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Abstract

Large Language Models (LLMs) achieve remarkable performance but their opaque,
black-box nature limits trust and hinders deployment in critical applications. This
paper introduces CogN-Syn, a novel two-stage Cognitive Neuro-Symbolic frame-
work designed to deconstruct the decision-making process of LLMs into human-
understandable cognitive steps. Unlike methods that rely on post-hoc rational-
izations or simple linear predictors, CogN-Syn first trains a Concept Encoder to
map unstructured text to a well-defined, high-level conceptual vocabulary. Sub-
sequently, a second stage learns sparse, symbolic logic rules over these concepts
using a Differentiable Logic Layer. This decoupled training strategy mimics a cog-
nitive process: from semantic perception (concepts) to symbolic reasoning (rules).
Our framework not only achieves performance competitive with black-box models
but also provides a unique three-tiered explanation, enabling clear diagnostics of
model failure modes and taking a crucial step towards safer, more trustworthy Al

1 Introduction

The success of Large Language Models (LLMs) [2, 4] has created a pressing need to understand
their internal cognitive processes. However, their decision logic is diffused across billions of
parameters, making it exceedingly difficult to trace the root cause of their behaviors. Current
explainability methods largely fall into two categories: post-hoc explanations, such as LIME [11],
which approximate model behavior rather than revealing true logic; and inherently interpretable
models [12] like Concept Bottleneck Models (CBMs) [6].

Recently, Concept Bottleneck Large Language Models (CB-LLM) [[14] successfully adapted the
CBM architecture to NLP tasks, mapping text to human-understandable concepts via a Concept
Bottleneck Layer (CBL). However, their final prediction still relies on a linear layer. While more
transparent than a full black-box model, this limits the expressiveness of the explanation, failing to
elucidate complex logical relationships (e.g., AND, OR, NOT) between concepts and thus falling
short of providing a full "processing account” of the model’s high-level reasoning algorithm.

On the other hand, neuro-symbolic approaches have demonstrated the ability to learn explicit logical
rules from concept representations [3l (1 9]]. These methods, however, are often applied to structured
data or vision tasks and are not specifically designed to leverage the powerful semantic representation
capabilities of modern LLMs.

To bridge this gap, we propose CogN-Syn (Cognitive Neuro-Symbolic Synergy) Framework. Our
framework decomposes the LLM text classification process into two distinct cognitive stages:

Conceptualization: A powerful LLM backbone learns to map input text to a pre-defined vector of
high-level concept activations, analogous to the human brain extracting meaningful semantic features
from raw sensory input.
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Figure 1: Overview of CogN-Syn. (1) The Concept Encoder maps input text into disentangled
high-level concept activations under automated supervision. (2) A differentiable symbolic reasoning
layer learns sparse DNF rules over concepts to perform final classification.

Symbolic Reasoning: A differentiable logic layer learns a sparse, formal set of logical rules over
these concepts to make a final decision, mimicking human logical judgment based on known concepts.

Our primary contribution is a novel, decoupled two-stage training framework that first stably learns
concept representations and then discovers symbolic rules upon them. This directly applies neuro-
symbolic logic to high-level concepts extracted by LLMs to produce explanations that are more
expressive and faithful than standard CBMs.

2 The CogN-Syn Framework

We introduce CogN-Syn, a neuro-symbolic framework for text classification that learns to reason
over a vocabulary of high-level concepts. Our approach is operationalized via a stable, two-stage
training protocol designed to maximize both predictive accuracy and the explanatory fidelity of the
learned components. The framework consists of two core modules: a Concept Encoder, ®, and a
Symbolic Reasoner, ¥ g. The overall architecture of CogN-Syn is illustrated in Figure[I]

2.1 Stage 1: Disentangled Concept Representation Learning

The primary goal of the first stage is to train a high-fidelity Concept Encoder, @, that maps raw input
text z € X to a semantically meaningful concept activation vector a € [0, 1]%, where K is the total
number of predefined concepts. This stage is critical for ensuring the concepts are well-grounded and
disentangled before any task-specific reasoning occurs.

Architecture. The Concept Encoder is composed of a pre-trained LLM backbone (e.g., RoOBERTa,
[7]) followed by a Concept Bottleneck Layer (CBL). The LLM generates a contextualized embedding
h = LLM(z), which the CBL then projects into the K -dimensional concept space.

Training Objective. To ensure that the learned concept representations are faithful to their intended
meanings, we train ® - independently of the downstream task. We leverage a dataset where each text
sample x; is weakly labeled with a ground-truth multi-hot concept vector ¢; € {0, 1}, This form of
supervision, known as the "Automated Concept-based Supervision" (ACS) signal [[14]], provides direct
guidance for the concept learning process. We train the module by optimizing a cosine similarity loss,
which encourages the predicted concept activation vector a; = ®¢(z;) to align with the ground-truth
concept vector ¢;:

a; - C;
llas[[]:]
By isolating this stage, we prevent the task-specific pressures of the downstream classifier from
corrupting the concept representations, a known issue in end-to-end CBM training referred to as
"concept leakage" [8]. Upon completion of this stage, the weights of the Concept Encoder & are
frozen, yielding a deterministic and reliable concept extractor, ®,.

Lacs =1— ey

2.2 Stage 2: Differentiable Neuro-Symbolic Reasoning

In the second stage, we train a Symbolic Reasoner, U g, to perform the final classification task. This
module is constrained to operate exclusively on the frozen concept activations a = ®¢(x) provided
by the encoder. Crucially, ¥ is not a black-box classifier; it is a differentiable logic layer designed
to learn an explicit, human-readable logical formula.

Differentiable Logic Layer. Our Symbolic Reasoner is a differentiable implementation of a logical
expression in Disjunctive Normal Form (DNF). A DNF formula is an OR of ANDs (e.g., (C1 A
—C3) V (Cs A Cy)), which provides a highly intuitive structure for expressing rules. The layer is
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designed to learn a set of M conjunctive clauses (AND-clauses), where each clause represents a
potential reason for predicting a certain class.

Let a € [0,1]¥ be the input concept activation vector. The layer first computes the activation of
M conjunctive clauses. The activation for the j-th clause, A, is modeled as a product of weighted
concept activations and their negations:
K
A = [ (wirar + (1 = wir) (1 — ax)) 2)
k=1
Here, W € RM*XK js a weight matrix where each entry wj, is constrained to be in [0, 1] via a
sigmoid function. Intuitively, if w;; ~ 1, concept £ is included in clause j; if wj; ~ 0, its negation
—C}, is included; and if w;;, ~ 0.5, concept k is irrelevant to the clause.

The final logit for each class c is then computed as a disjunctive combination (OR-clause) of these
conjunctive activations, representing the final rule for that class:

M
logit, = Zwéj/\j (3
=1

where W/ € RE*M s a second weight matrix mapping the M learned clauses to the C' output
classes.

Training with Sparsity Regularization. We train the Symbolic Reasoner ¥ g using a standard cross-
entropy loss, Lcg, on the task labels. To ensure the final extracted rules are concise and interpretable,
we add a strong L1 regularization penalty on the weights of the logic layer. This encourages the
vast majority of weights to become zero (or near-zero), effectively selecting only the most important
concepts for each rule. The final training objective for this stage is:

Lsuger = Lce(y, Vs(Pe () + AWy )

where A is a hyperparameter controlling the trade-off between accuracy and rule complexity. After
training, a simple thresholding of the weights in /" and W' allows for the direct extraction of a clean,
symbolic formula for each class.

3 Experiments and Analysis

We evaluate CogN-Syn on two key dimensions: task performance and cognitive interpretability. We
conduct experiments on benchmark datasets (SST-2 [13], AG News [[17]]) using RoOBERTa-base as
the backbone.

3.1 Task Performance

We compare the classification accuracy of our model against a fine-tuned RoBERTa black-box
and the original CB-LLM. As shown in Table [I] our framework maintains highly competitive
performance, demonstrating that the introduction of a structured reasoning process incurs only a
minimal performance cost. Our unregularized model performs slightly below the CB-LLM baselin,
an expected trade-off for imposing a more constrained, cognitively-plausible reasoning structure.

The trade-off between accuracy and interpretability, controlled by the L1-penalty ), is a key area of
our analysis. Crucially, this trade-off is extremely favorable. Increasing the L1 penalty to A = le — 5
yields the clean, extractable rules analyzed in our work at the cost of only 0.2-0.3% in accuracy. This
result empirically validates the central premise of our framework: CogN-Syn provides a superior
form of explanation—explicit symbolic rules—for a negligible sacrifice in predictive power, marking
a significant step towards truly interpretable models.

3.2 Cognitive Interpretability Analysis

A key contribution of our work is the multi-faceted cognitive interpretability of the Cog-N-Syn
framework. Unlike models that provide only feature attributions, our approach offers a three-tiered
explanation that allows for a deep and intuitive analysis of the model’s reasoning process. We present
this analysis below, using outputs generated from the SST-2 sentiment classification task.

3.2.1 Level 1: Global and Sample-Level Rule Extraction
At the highest level, our model yields both global logic rules that describe its general decision policy
and sample-specific rules that explain its reasoning for individual predictions.

Global Decision Rules. The global rules, extracted from the trained symbolic layer, reveal the
concepts most influential for each class. For SST-2, the model learned the following high-level logic:

3
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Table 1: Classification accuracy on benchmark datasets. CogN-Syn (A = 0) represents the baseline
without rule sparsification. As A increases, we trade a small amount of accuracy for a large gain in
rule simplicity.

MODEL SST-2 AG NEWS
ROBERTA (BLACK BOX) 0.946 0.951
CB-LLM [[14]] 0.941 0.945
COGN-SYN (A =0) 0.938 0.942

COGN-SYN (A =1e—5) 0.936 0.940
COGN-SYN(A=1le—4) 0.931 0.936

* To predict “NEGATIVE”, the model primarily looks for evidence of: Lack_of_attentio
n_to_detail (0.74), Excessive_product_placement (0.74), Lack_of_original
ity (0.73),and Uninteresting_cinematography (0.72).

* To predict “POSITIVE”, the model seeks evidence of: Compelling_social_issues
(0.73), Great_chemistry_between_actors (0.73), Well-choreographed_fight
_scenes (0.73), and Emotionally_resonant_performances (0.72).

These rules are highly intuitive and align well with human understanding of movie reviews, confirming
the model has learned a plausible reasoning strategy.

Sample-Level Failure Analysis. More powerfully, we can use local rules to diagnose specific model
failures. Table[2] (in Appendix) presents an example where the model incorrectly classified a negative
review as positive. The explanation reveals that the model was "distracted" by phrases that activated
positive concepts related to action and character dynamics, causing it to overlook the overarching
negative sentiment. This diagnostic capability is crucial for understanding model limitations and
guiding future improvements.

3.2.2 Level 2: Concept Quality and Bias Detection

The second level of our analysis involves probing the semantic integrity of the concepts themselves.
By examining the text snippets that most strongly activate each concept, we can determine if a concept
is well-formed or if it represents a spurious correlation—a cognitive bias learned by the model. Table
[3](in Appendix) provides a stark contrast.

The concept Lack_of_humor_or_wit is clearly well-formed, as it is activated by relevant text.
However, the concept Inadequate_period_details reveals a critical bias. The model has
incorrectly associated this very specific concept with short, generic, and dismissive phrases. It
has learned a spurious shortcut rather than the concept’s true meaning. Uncovering these biases is
essential for building trustworthy models.

3.2.3 Level 3: Instance-Level Quantitative Attribution

Finally, for any single prediction, our framework provides a precise, quantitative breakdown of how
the final decision was reached. We can trace the contribution of each concept by multiplying its
activation value by its effective weight in the decision rule. Table[d] (in Appendix) showcases this for
a correctly classified positive review.

This granular attribution provides the ultimate level of transparency, allowing us to see the exact
numerical influence of each high-level concept on the final outcome. This capability to move
seamlessly between qualitative rules and quantitative evidence is a core strength of the CogN-Syn
framework.

4 Conclusion

We introduced CogN-Syn, a neuro-symbolic framework that decomposes LLM reasoning into distinct
stages of conceptualization and symbolic reasoning. Through a decoupled training strategy, our model
learns to operate on a high-level conceptual vocabulary using a sparse, explicit set of logic rules,
achieving inherent interpretability. This approach directly models a high-level cognitive process,
enabling unprecedented insight into the model’s internal workings, cognitive biases, and failure
modes. We believe this focus on procedural transparency is a critical step towards building future Al
systems that are trustworthy, auditable, and controllable. While validated on text classification, the
framework’s applicability to generative tasks remains to be explored in future work.
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Table 2: Failure analysis of a misclassified negative review. The local rule shows that positive-
connotation concepts were activated, leading to an incorrect prediction.

Input Text Activated Concepts & Reasoning (Local Rule) Prediction (Truth)

“though it strives for a Bourne-style . Positive (Negative)
smartness and action , the film is ulti- * Well-executed_action_scenes

mately just another dumb revenge flick (Act: 0.61)
» * Great_chemistry_between_actors

(Act: 0.53)
* Masterful_and_precise_editing
(Act: 0.51)

Table 3: Assessing concept quality. We distinguish between well-formed concepts that capture true
semantic meaning and spurious concepts that reveal learned biases.

Concept Top Activating Text Example Cognitive Diagno-
sis

Lack_of_humor_or_wit “...but here ’s the real damn : it is n’t funny, either.”  Well-Formed

Inadequate_period_details “ridiculous....” Spurious Correla-

tion (Bias)

Table 4: Instance-level attribution for a correct positive prediction. The final decision is explained by
the precise mathematical contribution of each relevant concept.

Input Text Top Influencing Concepts (Contribution = Activation *
Weight)

“moore s performance impresses almost as
much as her work with haynes in 1995 ’s * Emotionally_ resonant_performances: 0.64 =

safe ...” 0.88 *0.72
e Compelling_and_memorable_score: 0.62 = 0.86 *
0.72
* Great_chemistry_between_actors: 0.61 = 0.83 *
0.73

4+ A Related Work

2

215 Our work is positioned at the confluence of two major research streams in explainable Al: concept-
216 based learning and neuro-symbolic reasoning.

217 Post-Hoc vs. Inherent Interpretability. Traditional approaches to explaining black-box models
218 like LLMs often rely on post-hoc attribution methods. Techniques such as LIME [[11] and Integrated
219 Gradients [[15] provide feature-level saliency maps, but they only approximate the model’s behavior
220 and do not reveal its true internal logic. In response to these limitations, there has been a significant
221 push towards developing models that are inherently interpretable by design, a philosophy championed
222 by researchers like Rudin [12]]. Our work firmly belongs to this latter category.

223 Concept-Based Models. Concept Bottleneck Models (CBMs) [6] are a prominent class of inherently
224 interpretable models. They force a model to first predict a set of human-understandable concepts
225 from the input, and then use only these concepts to predict the final task label. This creates an
226 "information bottleneck" that is fully interpretable. The Concept Bottleneck Large Language Model
227 (CB-LLM) [14] successfully adapted this architecture to the NLP domain, demonstrating how to
228 extract high-level concepts from text using LLMs. However, CB-LLM’s final predictive stage relies
229 on a simple linear layer, which limits its explanatory power to a weighted sum of concepts. It
230 cannot express complex, non-linear logical relationships. Furthermore, research has highlighted the
231 challenges of end-to-end CBM training, where task pressures can lead to "concept leakage" and
232 entanglement, degrading the quality of the learned concepts [16,8]]. Our two-stage training process is
233  specifically designed to mitigate this issue.
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Neuro-Symbolic Reasoning. Neuro-symbolic Al aims to combine the strengths of deep learning’s
pattern recognition with the logical reasoning capabilities of symbolic systems. A key area of research
involves developing differentiable logic layers that can be integrated into neural networks to learn
explicit rules. Logic Explained Networks (LENs) [3] and Concept Embedding Models (CEMs) [3]]
are prime examples of this approach, demonstrating how to learn sparse, human-readable logical
formulas from data. Other works have explored similar integrations of logic and neural networks for
various tasks [[1}9]. However, these methods have not been specifically tailored to leverage the rich
semantic representations of concepts that can be extracted by modern, large-scale language models.

Our Contribution. CogN-Syn synthesizes these two fields. We are the first, to our knowledge, to
apply a differentiable symbolic logic layer directly onto a high-level conceptual vocabulary extracted
from text by an LLM. By employing a stable, two-stage training regime, we preserve the semantic
integrity of the concepts (addressing a key CBM challenge) while replacing the simple linear predictor
with a far more expressive and cognitively plausible symbolic reasoning module.

B Experimental Setup and Hyperparameters

To ensure the reproducibility of our results, we provide detailed information about our experimental
configuration, including hyperparameters for both training stages and the computational infrastructure
used.

B.1 Hyperparameter Details

All models were trained using the AdamW optimizer with a cosine annealing learning rate scheduler.
The specific hyperparameters for each stage of the CogN-Syn framework are detailed in Table[5]and
Table

Table 5: Hyperparameters for Stage 1: Concept Encoder Training.

Hyperparameter Value

LLM Backbone RoBERTa-base
Optimizer AdamW
Learning Rate le-5

Batch Size 512

Number of Epochs 50

Weight Decay 0.01

LR Scheduler Cosine Annealing
Warmup Steps 500

Max Sequence Length 256

Table 6: Hyperparameters for Stage 2: Symbolic Reasoner Training.

Hyperparameter Value

Optimizer AdamW
Learning Rate le-3

Batch Size 512

Number of Epochs 20

Weight Decay 0.01

LR Scheduler Cosine Annealing

L1 Regularization A {0, le-6, le-5, le-4, le-3, le-2}

B.2 Computational Infrastructure

All experiments were conducted on a RTX 4090 Nvidia GPUs. The framework was implemented
using PyTorch [[10] and the Hugging Face Transformers library. We estimate that approximately 240
GPU-hours were required to complete all experiments, including hyperparameter tuning and baseline
comparisons.



20 C Dataset and Concept Vocabulary Details

261 C.1 Dataset Statistics

262 We evaluated our framework on the Stanford Sentiment Treebank (SST-2) dataset. The dataset
263 statistics are provided in Table[7]

Table 7: Statistics for the SST-2 dataset.

Dataset Task # Classes Train/Val/Test Splits # Concepts
SST-2 Sentiment Analysis 2 67,349 /872 /1,821 104

264 C.2 Automated Concept-based Supervision (ACS)

265 The concept vocabulary and the weak concept labels for Stage 1 training were generated using the
266 Automated Concept-based Supervision (ACS) method proposed by [14]. This process involves two
267 steps: 1) Concept Discovery, where a powerful teacher LLM (e.g., GPT-4) generates a comprehensive
268 list of fine-grained concepts relevant to the task (e.g., "Witty and clever dialogue" for positive
269 sentiment), and 2) Concept Labeling, where the same LLM provides weak, multi-hot concept labels
270 for each text sample in the training set. This automated supervision is crucial for efficiently training
271 the concept encoder without requiring manual human annotation.

22 D Baseline Implementation Details

273 For a comprehensive evaluation, we compared CogN-Syn against two key baselines.

274 RoBERTa (Fine-tuned). This serves as our performance upper bound. A standard RoOBERTa-base
275 model is augmented with a linear classification head and fine-tuned end-to-end on the SST-2 task
276 labels. While achieving high accuracy, this model is a black box and offers no inherent interpretability.

277 Concept Bottleneck LLM (CB-LLM). This is our primary baseline for comparing interpretable
278 models [[14]. We re-implemented the two-stage training protocol described in the original paper to
279 ensure a fair comparison. The key architectural difference is that CB-LLM uses a simple linear layer
280 as its final classifier, whereas CogN-Syn employs our more expressive Symbolic Reasoner. This
281 allows us to directly evaluate the benefits of replacing weighted-sum explanations with formal logical
282 rules.

283 D.1 Full Sample-Level Explanations

284 Here, we provide additional examples of sample-level explanations, demonstrating how the global
285 rules are instantiated for specific predictions.

Text Activated Concepts (Reasoning) Prediction

if you ’re not the target demographic ... this
movie is one ...

 Uninteresting cinematography. (0.82) negative
* Lack of tension-building scenes. (0.79)
 Lack of chemistry between actors. (0.72)
¢ Unconvincing romantic subplots. (0.78)
e Unmemorable cinematography. (0.78)
 Uninteresting dialogue delivery. (0.73)
¢ Lack of suspenseful moments. (0.76)
¢ Ineffective use of celebrity cameos.
(0.71)
* Well-structured screenplay. (0.73)

286

nothing debases a concept comedy quite ¢ Overuse of clichés. (0.72) negative
like the grinding of ... * Predictable twists and turns. (0.74)
Well-structured screenplay. (0.72)




Text Activated Concepts (Reasoning) Prediction

too bad , but thanks to some lovely comedic * Unmemorable cinematography. (0.75) negative
moments and seve... ¢ Lack of suspenseful moments. (0.72)
¢ Underwhelming special effects for the
budget. (0.75)
* Underwhelming character reactions to
significant events. (0.73)
* Emotionally resonant performances.
0.72)
 Stellar and diverse ensemble cast. (0.76)
* Compelling and memorable score. (0.78)

the film ’s greatest asset is how much it ’s
not just anothe...

* Predictable twists and turns. (0.72) positive
* Engaging plot. (0.71)
* Compelling cinematography. (0.75)
* Well-executed action sequences. (0.84)
287 ¢ Well-choreographed fight scenes. (0.77)
* Suspenseful plot twists. (0.71)
¢ Well-structured screenplay. (0.81)
e Intricate and interconnected storylines.
(0.73)
Well-orchestrated suspense. (0.73)
Stellar and diverse ensemble cast. (0.71)
Engaging and intricate subplots. (0.76)
Stunning and vivid cinematography.
(0.76)
e Compelling and memorable score. (0.71)
e Dynamic and well-paced action se-
quences. (0.73)
¢ Intricate and clever narrative structure.
(0.81)
 Captivating and layered character back-
stories. (0.73)

288 D.1.1 Examples for Predicted Class: ‘positive*

289 Sample 1: "An ambitious and beautifully produced pageant that will appeal to both mainstream and
290 art-house audiences."

291 * Prediction: ‘positive*

292 e Activating Rule Clause: ‘(Masterful_and_precise_editing AND  Visu-
293 ally_striking_and_innovative_effects)*

294 * Reasoning Trace: The text strongly activates the concepts "Masterful and precise editing"
295 (related to "beautifully produced") and "Visually striking and innovative effects" (related to
296 "pageant"), satisfying a key conjunctive clause for the ‘positive‘ class.

297 Sample 2: "A smart, witty script and a winning performance from Hugh Grant."

298 * Prediction: ‘positive*

299 e Activating Rule Clause: ‘(Strong_and_charismatic_lead_performance =~ AND
300 Witty_and_clever_dialogue)*

301 * Reasoning Trace: The phrases "witty script" and "winning performance from Hugh Grant"
302 directly trigger the concepts "Witty and clever dialogue" and "Strong and charismatic lead
303 performance", respectively, fulfilling a core logical condition for a positive review.

so4 D.1.2 Examples for Predicted Class: ‘negative*

305 Sample 1: "The plot is a chaotic mess, and the characters are utterly forgettable."
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307
308

309
310
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3

2

313

314
315

316
317
318
319

320

321
322
323
324
325
326

327
328
329
330
331
332
333

* Prediction: ‘negative’

* Activating Rule Clause: ‘(Incoherent_or_convoluted_plot AND Weak_or_forgettable_one-
liners)*

* Reasoning Trace: The model identifies "chaotic mess" as evidence for an "Incoherent or
convoluted plot" and "utterly forgettable" characters as relating to "Weak or forgettable
one-liners", triggering a rule for negative classification.

Sample 2: "Despite some impressive CGI, the story feels recycled and emotionally hollow."

* Prediction: ‘negative’

e Activating  Rule Clause: ‘(Lack_of_emotional_depth ~AND  Unorigi-
nal_or_derivative_storytelling)*

* Reasoning Trace: The model correctly ignores the positive concept related to "impressive
CGI" and focuses on the phrases "emotionally hollow" and "recycled", which activate the
"Lack of emotional depth" and "Unoriginal or derivative storytelling" concepts, satisfying a
strong rule for a negative prediction.

E Broader Impact and Ethical Considerations

The development of inherently interpretable models like CogN-Syn has significant broader impacts.
Positive Impacts. By providing clear, rule-based explanations, our framework can increase trust in
Al systems deployed in high-stakes domains. It allows for easier model debugging, fairness audits
(by inspecting rules for biases related to sensitive attributes), and facilitates scientific discovery by
revealing the actual reasoning patterns learned by the model. This moves us closer to building Al
systems that are not just accurate, but also reliable and accountable.

Limitations and Risks. The quality of CogN-Syn’s explanations is fundamentally dependent on the
quality of the predefined concept vocabulary. A poorly chosen or biased set of concepts will lead to
misleading or incomplete rules ("garbage in, garbage out"). The ACS process, while efficient, may
inherit biases from the teacher LLM used for labeling. Furthermore, there is a risk of "over-trusting"
the simplified logical explanations, which are an abstraction of a more complex reality. It is crucial
for users to understand that these rules represent the model’s learned decision policy, which is not
necessarily a perfect representation of ground truth.
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