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Abstract
Large Language Models (LLMs) achieve remarkable performance but their opaque,1

black-box nature limits trust and hinders deployment in critical applications. This2

paper introduces CogN-Syn, a novel two-stage Cognitive Neuro-Symbolic frame-3

work designed to deconstruct the decision-making process of LLMs into human-4

understandable cognitive steps. Unlike methods that rely on post-hoc rational-5

izations or simple linear predictors, CogN-Syn first trains a Concept Encoder to6

map unstructured text to a well-defined, high-level conceptual vocabulary. Sub-7

sequently, a second stage learns sparse, symbolic logic rules over these concepts8

using a Differentiable Logic Layer. This decoupled training strategy mimics a cog-9

nitive process: from semantic perception (concepts) to symbolic reasoning (rules).10

Our framework not only achieves performance competitive with black-box models11

but also provides a unique three-tiered explanation, enabling clear diagnostics of12

model failure modes and taking a crucial step towards safer, more trustworthy AI.13

1 Introduction14

The success of Large Language Models (LLMs) [2, 4] has created a pressing need to understand15

their internal cognitive processes. However, their decision logic is diffused across billions of16

parameters, making it exceedingly difficult to trace the root cause of their behaviors. Current17

explainability methods largely fall into two categories: post-hoc explanations, such as LIME [11],18

which approximate model behavior rather than revealing true logic; and inherently interpretable19

models [12] like Concept Bottleneck Models (CBMs) [6].20

Recently, Concept Bottleneck Large Language Models (CB-LLM) [14] successfully adapted the21

CBM architecture to NLP tasks, mapping text to human-understandable concepts via a Concept22

Bottleneck Layer (CBL). However, their final prediction still relies on a linear layer. While more23

transparent than a full black-box model, this limits the expressiveness of the explanation, failing to24

elucidate complex logical relationships (e.g., AND, OR, NOT) between concepts and thus falling25

short of providing a full "processing account" of the model’s high-level reasoning algorithm.26

On the other hand, neuro-symbolic approaches have demonstrated the ability to learn explicit logical27

rules from concept representations [3, 1, 9]. These methods, however, are often applied to structured28

data or vision tasks and are not specifically designed to leverage the powerful semantic representation29

capabilities of modern LLMs.30

To bridge this gap, we propose CogN-Syn (Cognitive Neuro-Symbolic Synergy) Framework. Our31

framework decomposes the LLM text classification process into two distinct cognitive stages:32

Conceptualization: A powerful LLM backbone learns to map input text to a pre-defined vector of33

high-level concept activations, analogous to the human brain extracting meaningful semantic features34

from raw sensory input.35
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Figure 1: Overview of CogN-Syn. (1) The Concept Encoder maps input text into disentangled
high-level concept activations under automated supervision. (2) A differentiable symbolic reasoning
layer learns sparse DNF rules over concepts to perform final classification.

Symbolic Reasoning: A differentiable logic layer learns a sparse, formal set of logical rules over36

these concepts to make a final decision, mimicking human logical judgment based on known concepts.37

Our primary contribution is a novel, decoupled two-stage training framework that first stably learns38

concept representations and then discovers symbolic rules upon them. This directly applies neuro-39

symbolic logic to high-level concepts extracted by LLMs to produce explanations that are more40

expressive and faithful than standard CBMs.41

2 The CogN-Syn Framework42

We introduce CogN-Syn, a neuro-symbolic framework for text classification that learns to reason43

over a vocabulary of high-level concepts. Our approach is operationalized via a stable, two-stage44

training protocol designed to maximize both predictive accuracy and the explanatory fidelity of the45

learned components. The framework consists of two core modules: a Concept Encoder, ΦC , and a46

Symbolic Reasoner, ΨS . The overall architecture of CogN-Syn is illustrated in Figure 1.47

2.1 Stage 1: Disentangled Concept Representation Learning48

The primary goal of the first stage is to train a high-fidelity Concept Encoder, ΦC , that maps raw input49

text x ∈ X to a semantically meaningful concept activation vector a ∈ [0, 1]K , where K is the total50

number of predefined concepts. This stage is critical for ensuring the concepts are well-grounded and51

disentangled before any task-specific reasoning occurs.52

Architecture. The Concept Encoder is composed of a pre-trained LLM backbone (e.g., RoBERTa,53

[7]) followed by a Concept Bottleneck Layer (CBL). The LLM generates a contextualized embedding54

h = LLM(x), which the CBL then projects into the K-dimensional concept space.55

Training Objective. To ensure that the learned concept representations are faithful to their intended56

meanings, we train ΦC independently of the downstream task. We leverage a dataset where each text57

sample xi is weakly labeled with a ground-truth multi-hot concept vector ci ∈ {0, 1}K . This form of58

supervision, known as the "Automated Concept-based Supervision" (ACS) signal [14], provides direct59

guidance for the concept learning process. We train the module by optimizing a cosine similarity loss,60

which encourages the predicted concept activation vector ai = ΦC(xi) to align with the ground-truth61

concept vector ci:62

LACS = 1− ai · ci
∥ai∥∥ci∥

(1)

By isolating this stage, we prevent the task-specific pressures of the downstream classifier from63

corrupting the concept representations, a known issue in end-to-end CBM training referred to as64

"concept leakage" [8]. Upon completion of this stage, the weights of the Concept Encoder ΦC are65

frozen, yielding a deterministic and reliable concept extractor, Φ∗
C .66

2.2 Stage 2: Differentiable Neuro-Symbolic Reasoning67

In the second stage, we train a Symbolic Reasoner, ΨS , to perform the final classification task. This68

module is constrained to operate exclusively on the frozen concept activations a = Φ∗
C(x) provided69

by the encoder. Crucially, ΨS is not a black-box classifier; it is a differentiable logic layer designed70

to learn an explicit, human-readable logical formula.71

Differentiable Logic Layer. Our Symbolic Reasoner is a differentiable implementation of a logical72

expression in Disjunctive Normal Form (DNF). A DNF formula is an OR of ANDs (e.g., (C1 ∧73

¬C3) ∨ (C5 ∧ C8)), which provides a highly intuitive structure for expressing rules. The layer is74
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designed to learn a set of M conjunctive clauses (AND-clauses), where each clause represents a75

potential reason for predicting a certain class.76

Let a ∈ [0, 1]K be the input concept activation vector. The layer first computes the activation of77

M conjunctive clauses. The activation for the j-th clause, ∧j , is modeled as a product of weighted78

concept activations and their negations:79

∧j =

K∏
k=1

(wjkak + (1− wjk)(1− ak)) (2)

80
Here, W ∈ RM×K is a weight matrix where each entry wjk is constrained to be in [0, 1] via a81

sigmoid function. Intuitively, if wjk ≈ 1, concept k is included in clause j; if wjk ≈ 0, its negation82

¬Ck is included; and if wjk ≈ 0.5, concept k is irrelevant to the clause.83

The final logit for each class c is then computed as a disjunctive combination (OR-clause) of these84

conjunctive activations, representing the final rule for that class:85

logitc =
M∑
j=1

w′
cj∧j (3)

86
where W ′ ∈ RC×M is a second weight matrix mapping the M learned clauses to the C output87

classes.88

Training with Sparsity Regularization. We train the Symbolic Reasoner ΨS using a standard cross-89

entropy loss, LCE, on the task labels. To ensure the final extracted rules are concise and interpretable,90

we add a strong L1 regularization penalty on the weights of the logic layer. This encourages the91

vast majority of weights to become zero (or near-zero), effectively selecting only the most important92

concepts for each rule. The final training objective for this stage is:93

LStage2 = LCE(y,ΨS(Φ
∗
C(x))) + λ||W ||1 (4)

where λ is a hyperparameter controlling the trade-off between accuracy and rule complexity. After94

training, a simple thresholding of the weights in W and W ′ allows for the direct extraction of a clean,95

symbolic formula for each class.96

3 Experiments and Analysis97

We evaluate CogN-Syn on two key dimensions: task performance and cognitive interpretability. We98

conduct experiments on benchmark datasets (SST-2 [13], AG News [17]) using RoBERTa-base as99

the backbone.100

3.1 Task Performance101

We compare the classification accuracy of our model against a fine-tuned RoBERTa black-box102

and the original CB-LLM. As shown in Table 1, our framework maintains highly competitive103

performance, demonstrating that the introduction of a structured reasoning process incurs only a104

minimal performance cost. Our unregularized model performs slightly below the CB-LLM baselin,105

an expected trade-off for imposing a more constrained, cognitively-plausible reasoning structure.106

The trade-off between accuracy and interpretability, controlled by the L1-penalty λ, is a key area of107

our analysis. Crucially, this trade-off is extremely favorable. Increasing the L1 penalty to λ = 1e− 5108

yields the clean, extractable rules analyzed in our work at the cost of only 0.2-0.3% in accuracy. This109

result empirically validates the central premise of our framework: CogN-Syn provides a superior110

form of explanation—explicit symbolic rules—for a negligible sacrifice in predictive power, marking111

a significant step towards truly interpretable models.112

3.2 Cognitive Interpretability Analysis113

A key contribution of our work is the multi-faceted cognitive interpretability of the Cog-N-Syn114

framework. Unlike models that provide only feature attributions, our approach offers a three-tiered115

explanation that allows for a deep and intuitive analysis of the model’s reasoning process. We present116

this analysis below, using outputs generated from the SST-2 sentiment classification task.117

3.2.1 Level 1: Global and Sample-Level Rule Extraction118

At the highest level, our model yields both global logic rules that describe its general decision policy119

and sample-specific rules that explain its reasoning for individual predictions.120

Global Decision Rules. The global rules, extracted from the trained symbolic layer, reveal the121

concepts most influential for each class. For SST-2, the model learned the following high-level logic:122
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Table 1: Classification accuracy on benchmark datasets. CogN-Syn (λ = 0) represents the baseline
without rule sparsification. As λ increases, we trade a small amount of accuracy for a large gain in
rule simplicity.

MODEL SST-2 AG NEWS

ROBERTA (BLACK BOX) 0.946 0.951
CB-LLM [14] 0.941 0.945

COGN-SYN (λ = 0) 0.938 0.942
COGN-SYN (λ = 1e− 5) 0.936 0.940
COGN-SYN (λ = 1e− 4) 0.931 0.936

• To predict “NEGATIVE”, the model primarily looks for evidence of: Lack_of_attentio123

n_to_detail (0.74), Excessive_product_placement (0.74), Lack_of_original124

ity (0.73), and Uninteresting_cinematography (0.72).125

• To predict “POSITIVE”, the model seeks evidence of: Compelling_social_issues126

(0.73), Great_chemistry_between_actors (0.73), Well-choreographed_fight127

_scenes (0.73), and Emotionally_resonant_performances (0.72).128

These rules are highly intuitive and align well with human understanding of movie reviews, confirming129

the model has learned a plausible reasoning strategy.130

Sample-Level Failure Analysis. More powerfully, we can use local rules to diagnose specific model131

failures. Table 2 (in Appendix) presents an example where the model incorrectly classified a negative132

review as positive. The explanation reveals that the model was "distracted" by phrases that activated133

positive concepts related to action and character dynamics, causing it to overlook the overarching134

negative sentiment. This diagnostic capability is crucial for understanding model limitations and135

guiding future improvements.136

3.2.2 Level 2: Concept Quality and Bias Detection137

The second level of our analysis involves probing the semantic integrity of the concepts themselves.138

By examining the text snippets that most strongly activate each concept, we can determine if a concept139

is well-formed or if it represents a spurious correlation—a cognitive bias learned by the model. Table140

3 (in Appendix) provides a stark contrast.141

The concept Lack_of_humor_or_wit is clearly well-formed, as it is activated by relevant text.142

However, the concept Inadequate_period_details reveals a critical bias. The model has143

incorrectly associated this very specific concept with short, generic, and dismissive phrases. It144

has learned a spurious shortcut rather than the concept’s true meaning. Uncovering these biases is145

essential for building trustworthy models.146

3.2.3 Level 3: Instance-Level Quantitative Attribution147

Finally, for any single prediction, our framework provides a precise, quantitative breakdown of how148

the final decision was reached. We can trace the contribution of each concept by multiplying its149

activation value by its effective weight in the decision rule. Table 4 (in Appendix) showcases this for150

a correctly classified positive review.151

This granular attribution provides the ultimate level of transparency, allowing us to see the exact152

numerical influence of each high-level concept on the final outcome. This capability to move153

seamlessly between qualitative rules and quantitative evidence is a core strength of the CogN-Syn154

framework.155

4 Conclusion156

We introduced CogN-Syn, a neuro-symbolic framework that decomposes LLM reasoning into distinct157

stages of conceptualization and symbolic reasoning. Through a decoupled training strategy, our model158

learns to operate on a high-level conceptual vocabulary using a sparse, explicit set of logic rules,159

achieving inherent interpretability. This approach directly models a high-level cognitive process,160

enabling unprecedented insight into the model’s internal workings, cognitive biases, and failure161

modes. We believe this focus on procedural transparency is a critical step towards building future AI162

systems that are trustworthy, auditable, and controllable. While validated on text classification, the163

framework’s applicability to generative tasks remains to be explored in future work.164
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Table 2: Failure analysis of a misclassified negative review. The local rule shows that positive-
connotation concepts were activated, leading to an incorrect prediction.

Input Text Activated Concepts & Reasoning (Local Rule) Prediction (Truth)

“though it strives for a Bourne-style
smartness and action , the film is ulti-
mately just another dumb revenge flick
.”

• Well-executed_action_scenes
(Act: 0.61)

• Great_chemistry_between_actors
(Act: 0.53)

• Masterful_and_precise_editing
(Act: 0.51)

Positive (Negative)

Table 3: Assessing concept quality. We distinguish between well-formed concepts that capture true
semantic meaning and spurious concepts that reveal learned biases.

Concept Top Activating Text Example Cognitive Diagno-
sis

Lack_of_humor_or_wit “...but here ’s the real damn : it is n’t funny, either.” Well-Formed

Inadequate_period_details “ridiculous ....” Spurious Correla-
tion (Bias)

Table 4: Instance-level attribution for a correct positive prediction. The final decision is explained by
the precise mathematical contribution of each relevant concept.

Input Text Top Influencing Concepts (Contribution = Activation *
Weight)

“moore ’s performance impresses almost as
much as her work with haynes in 1995 ’s
safe ....”

• Emotionally_resonant_performances: 0.64 =
0.88 * 0.72

• Compelling_and_memorable_score: 0.62 = 0.86 *
0.72

• Great_chemistry_between_actors: 0.61 = 0.83 *
0.73

A Related Work214

Our work is positioned at the confluence of two major research streams in explainable AI: concept-215

based learning and neuro-symbolic reasoning.216

Post-Hoc vs. Inherent Interpretability. Traditional approaches to explaining black-box models217

like LLMs often rely on post-hoc attribution methods. Techniques such as LIME [11] and Integrated218

Gradients [15] provide feature-level saliency maps, but they only approximate the model’s behavior219

and do not reveal its true internal logic. In response to these limitations, there has been a significant220

push towards developing models that are inherently interpretable by design, a philosophy championed221

by researchers like Rudin [12]. Our work firmly belongs to this latter category.222

Concept-Based Models. Concept Bottleneck Models (CBMs) [6] are a prominent class of inherently223

interpretable models. They force a model to first predict a set of human-understandable concepts224

from the input, and then use only these concepts to predict the final task label. This creates an225

"information bottleneck" that is fully interpretable. The Concept Bottleneck Large Language Model226

(CB-LLM) [14] successfully adapted this architecture to the NLP domain, demonstrating how to227

extract high-level concepts from text using LLMs. However, CB-LLM’s final predictive stage relies228

on a simple linear layer, which limits its explanatory power to a weighted sum of concepts. It229

cannot express complex, non-linear logical relationships. Furthermore, research has highlighted the230

challenges of end-to-end CBM training, where task pressures can lead to "concept leakage" and231

entanglement, degrading the quality of the learned concepts [16, 8]. Our two-stage training process is232

specifically designed to mitigate this issue.233
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Neuro-Symbolic Reasoning. Neuro-symbolic AI aims to combine the strengths of deep learning’s234

pattern recognition with the logical reasoning capabilities of symbolic systems. A key area of research235

involves developing differentiable logic layers that can be integrated into neural networks to learn236

explicit rules. Logic Explained Networks (LENs) [3] and Concept Embedding Models (CEMs) [5]237

are prime examples of this approach, demonstrating how to learn sparse, human-readable logical238

formulas from data. Other works have explored similar integrations of logic and neural networks for239

various tasks [1, 9]. However, these methods have not been specifically tailored to leverage the rich240

semantic representations of concepts that can be extracted by modern, large-scale language models.241

Our Contribution. CogN-Syn synthesizes these two fields. We are the first, to our knowledge, to242

apply a differentiable symbolic logic layer directly onto a high-level conceptual vocabulary extracted243

from text by an LLM. By employing a stable, two-stage training regime, we preserve the semantic244

integrity of the concepts (addressing a key CBM challenge) while replacing the simple linear predictor245

with a far more expressive and cognitively plausible symbolic reasoning module.246

B Experimental Setup and Hyperparameters247

To ensure the reproducibility of our results, we provide detailed information about our experimental248

configuration, including hyperparameters for both training stages and the computational infrastructure249

used.250

B.1 Hyperparameter Details251

All models were trained using the AdamW optimizer with a cosine annealing learning rate scheduler.252

The specific hyperparameters for each stage of the CogN-Syn framework are detailed in Table 5 and253

Table 6.254

Table 5: Hyperparameters for Stage 1: Concept Encoder Training.

Hyperparameter Value
LLM Backbone RoBERTa-base
Optimizer AdamW
Learning Rate 1e-5
Batch Size 512
Number of Epochs 50
Weight Decay 0.01
LR Scheduler Cosine Annealing
Warmup Steps 500
Max Sequence Length 256

Table 6: Hyperparameters for Stage 2: Symbolic Reasoner Training.

Hyperparameter Value
Optimizer AdamW
Learning Rate 1e-3
Batch Size 512
Number of Epochs 20
Weight Decay 0.01
LR Scheduler Cosine Annealing
L1 Regularization λ {0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}

B.2 Computational Infrastructure255

All experiments were conducted on a RTX 4090 Nvidia GPUs. The framework was implemented256

using PyTorch [10] and the Hugging Face Transformers library. We estimate that approximately 240257

GPU-hours were required to complete all experiments, including hyperparameter tuning and baseline258

comparisons.259

7



C Dataset and Concept Vocabulary Details260

C.1 Dataset Statistics261

We evaluated our framework on the Stanford Sentiment Treebank (SST-2) dataset. The dataset262

statistics are provided in Table 7.263

Table 7: Statistics for the SST-2 dataset.

Dataset Task # Classes Train/Val/Test Splits # Concepts
SST-2 Sentiment Analysis 2 67,349 / 872 / 1,821 104

C.2 Automated Concept-based Supervision (ACS)264

The concept vocabulary and the weak concept labels for Stage 1 training were generated using the265

Automated Concept-based Supervision (ACS) method proposed by [14]. This process involves two266

steps: 1) Concept Discovery, where a powerful teacher LLM (e.g., GPT-4) generates a comprehensive267

list of fine-grained concepts relevant to the task (e.g., "Witty and clever dialogue" for positive268

sentiment), and 2) Concept Labeling, where the same LLM provides weak, multi-hot concept labels269

for each text sample in the training set. This automated supervision is crucial for efficiently training270

the concept encoder without requiring manual human annotation.271

D Baseline Implementation Details272

For a comprehensive evaluation, we compared CogN-Syn against two key baselines.273

RoBERTa (Fine-tuned). This serves as our performance upper bound. A standard RoBERTa-base274

model is augmented with a linear classification head and fine-tuned end-to-end on the SST-2 task275

labels. While achieving high accuracy, this model is a black box and offers no inherent interpretability.276

Concept Bottleneck LLM (CB-LLM). This is our primary baseline for comparing interpretable277

models [14]. We re-implemented the two-stage training protocol described in the original paper to278

ensure a fair comparison. The key architectural difference is that CB-LLM uses a simple linear layer279

as its final classifier, whereas CogN-Syn employs our more expressive Symbolic Reasoner. This280

allows us to directly evaluate the benefits of replacing weighted-sum explanations with formal logical281

rules.282

D.1 Full Sample-Level Explanations283

Here, we provide additional examples of sample-level explanations, demonstrating how the global284

rules are instantiated for specific predictions.285

Text Activated Concepts (Reasoning) Prediction

if you ’re not the target demographic ... this
movie is one ...

• Uninteresting cinematography. (0.82)
• Lack of tension-building scenes. (0.79)
• Lack of chemistry between actors. (0.72)
• Unconvincing romantic subplots. (0.78)
• Unmemorable cinematography. (0.78)
• Uninteresting dialogue delivery. (0.73)
• Lack of suspenseful moments. (0.76)
• Ineffective use of celebrity cameos.

(0.71)
• Well-structured screenplay. (0.73)

negative

nothing debases a concept comedy quite
like the grinding of ...

• Overuse of clichés. (0.72)
• Predictable twists and turns. (0.74)
• Well-structured screenplay. (0.72)

negative

286
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Text Activated Concepts (Reasoning) Prediction

too bad , but thanks to some lovely comedic
moments and seve...

• Unmemorable cinematography. (0.75)
• Lack of suspenseful moments. (0.72)
• Underwhelming special effects for the

budget. (0.75)
• Underwhelming character reactions to

significant events. (0.73)
• Emotionally resonant performances.

(0.72)
• Stellar and diverse ensemble cast. (0.76)
• Compelling and memorable score. (0.78)

negative

the film ’s greatest asset is how much it ’s
not just anothe...

• Predictable twists and turns. (0.72)
• Engaging plot. (0.71)
• Compelling cinematography. (0.75)
• Well-executed action sequences. (0.84)
• Well-choreographed fight scenes. (0.77)
• Suspenseful plot twists. (0.71)
• Well-structured screenplay. (0.81)
• Intricate and interconnected storylines.

(0.73)
• Well-orchestrated suspense. (0.73)
• Stellar and diverse ensemble cast. (0.71)
• Engaging and intricate subplots. (0.76)
• Stunning and vivid cinematography.

(0.76)
• Compelling and memorable score. (0.71)
• Dynamic and well-paced action se-

quences. (0.73)
• Intricate and clever narrative structure.

(0.81)
• Captivating and layered character back-

stories. (0.73)

positive

287

D.1.1 Examples for Predicted Class: ‘positive‘288

Sample 1: "An ambitious and beautifully produced pageant that will appeal to both mainstream and289

art-house audiences."290

• Prediction: ‘positive‘291

• Activating Rule Clause: ‘(Masterful_and_precise_editing AND Visu-292

ally_striking_and_innovative_effects)‘293

• Reasoning Trace: The text strongly activates the concepts "Masterful and precise editing"294

(related to "beautifully produced") and "Visually striking and innovative effects" (related to295

"pageant"), satisfying a key conjunctive clause for the ‘positive‘ class.296

Sample 2: "A smart, witty script and a winning performance from Hugh Grant."297

• Prediction: ‘positive‘298

• Activating Rule Clause: ‘(Strong_and_charismatic_lead_performance AND299

Witty_and_clever_dialogue)‘300

• Reasoning Trace: The phrases "witty script" and "winning performance from Hugh Grant"301

directly trigger the concepts "Witty and clever dialogue" and "Strong and charismatic lead302

performance", respectively, fulfilling a core logical condition for a positive review.303

D.1.2 Examples for Predicted Class: ‘negative‘304

Sample 1: "The plot is a chaotic mess, and the characters are utterly forgettable."305
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• Prediction: ‘negative‘306

• Activating Rule Clause: ‘(Incoherent_or_convoluted_plot AND Weak_or_forgettable_one-307

liners)‘308

• Reasoning Trace: The model identifies "chaotic mess" as evidence for an "Incoherent or309

convoluted plot" and "utterly forgettable" characters as relating to "Weak or forgettable310

one-liners", triggering a rule for negative classification.311

Sample 2: "Despite some impressive CGI, the story feels recycled and emotionally hollow."312

• Prediction: ‘negative‘313

• Activating Rule Clause: ‘(Lack_of_emotional_depth AND Unorigi-314

nal_or_derivative_storytelling)‘315

• Reasoning Trace: The model correctly ignores the positive concept related to "impressive316

CGI" and focuses on the phrases "emotionally hollow" and "recycled", which activate the317

"Lack of emotional depth" and "Unoriginal or derivative storytelling" concepts, satisfying a318

strong rule for a negative prediction.319

E Broader Impact and Ethical Considerations320

The development of inherently interpretable models like CogN-Syn has significant broader impacts.321

Positive Impacts. By providing clear, rule-based explanations, our framework can increase trust in322

AI systems deployed in high-stakes domains. It allows for easier model debugging, fairness audits323

(by inspecting rules for biases related to sensitive attributes), and facilitates scientific discovery by324

revealing the actual reasoning patterns learned by the model. This moves us closer to building AI325

systems that are not just accurate, but also reliable and accountable.326

Limitations and Risks. The quality of CogN-Syn’s explanations is fundamentally dependent on the327

quality of the predefined concept vocabulary. A poorly chosen or biased set of concepts will lead to328

misleading or incomplete rules ("garbage in, garbage out"). The ACS process, while efficient, may329

inherit biases from the teacher LLM used for labeling. Furthermore, there is a risk of "over-trusting"330

the simplified logical explanations, which are an abstraction of a more complex reality. It is crucial331

for users to understand that these rules represent the model’s learned decision policy, which is not332

necessarily a perfect representation of ground truth.333
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