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Figure 1: We present ReLIC, a learning-based approach that enables flexible interlimb coordina-
tion for versatile loco-manipulation in unstructured environments. ReLIC controls an arm-mounted
quadruped robot to dynamically assign limb for either locomotion or manipulation during task ex-
ecution, e.g., simultaneously using an arm (green) and a selected leg (red) to jointly reach manipu-
lation targets while maintaining stable mobility with the remaining legs (purple). The effectiveness
of our approach is demonstrated across diverse and complex tasks specified by various user input
modalities, including direct target specification, contact points, and natural language instructions.

Abstract: The ability to flexibly leverage limbs for loco-manipulation is essen-
tial for enabling autonomous robots to operate in unstructured environments. Yet,
prior work on loco-manipulation is often constrained to specific tasks or prede-
termined limb configurations. In this work, we present Reinforcement Learn-
ing for Interlimb Coordination (ReLIC), an approach that enables versatile loco-
manipulation through flexible interlimb coordination. The key to our approach
is an adaptive controller that seamlessly bridges the execution of manipulation
motions and the generation of stable gaits based on task demands. Through the
interplay between two controller modules, ReLIC dynamically assigns each limb
for manipulation or locomotion and robustly coordinates them to achieve the task
success. Using efficient reinforcement learning in simulation, ReLIC learns to
perform stable gaits in accordance with the manipulation goals in the real world.
To solve diverse and complex tasks, we further propose to interface the learned
controller with different types of task specifications, including target trajectories,
contact points, and natural language instructions. Evaluated on 12 real-world tasks
that require diverse and complex coordination patterns, ReLIC demonstrates its
versatility and robustness by achieving a success rate of 78.9% on average. Videos
and code can be found at https://relic-locoman.rai-inst.com/.
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1 Introduction

The ability to combine locomotion and manipulation, commonly referred to as loco-manipulation, is
essential to achieving robot autonomy in unstructured environments [1]. As tasks grow in diversity
and complexity, robots must perform versatile interactions with both the terrain and external objects,
coordinating limb movements in concert. Despite significant advances in locomotion and manipula-
tion individually, seamlessly integrating the two capabilities remains a major open challenge [2, 3].
Consider, for example, an arm-mounted quadruped robot tasked with transporting a large yoga ball
across a room, as shown in Figure 1. Success of this task demands coordinating the arm and a leg to
grasp, lift, and balance the object, while maintaining stable gaits to move around with the remaining
support legs. Different tasks impose different contact and movement requirements, necessitating
adaptive whole-body control strategies that can flexibly allocate actuation across limbs.

In light of this need, prior work has explored a range of decomposition and coordination strategies.
A common approach partitions control among limb groups, typically treating arms and legs sepa-
rately, based on task-specific heuristics [4, 5]. While effective in constrained settings such as mobile
pick-and-place, these methods often depend heavily on manual design and struggle to generalize to
tasks requiring dynamic assignment of limb functions. More recent efforts have pursued whole-body
control, spanning both model-based and learning-based approaches [2, 6, 7]. Despite encouraging
results, these methods are often confined to predefined task sets and fixed limb roles. For more com-
plex settings, jointly optimizing for both locomotion and manipulation within a unified framework
remains a fundamental challenge in practice.

To this end, we present Reinforcement Learning for Interlimb Coordination (ReLIC), an approach
for solving versatile loco-manipulation in unstructured environments. At the core of ReLIC is an
adaptive controller that bridges manipulation success with locomotion stability under dynamic as-
signments of limb functions. Instead of solving both objectives holistically or relying on fixed
decomposition heuristics, our method decouples loco-manipulation into two interconnected sub-
problems, robustly generating manipulation behaviors and maintaining stable gaits based on task
demands. We train the locomotion controller entirely in simulation using an efficient reinforcement
learning pipeline and then transfer it to the real world through motor calibration. Built on top of
this adaptive controller, our approach supports flexible task specification via high-level task inter-
faces, including direct targets, contact points, and free-form language instructions. As illustrated
in Figure 1, ReLIC enables a broad range of loco-manipulation tasks requiring seamless interlimb
coordination. Deployed on an arm-mounted Boston Dynamics Spot, ReLIC demonstrates robust
performance across 12 diverse tasks involving mobile interlimb manipulation, stationary interlimb
coordination, and foot-assisted manipulation. We achieve an overall success rate of 78.9% across
the three different types of task specifications.

2 Related Work

Joint locomotion and manipulation has been widely studied in robotics, with applications across
diverse hardware platforms including wheeled mobile manipulators [8–16], humanoid robots [17–
20], and legged systems [4, 6, 7, 21–29]. Model-based approaches typically rely on whole-body
control frameworks and trajectory optimization, leveraging accurate dynamics models and structured
task representations [6, 21–23]. Assuming detailed knowledge of the scene, object geometry, and
contact conditions [4, 24–26], most of these approaches operate in controlled settings and often
struggle to scale to unstructured environments. On the other hand, learning-based methods offer
improved adaptability and reduced engineering overhead by leveraging large-scale, high-quality
data [7, 27–29]. However, most are limited to specific tasks or assume fixed limb roles, due to the
complex nature of learning such capabilities and the limited data [30, 31]. Our approach follows
a task-oriented design that decouples the loco-manipulation problem solved through an integration
of a model-based controller and trained RL policy. This separation enables more flexible reuse of
learned behaviors across tasks while supporting dynamic reallocation of limb roles in response to
task demands.
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Figure 2: Overview of ReLIC. Based on various types of task specifications, ReLIC enables the
robot to perform versatile loco-manipulation. Conditioned on the dynamic assignment of limb func-
tions, the ReLIC controller generates the actions through the interplay between a model-based mod-
ule that prioritizes task success, and an RL policy that robustly maintain stable gaits in accordance
with the manipulation behaviors. This design decouples the two challenging subproblems without
relying on rigid heuristics or sacrificing inter-module coordination.

Interlimb coordination is a hallmark of natural locomotion and dexterous behavior in animals and
humans [32–34]. In robotics, coordinated use of multiple limbs has been explored individually for
multi-legged locomotion [35] and bimanual manipulation [36, 37]. Recent work has investigated
using legs as manipulators to extend task versatility [38–42]. However, these systems often rely on
predefined contact sequences with explicit mode switching, sometimes requiring additional actua-
tion hardware. Notably, Sleiman et al. [2, 30] propose whole-body planning for contact-rich tasks
using pre-modeled scenes, discovering feasible contact modes offline. While effective in pre-defined
settings, these methods usually assume static assignments of limb functions and known objects, lim-
iting their applicability in new tasks or unseen environments. In contrast, our approach enables
flexible interlimb coordination, allowing each limb to dynamically alternate between locomotion
and manipulation based on the evolving requirement for diverse and complex tasks.

3 Method

Our goal is to control a legged manipulator to flexibly utilize its limbs to solve manipulation tasks
while stably performing locomotion across diverse scenarios. While our approach is designed to
generalize to robots with different arm–leg configurations, our experiments and examples focus on
a quadrupedal robot equipped with a single arm. Concretely, the set of available limbs is denoted
as Λ = {Arm,FL-Leg,FR-Leg,HL-Leg,HR-Leg}, where F, H, L, and R indicate front, hind, left,
and right respectively. In contrast to prior work [2], our approach enables each limb to dynamically
switch roles between locomotion and manipulation in response to the task demand.

We present Reinforcement Learning for Interlimb Coordination (ReLIC), an approach for versatile
loco-manipulation through flexible interlimb coordination (Figure 2). In this section, we first pro-
vide an overview of our framework for versatile loco-manipulation (Section 3.1). Next, we propose
an adaptive controller by leveraging reinforcement learning (RL) to bridge locomotion and manip-
ulation (Section 3.2). We then explain how to effectively learn a robust and transferable policy
from simulation for our proposed controller (Section 3.3). Lastly, we describe how the ReLIC con-
troller can be interfaced with various types of user specifications to perform diverse and complex
loco-manipulation tasks (Section 3.4).
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3.1 Overview

We propose to solve versatile loco-manipulation in a hierarchical framework consisting of a task
level and a command level. The former aims to describe diverse and complex loco-manipulation
tasks, as shown in Figure 3, using a unified target-driven representation, while the latter controls the
robot to achieve the task-specific targets while maintaining stable mobility through flexible coordi-
nation of limbs. Below, we elaborate on the design and interface for each level.

Task level. Based on the user description, we assume the task solution can be represented as end-
effector targets for designated limbs over time. At each time step, we use a binary mask m ∈
{0, 1}|Λ| to indicate the role for each limb λ ∈ Λ, with manipulation indicated by 1 and locomotion
by 0. Given the assignment mask m, the target pose for each limb end-effector designated for
manipulation is specified as τλ, leaving the remaining limbs for locomotion with unspecified targets.
Accordingly, the desired torso target τ torso is determined by the manipulation limb targets via whole-
body IK [43], all together denoted as τ . Now, the task of the horizon T can be represented as
the sequence of {τt,mt} for t = 0, ..., T − 1. In Section 3.4, we will explain how such task
representation can be computed from the user descriptions of various modalities.

Command level. Given the representation from the task level, we design the controller to generate
motor commands for the robot to perform versatile loco-manipulation as shown in Figure 2. On the
Spot robot, low-level commands include the desired position for each joint. Next, we will explain
how to obtain the controller generating commands based on {τt,mt} at each time step.

3.2 Adaptive Control for Flexible Interlimb Coordination

To tackle the substantial challenge of solving whole-body control under dynamic limb assignments,
we design the ReLIC controller to seamlessly bridge locomotion and manipulation. Unlike prior
work that learns a monolithic policy end-to-end [7, 30, 39, 41], our approach generates actions
through the interaction of two dedicated controller modules: a manipulation module that prioritizes
task success, and a locomotion module that maintains stable gaits in accordance with the manip-
ulation behaviors. The two modules in the ReLIC controller communicate through the up-to-date
whole-body robot state st and the limb assignment m to jointly predict the motor commands as the
action a. This design decouples the two challenging subproblems without relying on rigid heuristics
or sacrificing inter-module coordination.

According to the different needs for manipulation and locomotion, we adopt different design options
for the two controller modules. Given the target-driven task representation, the manipulation task can
be directly solved by a model-based (MB) controller conditioned on s, m, and τ . Depending on the
task requirements, this can be anything from a standard inverse kinematics solver to a meticulously
tuned impedance controller. As for locomotion, which involves dynamic behaviors with significantly
higher demands for robustness and adaptability, we train a policy π(·|s,m) through reinforcement
learning (RL) [44]. Concretely, we denote the action yielded by the two modules as aMB and aRL,
both of which have the same dimensionality with the final action a with only the dimensions for the
assigned limbs to be valid. To this end, the final action is computed as a = m◦aMB +(1−m)◦aRL.

To ensure stable locomotion across different limb coordination patterns, we exert gait regularization
during training by leveraging contact-time metrics among feet [44, 45]. Specifically, we enforce
trotting gait for quadrupedal locomotion and a three-phase bouncing gait for tripedal locomotion,
as visualized in Figure 4. Compared to phase-based gait regularization [46], the contact-time-based
approach is simpler to implement and more stable during training, as it avoids sampling from a
state-dependent phase variable. Implementation details are provided in the Appendix.

3.3 Learning Transferrable Policy in Simulation

We leverage IsaacLab [44] to scale up reinforcement learning for improving the robustness of the
policy π. To facilitate sim-to-real transfer, we implement comprehensive domain randomization
during training, covering variations in robot dynamics, terrain properties, and external disturbances.
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Figure 3: Loco-Manipulation Tasks with Interlimb Coordination. ReLIC is evaluated on 12
real-world tasks designed to test diverse and complex interlimb coordination. The task suite spans
three categories: mobile interlimb coordination (M), stationary interlimb coordination (S), and foot-
assisted manipulation (F). All tasks can be specified using direct target inputs, with a subset also
supports specification via contact points (*) and language instructions (**).

Despite these efforts, the dynamic behaviors required for flexible interlimb coordination, particularly
during three-legged locomotion, reveal a significant sim-to-real deployment gap which primarily
stems from unmodeled variations in motor parameters [47] such as time-dependent torque limits.

To bridge this gap, we leverage a motor calibration procedure by utilizing rollouts from the real
world. After the initial training in simulation with uncalibrated parameters, the policy is deployed
on the real-world robot to collect extensive calibration data, including joint positions, velocities,
commanded torques, and actual torque measurements. Using CMA-ES [48], the torque limits are
optimized as functions of joint state from collected real-world data. The policy is subsequently
fine-tuned in simulation using these calibrated parameters.

3.4 Task Interface for Versatile Loco-Manipulation

Leveraging the flexibility of our formulation and the adaptability of the ReLIC controller, we solve
diverse and complex loco-manipulation tasks based on user commands. We interface with user input
at the task level through three modalities:

• Direct targets: The most straightforward approach is to manually specify target trajectories for
designated limbs, such as through teleoperation. These trajectories can be directly converted into
the task representation described in Section 3.1 with minimal post-processing.

• Contact points. Many loco-manipulation tasks can be described by specifying key contact points
and associated motions. Given these, target trajectories are generated via motion planning algo-
rithms.

• Language instructions. Free-form language provides a flexible way to describe complex tasks.
While our controller is not directly conditioned on language, contact points and trajectories can
be inferred from RGBD observations using vision-language models (VLMs) [49], which provide
strong semantic reasoning capabilities.

These different modalities reflect varying levels of user specification and prior knowledge, resulting
in different levels of difficulty for equivalent tasks expressed via different modalities. Additional
implementation details for each interface modality are provided in the Appendix.
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Figure 4: Flexible Gait Transitions. With ReLIC, the robot can execute a range of gaits, including
four-legged trotting and three-legged bouncing with a designated limb lifted (FL: front-left, FR:
front-right, HL: hind-left, HR: hind-right). The controller enables seamless transitions between
these gait modes in real-world operation, without requiring the robot to pause or reset its stance.

4 Experiments

We conduct a series of real-world experiments to investigate the following questions: Q1. Can the
ReLIC controller robustly perform interlimb coordination? (Section 4.1) Q2. Can ReLIC success-
fully perform diverse and complex loco-manipulation tasks on command? (Section 4.2) Q3. What
are the primary sources of failure within the control stack? (Section 4.3)

Experiments are run on a Boston Dynamics Spot (quadrupedal, 12 actuators) equipped with Spot
Arm and a gripper (7 actuators total). The onboard stereo cameras and IMU supply state estimates
and RGB-D images for the task interface. All computation executes on an external PC connected
over Ethernet. Additional hardware details appear in the Appendix.

4.1 Quantitative Analysis on Interlimb Coordination

We first conduct quantitative analysis on the ReLIC controller’s performance on interlimb coordi-
nation. Specifically, we examine the robot’s ability to (i) switch gaits on demand under varying arm
and leg configurations and (ii) perform target-driven end-effector motions with multiple limbs.
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Figure 5: End-Effector Motions. The robot
tracks independent rhombus-shaped trajectories
using the arm and the lifted front-left (FL) leg
while walking with three supporting limbs. (A)
Overlay of reference and executed trajectories for
both effectors. (B) Linear tracking errors in x and
y directions and rotational error in yaw.

Gait transitions. We command the robot to
switch between four-legged trotting and three-
legged bouncing, while randomly changing
the end-effector targets during execution. As
shown in Figure 4, the robot adapts its gait dy-
namically to maintain balance throughout the
transitions. All gait switches occur instantly,
without requiring the robot to stop or transition
through a predefined mode. We observe that the
robot can immediately reassign the lifted limb
from FL to HR during walking without inter-
ruption. In contrast, prior work [38–40, 42] for
leg manipulation rely on predefined state ma-
chines or pre-trained gait policies often requir-
ing the robot to pause before switching limbs.

End-effector motions. While walking with
three support legs, the robot is asked to use the
arm and the lifted FL leg to independently track
rhombus-shaped trajectories ten times in suc-
cession. Figure 5(A) overlays the reference and
executed paths, and Figure 5(B) reports the linear tracking errors in x, y, and the rotational error
for yaw. The low mean Cartesian error across both effectors confirms that the controller maintains
precise interlimb coordination during dynamic locomotion.
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Figure 7: Flexible Interlimb Coordination. ReLIC enables dynamic assignments of limbs between
manipulation and locomotion during task execution. This seamless role-switching allows the robot
to adapt efficiently to varying task demands. Here, we demonstrate the different interlimb coordina-
tion patterns during the execution of Shipping Box (A), Deck Box (B), and Chair (C) tasks.

4.2 Loco-Manipulation Task Solving

Tasks. As shown in Figure 3, we devise 12 tasks in the real world to demonstrate the capability of
ReLIC and conduct comprehensive evaluation, examining the robot’s capability involving diverse
and complex interlimb coordination patterns (detailed task setup can be found in Appendix):

• Mobile interlimb coordination: Yoga Ball and Shipping Box test the robot’s ability to manipulate
large objects using its arm and one leg while navigating with the remaining three legs.

• Stationary interlimb coordination: In the Tire Pump, Trash Bin, Deck Box, and Small Bin tasks,
the robot coordinates its arm with one designated leg for object manipulation while maintaining
balance through static support from the remaining three legs.

• Foot-assisted manipulation: While the Tool Chest, Storage Bin, Chair, Basket, Drawer, and
Laundry Bag tasks can be completed using only the arm, incorporating an additional leg as a
manipulator demonstrates measurable performance improvements in stability and task execution.

Model variants and baselines. We evaluate three variants of our method based on different user
input modalities: direct targets (ReLIC-Direct), contact points (ReLIC-Contact), and language
instructions (ReLIC-Language). ReLIC-Contact and ReLIC-Language are evaluated on a subset
of tasks due to input modality constraints. All variants uses the same trained ReLIC controller. As
baselines, we compare against an end-to-end reinforcement learning policy [7] (E2E) and a model
predictive control (MPC) policy conditioned on direct targets.

Results. We evaluate ReLIC on the 12 loco-manipulation tasks in unstructured real-world environ-
ments. Each model variant and baseline is evaluated over 10 randomized trials per task. The average
success rate for each settings is reported in Figure 6.
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ReLIC-Direct achieves the highest success rates across all but one task. In 9 out of 12 tasks, it
succeeds in more than 8 out of 10 trials, covering all three task categories. Most tasks involve long-
horizon execution with multiple stages, requiring diverse capabilities such as object picking (e.g.,
Basket, Small Bin), displacement (e.g., Storage Bin, Drawer), locomotion (e.g., Yoga Ball, Laundry
Bag), and maintaining forceful contact (e.g., Trash Bin, Chair). The consistently high performance
demonstrates the robustness and reliability of the ReLIC controller. On tasks with additional chal-
lenges of repetitive motion or fine balance, like Deck Box and Tire Pump, ReLIC-Direct maintains a
non-negligible success rate, though performance is reduced. Among all tasks, Shipping Box proves
the most difficult due to the large size and rigid-body dynamics of the object. Despite receiving less
direct guidance, both ReLIC-Contact and ReLIC-Language achieve comparable results. In these
settings, the controller reliably executes targets inferred user-specified contact points or language
instructions, validating the effectiveness of our hierarchical framework.

Baseline methods underperform across the board due to their lack of robust interlimb coordination.
The off-the-shelf MPC baseline lacks support for interlimb manipulation or three-leg locomotion.
As a result, it fails on all tasks except for Tire Pump. This success occurs only by chance when the
robot happens to step on the pump and actuate it with its arm, without coordinated intent. The end-
to-end RL baseline fails across all tasks due to unstable gait generation and inaccurate end-effector
tracking, underscoring the need for more structured and adaptive control strategies.

4.3 Failure Analysis

Figure 8: Failure Breakdown. Analysis of
failure modes for the ReLIC-Contact variant
across multiple tasks. Failures are catego-
rized into SLAM errors, tracking errors, bal-
ance loss, and inaccurate contact.

With ReLIC-Contact as a test case, we analyze fail-
ure modes with a breakdown illustrated in Figure 8.
The first source of failure for ReLIC-Contact comes
from perception error, primarily due to inaccuracies
in the 3D point cloud or state estimation. Even when
perception is accurate, task failures may still arise
for tracking performed by the ReLIC controller, par-
ticularly under extreme or unstable body configura-
tions. For example, when the robot attempts to reach
an arm target while one foot is stepping on the trash
bin pedal, the unpredictable external force from the
pedal poses significant challenges for the policy to
maintain balance. The third category of failures in-
volves unintended manipulation errors with challenging contacts. A common example for this cat-
egory occurred in the Yoga Ball task, where the robot either lost grip or unintentionally kicked the
ball, resulting in slippage. Such failures are especially challenging to avoid or recover from, as a
viable solution would require real-time feedback and fine-grained contact reasoning. Despite these
challenges, ReLIC achieves an overall success rate of 82.5% across the four most contact-intensive
loco-manipulation tasks.

5 Conclusion and Discussion

We introduced ReLIC, an approach that enables flexible interlimb coordination for versatile loco-
manipulation. By dynamically assigning limb roles and decoupling locomotion and manipulation
into two coordinated modules, ReLIC learns to achieve robust whole-body control. Based on task
specifications of various modalities, the ReLIC controller can be employed to solve diverse and
complex tasks on command. Our system demonstrates strong real-world performance on 12 chal-
lenging scenarios, spanning mobile interlimb coordination, stationary interlimb coordination, and
foot-assisted manipulation. We hope this work inspires further research at the intersection of rein-
forcement learning and whole-body control, and highlights the critical role of interlimb coordination
in advancing loco-manipulation capabilities.
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6 Limitations

While ReLIC demonstrates versatile whole-body control across a diverse set of loco-manipulation
tasks, several limitations remain.

First, the high-level task interface based on contact points and language instructions generates targets
in an open-loop fashion. Although effective in the evaluated scenarios, this approach can be brittle
in tasks requiring real-time adaptation or fine-grained feedback. A promising direction is to collect
large-scale demonstrations and train policies to predict task-level actions through imitation learning.

Second, the manipulation controller currently relies on a standard inverse kinematics solver. For
more complex tasks involving dynamic behaviors or collision avoidance, more expressive or learned
controllers may be needed. Integrating such capabilities with the RL locomotion policy presents an
interesting challenge for future work.

Finally, our experiments in this paper focus on repurposing legs for manipulation in an arm-mounted
quadruped. Extending ReLIC to broader forms of interlimb coordination, such as using arms to
support locomotion or generalizing to other robot morphologies, offers exciting opportunities for
expanding whole-body autonomy.
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