level embeddings
with abstract topology to form hybrid representations. Yet based on static environments assumption,
static graph vertices cannot model transient object relationships while rigid hierarchies collapse
under concurrent updates to entities with varying dynamism. Our work bridges this gap through a
dynamic topological scene graph that couples a persistent global topological map (encoding room
layouts and static macro-objects) with dynamically updating ability based on relation prediction. This
representation preserves efficiency for large-scale navigation while maintaining granular, updatable
semantics for task-oriented reasoning.

2.2 RELATION GRAPH GENERATION

Significant progress has been made in inferring relation graphs from monocular video streams Yang
et al. (2023b;a). State-of-the-art methods combine panoptic segmentation with instance tracking
to detect objects and predict inter-object relationships across frames. However, these approaches
remain fundamentally myopic: Their reliance on single-view inputs limits awareness of occluded
regions and global spatial context, artificially constraining a robot’s operational scope. For example,
a robotic might recognize a ”book on a desk” in its immediate view but remain oblivious to the
desk’s location relative to the broader home layout without scene layout knowledge. Furthermore,
existing relation graph generation frameworks operate as passive observers rather than embodied
agents, they lack integration with robotic action loops and have not been validated in physical task
execution. To overcome these limitations, our proposed architecture introduces the dynamics (derived
from egocentric or environmental camera streams) into the topological layouts. By grounding LLM-
based task reasoning in this unified representation, our system not only interprets transient object
relationships but also leverages persistent spatial knowledge to guide robotics through long-horizon
activities.

3 OVERVIEW

This paper proposes Dynamic Topological scene graph to achieve embodied autonomy in dynamic
environments. The scene graph can be noted as G = {Gs,Gd}. Specifically,

Gs : (Vs, Es) = F({Ik, Tk}Nk=1),

Gd : (Vd, Ed) = G(Ft).
(1)

3
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Globally The café is to the east of the corridor, the lab 

is to the north of the hall ...
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Figure 2: Pipeline of our proposed Dynamic Topological Scene Graph. The scene graph construc-
tion process consists of two branches, including the topological layouts and relation generation. A
united scene graph representation is generated by integrating the semantic and geometric constraints.
By employing LLM as reasoning approach, the scene graph is fed as prompts, together with other
context, to drive the robotic mobile manipulator to manage task sequences.

Gs captures persistent environmental layouts and macro-objects which is built from posed RGB-D
images {Ik, Tk}Nk=1(Tk ∈ SE(3)), and Gd is the dynamic local graph incrementally built from video
streams Ft. (V, E) represents the vertices and edges in the graph. F and G denote topological layouts
and dynamic relation graph construction process.

Given posed RGB-D images of the environment, the pixel-wise labels from image segmentation
are back-projected to 3D space based on the corresponding depth map and camera pose to form a
segmented 3D point cloud. We acquire the regions and macro-objects by querying this embedding
point cloud and form the graph vertices Vs = (Vr,Vo), where Vr is the region vertice and Vo is the
macro-object vertice. As for the dynamic scene graph, the process can be denoted as

Pr(Vd, Ed | Ft) = Pr(Mt, Ot, Rt | Ft), (2)

where Pr means probability distribution, Mt is the binary object mask tube, Ot is the object label,
and Rt is the inter-object relation. The dynamic relations are anchored to the topological layouts
according to semantic and spatial relations.

The scene graph serves as a structured knowledge base for LLM-based reasoning. By querying the
hierarchical layers, LLM grounds with spatial and temporal context: the static graph provides global
navigational constraints, while dynamic subgraphs supply localized task triggers. The LLM parses
this multimodal input through prompt templates as

You are . . .︸ ︷︷ ︸
system context

Scene structures: Vs, Es︸ ︷︷ ︸
structure from static graph

Ongoing relations: Vd, Ed︸ ︷︷ ︸
activities from dynamic graph

Optional skills: . . .︸ ︷︷ ︸
embodied primitives

, (3)

that integrate scene knowledge, skill primitives, and instructions, generating executable tasks. Even-
tually, they are translated into mobile base navigation and robotic arm pick-place sequences.

4 METHOD

Our framework operates through four core modules: topological layouts construction, dynamic
relation graph generation, constrained graph fusion, and LLM-driven task reasoning. The workflow
is illustrated in Fig. 2, with algorithmic details described bellow.

4.1 TOPOLOGICAL LAYOUTS CONSTRUCTION

The global topological layouts Gs capture persistent environmental semantics and represents the
layout structures through vertices Vs and edges Es.

Topology Construction. Given posed RGB-D images {Ik, Tk}Nk=1(Tk ∈ SE(3)), we train a Topo-
Field Hou et al. (2025a) function F : R3 → Rn where for any 3D point in the environment, we could
access the related embeddings E ∈ Rn and predict the object and region class of this specific location.
We generate the object and region semantic ground-truth by applying open-vocabulary segmentation

4
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of RGB images. The pixel-wise labels from image segmentation are back-projected to 3D space
based on the corresponding depth map and camera pose to form a segmented 3D point cloud. With
such trained scene representation, we could leverage it to form a topological map. Following the
sample-and-query approach described in Topo-Field, we averagely sample 3D points by dividing the
scene into voxel grids of 0.5m × 0.5m and regarding the center points as samples. The region and
object label of points are inffered with function F and form a topological map.

Relatively Static Objects Filter. However, current scene graph construction approaches operate
under a static scene assumption, resulting in graphs that capture observational snapshots at discrete
moments. Such representations inevitably suffer from transient noise and lack generalizability,
including false detections and dynamic objects frequently interacting with humans. In contrast,
we adopt a relatively static assumption for scene modeling, positing that scene layouts and objects
exceeding specific volume thresholds (e.g., large furniture) or belonging to designated semantic
categories (e.g., couch, fridge, TV) tend to remain stationary, while other entities exhibit higher
dynamism. Consequently, during static scene graph construction, we selectively establish vertices
only for objects with bounding-box volumes surpassing threshold vthr or belonging to semantic
class Cs, effectively filtering out transient or unstable elements. After this step, a hierarchical static
topological graph is built with layouts and relatively static objects:

Gs : (Vs, Es | Vs = {vr
s ∪ vo

s}, Es = {ecs ∪ ebs}), (4)

where Vs consists of region vertices vr
s and static object vertices vo

s . Es consists of region connectivity
relation edges ecs and object-region belonging relation edges ebs.

4.2 DYNAMIC RELATION GRAPH GENERATION

Dynamic relation graphs Gd are built and updated incrementally from video streams Ft. The video
could come from an environmental camera or an embodied one whose global pose is available.

Video Perception and Tracking. Given video frames set F , the model predicts a set of clips
{(mi, fi, pri(c))}Ki=1, where mi is the binary mask, fi is the related semantic feature of the specific
instance, pri(c) is the probability of assigning class c to each frame in the video, and K is the number
of entities. We employ FC-CLIP Yu et al. (2023) as the open-set panoptic segmentation baseline to
generate objects set ot = (m, f, c)t at each frame t. To keep align with the on-going activities in the
environment, we adapt a sliding window with a time span of ∆t to continuously track ot in each
period, employing Unitrack Wang et al. (2021) as the baseline. The tracked instances during ∆t is
dentoed as {oj , l(oj)} where l(oj) is frame cubes when oj appears.

Relation Prediction. We adapt the relation prediction baseline employed in PVSG Yang et al.
(2023b) to predict subject-relation-object triplets. In contrast to conventional approaches, we posit
that human in the scene are more likely to act as subjects and large furniture items predominantly
serve as objects. Consequently, a weight matrix is applied after the pair proposal network Wang et al.
(2024a), denoted as

p′ = PPN(fsub, fobj)M
N×N ,

where p′ is the weighted pair proposals, PPN is the pair proposal network, fsub is the subject feature,
oobj is the object feature, and M is a weighted matrix whose element mi,j means the priority that
object i as subject and j as object. In the Top-k relational pair candidates, we register wegiht of 0.7 to
human as subject and large furniture as object, and weight of 0.3 to others. Then we perform relation
category prediction for selected pairs p′. Predicted relations in ∆t period can be denoted as

R∆t = {idsub, classsub, idobj , classobj , (tla, t
l
b)

L
l=1}

J

j=1,

where id denotes the subject / object index of instances and class is the semantic label. (tla, t
l
b)

L
l=1

denotes the L time spans that the relation is found. In each span, the relation happens at tla and ends
at tlb. To enhance the temporal stability of predictions and mitigate fluctuations across time intervals,
we consolidate consecutive temporal segments when the interval between the end of a preceding
segment tl−1

b and the start of the subsequent segment tla is less than 2 seconds.

5
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4.3 CONSTRAINED GRAPH FUSION

To integrate the dynamics into topological layouts, we anchor local dynamic graphs Gd to global
topology Gs. Depending on whether the accurate camera pose and depth is available, we provide two
approaches.

Spatial Alignments. If the camera pose and depth is available for the environmental or embodied
camera, we simply back-project the instance vertices in the dynamic graph to 3D space and merge
the vertices Vs and Vd from the global and local graph whose bounding-box overlap exceeds the
threshold bthr (60% in our experiments). For vertices in Vd that are not in the global graph, edges are
added between them and the global region vertice, indicating the instances belong to the region.

Semantic Matching. If we only know the region that the camera belonging to instead of accurate
camera pose and depth, we select the dynamic graph vertices V ′

d whose predicted class belong to the
designated semantic categories Cs, as mentioned in Section 4.1, which tends to be the relatively static
stuff. We merge the connected subgraphs G′

d from Gd that V ′
d belongs to into the global graph Gs and

remain the related vertices and edges unchanged. For other connected subgraphs, we add an edge
between the region vertice and the subgraph indicating the belonging relationship.

At each ∆t period, the dynamic components in the graph are cleared and updated as described in
Section 4.2 and 4.3 to keep align with the current environment.

4.4 LLM-DRIVEN TASK REASONING AND EXECUTION

To show how DynTopo can help robotics manage autonomy tasks, we introduce an LLM agent and
parse the dynamic topological scene graph into textual prompts for reasoning. The LLM generates
task sequences through chain-of-thought prompting and manage the tasks with navigation and object
pose estimation. The pipeline is constructed as follows.

Chain of Thoughts. As illustrated in Equation 3, the prompts mainly consist of 1) a system instruction
that describes the agent role, environment contexts, and the brief autonomy policy 2) text-formatted
multilevel dynamic scene graph which is fed to the LLM at a constant frequency 3) optional skills
that the robotics can manage according to the embodied ability. In each query, LLM is expected to
describe the activities in the environment and conduct reasoning on whether optional skills can help
with the activities. If any helpful action is available, a sequence of navigation and object pick-place
tasks will be generated in order. The task instruction is formed as “navigate to / pick / place {object}
in {region}” An example of prompt of a cafe assistant robotics is shown in the appendix.

Navigation and Manipulation. The navigation process follows a two stage planning strategy as
described in ELA-ZSON Hou et al. (2025b), where the robotic approach the target instance by
querying the object veretices position and planning on the graph. After approaching the target via
navigation, the embodied camera takes an image and query the target object to estimate the 6 degree-
of-freedom (DoF) pose. Robotic arm takes this pose as input to conduct pose-guided manipulation.
The detailed manipulation process can be referenced to Polaris Wang et al. (2024b).

5 EXPERIMENTAL RESULTS

5.1 GRAPH STRUCTURE EVALUATION

Fig. 3 shows a built example of the dynamic topological scene graph in a campus building scenario,
whose structure includes multiple rooms. The table shows the quantitative information of the graph
vertices and edges. The evolving vertices and edges in the visualization reflect the system’s capacity
to adaptively update scene representations in response to environmental dynamics, demonstrating our
framework’s ability to maintain spatiotemporal coherence in dynamic settings.

5.2 ROBOTIC DEPLOYMENT

Setups. For environmental setup, we install environmental cameras in activity-critical zones as
shown in Fig. 4. For dynamic scene graph, we activate environmental cameras to record at 5
Hz. The environmental camera pose is aligned to the unified coordinates by feeding its records to

6
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Graph Items Counts

Region Vertices 12

Furniture Vertices 38

Dynamic Vertices 30 ~ 80

Edge Vertices 110 ~ 180

Local Dynamic Scene Graphs (Cafeteria)

Video Streams (Cafeteria)

Local Dynamic Scene Graphs (Laboratory)

Video Streams (Laboratory)

Pick Manipulation

Robotic Navigation

Place ManipulationGlobal Static Scene Graph

cafeteria

laboratory

chamber

restroom

restroomrest area

exhibition hall

assembly Hall corridor northcorridor south

corridor west

corridor east

Figure 3: Example of the generated dynamic topological scene graphs. We show the detailed
evolving process of dynamic subgraphs in the cafeteria and laboratory. On the right, we show the
quantity counts of the graph vertices and edges during the process. We further show the mobile
manipulation demonstrations, including navigation, pick, and place tasks.

Cafeteria

Environmental Camera

Laboratory

Environmental Camera

Entire Building Structure Robotic Setups

Mobile Base

Controller PC

Robotic Arm

Camera

Soft Gripper

Rest

room

Rest

room

Lab
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Corridor

(North)

Corridor

(South)

Corridor (West)

Corridor (East)

Rest Area

Cafeteria

Exhibition Hall

Assembly Hall

Figure 4: Environmental and platform setups. Environmental cameras are installed in the activity-
critical regions. We show the top-down view of regions and a brief platform structure.

GLOMAP Pan et al. (2024) together with frames used to construct static graph. A 10 s sliding window
is applied to extract the most recent video sequences. Our robotic platform (see Fig. 4) integrates a
SLAMTEC mobile base with a SIASUN manipulator. The base employs occupancy-based mapping
and navigation, while the manipulator arm hosts a RealSense D435i camera. Detailed hardware and
environmental configurations are provided in the appendix.

Demonstrations. We provide real-world robotic deployment to show the effectiveness of the proposed
method. As shown in Fig. 3, equipped with navigation and pick-place skills, the robotic acts as
a cafeteria assistant in our experiments. Taking coffee delivery as an example, when someone
in the laboratory places a coffee order, the environmental camera in the cafeteria monitors the
beverage preparation process. Once the brewed coffee is detected on the service counter, the robot is
autonomously tasked with navigating from any location to retrieve the coffee and deliver it to the
laboratory. The entire workflow is performed autonomously, without manual assistance.

5.3 EFFECTIVENESS OF DYNAMIC COMPONENTS

Relation Prediction. For dynamic relation prediction, we conduct experiments on established
public datasets, including Ego4D Grauman et al. (2022), Epic-Kitchens Damen et al. (2018), and
VIDOR Shang et al. (2019) benchmarks originally utilized in PVSG Yang et al. (2023b). Unlike
PVSG’s ResNet-50 backbone, our implementation adopts the ConvNeXt-Large CLIP backbone
pre-trained on LAION-2B, following the FCCLIP Yu et al. (2023) framework. We directly leverage
FC-CLIP’s inference strategy without fine-tuning to obtain segmentation results. For segment
features tracking and relation prediction, we retain PVSG’s methodology: UniTrack Wang et al.
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Methods In-vocabulary Open-vocabulary
R/mR@20 R/mR@50 R/mR@100 R/mR@20 R/mR@50 R/mR@100

3DSGG Wald et al. (2020) 3.37/1.73 3.56/1.89 4.52/2.27 3.42/1.81 3.98/2.26 4.97/2.91
PSG4D Yang et al. (2023a) 6.15/3.46 6.58/4.04 6.83/4.51 6.61/3.72 7.02/4.48 7.11/4.95

Ours(w/o CNN-CLIP) 8.21/5.33 8.69/6.01 9.04/6.78 8.60/5.63 8.89/5.66 9.14/6.26
Ours(w/o relation pair prior) 6.12/3.41 7.73/5.31 8.02/6.54 9.64/6.76 9.82/6.95 9.93/7.11
DynTopo(Ours) 8.40/6.25 9.75/7.59 10.56/8.90 11.52/8.68 11.91/8.84 12.24/9.07

Table 1: Quantitative comparison of relation prediction results on OpenPVSG Yang et al. (2023b)
dataset. We separately compare the in-vocabulary results and open-vocabulary results. (w/o CNN-
CLIP) indicates utilizing ViT-based backbone instead of CNN-based CLIP while (w/o relation pair
prior) means the relatively static scene assumption is not employed.

Graph Approach Methods 0 min 10 min 20 min 30 min
V. Acc. E. Acc. V. Acc. E. Acc. V. Acc. E. Acc. V. Acc. E. Acc.

Static
Built-from-Scratch

ConceptGraph* 0.68 0.90 0.67 0.92 0.65 0.89 0.69 0.87
HOV-SG 0.74 0.94 0.72 0.96 0.70 0.95 0.74 0.95

Topo-Field 0.77 0.96 0.69 0.93 0.75 0.96 0.72 0.96

Dynamic Updating DynTopo (Ours) 0.76 0.92 0.73 0.90 0.71 0.94 0.72 0.95

Table 2: Quantitative comparison of multilevel dynamic graph structure at each time interval
step against static methods as time passes by (evaluated right at once, after 10 min, after 20min, and
after 30 min). The V. Acc. stands for the vertices accuracy and E. Acc. stands for edges accuracy.
ConceptGraph* Gu et al. (2024) indicates that, because ConceptGraph lacks explicit scene layout
modeling, we substitute its layout topology with GT annotations for fair comparison. Bold and
underlined numbers indicate the highest accuracy, while bold numbers represent the second highest.
(2021) associates cross-frame segmentation instances, while relation predictions derive from the
candidate pair filtering and classification pipeline detailed in Section 4.2 with a transformer encoder.

We evaluate the relation prediction results and separately compare the in-vocabulary results and
open-vocabulary results. The in-vocabulary results consider a prediction as accurate only if the subject
category, object category, and relation is exactly same as the GT label while the open-vocabulary
results consider a prediction as accurate if it predicts a reasonable result similar to the GT (e.g. person
sitting on sofa v.s. adult on couch). As shown is Tab. 1, our approach performs better than previous
work, especially when evaluating the open-vocabulary results.

Evaluation on Dynamic Components. To further validate the efficacy of our scene graph construc-
tion framework, we conduct comparative evaluations against existing static scene graph methods
with the following strategy. Our multilevel dynamic scene graph is evaluated every 1 min, the graph
is updated with a 10 s sliding window, while baseline methods reconstruct static scene graphs from
scratch with full image sequences collected at every 1 min interval. Evaluation metrics focus on
the accuracy of vertices and edges. Results in Tab. 2 indicate that our dynamic update method
shows competitive performance on the updated graph structure even compared against static graph
generation methods which build the graph from scratch at each time interval step.

5.4 ABLATIONS

Major Designs on Success Rate. The real-world application success comes from the following
points, and we ablate them in this section. 1) Open-set relation prediction backbone and human-
centric relation priors filter. 2) Proposed components modeling strategy that separate objects into
large furniture and small interactive components. 3) Dynamic subgraph updating strategy constraiend
by semantic and geometry. We ablate on the success rate of the real-world experiments on the
cross-room delivery task. Results are shown in Tab 3. We use origin PVSG Yang et al. (2023b)
backbone when not using open-set one described in Sec. 4.2, we do not filter predicted relation pairs
when not using relation pair prior in Sec. 4.2, we model all objects with static graph ignoring volume
and semantic filtering when not separately modeling, we directly use dynamic subgraph to cover the
related global graph nodes when not using constrained updating in Sec. 4.3.

Object Modeling Strategy on Graph Quality. Different from the origin static topo-graph baseline,
we employ the relatively static objects filter and ablate its efficacy in helping construct robust static
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Open-set
backbone

Relation pair
prior

Separately
modeling

Constrained
updating

Coffee preparation
monitoring Coffee fetch Delivery and place

✓ ✓ ✓ ✓ 15/20 18/20 17/20
✓ ✓ ✓ 15/20 7/20 12/20
✓ ✓ ✓ - 16/20 -
✓ ✓ ✓ 8/20 18/20 11/20

✓ 3/20 17/20 10/20

Table 3: Major designs ablation on success rate of real-world object delivery task.

@ 30 min

Students have a meeting

@ 70 min

Lab is restored after meeting

@ 100 min

Experimental activities begin

Figure 5: Comparison of static graph vertices accuracy as time goes by. The left plot illustrates
the temporal variations in vertices accuracy across static scene graphs constructed using different
methods from multiple video sequences. The right plot demonstrates the time-dependent accuracy of
scene graphs in a laboratory over an extended period, with key timestamps annotated to highlight
human activities that significantly impact the constructed vertices.

components. We employ HOV-SG Werby et al. (2024) and Topo-Field Hou et al. (2025a) as baselines.
We recorded multiple sequences across varying times of day to capture environmental variations
with various activities.The evaluated metric is the vertices precision that indicates the accuracy of the
established vertice as described in ConceptGraph Gu et al. (2024). A vertice is considered correct if
the predicted label is correct and overlap of predicted bounding-box and GT is more than 60%.

As time goes by, we continually compare the accuracy of the constructed vertices. The results shown
in Fig. 5 indicate that our method effectively identifies and prioritizes stable scene components,
specifically, the spatial distribution of functional regions and fixed macro-objects (e.g., furniture).
Over extended temporal intervals, DynTopo exhibits minimal degradation from environmental
dynamics, validating its robustness to transient perturbations in human-centric settings.

Dynamic Graph Generation Strategy on Recall Rate As shown in Tab. 1, we ablate on the
segmentation backbone and the pair proposal strategy during the dynamic graph generation process.
Ours(w/o CNN-CLIP) means we ablate the introduced CNN-based CLIP encoder and employ a
ViT-based one. Ours(w/o relation pair prior) means we do not introduce the relatively static scene
assumption that considers human as more likely to be the subject and large furniture as more likely to
be the object. The results show that these strategies effectively improve performance.

6 CONCLUSION AND LIMITATIONS

This work introduces Dynamic Topological Scene Graph for embodied autonomy in human-centric
environments. Complex experiments and real-world deployment demonstrate promising effectiveness,
however, 1) While our graph architecture balances efficiency and dynamism, the sliding window
for dynamic updates may introduce latency in rapidly evolving scenarios. 2) The real-world robotic
deployment is realized with a junior approach by employing simple polices and given skills to ground
the scene knowledge and representation. However, more powerful vision-language approaches can
enable the robotic with more robust and efficient abilities.

9
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LLM USAGE AND ETHIC PROBLEM ILLUSTRATION

In the preparation of this work, the authors used GPT-4o to assist with proofreading and language
polishing. This included checking for grammatical errors, improving sentence fluency, and enhancing
overall clarity. After using this tool, the authors reviewed and edited the content as needed and take
full responsibility for the content of the publication.

It is important to note that the core ideas, theoretical contributions, methodological design, experi-
mental execution, data analysis, and conclusions presented in this work are solely those of the authors.
The AI model was not involved in generating any of the central intellectual content.

All cameras (including embodied ones and environmental ones) underwent ethical approval, with
OpenCV-based tools automatically blurring faces for privacy compliance.

A.2 ENVIRONMENTAL SETUPS

The environment we deploy our robotics and conduct experiments is a multi-room indoor scenario
of a campus building about 3029.4m2, consisting of a laboratory area of about 120m2, a cafeteria
of about 440m2, an exhibition hall of about 164.8m2, an assembly hall of about 300m2, a rest area
of about 548m2, a chamber of about 170m2, corridors of about 121.2m long, two restrooms, and
several offices. Target manipulating objects in our experiments are chosen from the main function
areas. The environmental camera is set at the cafeteria and the laboratory. The overview of the scene
with exact scale is shown in Fig. A1.

59.4m

5
1

m

120㎡ 292㎡34㎡

440㎡

300㎡165㎡
548㎡

Lab

Chamber
170㎡

Cafeteria

Exhibition 
hall Assembly hallRest Area

Restroom

Restroom

Figure A1: The top-down view of the campus building structure with the exact scale.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ROBOTIC SETUPS

The construction of the robotic embodiment is shown in Fig.A2. We employ two types of platforms.
Both mainly consist of a mobile base, a robotic arm, a Realsense D435 camera attached to the robotic
arm end effector, a battery unit, and a PC. The camera is calibrated with the robotic arm base with the
easy-hand-eye package. The PC is used to take control of the mobile base and get the RGB-D frame
from the camera. The transformation from the arm base to the mobile base coordinates center is
considered to align the RGB-D frames to the base coordinates. The maximum velocity of the mobile
base is set to 1m/s. For the mobile base, we employ the SLAMTEC Hermes, equipped with a laser
radar for simplified localization and obstacle avoidance. For robotic arm, one platform utilizes the
Franka panda arm, the other utilizes the SIASUN GCR5-910 arm. The graph construction, LLM
reasoning, and object pose prediction algorithms are deployed on a PC equipped with and NVIDIA
RTX 4090 GPU. The robotic mapping and localization, navigation, and manipulation processes are
conducted on an embodied PC with an Intel i9-10885H CPU and GTX 1650ti GPU.

SLAMTEC HERMES

PC

SIASUN GCR5-910 

RealSense D435i

Battery

Depth Camera

Collision Senser

Printed Soft 3D Gripper

Figure A2: The hardware platform of our employed robotic mobile manipulators.

Scene Graph Construction. We leverage a RealSense D435i RGB-D camera to capture frames of
the whole scene and employ GLOMAP Pan et al. (2024) to acquire the camera poses. The global
static graph generation follows the description in Section 4.1. For dynamic scene graph, we activate
environmental cameras to record at 5 Hz. The environmental camera pose is aligned to the unified
coordinates by feeding its records to GLOMAP Pan et al. (2024) together with frames used to
construct static graph. A 10 s sliding window is applied to extract the most recent video sequences,
from which dynamic relation graphs are generated and updated as in Section 4.2.

Robotic Manipulation. To enable the robot to execute embodied tasks, all feasible skills are formu-
lated as combinations of navigation and manipulator-based pick-and-place actions. For navigation,
we pre-map the environment using the LiDAR on the mobile base to construct a 2D occupancy map
with 5 cm resolution, ensuring localization accuracy within ±5 cm. Waypoint-guided navigation
is implemented via SLAMTEC’s proprietary API, adhering to their documented protocols. Upon
reaching target locations, the robotic arm is maneuvered to position its end-effector-mounted camera
at a downward-angled viewpoint (≈ 45◦ tilt) for optimal object observation. Captured RGB-D
images feed into a 6-DoF pose estimation pipeline, with the arm executing pose-guided grasping and
placement.

A.4 MODEL SETUPS

At the static graph construction stage,

• For Topo-Field baseline, as described in their tutorial, CLIP with SwinB is employed in
Detic Zhou et al. (2022), CLIP Radford et al. (2021) encoder is ViT-B/32 and Sentence-
BERT Reimers & Gurevych (2019) encoder is all-mpnet-base-v2. The MHE has 18 levels of
grids and the dimension of each grid is 8, with log2 hash map size of 20 and only 1 hidden
MLP layer of size 600.
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• For HOV-SG baseline, the CLIP backbone encoder is ViT-H-14 and the SAM encoder is
ViT h 4b. The voxel size is set as 0.02m. Other model parameters are kept align with the
original setups.

Dining Area

Counter

Table

Shelf

Env Camera View

Env Camera View

Figure A3: The top-down view of layout and environmental cameras setups of the cafeteria area.

At the dynamic graph generation stage, FC-CLIP is leveraged as segmentation baseline. The FC-CLIP
employs ConvNeXt-L-d-320 as backbone which is pretrained on LAION-2B. The embedding dim is
set as 768. Unitrack is employed to link segmentation results and features among frames to get the
mask tubes and feature tubes. The track follows Unitrack’s default settings (config/imagenet resnet18
s3 womotion.yaml) in their Github repository for Multi-Object Tracking and Segmentation (MOTS).
The relation model training process follows the settings described in OpenPVSG, we employ the
transformer relation head approach which performs optimal to others. As for the environmental
cameras setup, we show a top-down view of the cafeteria as an example where we note the installation
and view of the environmental cameras as shown in Fig. A3.

Occupancy-based Localization Occupancy-based Point Navigation

Figure A4: Examples of the occupancy-based localization and navigation of our employed mobile
base.

For navigation process, we build the 2D occupancy map based on the LiDAR input with the grid
size of 5cm. Fig. A4 shows an example of the built occupancy map and occupancy matching based
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localization and navigation. Consequently, the occupancy-based mapping and localization guides the
pose-targeted navigation. We follow the API provided in the SLAMTEC tutorial.

Segmentation Pose Estimation Segmentation Pose Estimation

Figure A5: Medium results of our employed object pose estimation approach. It takes RGB-D
image and natural language text as input and outputs the localized object with its 6-DoF pose for
manipulation.

For robotic arm manipulation, we employ Polaris as the pick-place task manipulator. It takes the
observation and pick-place instruction as input, leverages Grounded Light HQSAM and MVPoseNet
6D to manage the instruction grounding, and drives the robotic arm to finish the 6-DoF pose guided
tasks. Fig. A5 shows the experimental medium results of the employed manipulation method,
including the query and pose estimation result pairs.

A.5 TASK VIDEOS

We provide real-world robotic embodied deployment to show the effectiveness of the proposed
method. The demonstration video shows the robotics have the ability to manage the autonomy in the
campus building for given high-level tasks. In the shown video, the robotic is asked to help the coffee
delivery task if someone in the lab orders a coffee from the cafeteria and help keep the laboratory and
cafeteria clean. Two examples are given:

• Coffee Delivery. As illustrated in the experiment section, The robotic is expected to help
the autonomous coffee delivery process.

• Tidy Up. The environmental camera in the cafeteria detect the departure of patrons. The
table is considered as in tidy-up needy if a person has been eating at the table and gone
leaving things on the table which is not valuable. The top-down detailed map is shown in
Fig. A3 of the cafeteria region.

A.6 FAILURE CASES

Our framework, while effective in many scenarios, exhibits two primary failure modes under specific
conditions.

Relation Prediction Failures. Relation prediction failures persist in complex or densely cluttered
environments. Despite advances in scene graph generation, the relation prediction model occasion-
ally produces inaccurate inferences or omits task-critical relationships—particularly when multiple
humans interact with objects simultaneously. For instance, in crowded cafe settings, the system may
fail to identify which patron has vacated their seat, leading to delayed or erroneous cleanup tasks.
Similarly, if a prepared coffee is temporarily occluded (e.g., by a passing customer) when placed
on the service counter, the robot may overlook the delivery trigger, leaving the item undelivered
indefinitely.

Error Recovery. Error recovery limitations arise during long-horizon task execution. The current
pipeline lacks robust mechanisms to diagnose and recover from partial failures in subtask sequences.
For example, if a coffee cup grasp attempt fails due to pose estimation inaccuracies, the system does
not autonomously verify subtask completion or initiate recovery protocols (e.g., re-attempting the
grasp or notifying a human operator). Instead, such errors propagate silently, often resulting in full
task abandonment. This limitation stems from the absence of fine-grained state verification modules
and closed-loop feedback during action execution.
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A.7 LLM PROMPTS

This section provide a prompt example that is utilized to manage the robotic as a cafeteria assistant,
following the approach illustrated in the methodology section as shown in 1.

Listing 1: LLM reasoning prompts example

{
# ===== Task Context & Role Definition =====
TASK_CONTEXT = {

"environment": "A university academic building floor containing 1)
Cafe area 2) Classroom cluster 3) Faculty offices 4) Common
spaces",

"role": "Embodied service robot for campus cafe named ’CafeBot’",
"primary_objective": "Handle delivery tasks between cafe counter and

various destinations while maintaining spatial awareness",
"operational_constraints": [

"Must navigate through mixed pedestrian-robot traffic areas",
"Service radius limited to same-floor locations",
"Business hours: 8:00-18:00 weekdays",
"Priority for hot beverage deliveries under 8-minute window"

]
}
# ===== Multi-Level Scene Understanding =====
SCENE_UNDERSTANDING = {

"global_topological_map": {
"structure": "Hierarchical graph with two layer abstraction",
"layer1_nodes": {

"regions": ["Cafe_Station", "Classroom_A1-A6",
"Office_B1-B4", "Elevator_Lobby", "Storage_Closet"],

"key_objects": ["Main_Counter", "Coffee_Machine",
"Pickup_Desk", "Emergency_Exit"]

},
"layer1_edges": {

"physical_connections": [
("Cafe_Station <-> Elevator_Lobby via North corridor

(15m)"),
("Elevator_Lobby <-> Classroom_A1 via East hallway

(20m)"),
("Cafe_Station <-> Office_B1 via West passage (12m)")

],
"semantic_links": [

("Coffee_Machine located_in Cafe_Station"),
("Pickup_Desk adjacent_to Main_Counter")

]
},
"navigation_example":

"""IF goal=Deliver to Classroom_A3:
1. Query global topology
2. Find Cafe_Station -> Elevator_Lobby -> Classroom_A1-A6

cluster
3. Calculate shortest path avoiding crowded zones during

class breaks
4. Update path when detecting temporary obstruction"""

},

"local_relational_graph": {
"dynamic_nodes": {

"human": ["student", "professor", "staff", "visitor"],
"objects": {

"static": ["table", "door", "fire_extinguisher"],
"dynamic": ["rolling_chair", "food_tray",

"mobile_device"]
}

},
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"relationship_edges": {
"spatial": ["near", "blocking", "approaching"],
"functional": ["waiting_for", "handing_over", "using"],
"temporal": ["recently_arrived", "about_to_leave"]

},
"reasoning_example":

"""WHEN DETECTED:
- Barista human_node performing place_action(coffee_cup,

pickup_counter)
- Steam rising from cup_node
THEN INFER:
1. Coffee order ready for delivery
2. Cup needs stabilization during transport
3. Priority elevation if customer waiting_time > 5min"""

}
}
# ===== Reasoning Chain =====
REASONING_MECHANISM = {

"core_operation_chain": [
"Navigate -> Grasp -> Navigate -> Place"

],

"task_decomposition_examples": {
"coffee_delivery": {

"input": "Deliver coffee from counter to Classroom A3",
"step_breakdown": [

{"action": "Navigate",
"params": {"target": "Main_Counter",

"path_constraints": "avoid_peak_traffic"}},
{"action": "Grasp",
"params": {"object": "coffee_cup", "constraints":

"tilt_angle<15_degrees"}},
{"action": "Navigate",
"params": {"target": "Classroom_A3", "risk_avoidance":

"minimize_liquid_spillage"}},
{"action": "Place",
"params": {"surface": "lectern_desk",

"position_accuracy": "3cm"}}
]

},

"trash_retrieval": {
"input": "Retrieve trash bin from Office B2",
"step_breakdown": [

{"action": "Navigate",
"params": {"target": "Office_B2", "door_operation":

"auto_door_activation"}},
{"action": "Grasp",
"params": {"object": "trash_bin", "grip_mode":

"cylindrical_grasp"}},
{"action": "Navigate",
"params": {"target": "Storage_Closet",

"payload_awareness":
"center_of_gravity_compensation"}},

{"action": "Place",
"params": {"surface": "recycling_zone", "orientation":

"label_facing_outward"}}
]

}
},

}

# Update PROMPT_INSTRUCTIONS
PROMPT_INSTRUCTIONS += f"""
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4. Basic Operation Reasoning Chain:
- Mandatory decomposition structure:

{REASONING_MECHANISM[’core_operation_chain’]}
- Standard workflow example:

{REASONING_MECHANISM[’task_decomposition_examples’]
[’coffee_delivery’][’step_breakdown’]}
- Error recovery protocols:

{REASONING_MECHANISM[’error_recovery_protocols’]
[’grasp_failure’][0:2]}

Strictly prohibited:
- Introducing action types beyond grasp/place
- Adding object modification or complex interaction
- Executing non-navigation movement commands
"""
# New minimal example
"document_transfer": {

"input": "Transfer documents from printer room to professor’s
office",

"step_breakdown": [
{"action": "Navigate",
"params": {"target": "Printer_Room", "elevator_usage":

"priority_freight_elevator"}},
{"action": "Grasp",
"params": {"object": "document_stack", "pressure_control":

"prevent_paper_crease"}},
{"action": "Navigate",
"params": {"target": "Professor_Office", "social_navigation":

"avoid_private_conversation_areas"}},
{"action": "Place",
"params": {"surface": "incoming_tray", "alignment":

"parallel_to_desk_edge"}}
]

}
# ===== Execution Protocol =====
PROMPT_INSTRUCTIONS = f"""
You are {TASK_CONTEXT[’role’]} operating in

{TASK_CONTEXT[’environment’]}. Your core capabilities include:

1. Topological Navigation:
- Maintain mental map:

{SCENE_UNDERSTANDING[’global_topological_map’][’structure’]}
- Use regional connections like

{SCENE_UNDERSTANDING[’global_topological_map’]
[’layer1_edges’][’physical_connections’][0]} for long-range planning
- Example: {SCENE_UNDERSTANDING[’global_topological_map’]
[’navigation_example’]}

2. Situational Reasoning:
- Track relationships: {SCENE_UNDERSTANDING[’local_relational_graph’]
[’relationship_edges’][’spatial’]}
- Make inferences like {SCENE_UNDERSTANDING[’local_relational_graph’]
[’reasoning_example’]}
- Detect human activities (e.g., professor_chen approaching door -> hold

door open)

3. Skill Orchestration:
- Compose primitives: {ROBOT_CAPABILITIES[’primitive_skills’].keys()}
- Follow workflow:

{ROBOT_CAPABILITIES[’task_decomposition’][’example_workflow’]}

When receiving requests:
1. Parse request into semantic components
2. Cross-verify with spatial relationships
3. Generate executable skill sequence
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4. Monitor environment changes for adaptation
"""
}
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