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ABSTRACT

This paper contributes a new approach for distributional reinforcement learning
which allows for a clean separation of transition structure and reward in the learn-
ing process. Analogous to how the successor representation (SR) describes the
expected consequences from behaving according to a given policy, our distribu-
tional successor measure (SM) describes the distributional consequences of this
behaviour. We model the distributional SM as a distribution over distributions and
provide theory connecting it with distributional and model-based reinforcement
learning. Extending γ-models (Janner et al., 2020), we propose an algorithm
that learns the distributional successor measure from samples by minimizing a
two-level maximum mean discrepancy. Key to our method are a number of al-
gorithmic techniques that are independently valuable in the context of learning
generative models of state. As an illustration of the practical usefulness of the
distributional successor measure, we show that it enables zero-shot risk-sensitive
policy evaluation in a way that was not previously possible.

1 INTRODUCTION

Distributional reinforcement learning (Morimura et al., 2010; Bellemare et al., 2017a; 2023) is an ap-
proach to reinforcement learning (RL) that focuses on learning the entire probability distribution of
an agent’s return, not just its expected value. Distributional RL has been shown to improve deep RL
agent performance (Yang et al., 2019; Nguyen-Tang et al., 2021), and provides a flexible approach
to risk-aware decision-making (Dabney et al., 2018a; Fawzi et al., 2022; Zhang & Weng, 2021). A
notable drawback of existing approaches to distributional RL is that rewards must be available at
training time in order to predict the return distribution. In particular, if we wish to evaluate a trained
policy on a new reward function, to understand the behaviour of the policy for various performance
criteria, for example, these predictions of the return distributions must be trained from scratch. This
paper contributes a methodology that overcomes this drawback, and allows for zero-shot evaluation
of novel reward functions without requiring further learning.

In the case of predicting just the expected return, such zero-shot evaluation is made possible by
learning the successor representation (SR; Dayan, 1993). This approach has recently been extended
to continuous state spaces (Blier et al., 2021), and the introduction of a variety of density modelling
and generative modelling techniques mean that such zero-shot transfer is now possible at scale (Jan-
ner et al., 2020; Touati & Ollivier, 2021; Touati et al., 2023).

This paper extends the idea of the successor representation to distributional RL, by defining the dis-
tributional successor measure (DSM). We show that the DSM is a reward-agnostic object that can
by combined with any deterministic reward function to obtain the corresponding distribution of re-
turns, extending zero-shot transfer to the entire distribution of returns. We additionally contribute an
algorithm framework for approximating the DSM at scale. Our primary algorithmic contribution is
the δ-model, a tractable approximation to the distributional successor measure based on ensembles
of diverse generative models. We contribute a training algorithm for δ-models, and several practical
implementation techniques that are crucial for success. We exhibit δ-models on several environ-
ments, showing that they can be used to obtain meaningful risk-sensitive evaluations of policies
against held-out reward functions.
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2 BACKGROUND

In the sequel, Law(X) denotes the probability measure governing a random variable X , and X
L
=Y

(read equal in distribution) is written to indicate that Law(X) = Law(Y ). The notation P(A)
defines the space of probability measures over a set A. We also write (X,Y ) ∼ µ⊗ ν to refer to the
pair of independent samples X ∼ µ and Y ∼ ν.

We consider a Markov decision process (MDP) with state space X , finite action space A, transition
kernel p : X × A → P(X ), bounded and measurable reward function r : X → R, and discount
factor γ ∈ [0, 1). We assume henceforth that X is a complete and separable metric space, which
allows for finite state spaces, as well as many continuous state spaces of interest. Given a policy
π : X → P(A) and initial state x0 ∈ X , an agent generates a random trajectory (Xt, At, Rt)

∞
t=0

of states, actions, and rewards, with distributions specified by X0 = x, At ∼ π(·|Xt), Rt = r(Xt),
and Xt+1 ∼ p(·|Xt, At) for all t ≥ 0. For a fixed policy π, we will denote the transition kernel
governing state evolution by pπ , where pπ(· | x) =∑a∈A p(· | x, a)π(a | x).
The (random) return summarises the performance of the agent along its trajectory, and for each
possible initial state x ∈ X for the trajectory, it is defined as

Gπ
r (x) :=

∞∑
t=0

γtr(Xt), X0 = x, Xt+1 ∼ pπ(· | Xt). (1)

When there is no ambiguity about the reward function, we will write Gπ in place of Gπ
r . For a

given policy π, the problem of policy evaluation is to find the expected return for each initial state.
Mathematically, this can be expressed as learning the function V π

r : X → R, defined by

V π
r (x) := E [Gπ

r (x)] ; (2)

this describes the quality of π in its own right, and may also be used to obtain improved policies, for
example by acting greedily (Puterman, 2014; Sutton & Barto, 2018).

2.1 SUCCESSOR MEASURE

The normalized successor measure Ψπ : X →P(X ) associated with a policy π is defined by

Ψπ(S | x) :=
∞∑
t=0

(1− γ)γt Pr(Xt ∈ S | X0 = x) , (3)

for any (measurable) set S ⊆ X 1 and initial state x ∈ X . In the literature, Ψπ(· | x) is often referred
to as the (discounted) state occupancy measure. The object Ψπ described above is a normalised
version of the successor representation (SR; Dayan, 1993) in the tabular case and the successor
measure (SM; Blier et al., 2021; Touati & Ollivier, 2021) for continuous state spaces. Blier et al.
(2021) shows that, without the (1− γ) factor in Equation 3, Ψπ(· | x) is a measure for each x ∈ X
with total mass (1 − γ)−1. We include the (1 − γ) normalizing factor so that Ψπ(· | x) is in fact a
probability distribution – this allows for one to sample from the successor measure, as in the work
of Janner et al. (2020). Intuitively, Ψπ(S | x) describes the proportion of time spent in the region
S ⊆ X , in expectation, weighted by the discount factor according to the time of visitation.

Since for each x ∈ X , Ψπ(·|x) is a probability distribution over states, we can compute expectations
with respect to this distribution. Notably, the reward function r, successor measure Ψπ , and value
function V π satisfy the following identity,

V π
r (x) = (1− γ)−1EX′∼Ψπ(·|x)[r(X

′)] , (4)

as leveraged in the recent work of Janner et al. (2020) and Blier et al. (2021). In words, the value
function can be expressed as an expectation of the reward, with respect to the successor measure
Ψπ(·|x); this expression cleanly factorises the value function into components comprising transition
information and reward information, and generalises the result in the tabular case by Dayan (1993).
A central consequence is that learning Ψπ allows for the evaluation of π on unseen reward functions,
without further learning; this is known as zero-shot policy evaluation.

1This covers discounted occupancies over Polish state spaces, including compact Euclidean space.

2



Under review as a conference paper at ICLR 2024

2.2 DISTRIBUTIONAL POLICY EVALUATION

In distributional reinforcement learning (Morimura et al., 2010; Bellemare et al., 2017a; 2023), the
problem of distributional policy evaluation is concerned with finding not just the expectation of
the random return, but its full probability distribution. In analogy with our description of policy
evaluation above, this can be mathematically expressed as aiming to learn the return-distribution
function ηπr : X →P(R), with ηπr (x) equal to the distribution of Gπ

r (x)

An added complication in the distributional setting is that the distributional objects to be learned
are infinite-dimensional, in contrast with the scalar mean returns learned in classical reinforcement
learning. This requires careful consideration of how probability distributions will be represented
algorithmically, with common choices including categorical (Bellemare et al., 2017a) and quantile
(Dabney et al., 2018b) approaches; see Bellemare et al. (2023, Chapter 5) for a summary.

3 RANDOM OCCUPANCY MEASURES AND THE DISTRIBUTIONAL SM

One of the core contributions of this paper is to introduce a mathematical object that plays the role of
the successor measure in distributional reinforcement learning. Analogous to how distributional RL
models the distribution of the return we propose to study the distribution of future state occupancies.

3.1 RANDOM OCCUPANCY MEASURES

To begin, we contribute a new form for the normalised successor measure (SM), which shows that
it can be written as an expectation of the discounted visitation distribution for the random state
sequence (Xt)t≥0 generated by π:

Ψπ(S | x) = Eπ

[ ∞∑
k=0

(1− γ)γkδXk
(S)

∣∣∣∣∣ X0 = x

]
∀S ⊆ X measurable. (5)

Here, δXk
is the probability distribution over X that puts all its mass on Xk, so that δXk

(S) =
1{Xk ∈ S}. There is now a natural way to obtain a distributional version of this object, by “remov-
ing the expectation”.
Definition 1 (Random occupancy measure). For a given policy π, let (Xt)

∞
t=0 be a random sequence

of states generated by interacting with the environment via π. The associated random discounted
state-occupancy measure Mπ assigns to each initial state x ∈ X a random probability distribution
Mπ(· | x) according to

Mπ(S | x) :=
∞∑
k=0

(1− γ)γkδXk
(S), X0 = x ∀S ⊆ X measurable. (6)

Figure 1: Depiction of the distributional SM in a
T-maze, for a policy that chooses a direction at the
fork uniformly. Left: Atoms of the random occu-
pancy measure. Right: The SR, 0.5θ1 + 0.5θ2.

It is worth pausing to consider the nature of the
object we have just defined. For each x ∈ X ,
Mπ(· | x) is a random variable, and each re-
alisation of Mπ(· | x) is a probability distri-
bution over X . So, for any (measurable) sub-
set of states Y ⊆ X , Mπ(Y |x) is also a ran-
dom variable, which gives the discounted pro-
portion of time spent in Y across different pos-
sible sampled trajectories. Thus, the distribu-
tion of Mπ(· | x) is a distribution over proba-
bility distributions; see Figure 1.

As described in Section 2, an important property of the successor representation is that it is a linear
operator that maps reward functions to value functions. The next result shows that Mπ can be used
to map reward functions to random returns; all proofs are given in Appendix E.
Proposition 1. Let Mπ denote a random discounted state-occupancy measure for a given policy π.
For any deterministic reward function r : X → R, we have

Gπ
r (x)

L
=(1− γ)−1EX′∼Mπ(·|x) [r(X

′)] . (7)
Note that the right-hand side is a random variable, since Mπ(· | x) itself is a random distribution.
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Proposition 1 suggests a novel approach to distributional RL. To obtain return distributions, one can
first learn the distribution of Mπ (without any information about rewards), and then use Equation 7
to obtain an estimate of the corresponding return distribution. This also allows for something not
possible in the standard framework of distributional RL: zero-shot distributional policy evaluation.
In particular, one can learn the distribution of the random occupancy measure, and then obtain an
approximation to the return distribution associated with any reward function r without requiring
further learning. Once the return distribution obtained, the benefits of distributional RL, such as risk
estimation, are immediately available, something not possible using SR in isolation.
Remark 1. Perhaps surprisingly, our assumption of a deterministic reward function made in Propo-
sition 1 is necessary for a linear factorization between reward functions and return distributions.
This is due to the statistical dependence between random rewards observed along trajectories and
random trajectories themselves. We explore this in more depth in Appendix B; see Proposition 3.

We observe that the SM is mathematically determined by the one-step transition kernel Pπ; see
Proposition 3 in Appendix F for a precise statement and proof of this result. It is therefore the
way in which the SM represents the transition information of the environment that makes zero-shot
policy evaluation possible. The same is true of the distributional SM; it is determined by Pπ mathe-
matically, but its form makes zero-shot distributional policy evaluation particularly straightforward.

Proposition 1 is the core mathematical insight of the paper; we now seek to develop an algorithmic
framework that allows these theoretical ideas to be translated into concrete implementations.

3.2 THE DISTRIBUTIONAL SM AND BELLMAN EQUATIONS

Just as in standard distributional RL, where we distinguish between the random return Gπ(x) and its
distribution ηπ(x), we introduce notation that will allow us to express the distribution of Mπ(· | x).
Definition 2 (Distributional successor measure). The distributional successor measure (distribu-
tional SM) ℸπ : X →P(P(X )) is defined by ℸπ(x) = Law(Mπ(· | x)) for each x ∈ X .

A central result in developing temporal-difference methods for learning ℸπ is to show that Mπ

satisfies a distributional Bellman equation (Morimura et al., 2010; Bellemare et al., 2017a).
Proposition 2. Let Mπ denote the random discounted state-occupancy measure induced by a policy
π. Then Mπ can be expressed recursively via a distributional Bellman equation, as follows:

Mπ(S | x) L
=(1− γ)δx(S) + γMπ(S | X ′) ∀S ⊆ X measurable, (8)

where X ′ ∼ Pπ(· | x), and is independent of Mπ .

This provides a novel reward-agnostic distributional Bellman equation for random occupancy mea-
sures. Note that the multi-dimensional reward distributional Bellman equation studied by Freirich
et al. (2019); Zhang et al. (2021b) can be thought of as a special instance of this when X is finite.

We can also express the distributional SM recursively,

ℸπ(x) = EX′∼pπ(·|x) [(bx,γ)♯ℸπ(X ′)] (9)

where bx,γ : P(X )→P(X ) is given by bx,γ(µ) = (1− γ)δx + γµ and for ν ∈P(P(X )), we
have f♯ν = ν ◦ f−1 is the pushforward of ν through f for measurable f .

4 REPRESENTING AND LEARNING THE DISTRIBUTIONAL SM

The previous section has shown that the distributional SM provides an alternative perspective on
distributional reinforcement learning, and opens up possibilities such as zero-shot distributional
policy evaluation, not previously possible with existing approaches to distributional RL. However,
to turn these mathematical observations into practical algorithms, we need methods for efficiently
representing and learning the distributional SM.

4.1 REPRESENTATION BY δ-MODELS

As in standard distributional reinforcement learning, we cannot represent ℸπ within an algorithm
exactly, as it is comprised of probability distributions, which are objects having infinitely-many
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degrees of freedom. To make matters more complicated still, these are distributions not over the real
numbers (as in standard distributional RL), but over P(X ), which may itself have infinitely-many
degrees of freedom if X is infinite. We therefore require a tractable approximate representation.
We propose the equally-weighted particle (EWP) representation, which is ultimately inspired by
the quantile representation of return distributions in standard distributional RL algorithms (Dabney
et al., 2018b; Nguyen-Tang et al., 2021). Under this representation, the approximation ℸ(x) to the
distributional SM at x is represented as a sum of equally-weighted Dirac masses on the set P(X ):

ℸ(x) =
1

m

m∑
i=1

δθi(x) , (10)

with θi(x) ∈ P(X ) for each i = 1, . . . ,m. The approximation problem now reduces to learning
appropriate values ((θi(x))mi=1 : x ∈ X ) of these Dirac masses.

Figure 2: The components of a δ-model (Sec-
tion 4.1), and the kernels and distances involved
in training them (Section 4.2).

Since each atom θi(x) is a probability distri-
bution over a potentially large space X , we
propose to represent the atoms as generative
models, in the spirit of γ-models (Janner et al.,
2020). In practice, the generative models can
be implemented with function approximators,
such as deep neural networks, that take as input
noise variables similar to the generator of a gen-
erative adversarial network (GAN; Goodfellow
et al., 2014). With these choices, we refer to the
model in Equation 10 as a δ-model; see Figure 2
for an illustration of its various components.

Terminology. We have introduced two lev-
els of probability distributions: ℸ(x) itself
is a distribution over the generative models
θ1(x), . . . , θm(x); and clearly each θi(x) is a
distribution over the state space X itself. To
keep track of these two levels, we refer to ℸ(x) as a model distribution (that is, a distribution over
generative models), and the generative models θi(x) as state distributions or model atoms. A gen-
erative model θ ∼ ℸ(x) distributed according to ℸ(x) is a model sample, while a state X ′ ∼ θ
sampled from a generative model is referred to as an state sample.

4.2 LEARNING FROM SAMPLES

Our goal is to construct an algorithm for learning approximations of the distributions ℸπ(x), param-
eterized as δ-models, from data. We construct a temporal-difference learning scheme (Sutton, 1984;
Dayan, 1993) to approximately solve the distributional Bellman Equation 8 in this metric space, by
updating our δ-model ℸ(x) to be closer to the transformation described by the right-hand side of the
distributional Bellman equation in Proposition 2, that is

ℸ̃(x) := EX′∼pπ(·|x)

[
1

m

m∑
i=1

δ(1−γ)x+γθi(X′)

]
. (11)

To define an update that achieves this, we will specify a loss function over the space occupied by
ℸ(x) (namely P(P(X ))), distributions over distributions of state); this requires care, since this
space has such complex structure relative to standard distributional RL problems. We propose to use
the maximum mean discrepancy (MMDs; Gretton et al., 2012) to construct such a loss. We begin
by recalling that for probability distributions p, q over a set Y , the squared-MMD corresponding to
the kernel κ : Y × Y → R is defined as

MMD2
κ(p, q) = E(X,X′,Y,Y ′)∼p⊗p⊗q⊗q [κ(X,X ′) + κ(Y, Y ′)− 2κ(X,Y )] . (12)

State kernel. To compare state distributions θ, θ′ ∈ P(X ), we will take a state kernel κ : X ×
X → R, and aim to compute MMDκ(θ, θ

′). Since in δ-models we represent state distributions θ, θ′
as generative models, we approximate the exact MMD in Equation 12 by instead using samples
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from the generative models (Gretton et al., 2012, Eq. 3). If we take X1, . . . , Xn1

i.i.d.∼ θ, and
Y1, . . . , Yn2

i.i.d.∼ θ′ independently, we obtain the following estimator for MMD2
κ(θi, θj):

M̂MD
2

κ(X1:n1 , Y1:n2) :=

n1∑
i,j=1
i<j

κ(Xi, Xj)(
n1

2

) +

n2∑
i,j=1
i<j

κ(Yi, Yj)(
n2

2

) − 2

n1∑
i=1

n2∑
j=1

κ(Xi, Yj)

n1n2
. (13)

Model kernel. Equation 13 uses the state kernel to define a metric between generative models.
However, ultimately we need a loss function defined at the level of model distributions ℸ(x), so
that we can define gradient updates that move these quantities towards their corresponding Bellman
targets (Equation 11). We now use our notion of distance between state distributions to define a
kernel on P(X ) itself, which will allow us to define an MMD over P(P(X )), the space of model
distributions. To do so, we follow the approach of Christmann & Steinwart (2010, Eq. 6) and Szabo
et al. (2015) by defining a model kernel κκ : P(X ) ×P(X ) → R as a function of MMDκ. In
particular, for each θ, θ′ ∈P(X ), we set

κκ(θ, θ
′;σ) = ρ (MMDκ(θ, θ

′)/σ) (14)

for scalar σ > 0, where ρ : y 7→ (1 + y2)−1/2 is known as the inverse multiquadric radial basis
function. Szabo et al. (2015, Table 1) shows that this kernel is characteristic, and demonstrates other
radial basis functions that also yield characteristic kernels.

DSM MMD loss. We now specify a loss that will allow us to update ℸ towards the Bellman target
in equation 11, by employing the squared MMD under the distribution kernel κκ defined above:

ℓ(ℸ, ℸ̃;x) = MMD2
κκ

(ℸ(x), ℸ̃(x)) . (15)

To build a sample-based estimator of this loss, we take a sampled state transition (x, x′) generated
by the policy π, and expand the MMD above in terms of evaluations of the kernel κκ; writing
θ′i(x

′) = (1− γ)δx + θ′i(x), this leads to the following loss for the δ-model representation,

1

m2

m∑
i,j=1

(
κκ

(
θi(x), θj(x)

)
+ κκ

(
θ′i(x

′), θ′j(x
′)
)
− 2κκ

(
θi(x), θ

′
j(x

′)
))

. (16)

Finally, to obtain a loss on which we can compute gradients in practice, each model kernel evaluation
above be can be approximated via Equation 14, with the resulting state kernel MMD estimated via
Equation 13. Note that we can sample from distributions of the form (1 − γ)δx + γθi(x

′) by first
sampling Y ∼ Bernoulli(1 − γ), returning x if Y = 1, and otherwise returning an independent
sample from θi(x

′). See Figure 2 for an illustration of how the loss is constructed.

5 PRACTICAL TRAINING OF δ-MODELS

In the previous section, we addressed the challenges of representing and learning an approximation
of the distributional SM in a computationally tractable manner. This section highlights the imple-
mentation of two techniques, namely n-step bootstrapping and adaptive kernel design, which we
found to be crucial in the optimization of δ-models for the distributional SM. Complete pseudocode
for our approach is given in Appendix A.

5.1 n-STEP BOOTSTRAPPING

The procedure outlined in Section 4.2 computes δ-model targets via one-step bootstrapping. In
accordance with Equation 8, the probability mass of the targets due to bootstrapping is γ, which
is generally very high when we are concerned with long horizons. Consequently, particularly at
the beginning of training when δ-model estimates are uninformative, the signal-to-noise ratio in the
targets is low, which dramatically impedes learning.

Taking inspiration from efforts to reduce the bias of bootstrapping in RL (Watkins, 1989; Sutton &
Barto, 2018), we compute n-step targets of the distributional SM. By Equation 8, we have

Mπ(· | x) L
=(1− γ)

(
δx + γδX1 + γ2δX2 + · · ·+ γn−1δXn−1

)
+ γnMπ(· | Xn), (17)
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where Xk+1 ∼ pπ(· | Xk) and X0 = x. An n-step version of the DSM MMD loss can then be
obtained by replacing the sampled one-step Bellman targets (1−γ)δx+γℸ(x′) in Equation 15 with
the corresponding n-step target

∑n−1
k=0(1 − γ)γkγδxk

+ γnθi(xn). In analogy with the one-step
case, we can sample from this distribution by first sampling Y from a Geometric(1−γ) distribution,
returning xk if Y = k < n, and returning a sample from θi(xn) otherwise. Notably, by increasing n,
we decrease the influence of bootstrap samples on the targets, thereby providing a stronger learning
signal grounded in samples from the trajectory.

We found that training stability tends to improve substantially when bootstrap samples account for
roughly 80% of the samples in the procedure above. For instance, this approximately corresponds to
choosing n = 5 when γ = 0.95. Appendix D includes a more detailed ablation on the choice of n.
Notably, this procedure for computing TD targets for generative modeling of occupancy measures
is not specific to the distributional SM or δ-models. In particular, we suspect this technique would
be useful more generally for training geometric horizon models (Janner et al., 2020; Thakoor et al.,
2022) with longer horizons, which was reported to be a major challenge (Janner et al., 2020).

5.2 KERNEL SELECTION

When training a δ-model with bootstrapped targets, naturally the model/state distributions compris-
ing ℸπ are continually evolving. This poses a challenge when it comes to selecting the kernels we
use in practice, since it is not possible a priori to decide which kernels can effectively compare
distributions on the samples we observe. As such, we found it necessary to employ adaptive kernels
that evolve with the distributions we are learning.

Powerful methods in the literature involve adversarially learning a kernel over a space of parame-
terized functions. The MMD-GAN (Li et al., 2017; Binkowski et al., 2018) demonstrates how to
parameterize characteristic kernels with deep neural networks. Li et al. (2017) shows that for any
characteristic kernel κ : Y × Y → R+, the function κ ◦ f : (x, y) 7→ κ(f(x), f(y)) is itself a
characteristic kernel when f : X → Y is injective. In their work, f is parameterized as the encoder
of an autoencoder network, where the autoencoder training encourages f to be injective.

In the case of the distributional SM, parameterizing the model kernel as an injection on the space of
probability measures is a major challenge. Rather, we parameterize an adversarial state kernel fol-
lowing the model of Li et al. (2017), using an invertible neural network based on iResNet (Behrmann
et al., 2019). Unlike an autoencoder, this enforces injectivity, and to our knowledge, no other work
has employed invertible neural networks for modeling an adversarial kernel. It should be noted
that the state kernel is itself defined as a parameter of the model kernel used in the comparison of
δ-models – thus, by adaptively learning the state kernel, our model kernel is itself adaptive.

We also found that further adaptation of the model kernel through the bandwidth σ improved train-
ing. Our approach is based on the median heuristic for bandwidth selection in kernel methods
(Takeuchi et al., 2006; Gretton et al., 2012). That is, prior to computing the model MMD, we
choose σ2 to be the median of the pairwise MMD2

κ between the models θi(x) of ℸ(x) and those
of the bootstrap target ℸ̃(x), (1 − γ)δx + γθj(x

′). Appendix D ablates on our choice of adaptive
kernels demonstrating its utility for training δ-models.
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Figure 3: Comparison of return distributions from distributional SM and Monte Carlo.
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Ψ𝜋( ⋅ ∣ x0)

ℸ( ⋅ ∣ x0)

𝛾 − Model Ensemble

𝔼M ∼ ℸ[M( ⋅ ∣ x0)]
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Figure 4: Distributional successor measure predictions in Windy Gridworld. (4a): Figures in the
left column show the model atoms predicted by the distributional SM (distinguished by color) and
by an ensemble of γ-models. Figures in the right column show the mean over distributional SM
model atoms and the SM itself. (4b): Distributional SM predictions of return statistics on held-out
reward functions for two policies, π1, π2. For each reward function, the distributional SM correctly
identifies the optimal policy with respect to both mean and CVaR.

6 EXPERIMENTAL RESULTS

We evaluate our implementation of the distributional SM on two domains, namely a stochastic
“Windy Gridworld” environment, where a pointmass navigates 2D continuous grid subject to ran-
dom wind force that pushes it towards the corners, and the Pendulum environment (Atkeson &
Schaal, 1997). As a baseline, we compare our method to an ensemble of γ-models (Janner et al.,
2020), which approximate the SM with a generative model. We implement the γ-models with
MMD-GAN, similarly to the individual model atoms of a δ-model. We train an ensemble of m
γ-models, where m is the number of models atoms in the comparable δ-model implementation of
the distributional SM. Effectively, the ensemble of γ-models is almost equivalent to a δ-model, with
the difference being that the individual γ-models of the ensemble are trained independently, while
the model atoms of a δ-model are coupled through the model MMD loss.

Visualizing model atoms. In Figure 4a, we examine the model atoms predicted by our implemen-
tation of the δ-model trained on data from a uniform random policy in the Windy Gridworld. Due
to the nature of the wind in this domain, which always forces the agent to the corner of the quadrant
where it is located, a uniform random policy exhibits a multimodal distribution of model atoms,
as shown by the colored densities in the top-left. Alternatively, when examining an ensemble of
γ-models trained on the same data, we see that the models in the ensemble all predict similar state
occupancies which align closely with the SM – crucially, only the distributional SM captures the
diversity of “futures” that the agent can experience.

Zero-shot policy evaluation. A unique feature of the distributional SM is that it acts as an operator
that transforms reward functions into return distribution functions. We explored the distributions
over returns predicted by the distributional SM for several held-out reward functions and analyzed
their similarity with return distributions estimated by Monte Carlo. Figure 3 showcases return dis-
tributions predicted by the distributional SM on four tasks in the Pendulum environment meant
to model constraints that may be imposed on the system (Default, Above Horizon, Stay
Left, Counterclockwise Penalty, details in Appendix C.2.2), and it is seen that these pre-
dictions capture important statistics, such as the mode and the support of the distributions, which
could not be captured by point estimates of the return. Similar results in Windy Gridworld are shown
in Appendix C.2.1. For quantitative evaluation, we measure the quality of the return distribution pre-
dictions by their dissimilarity to the return distributions estimated by Monte Carlo according to the
Cramér distance (Székely & Rizzo, 2013; Bellemare et al., 2017b). We compare the DSM return
distribution quality with the quality of return distributions estimated by an ensemble of γ-models
and with Dirac masses centered at the mean of the MC return distributions. Figure 3 demonstrates
that the DSM achieves significantly lower Cramér distance than the baselines, indicating that its re-
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turn distributions accurately capture aleatoric uncertainty, and provide more statistical information
than approaches based on the (expected) SM.

Risk-sensitive policy selection. Finally, we demonstrate that distributional SMs can be used to
effectively rank policies by various risk-sensitive criteria on held-out reward functions. In Figure 4b,
we train distributional SMs for two different policies, and use them to predict return distributions
for two reward functions. We focus on two functionals of these return distributions, namely the
mean and the conditional value at risk at level 0.4 (Rockafellar & Uryasev, 2002, 0.4-CVaR). We
see that for both reward functions, the distributional SM accurately estimates both functionals, and
is able to correctly identify the superior policy for each criterion. Particularly, for the Lopsided
Checkerboard reward, the distributional SM identifies π1 as superior with respect to mean reward
(identified by locations of solid blue lines), and alternatively identifies π2 as superior with respect to
0.4-CVaR of the return (identified by locations of the solid pink lines). These rankings are validated
by the locations of the dashed lines, which are computed by Monte Carlo. We note that, to our
knowledge, no other method can accomplish this feat. On the one hand, existing distributional RL
algorithms could not evaluate the return distributions for held-out reward functions. On the other
hand, any algorithm rooted in the SM for zero-shot evaluation can only rank policies by their mean
returns, so they must fail to rank π1, π2 by at least one of the mean or the 0.4-CVaR objective.

7 RELATED WORK

The successor representation (Dayan, 1993), originally proposed for finite-state MDPs, has been ex-
panded in various directions to handle more general state spaces, beyond the generative-modelling
approach to learning the SM described above. Successor features (SFs; Barreto et al., 2017; 2020)
model a discounted sum of multi-dimensional state features, which can be used for zero-shot evalua-
tion when rewards are expressible as linear functions of the features. A distributional variant of suc-
cessor features was introduced by Gimelfarb et al. (2021), who additionally modelled component-
wise variance of the sum of state features, for entropic risk. This approach also bears a close re-
lationship with the emerging field of multi-variate distributional RL (Freirich et al., 2019; Zhang
et al., 2021b); in particular Zhang et al. (2021b) make use of an MMD loss for learning multi-variate
return distributions, building on the scalar approach proposed by Nguyen-Tang et al. (2021). Touati
& Ollivier (2021) develop a density-modelling approach to learning the SM, in which the optimal
policy for any task can be extracted directly, generalizing the universal successor feature approxima-
tor of Borsa et al. (2018). Vértes & Sahani (2019) consider the task of learning the SR in partially
observable MDPs, in particular learning a posterior expectation of the SR defined over latent states.

Beyond transferring knowledge across tasks, learning long-term temporal structure can enhance the
representation quality of function approximators for individual sequential decision-making problems
(Farebrother et al., 2023; Ghosh et al., 2023), improving exploration (Jinnai et al., 2019; Machado
et al., 2020), temporal abstraction (Machado et al., 2018; 2023), and planning (Eysenbach et al.,
2021; 2022; Thakoor et al., 2022), as well as other forms of risk-sensitive decision making (Zhang
et al., 2021a). The distributional SR also plays a key explanatory role in understanding generaliza-
tion in RL (Mahadevan & Maggioni, 2007; Stachenfeld et al., 2014; Lan et al., 2022). Additionally,
both distributional RL (Dabney et al., 2020; Lowet et al., 2020) and successor representations (Mo-
mennejad et al., 2017; Stachenfeld et al., 2014; 2017) have been shown to provide plausible models
for biological phenomena in the brain.

8 CONCLUSION

This paper presents a fundamentally new approach to distributional RL, which allows for a factori-
sation of the return distribution into components comprising the immediate reward function, and
the distributional successor measure. This factorisation reveals the possibility of zero-shot distri-
butional policy evaluation. Notably, this enables efficient comparisons between policies on unseen
tasks with respect to arbitrary risk criteria, which no other existing methods have demonstrated. We
have also presented a tractable algorithmic framework for training δ-models, which approximate the
distributional SM with diverse generative models, and have identified several crucial techniques for
large-scale training of δ-models in practice.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Philip Amortila, Doina Precup, Prakash Panangaden, and Marc G Bellemare. A distributional anal-
ysis of sampling-based reinforcement learning algorithms. In International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), 2020.

Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In International
Conference on Machine Learning (ICML), 1997.
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David Silver, and Tom Schaul. Universal successor features approximators. In International
Conference on Learning Representations (ICLR), 2018.

Andreas Christmann and Ingo Steinwart. Universal kernels on non-standard input spaces. In Neural
Information Processing Systems (NeurIPS), 2010.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
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Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
International Conference on Learning Representations (ICLR), 2023.
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A ALGORITHM

In this section, we restate the core δ-model update derived in Section 4, including the n-step boot-
strapping and adversarial kernel modifications described in Section 5. Interested practitioners are
advised to consult EINOPS (Rogozhnikov, 2022).

Algorithm 1 δ-model update.
Require: Policy π with stationary distribution dπ , GAN generator Φ, GAN parameters {ζi}mi=1 and
target parameters {ζi}mi=1, discriminator function f , adversarial kernel parameters {ξi}mi=1, kernel
κ, step sizes α, λ, number of state samples s.
while training do
▷ Discriminator (adversarial kernel): maximize model MMD
Set ξi ← ξi + α∇ξiℓ({ζj}mj=1, {ζ̄j}mj=1, {ξj}mj=1) for i = 1, . . . ,m
▷ Generator: minimize model MMD
Set ζi ← ξi − α∇ζiℓ({ζj}mj=1, {ζ̄j}mj=1, {ξj}mj=1) for i = 1, . . . ,m
▷ Generator: target parameter update
Set ζ̄i ← (1− λ)ζ̄i + λζi for i = 1, . . . ,m

end while

procedure ℓ({ζi}mi=1, {ζ̄i}mi=1, {ξi}mi=1)
Sample x1 ∼ dπ, xk ∼ Pπ(· | xk−1) for k = 2, . . . , n.
for i = 1, . . . ,m do

Sample z1i , . . . , z
s
i i.i.d. from GAN noise distribution

Set xj
i ← Φ(zji ;x1, ζi) for j = 1, . . . , s

Sample ω1
i , . . . , ω

s
i i.i.d. from GAN noise distribution

and Y 1
i , . . . , Y

s
i i.i.d. from Geometric(1− γ)

Set x̄j
i ← Φ(ωj

i ;xn, ζ̄i) if Y j
i ≥ n, else set x̄j

i ← xY j
i

, for j = 1, . . . , s

Set yji ← f(xj
i , ξi) for j = 1, . . . s ▷ Adversarial Kernel Transformations

Set ȳji ← f(x̄j
i , ξi) for j = 1, . . . s

end for
for i = 1, . . . ,m do ▷ MMDs Between Source Model Atoms
for i′ = 1, . . . ,m do

Set dsi,i′ ←
1(
s
2

) s∑
l,k=1
l<k

κ(yki , y
l
i) +

1(
s
2

) s∑
l,k=1
l<k

κ(yki′ , y
l
i′)−

2

s2

s∑
l,k=1

κ(yki , y
l
i′) ▷ Equation 13

end for
end for
for i = 1, . . . ,m do ▷ MMDs Between Target Model Atoms

for i′ = 1, . . . ,m do

Set dti,i′ ←
1(
s
2

) s∑
l,k=1
l<k

κ(ȳki , ȳ
l
i) +

1(
s
2

) s∑
l,k=1
l<k

κ(ȳki′ , ȳ
l
i′)−

2

s2

s∑
l,k=1

κ(ȳki , ȳ
l
i′)

end for
end for
for i = 1, . . . ,m do ▷ MMDs Across Source and Target Model Atoms

for i′ = 1, . . . ,m do

Set dsti,i′ ←
1

s2

s∑
l,k=1

κ(yki , ȳ
l
i) +

1

s2

s∑
l,k=1

κ(yki′ , ȳ
l
i′)−

2

s2

s∑
l,k=1

κ(yki , ȳ
l
i′)

end for
end for
Set σ2 = Median

(
Concat

(
{dsi,i′}, {dti,i′}, {dsti,i′}

))
▷ Adaptive Model Kernel Bandwidth

Set L← 1

m2

m∑
i,j=1

(
ρ(
√

dsi,j/σ
2) + ρ(

√
dti,j/σ

2)− 2ρ(
√
dsti,j/σ

2)
)

▷ Model MMD

end procedure
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B FURTHER DISCUSSION AND EXTENSIONS

B.1 EXAMPLES OF DISTRIBUTIONAL SMS IN FINITE-STATE-SPACE ENVIRONMENTS

In this section, we include several examples to illustrate the breadth of distributions on the simplex
that can be obtained as distributional SMs for simple environments.

Figure 5 illustrates a kernel density approximation to the distributional SM in a three-state MDP,
with state-transition kernel given by (

0.5 0.5 0
0 0 1

1/3 1/3 1.3

)
,

and a discount factor of γ = 0.7. The figure is specifically created by generating 1,000 trajectories
of length 100, which are then converted into visitation distributions, serving as approximate sam-
ples of the distributional SM, and a kernel density estimator (KDE) is then fitted; we use Seaborn’s
kdeplot method with default parameters (Waskom, 2021). Also included in the figure are corre-
sponding return distribution estimates, obtained by using the identity in Equation 7 with the gen-
erated samples described above, and again using a KDE plot of the resulting return distribution
estimator. Observe that since the second state transitions deterministically into the third state, the
distributional SM for the second state is a scaling and translation of the distributional SM of the third
state, as predicted by the distributional SM Bellman equation in Equation 8.
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Figure 5: Top: Kernel density estimate of distributional SM. Red dot represents the standard SR.
Bottom: Kernel density estimates of return distributions, obtained via distributional SM. Vertical
lines represent expected return, obtained from standard SR.
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Figure 6: Monte Carlo estimation of the distributional SM at states x0, x1, and x2, in a three-state
MDP. Each distribution is supported on a copy of the fractal Sierpiński triangle. Red dot represents
the standard SR.
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In Figure 6, we plot a Monte Carlo approximation to the distributional SM in a three-state envi-
ronment in which there is an equal probability of jumping to each state in every transition, and
the discount factor is γ = 0.5. The distributions over the simplex in this case are instances of the
Sierpiński triangle, a fractal distribution that is neither discrete nor absolutely continuous with re-
spect to Lebesgue measure on the simplex. This can be viewed as a higher-dimensional analogue
of the Cantor distribution described in the context of distributional reinforcement learning in (Belle-
mare et al., 2023, Example 2.11). These plots were generated using 10,000 samples per state, with
an episode length of 100.

B.2 STOCHASTIC REWARD FUNCTIONS

In the main paper, we make a running assumption that the rewards encountered at each state are
given by a deterministic assumption. In full generality, Markov decision processes allow for the
state-conditioned reward to follow a non-trivial probability distribution. In this section, we briefly
describe the main issue with extending our approach to dealing with stochastic rewards.

The issue stems from the fact that the mapping from sequences of state (Xk)k≥0 to the correspond-
ing occupancy distribution

∑∞
k=0 γ

kδXk
is often not injective. To see why, consider an environment

with four states x0, x1, x2, x3 (including a terminal state x3, which always transitions to itself).
Consider two state sequences:

(x0, x1, x2, x2, x3, x3, . . .) ,

(x0, x2, x1, x1, x3, x3, . . .) .

These sequences give rise to the visitation distributions
(1− γ)δx0 + (1− γ)γδx1 + (1− γ)(γ2 + γ3)δx2 + γ4δx3 ,

(1− γ)δx0
+ (1− γ)(γ2 + γ3)δx1

+ (1− γ)γδx2
+ γ4δx3

.

Now suppose γ = γ2 + γ3; clearly there is a value of γ ∈ (0, 1) satisfying this equation. But
for this value of γ, the two visitation distributions above are identical. In the case of deterministic
state-conditioned rewards, the two corresponding returns are also identical in this case. However,
in the case of non-deterministic returns, the corresponding distributions over return are distinct. To
give a concrete case, consider the setting in which all rewards are deterministically 0, except at state
x1, where they are given by the N(0, 1) distribution. Then under the first visitation distribution,
the corresponding return distribution is the distribution of γZ (where Z ∼ N(0, 1)), which has
distribution N(0, γ2). In contrast, the return distribution for the second visitation distribution is
the distribution of γ2Z + γ3Z ′ (where Z,Z ′ i.i.d.∼ N(0, 1)), which has distribution N(0, γ4 + γ6).
However, γ2 ̸= γ4 + γ6, and hence these distributions are not equal.

These observations mean that the framework can be extended to handle stochastic rewards in cycle-
less environments; that is, environments where each state can be visited at most once in a given
trajectory. This incorporates the important class of finite-horizon environments.

B.3 THE SUCCESSOR MEASURE AS A LINEAR OPERATOR

Here, we recall a key notion from Blier et al. (2021) used in several proofs that follow. Succes-
sor measures act naturally as linear operators on the space B(X ) of bounded measurable functions,
much in the same way as Markov kernels act as linear operators (see e.g. Le Gall (2016)). Particu-
larly, for any f ∈ B(X ), we write

(Ψπf)(x) =

∫
X
f(x′)Ψπ(dx′ | x) , (18)

noting that Ψπ(· | x) is a (probability) measure for each x ∈ X . Through this linear operation, the
successor measure transforms reward functions r : X → R to value functions V π

r ,

(1− γ)V π
r (x) = Eπ

∑
t≥0

(1− γ)γtr(Xt) | X0 = x


= EX′∼Ψπ(·|x) [r(Xt)]

= (Ψπr)(x) .
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C EXPERIMENTAL DETAILS

In this section, we provide additional details relating to the experiments in the main paper.

C.1 HYPERPARAMETERS

Unless otherwise specified the default hyperparameters used for our implementation of δ-model are
outlined in Table 1. Certain environment specific hyperparameters can be found in Appendix C.2.

Table 1: Default hyperparameters for δ-model.

Hyperparameter Value
Generator Network MLP(3-layers, 256 units, ReLU)
Generator Optimizer Adam(β1 = 0.9, β2 = 0.999)
Generator Learning Rate 6.25e− 5
Discriminator Network iResMLP(2 layers × 2 blocks, 256 units, ReLU)
Discriminator Optimizer Adam(β1 = 0.9, β2 = 0.999)
Discriminator Learning Rate 6.25e− 5
Discriminator Feature Dimensionality 8 output features
Model Kernel InverseMultiQuadric
Adaptive Model Kernel (Median Heuristic) True
State Kernel RationalQuadricKernel(A = {0.2, 0.5, 1.0, 2.0, 5.0})
Adaptive State Kernel (Adversarial Kernel) True
Horizon (n-step) 5
Discount Factor (γ) 0.95
Batch Size 32
Number of State Samples 32
Number of Model Samples 51
Target Parameter Step Size (λ) 0.01
Noise Distribution ω ∈ R8 ∼ N (0, I)
Number of Gradient Updates 3e6

C.2 ENVIRONMENT DETAILS

Below we provide specifics of the environments utilized for the experimental results in the paper.

C.2.1 WINDY GRIDWORLD

When training a δ-model for the Windy Gridworld experiments, we use 4 model atoms and train for
1 million gradient steps.

Our experiments in Section 5 involve two reward functions, namely Hopscotch and Lopsided
Checkerboard. These reward functions have constant rewards in each quadrant, as shown in
Figure 7.

Lopsided Checkerboard
15 -10
-2 2

Hopscotch
3 -1
-2 2

Figure 7: Reward functions for Windy Gridworld.

Moreover, we provide some additional visualizations on predicted return distributions from our
distributional SM implementation in Figure 8.

Notably, Figure 8 demonstrates that the distributional SM correctly predict the fraction of futures
that enter the red region, which demonstrates that the distributional SM is can detect when a policy
will be likely to violate novel constraints.
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Bad Quadrant

-100 -50 0

Checkerboard

SM

SM

Figure 8: Return distribution predictions in Windy Gridworld under the uniform random policy
where the source state is the origin. Each row represents a separate reward function depicted by the
inset grids, with red regions denoting negative reward.

C.2.2 PENDULUM

When training a δ-model for the Pendulum experiments, we use 51 model atoms and train for 3
million gradient steps.

Our experiments on the Pendulum environment involve zero-shot policy evaluation for rewards that
are held out during training. We considered four reward functions, namely Default, Above
Horizon, Stay Left, and Counterclockwise Penalty, which we describe below.

All reward functions are defined in terms of the pendulum angle θ ∈ [−π, π], its angular velocity θ̇,
and the action a ∈ R. The reward functions are given by

rDefault(θ, θ̇, a) = −
(
θ2 + 0.1θ̇2 + 0.001a2

)
rAbove Horizon(θ, θ̇, a) = −(1θ≥π/2 + 0.1a2)

rStay Left(θ, θ̇, a) = min(0, sin θ)

rCCW Penalty(θ, θ̇, a) = 1θ̇<0

These reward functions (aside from Default) were chosen to model potential constraints that can
be imposed on the system after a learning phase. The Above Horizon reward imposes extra
penalty whenever the pendulum is below the horizon, which may model the presence of an obsta-
cle under the horizon. The Stay Left reward reinforces the system when the pendulum points
further to the left, which could, for instance, indicate a different desired target for the pendulum.
Finally, the Counterclockwise Penalty (rCCW Penalty above) reinforces the system for ro-
tating clockwise, which can model a constraint on the motor.
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Figure 9: Each subplot indicates the Wasserstein distance of the DSM versus the empirical MC
return distributions on 9 source states for 4 reward functions on Pendulum. Left: Varying the value
of n in the δ-model multi-step bootstrapped target. Middle: varying the number of model atoms.
Right: Selectively applying an adaptive (adversarial) or non-adaptive state kernel.

D ABLATION EXPERIMENTS

As mentioned in Section 5 there are several practical considerations when learning δ-models. We
further expand on three crucial details: n-step bootstrapping, adaptive kernels, and how the number
of model atoms affects our approximation error.

n-step bootstrapping. In order to allow δ-models to learn longer horizons than typically possible
with γ-models (Janner et al., 2020) we employ the use of n-step bootstrapping when constructing
our target distribution. The choice of n is critical; if n is too small, the update is over-reliant on
bootstrapping, leading to instability. Conversely, for large n it becomes impractical to store long
sequences.

For these reasons it is worth understanding how δ-models interacts with the value of n, which can
help guide the selection of this parameter for any type of geometric horizon model (e.g., Janner
et al., 2020; Thakoor et al., 2022). To this end, we perform a sweep over n ∈ {1, 2, . . . , 10} to
understand how this affects the Wasserstein distance between the DSM-estimated return compared to
the empirical MC return distribution. We train a δ-model with γ = 0.95 for each n on the Pendulum
environment with all other hyperparameters remaining fixed as in Appendix C.1. Figure 9 (left)
shows the Wasserstein distance averaged over 9 source states for the four reward functions outlined
in Appendix C.2.2.

We can see that n-step bootstrapping does indeed help us to learn better approximations until around
n = 5 where the benefits are less clear. This corresponding to the bootstrapped term accounting for
≈ 80% of the probability mass of the target distribution.

Adversarial kernel. Given the non-stationary of our target distributions, we found it crucial to
employ an adaptive kernel in the form of an adversarial kernel (Li et al., 2017) for the state kernel.
Note that the model kernel is itself a function of the state kernel so by learning an adversarial state
kernel we are able to adapt our model kernel as well.

To validate our decision to employ an adversarial kernel we train a δ-model with and without an
adaptive kernel. The adaptive kernel is the one described in Appendix C.1. The non-adaptive kernel
omits the application of the learned embedding network, that is, the kernel is a mixture of rational
quadric kernels,

ρ(d) =
∑
α∈A

(
1 +

d

2α

)−α

,

for A = {0.2, 0.5, 1.0, 2.0, 5.0} as per Binkowski et al. (2018). Figure 9 (right) shows that the
Wasserstein distance is nearly halved when applying the adversarial kernel.

Number of model atoms. As the number of model atoms increases we expect to better approximate
ℸπ . To get an idea of how our approximation is improving as we scale the number of atoms we
compare the Wasserstein distance from our δ-model to the empirical MC return distributions for
{5, 11, 21, 31, 41, 51} model atoms. These results are presented in Figure 9 (Middle). As expected
we obtain a better approximation to ℸπ when increasing the number of model atoms. Further scaling
the number of model atoms should continue to improve performance at the cost of compute. This is
a desirable property for risk-sensitive applications where better approximations are required.
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E PROOFS

Proposition 1. Let Mπ denote a random discounted state-occupancy measure for a given policy π.
For any deterministic reward function r : X → R, we have

Gπ
r (x)

L
=(1− γ)−1EX′∼Mπ(·|x) [r(X

′)] . (7)

Note that the right-hand side is a random variable, since Mπ(· | x) itself is a random distribution.

Proof. This result can be verified by a direct calculation. Invoking Definition 1, we have

(Mπr)(x) =

∫
X
r(x′)Mπ(dx′ | x)

L
=

∫
X

∑
t≥0

(1− γ)γtr(x′)δXt(dx
′)

∣∣∣∣∣∣ X0 = x

L
=(1− γ)

∑
t≥0

γtr(Xt)

∣∣∣∣∣∣ X0 = x

L
=(1− γ)Gπ

r (x)

where the third step invokes Fubini’s theorem subject to the boundedness of r. The claimed result
simply follows by dividing through by 1− γ.

Proposition 2. Let Mπ denote the random discounted state-occupancy measure induced by a policy
π. Then Mπ can be expressed recursively via a distributional Bellman equation, as follows:

Mπ(S | x) L
=(1− γ)δx(S) + γMπ(S | X ′) ∀S ⊆ X measurable, (8)

where X ′ ∼ Pπ(· | x), and is independent of Mπ .

Proof. By Definition 1, we have

Mπ(· | x) L
=(1− γ)δx +

∞∑
t=1

(1− γ)γtδXt

L
=(1− γ)δx + γ

∞∑
t=0

(1− γ)γtδXt+1

L
=(1− γ)δx + γMπ(· | X ′) ,

with the final equality in distribution following from the Markov property.

F ADDITIONAL RESULTS

Proposition 3. The distributional SM is determined by the standard SR. In other words, given Ψπ ,
one can mathematically derive ℸπ .

Proof. To establish Proposition 3, it suffices to show that the one-step transition kernel pπ for a
given policy π can be recovered exactly from Ψπ . This is because pπ contains all possible structural
information about the environment and the policy’s dynamics, so it contains all information neces-
sary to construct the distributional SM. When X is finite, Lemma 1 shows that Ψπ encode pπ , and
Lemma 2 demonstrates this for the more general class of state space X considered in this paper.

Lemma 1. Let X be finite, and let Ψπ denote the successor representation for a given policy π.
Then pπ can be recovered exactly from Ψπ .
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Proof. Consider a policy π : X →P(A) with discounted visitation distributions Ψπ . We consider
the state transition matrix Pπ ∈ R|X |×|X| where Pπ

x,x′ = pπ(x′ | x). Recall that Ψπ = (1− γ)(I −
γPπ)−1, so rearranging we have Pπ = γ−1(I − (1 − γ)(Ψπ)−1). Therefore the one-step state-
to-state transition probabilities are determined by Ψπ , and since ℸπ is a function of of the one-step
transition probabilities, the conclusion follows.

Lemma 2. Let X be a complete, separable metric space endowed with its Borel σ-field Σ, and let
Ψπ denote the successor measure for a given policy π. Then Ψπ encodes pπ , in the sense that pπ
can be expressed as a function of Ψπ alone.

Proof. Recall the definition of the successor measure Ψπ : Σ→ R+,

Ψπ(A | x) = (1− γ)
∑
t≥0

γt Pr(Xt ∈ A | X0 = x) .

As shown above in Appendix B.3, Ψπ acts as a linear operator on B(X ) according to (Ψπf)(x) =
EX′∼Ψπ(·|x) [f(X

′)]. We denote by Pπ : B(X ) → B(X ) the Markov kernel corresponding to pπ ,
where B(X ) denotes the space of bounded and measurable functions on X . The operator Pπ acts
on a function f ∈ B(X ) according to

(Pπf)(x) =

∫
X
f(x′)pπ(dx′ | x) = EX′∼pπ(·|x) [f(X

′)] .

That is, (Pπf)(x) computes the expected value of f over the distribution of next states, conditioned
on a starting state. Returning to the definition of the successor measure, for any f ∈ B(X ), we have

(Ψπf)(x) =

∫
X
f(x′)Ψπ(dx′ | x)

= (1− γ)

∫
X
f(x′)

∑
t≥0

γt(pπ)t(dx′ | x)

= (1− γ)
∑
t≥0

γt

∫
X
f(x′)(pπ)t(dx′ | x)

= (1− γ)
∑
t≥0

γt((Pπ)tf)(x)

where the third step invokes Fubini’s theorem, given the boundedness of f and pπ . We have shown
that

Ψπ = (1− γ)
∑
t≥0

γt(Pπ)t ,

where the correspondence is with respect to the interpretation of Ψπ as a linear operator on B(X ).
Blier et al. (2021, Theorem 2) show that

∑
t≥0 γ

t(Pπ)t = (id−γPπ)−1 as linear operators on
B(X ), where id is the identity map on B(X ). As a consequence, Ψπ is proportional to the inverse
of a linear operator, so it is itself an invertible linear operator, where

(Ψπ)−1 =
1

1− γ
(id−γPπ)

and hence
Pπ = γ−1

(
id−(1− γ)(Ψπ)−1

)
.

Again, the correspondence is established for Pπ as a linear operator on B(X ). However, we can
now recover the measures pπ(· | x) according to

pπ(A | x) =
∫
A

pπ(dx′ | x)

=

∫
X
χA(x

′)pπ(dx′ | x) (χA(y) ≜ 1y∈A)

= (PπχA)(x)

=
(
γ−1(id−(1− γ)(Ψπ)−1)χA

)
(x)

where χA ∈ B(X ) for any measurable set A. Thus, we have shown that pπ(· | x) can be recon-
structed from Ψπ alone, as claimed.
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F.1 DISTRIBUTIONAL DYNAMIC PROGRAMMING

In this section, we demonstrate how the distributional SM can be computed by dynamic program-
ming. Following familiar techniques in the analysis of dynamic programming algorithms, we will
demonstrate that the distributional SM is the unique fixed point of a contractive operator, and appeal
to the Banach fixed point theorem.

To begin, we will define the operator of interest, which we refer to as the distributional Bellman
operator T π : P(P(X ))X →P(P(X ))X ,

(T πℸ)(x) = EX′∼pπ(·|x) [(bx,γ)♯ℸ(X ′)] .

It follows directly from equation 9 that ℸπ = T πℸπ .

Proposition 4. Let d be a metric on X such that (X , d) is a Polish space, and let wd denote the
Wasserstein distance on P(X ) with base distance d. Then, if W : P(P(X ))×P(P(X )) → R
is the Wasserstein distance on P(P(X )) with base distance wd, we have

W (T πℸ1, T πℸ2) ≤ γW (ℸ1,ℸ2),

where W is the “supremal” W metric given by W (ℸ1,ℸ2) = supx∈X W (ℸ1(x),ℸ2(x)).

Proof. Our approach is inspired by the coupling approach proposed by Amortila et al. (2020). De-
note by Π(p, q) the set of couplings between distributions p, q.

Let Γ1,x′ ∈ Π(ℸ1(x
′),ℸ2(x

′)) denote an ϵ-optimal coupling with respect to the Wasserstein distance
W , in the sense that

∫
P(X )

∫
P(X )

wd(p, q)Γ1,x′(dp× dq) ≤W (ℸ1(x
′),ℸ2(x

′)) + ϵ

for arbitrary ϵ > 0. Firstly, we note that Γ1 ∈ Π((T πℸ1)(x), (T πℸ2)(x)), where

Γ1 =

∫
X
pπ(dx′ | x) [(bx,γ ,bx,γ)♯Γ1,x′ ] .

Here, (bx,γ ,bx,γ)♯Γ1,x′(A × B) = Γ1,x′(b−1
x,γ(A) × b−1

x,γ(B)) for measurable A,B ⊂ P(X ). To
see this, we note that for any measurable P ⊂P(X ),

Γ1(P ×P(X )) =
∫
X
pπ(dx′ | x)Γ1,x′(b−1

x,γ(P )×P(X ))

=

∫
X
pπ(dx′ | x)ℸ1(x

′)(b−1
x,γ(P ))

=

∫
X
pπ(dx′ | x) [(bx,γ)♯ℸ1(x

′)] (P )

≡ [(T πℸ1)(x)] (P ),

so that the first marginal of Γ1 is (T πℸ1)(x). Likewise, the second marginal of Γ1 is (T πℸ2)(x),
confirming that Γ1 is a coupling between (T πℸ1)(x) and (T πℸ2)(x). It follows that
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W (T πℸ1, T πℸ2) = sup
x∈X

W ((T πℸ1)(x), (T πℸ2)(x))

≤ sup
x∈X

∫
P(X )

∫
P(X )

wd(p, q)Γ1(dp× dq)

= sup
x∈X

∫
P(X )

∫
P(X )

∫
X
wd(p, q)p

π(dx′ | x) [(bx,γ ,bx,γ)♯Γ1,x′ ] (dp× dq)

= sup
x,x′∈X

∫
P(X )

∫
P(X )

wd(bx,γ(p),bx,γ(q))Γ1,x′(dp× dq)

We now claim that wd(bx,γ(p),bx,γ(q)) ≤ γwd(p, q) for any p, q ∈ P(X ). To do so, let Γ2 ∈
Π(p, q) be an optimal coupling with respect to wd, which is guaranteed to exist since (X , d) is a
Polish space (Villani, 2008). Define Γ3 ∈P(X × X ) such that

Γ3 = (1− γ)δ(x,x) + γΓ2

It follows that, for any measurable X ⊂ X ,

Γ3(X ×X ) = (1− γ)δ(x,x)(X ×X ) + γΓ2(X ×X )
= (1− γ)δx(X) + γΓ2(X ×X )
= (1− γ)δx(X) + γp(X)

= bx,γ(p)(X)

which confirms that bx,γ(p) is the first marginal of Γ3. The similar argument for the second marginal
shows that Γ3 is a coupling between bx,γ(p),bx,γ(q). So, we see that

wd(bx,γ(p),bx,γ(q)) = inf
Γ∈Π(bx,γ(p),bx,γ(q))

∫
X

∫
X
d(y, y′)Γ(dy × dy′)

≤
∫
X

∫
X
d(y, y′)Γ3(dy × dy′)

= (1− γ)d(x, x) + γ

∫
X

∫
X
d(y, y′)Γ2(dy × dy′)

= γwd(p, q)

Now, continuing the bound from earlier, we have

W (T πℸ1, T πℸ2) ≤ sup
x,x′∈X

∫
P(X )

∫
P(X )

wd(bx,γ(p),bx,γ(q))Γ1,x′(dp× dq)

≤ γ sup
x∈X

∫
P(X )

∫
P(X )

wd(p, q)Γ1,x(dp× dq)

≤ γ sup
x∈X

[W (ℸ1(x),ℸ2(x)) + ϵ]

= γW (ℸ1,ℸ2) + γϵ

Thus, since ϵ > 0 was arbitrary, the claim follows.

Corollary 1. Under the conditions of Proposition 4, if the metric space (X , d) is compact, then the
iterates (ℸk)

∞
k=1 given by

ℸk+1 = T πℸk

converge in W to ℸπ , for any given ℸ0 ∈P(P(X ))X .
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Proof. Prior to applying the Banach fixed point theorem it is necessary to ensure that W is finite
on P(P(X ))X to ensure that a fixed point will be reached. Since X is compact and metrics are
continuous, it follows that the metric d is bounded over X , that is,

sup
x,y∈X

d(x, y) ≤ C <∞

for some constant C. As such, the Wasserstein distance wd, as an expectation over distances mea-
sured by d, is also bounded by C, and following the same logic, the metrics W,W are bounded by
C. Then, since ℸπ = T πℸπ , we have that

W (ℸk,ℸπ) = W (T πℸk−1,ℸπ)

= W (T πℸk−1, T πℸπ)

≤ γW (ℸk−1,ℸπ)

where the final step leverages the contraction provided by Proposition 4. Then, repeating k − 1
times, we have

W (ℸk,ℸπ) ≤ γkW (ℸ0,ℸπ)

≤ γkC

Since |γ| < 1 and C is finite, it follows that W (ℸk,ℸπ)→ 0, and since W is a metric, ℸk → ℸπ in
W .
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