
Learning In-context nnn-grams with Transformers:
Sub-nnn-grams Are Near-stationary Points

Aditya Varre * 1 Gizem Yüce * 1 Nicolas Flammarion 1

Abstract

In this article, we explore the loss landscape of
next-token prediction with transformers. Specif-
ically, we focus on learning in-context n-gram
language models with cross-entropy loss using
a simplified two-layer transformer. We design
a series of transformers that represent k-grams
(for k ⩽ n) for which the gradient of the popu-
lation loss approaches zero in the limit of both
infinite sequence length and infinite parameter
norm. This construction reveals a key property of
the loss landscape: k-grams are stationary points
of the population cross-entropy loss, offering the-
oretical insights for widely observed empirical
phenomena such as stage-wise learning dynamics
and emergent phase transitions. These insights
are further supported by numerical experiments
that illustrate the dynamics of learning n-grams,
characterized by jumps between stationary points.

1. Introduction
Transformers (Vaswani et al., 2017) have become central
to modern machine learning, due to their capabilities such
as in-context learning (ICL) (Brown, 2020)—the ability of
models to perform new tasks by leveraging a few examples
provided within the context, without the need for parameter
updates or retraining.

Recent empirical studies have revealed that the dynamics
that result in in-context learning abilities often deviate from
a simple monotonic decrease in loss, exhibiting complex
behaviors with plateaus such as grokking (Power et al.,
2022) and stage-wise transitions (Olsson et al., 2022) where
the training process frequently lingers in regions of slow
progress before going through a sudden phase transition

*Equal contribution 1Theory of Machine Learning Lab,
EPFL, Switzerland. Correspondence to: Aditya Varre
<aditya.varre@epfl.ch>, Gizem Yüce <gizem.yuce@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

after which ICL abilities are acquired. Mechanistic inter-
pretability studies suggest that after these plateaus, specific
circuits, such as induction heads (Olsson et al., 2022), or syn-
tactic structures (Chen et al., 2024a), are gradually learned.
This raises a natural question:

Why does training linger at plateaus before developing such
abilities?

The setting of Edelman et al. (2024) provides an avenue
to take a closer look at this question with the specialized
task of learning in-context n-grams (Shannon, 1948; Chom-
sky, 1956; Brown et al., 1992). Here, the training unfolds
in a hierarchical, phase-wise manner. It begins with the
transformer making uniform predictions, progresses through
unigram and bigram predictions, and potentially general-
izes to higher-order n-grams. Figure 1 illustrates how these
training phases overlap with the losses of the sub-n-gram
estimators.

Building on this observation, we provide a theoretical foun-
dation for why training lingers at long plateaus—the loss
landscape of transformers trained on in-context sequential
data exhibit stationary points aligned with sub-hierarchical
or sub-syntactic solutions. These points act as intermedi-
ate solutions where gradients vanish, causing training to
stagnate before transitioning to the next hierarchical level.

Concretely, this paper explores the loss landscape of trans-
former models trained on in-context n-gram language mod-
els to predict the next token. We show a sufficient stationar-
ity condition for the cross-entropy loss that the sub-n-gram
constructions satisfy, shedding light on the incremental and
phase-wise learning phenomena observed during training
for in-context n-grams. Our main contributions can be sum-
marized as follows:

• In Section 3, we provide a sufficient condition for the
solutions to be the stationary points of the cross-entropy
loss in the next-token prediction task when the derivatives
of the model’s logits depend solely on a sub-sequence of
the input history. This characterization provides a power-
ful tool for analyzing the structure of the loss landscape
for various tasks, including but not limited to n-grams.

• In Section 4, we demonstrate that a set of solutions repre-

1

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

0 100 200 300 400 500 600 700 800
Step

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

Unigram
Bigram
Trigram
4-gram

Figure 1: The stage-wise behavior of the test loss during
training for the 4-gram language model. The dashed lines
represent the cross entropy loss of the k-gram estimators for
k = 1, 2, 3, 4. The plateaus of the test loss overlap with the
losses of k-gram estimators.

senting sub-n-gram estimators are near-stationary points,
by verifying that they satisfy the conditions sufficient for
the gradient of the population loss to converge to zero
presented in Section 3 in the infinite weight and sequence
length limit.

• In Section 5, we present empirical evidence that illus-
trates the structural evolution of these models during
training and how transitions between training phases are
in alignment with the predictions of our theory.

1.1. Related Work

In-context Learning. To understand in-context learning
(ICL) (Brown, 2020), previous works have explored various
approaches. One approach is mechanistic interpretability,
which has revealed the emergence of circuits called induc-
tion heads during ICL (Olsson et al., 2022). Another ap-
proach involves studying ICL on specific hypothesis classes
to understand how transformers solve these tasks in context.
A common feature of the training dynamics in these studies
is the presence of plateaus (Chen et al., 2024a; Kim et al.,
2024), after which the models acquire certain capabilities.
Examples include studying ICL on regression tasks (Garg
et al., 2022; Von Oswald et al., 2023; Ahn et al., 2024),
boolean functions (Bhattamishra et al., 2023), regular lan-
guages (Akyürek et al., 2024), and n-grams.

(In-context) Learning n-gram language models. n-gram
language models, or higher-order Markov chains, are ef-
fective mathematical models for generating sequential data
and capturing certain aspects of natural language (Shannon,
1948; Jelinek, 1998; Jurafsky & Martin, 2024). As a re-
sult, many studies have focused on analyzing transformers
through the lens of Markov sequences. Svete & Cotterell
(2024) examines the representational limits of transform-
ers on n-grams, while Rajaraman et al. (2024) focuses on
the in-context counterpart. Makkuva et al. (2024) explores
the landscape of transformers on data from binary first-
order Markov chains (bigrams) but does not consider the

in-context setting. Bietti et al. (2024) investigates the forma-
tion of induction heads needed to learn bigrams with specific
trigger tokens. Additionally, Nichani et al. (2024) studies
the formation of induction heads through gradient descent
in learning causal structures. A closely related work to ours
is Edelman et al. (2024). They report the stage-wise dy-
namics of transformers while learning in-context n-grams,
and identify that these stages correspond to sub-n-grams.
However, their theoretical analysis is limited to one step of
gradient descent on binary bigrams, while we characterize
the sub-n-grams as near-stationary points for unrestricted
n and vocabulary size, explaining the long plateaus once
the training reaches a state expressing these solutions. Chen
et al. (2024b) study the same in-context n-gram prediction
task, but with an architecture that involves a feed-forward
network layer that does the token selection. However, they
have a threee-stage training procedure and an initializa-
tion scheme that ensures different heads attend to different
tokens from the start, eliminating the stage-wise learning
dynamics we study.

Sequential learning. Fukumizu & Amari (2000) analyzes
the plateaus in the loss curve and their relationship to crit-
ical points for supervised learning with neural networks.
The characterization of dynamics, including jumps between
these stationary points, has also been studied for simpler
models such as matrix and tensor factorization (Razin et al.,
2021; Jiang et al., 2022), matrix sensing (Arora et al., 2019;
Li et al., 2021; Jin et al., 2023), diagonal networks (Gissin
et al., 2020; Berthier, 2022; Pesme & Flammarion, 2023),
linear networks (Saxe et al., 2019; Gidel et al., 2019; Jacot
et al., 2021; Varre et al., 2023), ReLU networks (Boursier
et al., 2022; Abbe et al., 2023) and transformers with diago-
nal weight matrices (Boix-Adsera et al., 2023).

Large Language Models(LLMs) as n-grams Nguyen
(2024) investigate whether LLM predictions can be approx-
imated by simpler, interpretable statistical rules based on
n-gram frequencies, and show that LLMs exhibit curricu-
lum learning during training—starting with simpler n-gram
patterns and progressively capturing more complex ones. In
a related vein, Zekri et al. (2025) leverages the equivalence
between auto-regressive models and n-gram models with
long contexts to derive generalization bounds.

2. In-context nnn-grams and Transformers
In this section, we define the in-context next token predic-
tion loss, the landscape of which we aim to understand for
transformers. Next, we introduce the n-gram language mod-
els and formally describe the disentangled attention-only
transformer architecture.

Notation. Let [S] = {1, 2, . . .S} be a finite alphabet for
S ∈ N. The Kleene star [S]∗ denotes the set of all finite-

2

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

length sequences whose elements are in [S]. For l ⩽ k,
xk

l = {xl, xl+1 . . . xk−1, xk} ∈ [S]k−l+1 denotes a subse-
quence. When not specified, l = 1. ∆k−1 denotes the prob-
ability simplex over Rk. For an element xt in a sequence,
its l-history refers to xt−1

t−l and its (−l)-token refers to xt−l.
A language model p is a distribution over [S]∗. For a matrix
r ∈ RT×d, r[t] ∈ Rd denotes the vector representation of
it’s tth row.

2.1. In-context Next Token Predictions

Consider a language model p and a parametric model
p(θ, .) : [S]∗ → ∆S−1, which predicts the probability for
the next token. Given a sequence xT ∈ [S]T , the model’s
performance in predicting the next token is evaluated using
the cross-entropy loss (CE):

ℓ (θ, xT) =
∑
s∈S

p(xT+1=s|xT) log (p(θ, xT)[s]) .

In the in-context setting, we assume that the ground truth
language model is a mixture of multiple language models.
Specifically, the language model pτ is sampled from a prior
distribution P . Then, given pτ , the sequence xT is sampled
accordingly. The in-context population loss is defined as

L(θ) := E
pτ∼P

E
xT∼pτ

ℓ (θ, xT) . (1)

We focus on the in-context n-gram task case where pτ ’s are
modeled as n-gram language models.

2.2. In-context nnn-grams task

We start with the definition of n-gram language model and
discuss some estimators for this setting.

The n-gram Language Model. A language model pτ
is an n-gram language model if it satisfies the two key
assumptions:

(a) Markov property: The conditional probability of a token
depends only on the (n−1)-history rather than the entire
history, i.e.,

pτ (xl|xl−1) = pτ
(
xl|xl−1

l−n+1

)
, for l ⩾ n.

(b) Time Homogeneity: The transition probabilities are inde-
pendent of the position in the sequence. Formally, for all
t, l ∈ [T] and sequences sn ∈ [S]n,

pτ
(
xl=sn|xl−1

l−n+1=s
n−1

)
= pτ

(
xt=sn|xt−1

t−n+1=s
n−1

)
.

The assumptions above distinguish n-grams from general
language models by limiting the dependency range and as-
suming uniform transition dynamics over time. Although
these assumptions restrict their expressive power, they re-
tain certain key characteristics of natural language, such

as causal dependence on the prior context. Under these
assumptions, the probability of the sequence xT can be
expressed using the chain rule as

pτ (x
T) =

∏
l∈[T]

pτ (xl|xl−1) =
∏
l∈[T]

pτ
(
xl|xl−1

l−n+1

)
.

Estimators. For the next token prediction task with the
in-context n-gram language model, the k-gram estimator is
of particular interest.

Definition 2.1 (k-gram estimator). Given a sequence xT

and i ∈ [S], the k-gram estimator is defined as

p̂k (xT+1=i
∣∣xT) =

T∑
l=k

1{xl−1
l−k+1=x

T
T−k+2}1{xl=i}

T∑
l=k

1{xl−1
l−k+1=xT

T−k+2}
.

Intuitively, this estimator checks whether the (k−1)-
histories match and counts the tokens that follow. For k = 1
(unigram), it computes the empirical frequency of each to-
ken in the sequence. For k = 2 (bigram), the estimator
computes the empirical frequency of tokens that follow
those matching the T th token in the sequence. The n-gram
estimator is the “in-context” maximum likelihood estimator
(MLE) for the n-gram language model. Moreover, Han et al.
(2021) shows that the smoothed version of this estimator
achieves the minimax optimal rate for the next-token prob-
ability estimation. We include all the k-gram estimators
where k < n, in the definition of sub-n-grams.

We note that our choice of the n-gram language model and
k-gram estimator is primarily for ease of presentation. Our
results naturally extend to more general time homogeneous
causal dependencies in the sequence beyond n-grams as in
Nichani et al. (2024). For example, our results also apply
to causal graphs where a token xt depends only on specific
parent tokens, such as xt−2 and xt−4. Similarly, while the
k-gram estimator matches a contiguous (k−1)-history by
definition, a similar estimator can match non-contiguous his-
tories and count what follows. For instance, let the ({1, 3})-
history of a token xt refer to (xt−1, xt−3); an estimator
could leverage this pattern to predict subsequent tokens in
the same way the 3-gram estimator does for the contiguous
2-history. We use the term sub-n-grams also to include such
cases, which we discuss further in Appendix F.2. Next, we
introduce the attention-only transformer architecture used
for this in-context learning task.

2.3. Disentangled Transformer Architecture

Given an input sequence xT∈[S]∗, the transformer first
maps each token to a d-dimensional embedding using
token-wise semantic and positional embeddings, defined

3

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

as E : [S] → Rd and P : [T] → Rd. The core of the trans-
former is the self-attention mechanism, which allows the
model to weigh different parts of the input sequence based
on learned similarity scores. Given a sequence embedding
r ∈ RT×d, self-attention computes a weighted sum of token
embeddings as

SA(Q,K,V) (r) = σ
((
rQ⊤Kr⊤

))
rV,

where (Q,K,V), are the query, key and value matrices of
the attention head, and the masked soft-max σ (·) is defined
as

σ (x) [i][j] =

{
exp(xij)∑

k⩽i exp(xik)
, j ⩽ i

0, otherwise
.

Traditionally, the outputs of self-attention layers are added
to the residual stream. For ease of interpretation and analy-
sis, we instead consider a disentangled architecture in which
the outputs of individual heads and layers are concatenated
rather than summed. This framework was proposed by Fried-
man et al. (2023) and formalized by Nichani et al. (2024).
The disentangled architecture retains the same representa-
tional power as the standard formulation (see Theorem 3 of
Nichani et al. (2024)) and is formally defined below.

Definition 2.2 (Disentangled Attention-only Trans-
former). Let L be the depth, {hℓ}ℓ∈[L] be the number
of heads per layer, d be the embedding dimension, dℓ
be the dimension of layer ℓ, dh be the hidden dimension
of the model parameters, and dout be the output dimen-
sion. For the hth head in the ℓth layer, let Q(h)

ℓ ,K
(h)
ℓ ∈

Rdh×dℓ ,V
(h)
ℓ ∈ Rdℓ×dℓ , be the query, key, and value ma-

trices of the respective head and layer, let SA(h)
ℓ (·) =

SA{Q(h)
ℓ ,K

(h)
ℓ ,V

(h)
ℓ } (·) and let U ∈ Rdout×dL be the un-

embedding matrix. Given an input sequence xT , the dis-
entangled transformer outputs the logits TF(θ) for θ ={
{Q(h)

ℓ ,K
(h)
ℓ ,V

(h)
ℓ }ℓ∈[L],h∈[hℓ] ∪U

}
, given by,

r0 = [E(xT), P (xT)] ∈ RT×d,

rℓ = [rℓ−1, SA(1)
ℓ (rℓ−1) , . . . , SA(h)

ℓ (rℓ−1)]

TF(θ) = rLU
⊤.

To simplify the presentation of our theoretical results, we
consider a two-layer simplified disentangled transformer
with specific design choices. These modifications, detailed
below, include orthogonal token embeddings and a fixed
value matrix in the second layer.

Embeddings. The token embedding S : [S] → Rd is
orthogonal, which means that the set (si)i∈[S] forms an
orthogonal family in Rd. Here, si denotes the embedding

of the token i. For such an embedding to exist, d ⩾ S. For
any sequence xT , the input is encoded as,

r0 =
[
sx1

sx2
. . . sxT

]⊤ ∈ RT×d.

No explicit positional embeddings are used1.

First Attention Layer. The first attention layer contains
m attention heads, and each attention matrix is parame-
terized by a single learned matrix A

(h)
1 ∈ RT×T and is

independent of the input embeddings. The output of each
head is therefore given by

r(h)1 = σ
(
A

(h)
1

)
r0

(
V

(h)
1

)⊤
∈ RT×d. (2)

This construction is equivalent to a standard attention head
where token embeddings are concatenated with one-hot
positional embeddings and the attention only relies on the
latter. Thus, the output of the first layer is given by

r1 =
[
r
(0)
1 r

(1)
1 . . . r

(m)
1

]
∈ RT×(m+1)d, (3)

where r(0)1 = r0 is the skip connection.

Second Attention Layer. The second attention layer con-
tains a single attention head, where the value matrix is
fixed to V

(1)
2 = [Id; 0d; . . . ; 0d](m+1)d×d that reads the first

block. Consequently , r1V
(1)
2 = r

(1)
1 = r0 and the output

of the second layer is given by

r2 = σ
(
r1Q

⊤
2 K2r

⊤
1

)
r0 ∈ RT×d. (4)

We note that there is no concatenation to the residual stream
in the second layer, which corresponds to not using a resid-
ual connection in the standard transformer.

Finally, the unembedding matrix is given by

U =

S∑
j=1

ejs
⊤
j , (5)

where (ej)’s are canonical basis of RS . Note that if the
token embedding S is the one-hot encoding, then U is the
identity matrix. Finally, given a sequence xT , the probability
of the next token estimated by the model, denoted by pθ(xT)
is

pθ(x
T) = U r2[T].

θ =
{
A

(h)
1 ,V

(h)
1

}n−1

h=1
∪

{
K2,Q2

}
denotes the set of

parameters of our simplified disentangled model.

1Positional information is implicitly used through the attention
matrix in the first layer.

4

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

3. A Sufficient Stationary Condition for
Population CE on Sequences

In this section, we examine the properties of the gradient of
the population next-token cross-entropy loss for sequential
data, which is crucial for understanding the training dynam-
ics. The following lemma provides an expression for the
partial derivatives of the cross-entropy loss.

Lemma 3.1. Consider any parametric model pθ(.) :
[S]T → ∆S−1 that maps a sequence of states to a probabil-
ity vector on the states. The derivative of the cross entropy
loss function L(θ) with respect to a parameter θi ∈ R is

∂θiL(θ)= E
pτ∼P

E
xT∼pτ

〈
pθ(x

T)−pτ (.|xT) , ∂θi log pθ(x
T)
〉
,

where ∂θi is the partial derivative with respect to θi and
log(·) denotes component-wise logarithm.

Although presented for an input sequence of length T , the
above lemma generalizes to sequences of arbitrary length.
This result can be viewed as a generalization of Bietti et al.
(2024, Lemma 1) and Makkuva et al. (2024).

In Lemma 3.1, two key terms arise in the inner product:
(a) the residue pθ(xT)−pτ (.|xT), which represents the dif-
ference between the model’s probability estimate and the
true probability for the next token, and (b) the derivative
of the logits of the model’s prediction. We show in the
next proposition that if this derivative depends only on a
certain sub-part of the input sequence, the gradient of the
population loss L can be further simplified.

Proposition 3.2. For any θ∗ ∈ Rp such that
∂θ=θ∗ log pθ(x

T) = g (pτ , x
T
t), i.e., the derivative is solely

a function of the context pτ and the last T − t+ 1 elements
of the sequence xT , the gradient of the population loss L
can be written as

∇L(θ∗)= E
pτ∼P

E
xT∼pτ

〈
pθ∗(x

T)−pτ (.|xT

t) , g (pτ , x
T

t)
〉
.

Furthermore, if for such θ∗ ∈ Rp, the model estimates
the conditional probability of the next token pτ (.|xT

t), i.e.,
pθ∗(x

T)=pτ (.|xT
t) almost surely for pτ ∼ P , then θ∗ is a

stationary point.

The proposition presents a sufficient condition for a point
in the parameter space that computes the true conditional
probability based only on the suffix, rather than the entire se-
quence, to be a stationary point. The blue is used to highlight
the difference in history compared to the partial derivative
in Lemma 3.1 (xT

t vs xT). The result of Proposition 3.2 is
not specific to the setting of n-grams and generally holds
for the cross-entropy loss in next-token prediction tasks. We
leverage this proposition to show how the gradient vanishes
for the k-gram estimators, which primarily depend on the

1xt

2xt−1

0xt−2

...

0xi

Skip

1st−Head

2nd−Head

First attention layer
creates the (k−1)-history

Second layer matches
the (k−1)-history and

aggregates the following token

1xt

2xt−1

✖xt−2

1

2xt−1

0xt−2

✖xt−3

0xt−2

2xt−3

✖xt−4

0

...

0xi

2xi−1

✖xi−2

0

2 xT

=?

0 xT−1

✖ xT−2

2 xT

=?

0 xT−1

✖ xT−2

2 xT

=?

0 xT−1

✖ xT−2

...

2 xT

=?

0 xT−1

✖ xT−2

Figure 2: Transformer defined at θk
∗ is a k-gram esti-

mator. ✖ represents that 2nd head is deactivated. Hence,
the first layer creates the (1)−history and the second layer
matches with the (1)−history of token T+1, i.e, xT=2 and
attends and averages the tokens at t, t−2, i. See the caption
of Figure 4 for more details.

k-history. A generalization of this proposition, applying to
any subset of tokens rather than just contiguous history, is
provided in App. C.2.

4. Theoretical Insights into Stage-wise
Dynamics Through the Loss Landscape

This section begins by providing the representation of the
sub-n-grams with the simplified disentangled transformer
architecture discussed in Subsection 2.3. We then prove that
the sub-n-gram constructions are near-stationary points of
the loss.

4.1. Representing Sub-n-grams with Simplified
Transformer

We construct a disentangled transformer to represent the
n-gram estimator in Definition 2.1. We then extend this
construction to represent k-gram estimators for any k ∈ [n].
Parameters are often expressed as sums of outer products
of orthogonal vectors, emphasizing their role as associative
memories in the spirit of Bietti et al. (2024).

5

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Transformer representing n-gram. Consider the simpli-
fied transformer model presented in Section 2.3 with (n−1)
attention heads.2 For the hth head in the first layer, we make
the following parameter assignments:

A
(h)
1 = c

T−1∑
l=h

ele
⊤
l−h + c

h−1∑
l=0

ele
⊤
0 , V

(h)
1 =

S∑
j=1

sjs
⊤
j .

The second layer query and key matrices are assigned as

(Q2)
⊤K2 = c

S∑
j=1

n−1∑
h=1

sh−1
j (shj)

⊤, (6)

where c > 0 is a constant scaling factor and shn ∈ Rnd

defined as (shn)
⊤ =

[
0⊤d 0⊤d . . .︸ ︷︷ ︸

h times

s⊤n 0⊤d . . .︸ ︷︷ ︸
n−h−1 times

]
.

Intuitively, in the first layer, the hth head attends to the (−h)-
token. The value matrix acts as an identity map, copying
the embedding of the (−h)-token into the hth block of the
first layer’s output, r(h)1 . As illustrated in Fig. 4, for any
position t, the first layer’s output retains the embeddings of
the previous n−1 tokens (in the limit c→ ∞), given by:

r1[t] =
[
s⊤xt

s⊤xt−1
. . . s⊤xt−n+1

]⊤ ∈ Rnd. (7)

Next, the second attention layer compares these histories
using the specific structure of the query and key matrices
defined in Equation (6). The pre-softmax attention score
between the first-layer embeddings of the ith and jth tokens
r1[i] and r1[j] is computed as:

⟨K2r1[j], (Q2)r1[i]⟩ = c

n−1∑
l=1

1{xj−l=xi+1−l}.

In summary, the second head compares the (n−1)-history
of the jth and (i + 1)th tokens as detailed in Fig. 4. Using
this attention matrix, in the limit as c→ ∞, where the soft-
max converges to the hardmax, pθ computes the n−gram
MLE estimator since the ith token attends exclusively to the
preceding tokens that exactly match (n−1)−history of the
(i+1)th token (see Appendix B.1 for proof).

Transformer representing sub-n-gram. The construction
representing an n-gram can be directly adapted to represent
a k-gram, where k < n. This adaptation relies on the ob-
servation that, in the n-gram construction, the hth head is
responsible for computing the (−h)-token. Therefore, to
compute a k-gram counting estimator, it suffices to deacti-
vate the heads responsible for computing the (−h)-token
for h ⩾ k as illustrated in Fig. 2. The heads in the first layer
are thus divided into two categories:

2The heads can be more than n−1.

a) Activated Heads. The heads which compute (−h)-token
for h ⩽ k − 1 are activated.

b) Deactivated Heads. The heads which compute (−h)-
token for h ⩾ k, are not activated, outputting a zero
vector to the first layer embedding.

We implement this approach using the following assign-
ments.

A
(h)
1 =

c
(

T−1∑
l=h

ele
⊤
l−h+

h−1∑
l=0

ele
⊤
0

)
, for h∈[k−1],

arbitrary otherwise,
(8a)

V
(h)
1 =


S∑

j=1

sjs
⊤
j for h ∈ [k−1],

0 otherwise,
(8b)

(Q2)
⊤K2 = c

S∑
j=1

k−1∑
h=1

sh−1
j (shj)

⊤. (8c)

We denote the point given by Equations (8a), (8b), (8c) by
θk
∗ =

(
{A(h)

1 ,V
(h)
1 }n−1

h=1 ∪K2 ∪Q2

)
defined precisely

in App. (12). The following lemma demonstrates how θk
∗

implements the k-gram estimator in Definition 2.1 The proof
of the lemma is provided in App. B.1, B.2.

Lemma 4.1. Let a(1,h)

(j,i) denote the attention score of
the key and query element (i, j) in the hth head of the
first layer and let a(2)

(i,t) denote the attention score be-
tween elements i, t in the second layer. Let Mk

t ={
i ∈ [k, t] :

(
xi−1

i−k+1 = xt
t−k+2

)}
be the set of tokens which

match the k-history of the next token.

For the parameters θk
∗ defined in Eq. (8), in the limit c→ ∞,

the attention scores of the activated heads in the first layer,
i.e., for heads h where h ⩽ k − 1, are given by,

a
(1,h)
(j,i) =


1 when i > h and j = i− h,

1 when i ⩽ h and j = 1,

0 otherwise
, (9)

and the attention scores in the second layer are given by

a2(i,t) =

{
1

|Mk
t | for i ∈ Mk

t ,

0 otherwise
. (10)

In the first layer, the heads h, for h ⩽ k − 1 are activated
and attend to the (−h)-token Eq.(9), while the heads h, for
h ⩾ k are deactivated through the value matrix and their cor-
responding attention matrices are chosen arbitrarily. In the
second layer, the key-query matrix is similar to that used for
n-gram in Equation (6), but with components related to the
deactivated heads set to zero. This mechanism ensures that

6

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

only the k−histories of the jth token and the (i+ 1)th token
are compared for query i and key j. The last token precisely
attends to the tokens where the k-history matches Eq.(10)
and uniformly averages them, computing the k-gram MLE
estimator.

Other possible constructions. We emphasize that the con-
struction presented above is not unique. Multiple heads may
compute the (−l)-token for some l ⩽ k−1, meaning there
can be several active heads performing this computation.
However, for l ⩾ k, no heads should compute this history.
The second layer compares these histories. The complete
construction is given in Appendix F.

4.2. Sub-nnn-grams Are Stationary Points

In this subsection, we establish that the k-grams constructed
in the previous subsection are first-order stationary points of
the cross-entropy loss in the large context asymptotic. This
result follows from the general characterization of stationary
points for the cross-entropy loss, provided in Section 3.

Theorem 4.1. For the disentangled transformer pθ, the
gradients at θk∗ are given by

∥∂θ=θk
∗
L(θ)∥

=
√
c E
pτ∼P

E
xT

O(
∥∥pτ (.∣∣xT

T−k+2

)
− p̂k

∥∥2) +O(t
√
ce−c)

The theorem presents the norm of the gradient of the
population loss at a point given by Eq. 8, which imple-
ments a k-gram estimator in Definition 2.1. The first term∥∥pτ (.∣∣xT

T−k+2

)
− p̂k

∥∥2 is the gap between the MLE esti-
mator and the ground truth and decays as e−Θ(T) (Penev,
1991). In the limit of c = Θ(T) → ∞, the gradient van-
ishes. As the result holds asymptotically as T, c → ∞,
leading us to term the k-gram estimator as near-stationary.
Therefore, the theorem reveals a striking property of the
landscape of learning transformers with n-gram language
models: the points in the parameter space that compute the
k-gram estimator are first-order stationary points.

Note that we present the result for any sequence length T ,
so it also applies to the commonly used loss function, which
is averaged over sequences of varying lengths, i.e.,

L∗(θ) =
1

T − t′ + 1

T∑
t=t′

Lt(θ),

where, with a slight abuse of notation, Lt refers to L in
Equation (1) for sequences of length t. In the averaged loss,
the gradients from the longer sequences suffer from the
vanishing gradient problem as a result of the above theorem.

4.3. Proof Sketch

The proof consists of two components: (a) demonstrat-
ing that the k-gram estimator converges to the conditional
probability pτ (· | xk−1), and (b) proving that the gradient
of the logits at time step T depends solely on the (k−1)-
history. Once these components are established, Proposi-
tion 3.2 can be applied to demonstrate the stationarity of
the sub-n-grams. The first component holds asymptotically
as T → ∞, leveraging the properties of n-gram language
models (see Lemma H.6 in App. for the formal argument).

However, it is not immediately obvious how the gradient of
the logits depends exclusively on the (k−1)-history of token
t. This dependence needs to account for the parameters of
the transformer layers, which include the attention matrices
A

(h)
1 and value matrices V(h)

1 for each head h in the first
layer, as well as the key and query matrices K2,Q2 in the
second layer. The model output writes

pθ(x
t) =

t∑
i=1

a(2)

(i,t)exi
, (11)

where a(2)

(i,t) are the attention scores in the second layer a(2)

(i,t)

for key i and query t are given by Eq. (13) in Appendix.
The derivative with respect to any parameter θ(1), θ(2) in the
first and second layer can be written as

∂pθ(x
t)

∂θ(1)
,
∂pθ(x

t)

∂θ(2)
=

t∑
i=1

∂a(2)

(i,t)

∂r1[i]

∂r1[i]

∂θ(1)
exi
,

t∑
i=1

∂a(2)

(i,t)

∂θ(2)
exi
.

Since the softmax function exhibits a self-bounding property,
i.e., its derivative is bounded by the softmax score itself, we
obtain

(
a(2)

(i,t)

)′ ∝ a(2)

(i,t). As we move forward, this fact plays
a key role in our analysis.

Next, we define a subset of tokens, Mt ⊆ [t], consisting of
tokens whose k-history matches that of the (t+ 1)th token.
Formally, Mt =

{
i ∈ [t] : 1

(
xi−1

i−k+1 = xt
t−k+2

)}
. At the

k-gram estimator parameterized by θk
∗ , the attention scores

are given by

a(2)

(i,t) ≈

{
1

|Mk
t |
, for i ∈ Mk

t ,

0 o.w. .
.

Using this approximation along with the self-bounding prop-
erty of the softmax function, we simplify the derivative as

∂pθ(x
t)

∂θ(2)
,
∂pθ(x

t)

∂θ(1)

∣∣∣∣
θ=θk

∗

≈
∑
i∈Mt

∂a(2)

(i,t)

∂θ(2)
exi
,
∑
i∈Mt

∂a(2)

(i,t)

∂r1[i]
. . .

This expression reveals that the derivative is supported
only on tokens in Mt. A key result we establish next is
that the derivatives of a(2)

(i,t), r1[i] depend exclusively on the
(k−1)−history of token i. Several reinforcing factors con-
tribute to this result. The structure of the key and value

7

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

matrices in the second layer ensures that the deactivated
heads remain deactivated. This deactivation, in turn, en-
sures that the embeddings after the first layer only contain
the embeddings of the (k−1)-history. Finally, for i ∈ Mt,
its (k−1)-history is identical to that of token t+1. Together,
these factors imply that the derivatives of the second layer
are solely a function of (k−1)-history of token t+1. Refer
to App. B.2 for the complete proof.

4.4. Extensions and Perspectives

Beyond contiguous history. As discussed previously in sec-
tion 2.2, an n-gram language model allows for estimators be-
yond k-gram estimators. For example, consider the bigram
estimator which matches the (−1)-token; alternative esti-
mators can instead match the (−i)-token for 1 < i ⩽ n−1
(i.e., {xj−i = xT+1−i}). Our construction and results thus
far have focused only on histories that are contiguous suf-
fixes. While our construction is homogeneous for any T ,
relaxing the model to allow parameters to explicitly depend
on T enables us to extend our framework. Specifically, we
can show that there are stationary points for a specific T ,
corresponding to estimators that match arbitrary subset of
the (n−1)-history, rather than only contiguous subsets. For
details, refer to Appendix F.2.

Towards general transformer architecture. In this sec-
tion, we have designed stationary points for a simplified
transformer architecture. However, the same techniques
and methodology extend naturally to a general transformer
architecture. First, positional encodings, which were not
explicitly used in the simplified model, can be incorporated
with a simple extension using one-hot positional encoding.
The concatenation of attention head output and residual
connections can be replaced with a simple addition of em-
beddings. Additionally, the value matrix in the second layer
can be incorporated. However, in this case, the transformer’s
output would no longer be in ∆S−1, requiring normalization
via softmax at the end. This restriction on the value matrix
can also be alleviated by using an MLP layer to approximate
the logarithm (see Appendix F.1).

Multiple Heads and Causal Structures. Transformers
learns specialized attention heads that attend to syntactic
neighbors of tokens (Voita et al., 2019). In our case, each
head specifically learns to attend to the (−k)−token. Con-
sider the behavior of a gradient-based method at a sub-n-
gram, say θk

∗ . As it is a stationary point, training remains at
this point for a prolonged period, leading to a plateau in the
training curve. However, as training progresses, the model
eventually escapes due to landscape curvature or stochastic
noise, allowing it to learn a new syntactic structure— at-
tending to (−k)-token—before reaching the next stationary
point. This phenomenon is general and has been empiri-
cally reported—emergence of a syntactic structure (Chen

et al., 2024a; Wei et al., 2022), phase transitions (Olsson
et al., 2022; Edelman et al., 2024). By carefully analyz-
ing the loss landscape of a relevant yet simple in-context
task, we demonstrate that the stationary points correspond
to underlying syntactic structures. Consequently, our work
provides insights into why these syntactic structures emerge
following extended plateaus.

Limitations. Note that our results only hold at the asymp-
totic limit of norm(c) and sequence length(T). The depen-
dence on the norm is mild, as the gradient decays expo-
nentially as e−c for finite c. However, there is an inherent
difficulty in moving beyond the assumption of infinite se-
quence length. Existing works analyzing how transformers
represent in-context n-gram like sequences, such as Rajara-
man et al. (2024) and Nichani et al. (2024), also rely on the
infinite sequence limit. Consequently, it remains unclear
which estimator transformers learn for Markov chains at
finite sequence lengths, even at the end of training. This un-
known makes it particularly challenging to determine what
transformers learn during intermediate stages of training

5. Experimental Evaluation
In this section, we perform experiments on the disentangled
transformer introduced in the previous section to examine
the stage-wise learning behavior and analyze the different so-
lutions the transformer learns during different stages of train-
ing. The code is available at https://github.com/
tml-epfl/sub-n-grams-are-stationary.

Experimental Setup. We select a vocabulary of size S =
5. The input sequences have a length of T = 32 and are
sampled in-context from a tri-gram language model, i.e.,
n = 3. The transition matrix is sampled from a uniform
Dirichlet prior Dir(α1) with α = .5. We train a two-layer
simplified transformer with 2 heads in the first layer. The
token embedding dimension is set to d = 5, and we use
one-hot embeddings for the input tokens. The transformer is
trained with Adam without weight decay for 214 iterations,
with a constant learning rate of 0.01 and a batchsize of 128.
The test loss is evaluated over 216 test sequences.

Discussion. To accurately predict the next token, the model
needs to attend to the previous n − 1 = 2 tokens in the
sequence. Figure 3a shows that learning occurs in distinct
phases, where the model remains in a plateau for an ex-
tended period before quickly jumping to the next one. In
Figure 3b, we illustrate the evolution of the attention maps
from both heads in the first layer at various plateaus during
training, providing a fine-grained view of the structure of
the model at these stages. Initially, the attention maps are
uniform, and the model does not consider token history in its
predictions. Upon reaching the first plateau, both attention
heads focus on the previous token (the (−1)-token), and

8

https://github.com/tml-epfl/sub-n-grams-are-stationary
https://github.com/tml-epfl/sub-n-grams-are-stationary

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

(a)

A
tte

nt
io

n
Sc

or
es

σ
(A

(h
)

1

)
h
=

2
h
=

1
t = 115 t = 5000 t = 16000

Training Step (t)

(b)
Figure 3: The evolution of the attention heads in the first layer during training. (a) Progression of the test loss during
training. The highlighted points are the iterations on the plateaus for which we demonstrate the attention matrices. (b) The
evolution of attention scores of the heads of the simplified transformer architecture during training representing the tokens
it is attending. First, both of the attention heads attend to all the previous tokens uniformly. At the second plateau, they
both attend to the previous token. Finally, as the model escapes this plateau, the second attention head learns to attend to
(−2)-token at the end of training.

the model behaves like a bigram estimator at this stationary
point. In the later stages of training, the second attention
head learns to shift its focus to the (−2)-token, transforming
the model into a trigram estimator. The same phenomenon
holds for the general attention-only transformers, see Fig 5.

6. Conclusion
In this work, we investigate the problem of learning in-
context n-grams with transformers, specifically focusing
on a simplified yet insightful setting to gain a deeper un-
derstanding of complex large language models. We have
constructed a set of solutions for the parameters of the sim-
plified disentangled transformer architecture that represents
sub-n-gram solutions. Then, proved that these solutions
correspond to near-stationary points of the population cross-
entropy loss. This analysis sheds light on why training
lingers at long plateaus corresponding to sub-syntactical
solutions before new abilities emerge, i.e., transformer pre-
dictions shift to more complex solutions.

However, our analysis explicitly relies on the loss over the
entire population, which leaves open the question of what oc-
curs with finite sample complexities. The results presented
in this paper are asymptotic in nature, applying to large
sequence lengths, raising the natural question of how trans-
formers behave with sequences of finite length. Additionally,
it remains to be seen whether other estimators implemented
by transformers are optimal in these cases. Another open
question is the impact of explicit weight regularization, such

as weight decay—-commonly used in training—-on the
model’s behavior. Lastly, since this paper focuses on the
loss landscape rather than the dynamics of gradient-based
methods, a characterization of the time evolution of (stochas-
tic) gradient descent, as explored by Nichani et al. (2024),
presents an exciting direction for future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
This work was supported by the Swiss National Science
Foundation (Grant No. 212111) and an unrestricted gift
from Google. A.V. acknowledges funding from a Swiss
Data Science Center Fellowship. The authors extend their
gratitude to Adway Girish for his valuable feedback on the
manuscript and to anonymous reviewers for their insightful
comments, which significantly improved the final version.

References
Abbe, E., Adsera, E. B., and Misiakiewicz, T. Sgd learning

on neural networks: leap complexity and saddle-to-saddle
dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2552–2623. PMLR, 2023.

9

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context
language learning: Arhitectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit regular-
ization in deep matrix factorization. Advances in Neural
Information Processing Systems, 32, 2019.

Berthier, R. Incremental learning in diagonal linear net-
works. arXiv preprint arXiv:2208.14673, 2022.

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V.
Understanding in-context learning in transformers and
llms by learning to learn discrete functions. arXiv preprint
arXiv:2310.03016, 2023.

Bietti, A., Cabannes, V., Bouchacourt, D., Jegou, H., and
Bottou, L. Birth of a transformer: A memory viewpoint.
Advances in Neural Information Processing Systems, 36,
2024.

Boix-Adsera, E., Littwin, E., Abbe, E., Bengio, S., and
Susskind, J. Transformers learn through gradual rank
increase. arXiv preprint arXiv:2306.07042, 2023.

Boursier, E., Pillaud-Vivien, L., and Flammarion, N. Gradi-
ent flow dynamics of shallow reLU networks for square
loss and orthogonal inputs. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=L74c-iUxQ1I.

Brown, P., Dellapietra, V., Souza, P., Lai, J., and Mercer, R.
Class-based n-gram models of natural language. Compu-
tational Linguistics, 18:467–479, 01 1992.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and
Saphra, N. Sudden drops in the loss: Syntax acquisition,
phase transitions, and simplicity bias in MLMs. In The
Twelfth International Conference on Learning Represen-
tations, 2024a. URL https://openreview.net/
forum?id=MO5PiKHELW.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Unveiling
induction heads: Provable training dynamics and feature
learning in transformers. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024b.

Chomsky, N. Three models for the description of language.
Transactions on Information Theory, 2(3):113–124, 1956.
doi: 10.1109/TIT.1956.1056813.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., and
Tsilivis, N. The evolution of statistical induction heads:
In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Fukumizu, K. and Amari, S. Local minima and plateaus in
hierarchical structures of multilayer perceptrons. Neural
Networks, 13(3):317–327, 2000. ISSN 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(00)00009-5.
URL https://www.sciencedirect.com/
science/article/pii/S0893608000000095.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Gidel, G., Bach, F., and Lacoste-Julien, S. Implicit regu-
larization of discrete gradient dynamics in linear neural
networks. Advances in Neural Information Processing
Systems, 32, 2019.

Gissin, D., Shalev-Shwartz, S., and Daniely, A. The im-
plicit bias of depth: How incremental learning drives
generalization. In International Conference on Learning
Representations, 2020.

Han, Y., Jana, S., and Wu, Y. Optimal prediction of markov
chains with and without spectral gap. Advances in Neural
Information Processing Systems, 34:11233–11246, 2021.

Jacot, A., Ged, F., Şimşek, B., Hongler, C., and Gabriel,
F. Saddle-to-saddle dynamics in deep linear networks:
Small initialization training, symmetry, and sparsity.
arXiv preprint arXiv:2106.15933, 2021.

Jelinek, F. Statistical methods for speech recognition. MIT
Press, Cambridge, MA, USA, 1998. ISBN 0262100665.

Jiang, L., Chen, Y., and Ding, L. Algorithmic regulariza-
tion in model-free overparametrized asymmetric matrix
factorization. arXiv preprint arXiv:2203.02839, 2022.

Jin, J., Li, Z., Lyu, K., Du, S. S., and Lee, J. D. Under-
standing incremental learning of gradient descent: A
fine-grained analysis of matrix sensing. arXiv preprint
arXiv:2301.11500, 2023.

Jurafsky, D. and Martin, J. H. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing,

10

https://openreview.net/forum?id=L74c-iUxQ1I
https://openreview.net/forum?id=L74c-iUxQ1I
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://www.sciencedirect.com/science/article/pii/S0893608000000095
https://www.sciencedirect.com/science/article/pii/S0893608000000095

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Computational Linguistics, and Speech Recognition with
Language Models. 3rd edition, 2024. URL https:
//web.stanford.edu/˜jurafsky/slp3/. On-
line manuscript released August 20, 2024.

Kim, J., Kwon, S., Choi, J. Y., Park, J., Cho, J., Lee,
J. D., and Ryu, E. K. Task diversity shortens the icl
plateau, 2024. URL https://arxiv.org/abs/
2410.05448.

Li, Z., Luo, Y., and Lyu, K. Towards resolving the im-
plicit bias of gradient descent for matrix factorization:
Greedy low-rank learning. In International Conference
on Learning Representations, 2021.

Makkuva, A. V., Bondaschi, M., Girish, A., Nagle, A., Jaggi,
M., Kim, H., and Gastpar, M. Attention with markov:
A framework for principled analysis of transformers via
markov chains. arXiv preprint arXiv:2402.04161, 2024.

Nguyen, T. Understanding transformers via n-gram statis-
tics, 2024. URL https://arxiv.org/abs/2407.
12034.

Nichani, E., Damian, A., and Lee, J. D. How transformers
learn causal structure with gradient descent, 2024. URL
https://arxiv.org/abs/2402.14735.

Odonnat, A., Bouaziz, W., and Cabannes, V. Cluster-
ing head: A visual case study of the training dynamics
in transformers, 2025. URL https://arxiv.org/
abs/2410.24050.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Penev, S. Efficient estimation of the stationary distribution
for exponentially ergodic markov chains. Journal of
Statistical Planning and Inference, 27(1):105–123, 1991.

Pesme, S. and Flammarion, N. Saddle-to-saddle dynamics
in diagonal linear networks. Advances in Neural Informa-
tion Processing Systems, 36:7475–7505, 2023.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfit-
ting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Rajaraman, N., Bondaschi, M., Ramchandran, K., Gast-
par, M., and Makkuva, A. V. Transformers on
markov data: Constant depth suffices. arXiv preprint
arXiv:2407.17686, 2024.

Razin, N., Maman, A., and Cohen, N. Implicit regulariza-
tion in tensor factorization. In International Conference
on Machine Learning, pp. 8913–8924. PMLR, 2021.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116(23):11537–11546, 2019.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

Svete, A. and Cotterell, R. Transformers can represent n-
gram language models. arXiv preprint arXiv:2404.14994,
2024.

Varre, A. V., Vladarean, M.-L., Pillaud-Vivien, L., and
Flammarion, N. On the spectral bias of two-layer lin-
ear networks. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=FFdrXkm3Cz.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., and Gomez, A. N. L. u. kaiser, and i. polo-
sukhin,“attention is all you need,”. Advances in neural
information processing systems, 30:5998–6008, 2017.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Zekri, O., Odonnat, A., Benechehab, A., Bleistein, L.,
Boullé, N., and Redko, I. Large language models as
markov chains, 2025. URL https://arxiv.org/
abs/2410.02724.

11

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2410.05448
https://arxiv.org/abs/2410.05448
https://arxiv.org/abs/2407.12034
https://arxiv.org/abs/2407.12034
https://arxiv.org/abs/2402.14735
https://arxiv.org/abs/2410.24050
https://arxiv.org/abs/2410.24050
https://openreview.net/forum?id=FFdrXkm3Cz
https://openreview.net/forum?id=FFdrXkm3Cz
https://arxiv.org/abs/2410.02724
https://arxiv.org/abs/2410.02724

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

A. Organization of the Supplementary Material
A.1. Links to Materials Referenced in The Main Text.

First, we present an index of the supporting material referenced in the main text.

• The proofs of Lemma 3.1 and Proposition 3.2 are provided in Section C and the discussion on the stationarity condition
for subsequences beyond suffixes is provided at Remark C.2.

• The proof of the construction of k-grams is given in Subsection B.1 and the proof of Theorem 4.1 is provided in
Subsection B.2.

• The discussion on the possible alternate representation for the stationary distribution is provided in Section F, and
the extension for a general transformer architecture is given in Subsection F.1. Stationary points conditioned on
subsequences that are not suffixes for a fixed T are further discussed in the Subsection F.2

A.2. Outline of the Supplementary Material.

• Section B, provides the construction of the k-grams and the proof of the stationarity of the construction (in Subsec-
tion B.1 and Subsection B.2 respectively).

• Section C provides the proofs of the results on the gradient of the cross-entropy and sufficient stationary conditions,
i.e., of Lemma 3.1 and Proposition 3.2.

• Section D provides a technical lemma related to computing the gradient for two-layer simplified transformer.

• In Section E, a technical lemma related to the k-gram representations is provided.

• In Section F, we discuss the extensions of the results to a general transformer architecture in Subsection F.1 and the
stationary points conditioned on subsequences that are not suffixes in Subsection F.2.

• In Section G, we present the derivatives of a single layer self-attention map.

A.3. Notation and Definitions

Notations. We use ⊗ to denote the Kronecker product. We use vec operator for flattening the matrix to a vector.

Definition A.1 (Jacobian of a function). Let f : Rm×n → Rp be a C1-function defined on a variable X . ∂f
∂X denotes the

Jacobian which is a function from Rm×n → Rp×mn.

Definition A.2. Define θk
∗ =

{
A

(h)
1 ,V

(h)
1

}
h∈[n−1]

∪{K2,Q2} as the set of parameters given by the following expressions

(Q2)
⊤ =

√
c

S∑
j=1

k−1∑
h=1

sh−1
j (shj)

⊤, (12a)

K2 =
√
c

S∑
j=1

k−1∑
h=1

shj (s
h
j)

⊤, (12b)

A
(h)
1 = c

T−1∑
l=h

ele
⊤
l−h + c

h−1∑
l=0

ele
⊤
0 , (12c)

V
(h)
1 =


S∑

j=1

sjs
⊤
j for h ∈ [k−1],

0 o.w.
. (12d)

12

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

1xt

2xt−1

0xt−2

...

0xi

Skip

1st−Head

2nd−Head

First attention layer
creates the (k−1)-history

Second layer matches
the (k−1)-history and

aggregates the following token

1xt

2xt−1

0xt−2

1

2xt−1

0xt−2

2xt−3

0xt−2

2xt−3

1xt−4

...

0xi

2xi−1

0xi−2

0

2 xT

=?

0 xT−1

=?

2 xT−2

2 xT

=?

0 xT−1

=?

2 xT−2

2 xT

=?

0 xT−1

=?

2 xT−2

...

2 xT

=?

0 xT−1

=?

2 xT−2

(a)

1xt

2xt−1

0xt−2

...

0xi

First attention layer
creates the (k−1)-history

Second layer matches
the (k−1)-history and

aggregates the following token

1xt

2xt−1

✖xt−2

1

2xt−1

0xt−2

✖xt−3

0xt−2

2xt−3

✖xt−4

0

...

0xi

2xi−1

✖xi−2

0

2 xT

=?

0 xT−1

✖ xT−2

2 xT

=?

0 xT−1

✖ xT−2

2 xT

=?

0 xT−1

✖ xT−2

...

2 xT

=?

0 xT−1

✖ xT−2

(b)
Figure 4: Transformer representing a n-gram and k-gram estimator. (a) The task we consider task is learning in-context
tri-grams (n=3). Here, we illustrate how the transformer given by θn

∗ constructed in section 4.1 operates on the sequence
(. . . , 2, xi=0, . . . , 2, 0, 2, xt=1, . . . 0, xT=2) and computes a tri-gram(k=3) estimator. Skip, 1st-Head, 2nd-Head denotes
the outputs of the skip connection, 1st and the 2nd head. The first layer creates the (2)−history and the second layer
compares it with the (2)−history of token T+1, i.e, xT = 2. The second layer compares these histories and attends to tokens
at t, i and averages the tokens at that position. (b) ✖ represents that 2nd head is deactivated. Hence, the first layer creates
the (1)−history and the second layer matches with the (1)−history of token T+1, i.e, xT=2 and attends and averages the
tokens at t, t−2, i.

B. Construction and the Stationarity of the k−gram solutions
B.1. Representing k-grams with Simplified Transformer

Before presenting the proofs, we give an alternate form of the forward pass of the simplified transformer. First, we express
the embeddings after the first layer as follows:

r1[i] = W(0)
o r0[i] +

n−1∑
h=1

W(h)
o

i∑
j=1

a(1,h)

(j,i) V
(h)
1 r0[j],

where the attention scores in the first layer a(1,h)

(j,i) for key j and query i for head h and layer 1 and the matrices W(h)
o which

are used for concatenation are given by,

a(1,h)

(j,i) =
expA

(h)
1 [i, j]∑i

l=1 expA
(h)
1 [i, l]

,

W(h)
o =

S∑
j=1

shj s
⊤
j .

13

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

For the tth token, the output after the second layer of transformer writes,

r2[t] =

t∑
i=1

a(2)

(i,t)r0[i]

where the attention scores in the second layer a(2)

(i,t) for key i and query t are given by,

a(2)

(i,t) =
exp ⟨K2r1[i],Q2r1[t]⟩
t∑

j=1

exp ⟨K2r1[j],Q2r1[t]⟩
. (13)

The final output probabilities are given by

pθ(x
t) = Ur2[t] =

t∑
i=1

a(2)

(i,t)Ur0[i] =

t∑
i=1

a(2)

(i,t)exi
.

We now provide the proof for the k-gram MLE constructions. To support the proofs, we define a subset of tokens, Mt ⊆ [t].
This subset consists of tokens whose k-history matches the k-history of the (t+1)th token. Formally, it is defined as follows:

Mk
t =

{
i : 1

(
xi−1

i−k+1 = xt

t−k+2

)}
Now we provide two lemmas one for each layer of the transformer, which denotes what tokens they attend to. Intuitively, the
hth head in the first layer attends to the (−h)-th token, and the second layer attends to the tokens whose k-history matches
the k-history of the (t+ 1)th token. The O notation hides the terms polynomial in c and the sequence length T .

Lemma B.1. [First-Layer] For the first layer given by the parameter defined in Eq. (12),

(a) Let a(1,h)

(j,i) denote the attention score of head h of layer 1 where (i, j) denote the key and query,

a(1,h)

(j,i) =


1−O(ie−c) when i ⩾ h and j = i− h,

1−O(ie−c) when i < h and j = 0,

O(e−c) o.w..
. (14)

(b) The embeddings of the first layer,

r1[i] =


s0xi

+
k−1∑
h=1

shxi−h
+O(ie−c) · 1 for i ⩾ k − 1,

s0xi
+

i∑
h=1

shxi−h
+

k−1∑
h=i+1

shx0
+O(ie−c) · 1 for i < k − 1.

. (15)

Lemma B.2. [Second-Layer] With the construction given in Def. A.2, the attention scores after the second layer,

a(2)

(i,t) =


1

|Mk
t |

− O(te−c)

|Mk
t |2

for i ∈ Mt,
O(e−c)

|Mk
t |

o.w.
(16)

.

For the proof of the above lemmas, see Section E.

Proof of the construction for k-gram MLE. We give the proof of construction for any k and when k = n we get the
n-gram estimator. The final output probabilities writes

pθ(x
t) =

t∑
i=1

a(2)

(i,t)exi
.

14

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

In the limit c→ ∞, the attention scores from the second layer from Lemma B.2 is given by,

a(2)

(i,t) =

{
1

|Mk
t |
, for i ∈ Mk

t ,

0 o.w.
.

Using this the output probabilities are only supported by the tokens in Mk
t and is given by,

pθ(x
t) =

1

|Mk
t |

∑
i∈Mk

t

exi
.

Now

pθ(x
t)[s] =

1

|Mk
t |

∑
i

1{i ∈ Mk
t }1{xi = s}.

which exactly matches the k-gram MLE estimator in Definition 2.1.

B.2. Proof of Stationary Points with Simplified Transformer

Theorem 4.1. For the disentangled transformer pθ, the gradients at θk∗ are given by

∥∂θ=θk
∗
L(θ)∥

=
√
c E
pτ∼P

E
xT

O(
∥∥pτ (.∣∣xT

T−k+2

)
− p̂k

∥∥2) +O(t
√
ce−c)

Proof The proof is an application of Lemma D.1 for the transformer parameters that compute the k-gram MLE estimator θk
∗

defined in A.2.

Parameters of the second layer. From Lemma D.1, the derivatives of pθ with respect to the second layer are

∂pθ
∂K2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
Q2r1[t](r1[i]− r̄(1)

t)⊤
)⊤
,

∂pθ
∂Q2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
K2(r1[i]− r̄(1)

t)(r1[t])
⊤)⊤ .

Before computing these quantities at θk
∗ , we gather the attention scores and weighted embeddings from Lemma B.1, B.2.

r1[i] =


s0xi

+
k−1∑
h=1

shxi−h
+O(ie−c) · 1 for i ⩾ k − 1,

s0xi
+

i∑
h=1

shxi−h
+

k−1∑
h=i+1

shx0
+O(ie−c) · 1 for i < k − 1.

, (17)

a(2)

(i,t) =


1

|Mk
t |

− O(te−c)

|Mk
t |2

for i ∈ Mk
t ,

O(e−c)

|Mk
t |

o.w.
(18)

The average embedding,

r̄(1)

t =

t∑
i=1

a(2)

(i,t) r1[i] =
∑
i∈Mk

t

a(2)

(i,t)r1[i] +
∑
i̸∈Mk

t

a(2)

(i,t)r1,

The deviation due to finite weights can be controlled as the following,∥∥∥∥∥∥
∑
i ̸∈Mt

a(2)

(i,t)r1[i]

∥∥∥∥∥∥
∞

=
∑
i ̸∈Mt

a(2)

(i,t) sup
i∈[T]

∥r1[i]∥∞ =
O(te−c)

|Mk
t |

,

15

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

as ∥r1[i]∥∞ ⩽ 1 for all i and a(2)

(i,t) from Eq. (18) for i ̸∈ Mk
t . Now, we consider the summation

∑
i∈Mk

t
a(2)

(i,t)r1[i].

∑
i∈Mk

t

a(2)

(i,t)r1[i] =
∑
i∈Mk

t

[
1

Mk
t

− O(te−c)

|Mk
t |2

]
r1[i] =

1

|Mk
t |

∑
i∈Mk

t

r1[i]−
O(te−c)

|Mk
t |

1.

Recall that for i ∈ Mk
t , r1[i] from Eq. (17) gives

r1[i] = s0xi
+

k−1∑
h=1

shxi−h
+O(ie−c) · 1.

Now we use the definition of the set Mk
t to simplify the above expressions of r1[i] and r̄(1)

t . Note that xi−h = xt+1−h for
h ∈ [k − 1], i ∈ Mk

t . Using this, we have,

r1[i] = s0xi
+

k−1∑
h=1

shxt+1−h
+O(ie−c) · 1,

1

|Mk
t |

∑
i∈Mk

t

r1[i] =
1

|Mk
t |

∑
i∈Mk

t

s0xi
+

k−1∑
h=1

shxt+1−h
+O(te−c) · 1.

Combining them, we get ∥∥∥∥∥∥
∑
i∈Mk

t

a(2)

(i,t)r1[i]−
1

|Mk
t |

∑
i∈Mk

t

s0xi
−

k−1∑
h=1

shxt+1−k

∥∥∥∥∥∥
∞

= O(te−c),

r̄(1)

t =
1

|Mk
t |

∑
i∈Mk

t

s0xi
+

k−1∑
h=1

shxt+1−k
+O(te−c) · 1

For i ∈ Mk
t ,

r1[i]− r̄(1)

t = s0xi
−

∑
i∈Mk

t
s0xi

Mk
t

+O(te−c) · 1,

K2(r1[i]− r̄(1)

t) = O(t
√
ce−c) · 1,

Q2(r1[t]) =
√
c

k−1∑
h=1

shxt+1−h
+O(t

√
ce−c) · 1.

For all i, ∥∥Q2r1[t](r1[i]− r̄(1)

t)⊤
∥∥
∞ ⩽

√
c,∥∥K2(r1[i]− r̄(1)

t)(r1[t])
⊤∥∥

∞ ⩽
√
c.

Recalling the gradients,

∂pθ
∂K2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
Q2r1[t](r1[i]− r̄(1)

t)⊤
)⊤
,

∂pθ
∂Q2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
K2(r1[i]− r̄(1)

t)(r1[t])
⊤)⊤ .

16

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

We split the gradients supported on Mk
t and its complement,

∂pθ
∂Q2

=
∑
i∈Mk

t

a(2)

(i,t) (exi
)⊗ vec

(
K2(r1[i]− r̄(1)

t)(r1[t])
⊤)⊤ +

∑
i ̸∈Mk

t

a(2)

(i,t) (exi
)⊗ vec

(
K2(r1[i]− r̄(1)

t)(r1[t])
⊤)⊤ ,

= O(t
√
ce−c) · 1+

O(t
√
ce−c) · 1
|Mk

t |
.

The final gradient,

∂pθ
∂Q2

= O(t
√
ce−c) · 1+

O(t
√
ce−c) · 1
|Mk

t |
. (19)

On the similar lines,

∂pθ
∂K2

=
√
c

1

|Mk
t |

∑
i∈Mk

t

exi
⊗ vec

[
k−1∑
h=1

shxt+1−h

][
s0xi

−
∑

i∈Mk
t
s0xi

|Mk
t |

]⊤+O(t
√
ce−c) · 1.

Denote

ϕ(xt

t−k+2) :=

k−1∑
h=1

shxt+1−h
,

s̄0t :=
1

|Mk
t |

∑
i∈Mk

t

s0xi
.

Note that the first term in the above expression is only a function of k-history xt
t−k+2. Using this,

∂pθ
∂K2

=
√
c

1

|Mk
t |

∑
i∈Mk

t

exi
⊗ vec

(
ϕ(xt

t−k+2)
[
s0xi

− s̄0t
]⊤)

+O(t
√
ce−c) · 1,

= c1/2
1

|Mk
t |

∑
a∈S

#{a ∈ Mk
t } (ea)⊗ vec

(
ϕ(xt

t−k+2)
(
s0a − s̄0t

))⊤
+O(t

√
ce−c) · 1.

Note that the second term s̄0t is a function of the k-gram MLE p̂k, precisely,

p̂k[a] =
#{a ∈ Mk

t }
|Mk

t |
.

Using this s̄0t = S0p̂k where S0 is the Rnd×nd matrix where the first block is the embedding matrix and 0’s everywhere
else. Using this

∂pθ
∂K2

=
√
c
∑
a∈S

p̂k[a] ea ⊗ vec
(
ϕ(xt

t−k+2)
[
s0a − S0p̂k

]⊤)
+O(t

√
ce−c) · 1. (20)

Parameters of the first layer. The derivatives with respect to the first layer parameters are given by,

∂pθ

∂V
(h)
1

=

t∑
i=1

a(2)

(i,t)

(
(exi

− ē(1)t) (r̄(0)

i)⊤
)
⊗

(
r1[t]

⊤Q⊤
2 K2W(h)

o + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o

)
,

∂pθ

∂A
(h)
1 [i, j]

= a(1,h)

(j,i) a
(2)

(i,t) (exi − ē(1)t)⊗(
r1[t]

⊤Q⊤
2 K2W(h)

o V
(h)
1 (r0[j]− r̄(0,h)

i) + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o V
(h)
1 (r0[j]− r̄(0,h)

i)
)
,

17

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

where the averages of embeddings weighted with attention scores are given by,

ē(1)t =

t∑
i=1

a(2)

(i,t)exi
,

r̄(0,h)

i =

i∑
j=1

a(1,h)

(j,i) r0[j].

For the heads that are not activated, the derivatives with A
(h)
1 [i, j] are 0, since the V

(h)
1 is 0. For the activated heads, the

averaged embedding is given by,

r̄(0,h)

i =

i∑
j=1

a(1,h)

(j,i) r0[j] = r0[i− h] +O(i exp{−c}) · 1.

Now, consider two cases for the derivatives.

• For j = i− h, r0[j]− r̄(0,h)
i = O(exp{−c}), hence the derivative is O(ic exp{−c}).

• For j ̸= i− h, due to the property of the softmax function, the attention scores are O(exp{−c}), hence the derivative
is again O(c exp{−c}).

For the derivative with respect to V
(h)
1 , we again have two cases,

• For the non-activated heads h ⩾ k, K2W(h)
o =

∑k−1
h′=1

∑S
j=1 s

h′
j (sh

′
j)⊤ ·

∑S
j=1 s

h
j s

⊤
j = 0. Similarly for the other

term, Q2W(h)
o = 0. Hence the derivative is 0.

• For the activated heads h ⩽ k − 1, using the previous computations we have,

K2(r1[i]− r̄(1)

t) = O(t
√
ce−c) · 1,

Q2(r1[t]) =
√
c

k−1∑
h=1

shxt+1−h
+O(t

√
ce−c) · 1,

K2W(h)
o =

√
c

k−1∑
h′=1

S∑
j=1

sh
′

j (sh
′

j)⊤ ·
S∑

j=1

shj s
⊤
j

The product is solely a function of k-history xt
t−k+2 and does not depend on i. Computing the multiplicative factor in

the front,
t∑

i=1

a(2)

(i,t)

(
(exi

− ē(1)t) (r̄(0)

i)⊤
)
=

∑
i∈Mk

t

a(2)

(i,t)

(
(exi

− ē(1)t) (r̄(0)

i)⊤
)
+O(exp{−c})

Note that r̄(0)
i = sxi−h

+O(i exp{−c}) and for i ∈ Mk
t , we have, sxi−h

= sxt+1−h
. Using this,

t∑
i=1

a(2)

(i,t)

(
(exi

− ē(1)t) (r̄(0)

i)⊤
)
=

∑
i∈Mk

t

a(2)

(i,t)

(
(exi

− ē(1)t) (sxt+1−h
)⊤

)
+O(exp{−c}),

=

∑
i∈Mk

t

a(2)

(i,t) (exi
)−

∑
i∈Mk

t

a(2)

(i,t)

 ē(1)t

 (sxt+1−h
)⊤ +O(exp{−c})

The term in the square brackets is O(exp{−c}) (for hard attention it is zero). Hence the derivative with respect to V
(h)
1

is O(exp{−c}).

∂pθ

∂V
(h)
1

= O(exp{−c})

[
√
c

k−1∑
h=1

shxt+1−h
+O(t

√
ce−c) · 1

]
. (21)

18

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Final Gradients Bringing things together, from Equations (19), (20), (21),

∂pθ
∂Q2

= O(t
√
ce−c) · 1+

O(t
√
ce−c) · 1
|Mk

t |
,

∂pθ

∂V
(h)
1

= O(exp{−c})

[
√
c

k−1∑
h=1

shxt+1−h
+O(t

√
ce−c) · 1

]
,

∂pθ
∂K2

=
√
c
∑
a∈S

p̂k[a] ea ⊗ vec
(
ϕ(xt

t−k+2)
[
s0a − S0p̂k

]⊤)
+O(t

√
ce−c) · 1.

Note that the only non-vanishing gradient is the gradient with respect to K2. Now, the gradient can be written as

∂pθ
∂K2

=
√
c
∑
a∈S

p̂k[a] ea ⊗ vec
(
ϕ(xt

t−k+2)
[
s0a − S0p̂k

]⊤)
+O(t

√
ce−c) · 1.

We use pτ to denote the vector pτ
(
.|xT

T−k+2

)
, the gradient using the difference as,

∂pθ
∂K2

=
√
c
∑
a∈S

pτ [a] ea ⊗ vec
(
ϕ(xt

t−k+2)
[
s0a − S0pτ

]⊤)
+O(∥pτ − p̂k ∥2) +O(t

√
ce−c) · 1,

= ψ(xt

t−k+2) +O(∥pτ − p̂k ∥2) +O(t
√
ce−c) · 1,

where psi is appropriately defined. The first term here only depends on the (k)-history and we can use Proposition 3.2, to
show that it does not contribute to the final gradient. To give the final computation,

∂L
∂K2

= E
pτ∼P

E
xT∼pτ

〈
pθ(x

T)−pτ (.|xT) ,
∂ log pθ(x

T)

∂K2

〉
,

= E
pτ∼P

E
xT∼pτ

〈
p̂k −pτ (.|xT) ,

∂ log pθ(x
T)

∂K2

〉
,

= E
pτ∼P

E
xT∼pτ

〈
pτ

(
.|xT

T−k+2

)
−pτ (.|xT) ,

∂ log pθ(x
T)

∂K2

〉
+ E

pτ∼P
E

xT∼pτ

∥p̂k − pτ
(
.|xT

T−k+2

)
∥∥∂ log pθ(x

T)

∂K2
∥,

= E
pτ∼P

E
xT∼pτ

〈
pτ

(
.|xT

T−k+2

)
−pτ (.|xT) , ψ(xt

t−k+2)
〉
+ E

pτ∼P
E
xT

O(∥pτ
(
.|xT

T−k+2

)
− p̂k ∥2) · 1+O(t

√
ce−c) · 1,

The first term vanishes due to Proposition 3.2 and this finishes the proof.

C. Supporting Lemmas for The Derivatives of Cross-entropy Loss
In this section, we provide the proofs of the lemmas presented in Section 3 of the main text. In the end, we remark about
extending Proposition 3.2.

Lemma 3.1. Consider any parametric model pθ(.) : [S]T → ∆S−1 that maps a sequence of states to a probability vector
on the states. The derivative of the cross entropy loss function L(θ) with respect to a parameter θi ∈ R is

∂θiL(θ)= E
pτ∼P

E
xT∼pτ

〈
pθ(x

T)−pτ (.|xT) , ∂θi log pθ(x
T)
〉
,

where ∂θi is the partial derivative with respect to θi and log(·) denotes component-wise logarithm.

19

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Proof Recalling the definition of the population cross-entropy loss from Eq. (1), we have,

L(θ) = E
pτ∼P

E
xT∼pτ

ℓ (θ, xT) ,

ℓ (θ, xT) = −
S∑

s=1

pτ (xT+1=s|xT) log (pθ(θ, x
T)[s]) ,

∂θiℓ (θ, x
T) = −

S∑
s=1

pτ (xT+1=s|xT)
∂θipθ(x

T)[s]

pθ(xT)[s]

Using the fact that pθ(xT) ∈ ∆S−1,

S∑
s=1

pθ(x
T)[s] = 1.

Taking the derivative of the above expression, we have,

S∑
s=1

∂θipθ(x
T)[s] = 0.

Using this gives,

∂θiℓ (θ, x
T) = −

S∑
s=1

pτ (xT+1=s|xT)
∂θipθ(x

T)[s]

pθ(xT)[s]
+

S∑
s=1

∂θipθ(x
T)[s],

=
〈
pθ(x

T)−pτ (.|xT) , ∂θi log pθ(x
T)
〉

Remark C.1. In general, a parametric model computes a function fθ : [S]∗ → RS after which a normalizing function like
soft-max is used to project it onto the simplex ∆S−1. The gradient in this case simplifies to

∂θiL(θ)= E
pτ∼P

E
xT∼pτ

〈
pθ(x

T)−pτ (.|xT) , ∂θifθ(x
T)
〉
.

Proposition 3.2. For any θ∗ ∈ Rp such that ∂θ=θ∗ log pθ(x
T) = g (pτ , x

T
t), i.e., the derivative is solely a function of the

context pτ and the last T − t+ 1 elements of the sequence xT , the gradient of the population loss L can be written as

∇L(θ∗)= E
pτ∼P

E
xT∼pτ

〈
pθ∗(x

T)−pτ (.|xT

t) , g (pτ , x
T

t)
〉
.

Furthermore, if for such θ∗ ∈ Rp, the model estimates the conditional probability of the next token pτ (.|xT
t), i.e.,

pθ∗(x
T)=pτ (.|xT

t) almost surely for pτ ∼ P , then θ∗ is a stationary point.

Proof From the above lemma, the partial derivative of the population loss is given by,

∂θiL(θ)= E
pτ∼P

E
xT∼pτ

〈
pθ(x

T)−pτ (.|xT) , ∂θi log pθ(x
T)
〉
,

Using our assumption in (a), we can rewrite the above expression as,

E
xT∼pτ

〈
pτ (.|xT) , ∂θi log pθ(x

T)
〉
= E

xT∼pτ

〈
pτ (.|xT) , g (pτ , x

T

t)
〉
,

now, we split the sequence xT into two parts, (xt−1, xT
t), we can be slightly simplified as,

E
xT∼pτ

〈
pτ (.|xT) , ∂θi log pθ(x

T)
〉
= E

(xt−1, xT
t)∼pτ

〈
pτ (.| (xt−1, xT

t)) , g (pτ , x
T

t)
〉
, (22)

20

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

We use the following property on factorization of the expectation, for any two random variables, A, B. Let σ(A), σ(B) be
the support of the respective random variable, we have the following fact,

E
A,B

Pr
(
·
∣∣∣(A,B)

)
ϕ(B) =

∑
b∈σ(B)

∑
a∈σ(A)

Pr(A = a,B = b)Pr
(
·
∣∣∣(A = a,B = b)

)
ϕ(B),

=
∑

b∈σ(B)

Pr(B = b)ϕ(B)
∑

a∈σ(A)

Pr(A = a|B = b)Pr
(
·
∣∣∣(A = a,B = b)

)
,

=
∑

b∈σ(B)

Pr(B = b)ϕ(B)Pr
(
·
∣∣∣B = b

)
,

=
∑

b∈σ(B)

Pr(B = b)ϕ(B)Pr
(
·
∣∣∣B = b

) ∑
a∈σ(A)

Pr(A = a|B = b),

=
∑

b∈σ(B)

∑
a∈σ(A)

Pr(A = a,B = b)ϕ(B)Pr
(
·
∣∣∣B = b

)
= E

A,B
Pr

(
·
∣∣∣B)

ϕ(B).

Using the above property, we can rewrite the expression Eq.(22) using A = xt−1 and B = xT
t , the per task loss can be

written as,

E
xT∼pτ

〈
pτ (.|xT) , ∂θi log pθ(x

T)
〉
= E

xT∼pτ

〈
pτ (.|xT

t) , g (pτ , x
T

t)
〉
.

This gives us the desired result for (a). The proof of (b) is straight forward as the estimation of probability matches and the
residue vanishes.

Remark C.2. The proof of the proposition splits the sequence into a prefix and suffix as shown in Eq. (22). This is a choice
we made for the ease of presentation and discussion. The proof works similarly after splitting the sequence into any two
disjoint subsequences that do not have to be a prefix and suffix. Therefore, the result can be extended to conditioning on any
subsequence that is not necessarily a suffix.

C.1. Conditional Probabilities: Definition and Proper Asymptotics

In the main paper, we have used a somewhat informal treatment of conditional probabilities. Here, we provide formal
definitions to supplement our discussion. First, we define them for any general sequences of length T for any generic
probability distribution on [S]∗.
Definition C.3. Given the propability distribution pτ (x1, . . . , xT , xT+1) of a sequence of random variables x1, . . . , xT

taking their values in [S]. We define the following conditional probabilities of the next token given a (T − t)−history is:

pτ

(
xT+1 = iT+1

∣∣∣∣ xT

t+1 = iTt+1

)
=

∑
it pτ (x

T+1 = iT+1)∑
it pτ (x

T = iT)
.

where the marginal distribution for sequence length t is given by

pτ (x
T = iT) =

∑
iT∈[S]

pτ (x
T+1 = iT+1).

Now, under the assumption that pτ is a n−gram language model, it remains to show that we have a time-homogeneous
definition of conditional probabilities and that the k−gram estimators asymptotically converge towards them. This is handled
in detail in the section H.

D. Derivatives of The Simplified Transformer
In this section, we focus on the derivatives of the simplified two-layer transformer. Using the derivative of the masked
self-attention map Lemma G.1, the derivatives for the two layers are computed here.

21

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Lemma D.1. Using the Lemma G.1, define the following quantities which can be seen as embeddings weighted with
attention scores for both the layers,

r̄(1)

t =

t∑
i=1

a(2)

(i,t)r1[i], (23)

ē(1)t =

t∑
i=1

a(2)

(i,t)exi
, (24)

r̄(0,h)

i =

i∑
j=1

a(1,h)

(j,i) r0[j]. (25)

With the above notations the derivatives of the output probabilities after t tokens with respect to the parameters of the model
are given by,

∂pθ
∂K2

=

t∑
i=1

a(2)

(i,t) (exi)⊗ vec
(
Q2r1[t](r1[i]− r̄(1)

t)⊤
)⊤
,

∂pθ
∂Q2

=

t∑
i=1

a(2)

(i,t) (exi)⊗ vec
(
K2(r1[t]− r̄(1)

t)(r1[t])
⊤)⊤ ,

∂pθ

∂V
(h)
1

=

t∑
i=1

a(2)

(i,t)

(
(exi − ē(1)t) (r̄(0)

i)⊤
)
⊗
(
r1[t]

⊤Q⊤
2 K2W(h)

o + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o

)
∂pθ

∂A
(h)
1 [i, j]

= a(1,h)

(j,i) a
(2)

(i,t) (exi
− ē(1)t)⊗(

r1[t]
⊤Q⊤

2 K2W(h)
o V

(h)
1 (r0[j]− r̄(0,h)

i) + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o V
(h)
1 (r0[j]− r̄(0,h)

i)
)

Proof

The final output probabilities are given by

pθ(x
t) = Ur2[t] =

t∑
i=1

a(2)

(i,t)Ur0[i] =

t∑
i=1

a(2)

(i,t)exi .

where the attention scores write

a(2)

(i,t) =
exp ⟨K2r1[i],Q2r1[t]⟩
t∑

j=1

exp ⟨K2r1[j],Q2r1[t]⟩
.

Using the Lemma G.1, the derivatives of the output probabilities after t tokens with respect to the parameters in the second
layer and the embedding of the first layer are given by,

∂pθ
∂K2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
Q2r1[t](r1[i]− r̄(1)

t)⊤
)⊤
,

∂pθ
∂Q2

=

t∑
i=1

a(2)

(i,t) (exi
)⊗ vec

(
K2(r1[t]− r̄(1)

t)(r1[t])
⊤)⊤ ,

22

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

For i ̸= t,

∂r2[t]

∂r1[i]
= a(2)

(i,t) (exi
− ē(1)t)⊗

(
K⊤

2 Q2r1[t]
)⊤
,

∂r2[t]

∂r1[t]
= a(2)

(t,t) (ext − ē(1)t)⊗
(
K⊤

2 Q2r1[t]
)⊤

+

t∑
i=1

a(1)

(i,t) (exi − ē(1)t)⊗
(
Q⊤

2 K2(r1[i]− r̄(1)

t)
)⊤
.

For the first attention layer,

r1[i] = W(0)
o r0[0] +

n−1∑
h=1

i∑
j=1

a(1,h)

(j,i) W(h)
o V

(h)
1 r0[j],

where

a(1,h)

(j,i) =
expA

(h)
1 [i, j]∑i

l=1 expA
(h)
1 [i, l]

,

W(h)
o =

S−1∑
j=1

shj s
⊤
j .

The derivatives wrt to

∂ri[i]

∂V
(h)
1

= (r̄(0)

i)⊤ ⊗W(h)
o ,

∂ri[i]

∂A
(h)
1 [i, j]

= a(1,h)

(j,i) W(h)
o V

(h)
1 (r0[j]− r̄(0,h)

i)

Combining them, we get,

∂pθ

∂V
(h)
1

=

t∑
i=1

∂pθ
∂r1[i]

∂r1[i]

∂V
(h)
1

=

t∑
i=1

a(1)

(i,t)

[
(exi − ē(1)t)⊗

(
K⊤

2 Q2r1[t]
)⊤]

(r̄(0)

i)⊤ ⊗W(h)
o ,

=

t∑
i=1

a(1)

(i,t)

(
(exi − ē(1)t) (r̄(0)

i)⊤
)
⊗
(
r1[t]

⊤Q⊤
2 K2W(h)

o + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o

)
,

∂pθ

∂A
(h)
1 [i, j]

=
∂pθ
∂r1[i]

∂r1[i]

∂A
(h)
1 [i, j]

,

= a(1,h)

(j,i) a
(1)

(i,t) (exi
− ē(1)t)⊗(

r1[t]
⊤Q⊤

2 K2W(h)
o V

(h)
1 (r0[j]− r̄(0,h)

i) + (r1[i]− r̄(1)

t)⊤K⊤
2 Q2W(h)

o V
(h)
1 (r0[j]− r̄(0,h)

i)
)
.

In the above simplifications, we have used the following property of Kronecker product,

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

for matrices A,B,C,D of appropriate dimensions.

23

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

E. Proofs of Representation with Simplified Transformers
Lemma B.1. [First-Layer] For the first layer given by the parameter defined in Eq. (12),

(a) Let a(1,h)

(j,i) denote the attention score of head h of layer 1 where (i, j) denote the key and query,

a(1,h)

(j,i) =


1−O(ie−c) when i ⩾ h and j = i− h,

1−O(ie−c) when i < h and j = 0,

O(e−c) o.w..
. (14)

(b) The embeddings of the first layer,

r1[i] =


s0xi

+
k−1∑
h=1

shxi−h
+O(ie−c) · 1 for i ⩾ k − 1,

s0xi
+

i∑
h=1

shxi−h
+

k−1∑
h=i+1

shx0
+O(ie−c) · 1 for i < k − 1.

. (15)

Proof Note that the attention scores in the first layer for any head h and query i and key j are given by,

a(1,h)

(j,i) =
expA

(h)
1 [i, j]∑i

l=1 expA
(h)
1 [i, l]

,

Now for the activated head h, the A
(h)
1 is given by Eq. (8a),

A
(h)
1 = c

T−1∑
l=h

ele
⊤
l−h + c

h∑
l=0

ele
⊤
0

Using the above two equations for i ⩾ k − 1, we can write the attention scores as,

A
(h)
1 [i, j] = c 1{j = i− h},

i∑
j=1

expA
(h)
1 [i, j] = (i− 1) + ec,

For j ̸= i− h, a(1,h)

(j,i) =
1

(i− 1) + ec
= O(exp{−c}),

and, for j = i− h, a(1,h)

(j,i) =
ec

(i− 1) + ec
= 1−O(i exp{−c}).

Coming to the embeddings after the first layer,

r1[i] = W(0)
o r0[0] +

n−1∑
h=1

i∑
j=1

a(1,h)

(j,i) W(h)
o V

(h)
1 r0[j],

where,

W(h)
o =

S∑
j=1

shj s
⊤
j .

Note that for h ⩾ k the term V
(h)
1 = 0, and for h < k, the term V

(h)
1 is given by Eq. (8b). Using the above two equations

and r0[i] = sxi
, we can write the embeddings after the first layer as,

r1[i] = W(0)
o sxi

+

n−1∑
h=1

i∑
j=1

a(1,h)

(j,i) W(h)
o V

(h)
1 sxj

.

24

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Note that V(h)
1 sxj

= sxj
for h < k and W(h)

o sxj
= shxj

. Furthermore, for j ∈ [S],

∥sj∥∞ ⩽ 1, and ∥V(h)
1 sj∥∞ ⩽ 1.

Using this, the above equation can be written as,

r1[i] = s0xi
+

k−1∑
h=1

shxi−h
+O(ie−c) · 1.

A similar computation for i < h gives the required result.

Lemma B.2. [Second-Layer] With the construction given in Def. A.2, the attention scores after the second layer,

a(2)

(i,t) =


1

|Mk
t |

− O(te−c)

|Mk
t |2

for i ∈ Mt,
O(e−c)

|Mk
t |

o.w.
(16)

.

Proof The product of the query and key in the second layer from Eq. 8c is given by,

(Q2)
⊤K2 = c

k−1∑
h=1

S∑
j=1

sh−1
j (shj)

⊤.

Using this the attention scores in the second layer for any key i and query t are given by,

a(2)

(i,t) =
exp ⟨K2r1[i],Q2r1[t]⟩
t∑

j=1

exp ⟨K2r1[j],Q2r1[t]⟩
.

To compute the inner product,

⟨K2r1[i],Q2r1[t]⟩ =
〈
r1[t],Q

⊤
2 K2r1[i]

〉
We know from Lemma B.1 that the embeddings after the first layer for i ⩾ k are given by,

r1[i] =

k−1∑
h=0

shxi−h
+O(ie−c) · 1.

Now for t ⩾ i,

(Q2)
⊤K2r1[i] = c

k−1∑
h=1

S∑
j=1

sh−1
j (shj)

⊤
[
k−1∑
h=0

shxi−h
+O(exp{−c}).

]
,

= c

k−1∑
h=1

sh−1
xi−h

+O(exp{−c}).

〈
r1[t], (Q2)

⊤K2r1[i]
〉
= c

〈
k−1∑
h=0

shxt−h
,

k−1∑
h=1

sh−1
xi−h

〉
+O(exp{−c}),

= c

〈
k∑

h=1

sh−1
xt+1−h

,

k−1∑
h=1

sh−1
xi−h

〉
+O(exp{−c}),

25

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Now we use the fact that the embeddings sh1
i , sh2

j are orthogonal for i ̸= j or h1 ̸= h2. Using this, we can write the above
expression as,

〈
r1[t], (Q2)

⊤K2r1[i]
〉
= c

k−1∑
h=1

〈
sh−1
xt+1−h

, sh−1
xi−h

〉
+O(exp{−c}),

= c

k−1∑
h=1

1{xi−h = xt+1−h}+O(exp{−c}).

If the k-history of t + 1 and i match, i.e., i ∈ Mk
t , then the summation is maximum at (k − 1)c2 otherwise it will be

⩽ (k − 2)c2 as there is atleast one mismatch. Using this, we can write the attention scores as,

t∑
j=1

exp ⟨K2r1[j],Q2r1[t]⟩ ⩽ |Mt| exp{(k − 1)c}+ (t− |Mt|) exp{(k − 2)c}.

Hence, the attention scores are given by neglecting the terms with double exponentiation (i.e., exp{exp{−c}}),

For i ∈ Mk
t , a(2)

(i,t) =
exp (k − 1)c2

t∑
j=1

exp ⟨K2r1[j],Q2r1[t]⟩
⩾

exp (k − 1)c2

|Mt| exp{(k − 1)c}+ (t− |Mt|) exp{(k − 2)c}
,

1

|Mt|
− a(2)

(i,t) ⩽
(t− |Mt|) exp{(k − 2)c}

|Mt| [|Mt| exp{(k − 1)c}+ (t− |Mt|) exp{(k − 2)c}]
⩽
t− |Mt|
|Mt|2

exp{−c}

For i ̸∈ Mk
t , a(2)

(i,t) ⩽
exp (k − 2)c

|Mt| exp (k − 1)c
= O(exp{−c}) o.w..

Hence, the attention scores are given by,

For i ∈ Mk
t , a(2)

(i,t) =
1

|Mk
t |

− tO(exp{−c})
|Mk

t |
,

For i ̸∈ Mk
t , a(2)

(i,t) = O(exp{−c}) o.w..

This completes the proof of the lemma.

F. Possible Extensions of The Results
In this section, we discuss the possible extensions of the results presented in the main text. First we discuss how the results
can be extended to a general transformer architecture. Then we discuss the possible constructions for stationary points and
beyond suffixes.

Other stationary points. Before we begin, we note that there are other possible constructions of the stationary points.
In the main text, we focus on the case where one head activates for the (-h)-tokens, while the other heads are turned off.
However, there can be multiple heads computing the (-h)-tokens for h ⩽ k − 1. Since these heads are symmetric, the
gradients of these heads can be shown to vanish, similar to the proof of Theorem 4.1, by leveraging this symmetry.

For example, consider the bigram MLE estimator, the consturctions is done when one head is activated which computes the
(−1)−token and the other heads are turned off. However, it can also be the case where all the heads are activated and the
(−1)−token is computed by all the heads as seen in Figure 3. Our proof of Theorem 4.1 works in this case too, with the
arguments of symmetry the gradients of these heads will vanish. This can be shown using the same arguments as in the
proof of Theorem 4.1. We give an explicit construction for this simple bigram case.

26

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

(Q2)
⊤ =

√
c

S∑
j=1

n−1∑
h=1

s0j (s
h
j)

⊤, (26a)

K2 =
√
c

S∑
j=1

n−1∑
h=1

shj (s
h
j)

⊤, (26b)

A
(h)
1 = c

T−1∑
l=1

el−1e
⊤
l for h ∈ [n−1], (26c)

V
(h)
1 =

√
c

S∑
j=1

sjs
⊤
j for h ∈ [n−1]. (26d)

Here all heads are switched on and the (−1)−token is computed by all the heads. The query is used to compare the xt token
with all the previous heads (notice 0 in blue in the superscript for all h in Q2). This can be generalized to any k-gram, where
the (−h)-token for h < k is computed by different heads with varying multiplicities.

F.1. General Transformer Architecture

The results presented in the main text are given for a simplified transformer architecture. In this section, we discuss how the
results can be extended to a general transformer architecture. We particularly discuss adding the value matrix in the second
layer and moving beyond concatenation of head embeddings of the first layer.

Token and position embeddings. First we define some block embeddings in a dimension Rd and later lift them into the
dimension of the transformers, i.e., nd and sequences upto length T .

Token embeddings → s0, s1, . . . , sS−1 ∈ Rd

Position embeddings → p0, p1, . . . , pT−1 ∈ Rd.

The embeddings are mutually orthogonal, i.e.,

si ⊥ sj , for all i ̸= j ∈ [N].

pi ⊥ pj , for all i ̸= j ∈ [T].

pi ⊥ sj , for all i ∈ [T], j ∈ [N].

For h ∈ [k + 1], we denote the shi , p
h
i ∈ Rnd, the lift of the block embeddings which are defined as the following,

shi = x

[
h blocks︷ ︸︸ ︷

0d 0d · · si · ·

]
phi =

[
0d 0d · ·︸ ︷︷ ︸

h blocks

pi · ·
]

The embedding layer maps to q0 ∈ RT×nd where each row i is the embedding of ith element in the sequence along with its
positional embedding, i.e., q0[i] = s0xi

+ p0i ∈ Rnd.

The attention layers. The first layer has k attention heads and also has a skip connection. For a head h ∈ [k], let
Q

(h)
1 ,K

(h)
1 , V

(h)
1 denote the query, key and value matrices. The forward pass on q0 writes

r1 = r0 +

k∑
h=1

σ
(
r0 (Q

(h)
1)⊤K(h)

1 r⊤0
)
r0

(
V

((h))
1

)⊤
,

Here σ(.) is a row-wise softmax operator with a causal masking. Note that here we are adding in comparison to the
simplified architecture where we are concatenating.

27

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

The second layer has just one head and also no skip connection (the skip connection can be included and the value matrix
should be scaled appropriately so that it is ignored after normalization). Let K2, Q2, V2 be the key, query and value matrices
of the second layer. The forward pass for the second layer writes

r2 = σ
(
r1 (Q2)

⊤K2 r
⊤
1

)
r1 (V2)

⊤
.

Now that r2 are not normalized, we have to normalize them using a softmax operator to get the final output. In this case, the
counting algorithm (MLE) implemented by the transformer cannot compute logits, hence we use an MLP layer to compute
the logits.

An MLP layer. Furthermore, there is an MLP layer which computes the logarithm of a input. let M be the set of parameter
m be the function implemented, m(.) : RS → RS does component wise logarithm m(x) = log(|x|+ ϵ) for some small
epsilon.

Writing it together, the forward pass of the transformer writes,

r1 = r0 +

k∑
h=1

σ
(
r0 (Q

(h)
1)⊤K(h)

1 r⊤0
)
r0

(
V

((h))
1

)⊤
,

r2 = σ
(
r1 (Q2)

⊤K2 r
⊤
1

)
r1 (V2)

⊤
,

pθ(x
t) = log r2[t]

This model improves on the previous simplified model by adding a value matrix in the second layer and moving beyond
concatenation of head embeddings of the first layer and also using positional encoding explicitly. Since this model is a
generalization of the simplified model, the representation results of the simplified model can be extended to this model.
However, to show that the gradient vanishes needs a bit of work particularly for the value matrices.

For the tth token, the output after the second layer of transformer writes,

r2[t] =

t∑
i=1

a(2)

(i,t) V2r1[i],

where the attention scores in the second layer a(2)

(i,t) for key i and query t are given by,

a(2)

(i,t) =
exp ⟨K2r1[i],Q2r1[t]⟩
t∑

j=1

exp ⟨K2r1[j],Q2r1[t]⟩
.

The final output probabilities are given by

pθ(x
t) = Ur2[t] =

t∑
i=1

a(2)

(i,t)Ur0[i] =

t∑
i=1

a(2)

(i,t)exi .

Here, we show that the gradient with respect to V2 vanishes. The others follow the same pattern as the simplified model and
will be not be precisely computed here. The partial derivative with respect to gradient gives us,

∂r2[t]

∂V2
=

t∑
i=1

a(2)

(i,t) IS ⊗ r1[i],= IS ⊗ r̄(2)

t

28

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Define θk
∗ by

(Q
(h)
1)⊤K(h)

1 =

ch
T−1∑
l=h

pl−hp
⊤
l where for h ∈ [k − 1]

0 o.w.
, (28)

V
(h)
1 =


S∑

j=1

shj (s
0
j)

⊤, for h ∈ N

0 o.w.
, (29)

(Q2)
⊤K2 = c

S∑
j=1

∑
h∈N

sh−1
j (shj)

⊤, (30)

V2 =

S∑
j=1

ej(s
0
j)

⊤. (31)

Intuitively, this is just an expansion on simplified transformer with lifting in the first layer and multiplication with value
made explicit. Recalling s̄0t = 1

|Mk
t |
∑

i∈Mk
t
s0xt

, using this,

r̄(1)

t =
√
cs̄0t +

k−1∑
h=1

shxt+1−h
+O(exp{−c}).

At the limit T → ∞, s̄0t depends only on the context and k-history of the token t+ 1 and the other summation only depends
on the k-history of the token t+ 1. Hence, the gradient vanishes as c→ ∞. This gives a glimpse to how the computation
can be extended to a general transformer architecture.

F.2. Other Constructions for Stationary points and Beyond Contigous history

Note that we only consider estimators conditioned on the suffices. Consider again the simple example of bigram, which is
conditioning on a single element in the n-history. There can be many such estimators, for example, conditioning on the first
element in the n-history p(xn = .|xn−1), the second element in the n-history p(xn = .|xn−2), and so on. It is natural to
wonder and extend our results to all these possible estimators.

To generalize this, we define N−MLE estimators for some set N ⊆ [n − 1]. For N , we define a subsequence xt
N =

(xt−h)h∈N as N -history and the N -MLE estimator is given by,

T∑
l=0

1{xl
N = xt+1

N }1{xl = i}

T∑
l=0

1{xl
N = xt+1

N }
.

which compares the N -history of the token t+ 1 with the N -history of all the tokens in the sequence.

There is a small technical challenge for a transformer to implement this. To compare the N -history, it must compare the
(−h)-token of i with the (−h)-token (t+1) (not t) for h ∈ N . This essentially requires comparing the (−h)-token of i with
the (−(h− 1))-token t. As a result, an induction head must attend to the (−(h− 1))-token in the first layer. When N forms
a suffix, this step isn’t explicitly necessary since h− 1 will also be in N . Otherwise, it must be computed explicitly using
additional heads or changing the attention matrix specifically depending on the last token.

When the inputs are of fixed length the later approach could be used. We specify the construction first and then give the
intuition on why it would work.

29

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

(Q2)
⊤ =

√
c

S∑
j=1

∑
h∈N

shj (s
h
j)

⊤, (32a)

K2 =
√
c

S∑
j=1

∑
h∈N

shj (s
h
j)

⊤, (32b)

A
(h)
1 = c

T−2∑
l=h

el−he
⊤
l + eT−h+1e

⊤
T−1 for h ∈ N , (32c)

V
(h)
1 =


√
c

S∑
j=1

sjs
⊤
j for h ∈ N ,

0 o.w.
. (32d)

The main modification is in the attention matrix of the first layer, i.e., now head h computes (−h) token for i ̸= T but
(−(h− 1)) token for i = T . The last token acts as a special token (Nichani et al., 2024) and the attention matrix is modified
accordingly. The gradients of the heads will vanish similar to the proof of Theorem 4.1. However the major drawback is
that it only works for fixed length inputs and does not even work for shorter sequence lengths. This is not the case for the
previous constructions for suffix.

G. Derivatives of the self attention map.
We calculate the derivatives of the masked self-attention map with respect to key, value, query and the input embeddings.
Let q ∈ RT×d be the input embeddings, Q,K, V ∈ Rd×d be the query, key and value matrices. Let qi denote the ith row of
q. For any t, the output embeddings of the tth-token of the transformer layer can be written as

q+t =

t∑
i=1

piV qi,

pi =
exp ⟨Kqi, Qqt⟩
t∑

j=1

exp ⟨Kqj , Qqt⟩
.

Lemma G.1. For a self attention map, defined by

q+t =

t∑
i=1

piV qi, where pi =
exp ⟨Kqi, Qqt⟩
t∑

j=1

exp ⟨Kqj , Qqt⟩
.

Define

q̄ =

t∑
i=1

piqi.

30

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

The partial derivatives are given by,

∂q+t
∂V

=

t∑
i=1

pi
(
q⊤i ⊗ Id

)
= q̄⊤ ⊗ Id,

∂q+t
∂K

=

t∑
j=1

pj (V qj)⊗ vec
(
Qqt(qj − q̄)⊤

)⊤
,

∂q+t
∂Q

=

t∑
j=1

pj (V qj)⊗ vec
(
K(qj − q̄)q⊤t

)⊤
,

For i ̸= t,
∂q+t
∂qi

= pi V + pi (V (qi − q̄))⊗
(
K⊤Qqt

)⊤
,

∂q+t
∂qt

= pt V + pt (V (qt − q̄))⊗
(
K⊤Qqt

)⊤
+

t∑
j=1

pj (V qj)⊗
(
Q⊤K(qj − q̄)

)⊤
.

Proof First taking the derivative with respect to the value V gives us,

∂q+t
∂V

=

t∑
i=1

pi
(
q⊤i ⊗ Id

)
.

The derivative wrt to qi gives us

∂q+t
∂qi

= pi V +

t∑
j=1

(V qj)⊗
∂pj
∂qi

,

∂q+t
∂K

=

t∑
j=1

(V qj)⊗
∂pj
∂K

,

∂q+t
∂Q

=

t∑
j=1

(V qj)⊗
∂pj
∂Q

.

To compute the derivative of p wrt q,Q,K, we begin with definition of intermediate functions,

g : Rt → Rt where g(x) =
expxi
t∑

j=1

expxj

,

h : Rd×d × Rd×d × Rt×d → Rt, where h(K,Q, q) = (⟨Kqi, Qqt⟩)ti=1 .

Using the above definitions, p can be written as

p = g(h(K,Q, q)).

The partial derivative of g writes

∂gj
∂xk

= gj1 (k = j)− gkgj ,

∂hk
∂qi

=

{
1{k = i}

(
K⊤Qqt

)⊤
, for i ̸= t,

(Q⊤Kqk)⊤ + 1{k = t}
(
K⊤Qqt

)⊤
, for i = t.

,

= 1{k = i}
(
K⊤Qqt

)⊤
+ 1{i = t}(Q⊤Kqk)

⊤.

∂hk
∂K

= vec
(
Qqtq

⊤
k

)⊤
,

∂hk
∂Q

= vec
(
K qkq

⊤
t

)⊤
.

31

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Using the chain rule to take the derivative gives us,

∂pj
∂qi

=

t∑
k=1

∂gj
∂hk

∂hk
∂qi

,

=

t∑
k=1

[pj 1 (k = j)− pkpj]
[
1{k = i}

(
K⊤Qqt

)⊤
+ 1{i = t}(Q⊤Kqk)

⊤
]
,

= pj

[
1{j = i}

(
K⊤Qqt

)⊤
+ 1{i = t}(Q⊤Kqj)

⊤
]

− pipj
(
K⊤Qqt

)⊤ − 1{i = t}pj
t∑

k=1

pk(Q
⊤Kqk)

⊤.

∂pj
∂K

=

t∑
k=1

∂pj
∂hk

∂hk
∂K

=

t∑
k=1

[pj1 (k = j)− pkpj] vec
(
Qqtq

⊤
k

)⊤
,

= pjvec
(
Qqtq

⊤
j

)⊤ − pj

t∑
k=1

pkvec
(
Qqtq

⊤
k

)⊤
,

Define q̂ =
t∑

k=1

pkqk,

∂pj
∂K

= pjvec
(
Qqt(qj − q̂)⊤

)⊤
.

∂pj
∂Q

=

t∑
k=1

∂pj
∂hk

∂hk
∂Q

=

t∑
k=1

[pj1 (k = j)− pkpj] vec
(
K qkq

⊤
t

)⊤
,

= pjvec
(
K qjq

⊤
t

)⊤ − pj

t∑
k=1

pkvec
(
Qqkq

⊤
t

)⊤
,

= pjvec
(
K(qj − q̂)q⊤t

)⊤
.

Substituting the following derivates,

∂pj
∂K

= pjvec
(
Qqt(qj − q̂)⊤

)⊤
,

∂pj
∂Q

= pjvec
(
K(qj − q̂)q⊤t

)⊤
.

∂q+t
∂K

=

t∑
j=1

(V qj)⊗
∂K

∂pj
=

t∑
j=1

pj (V qj)⊗ vec
(
Qqt(qj − q̂)⊤

)⊤
,

∂q+t
∂Q

=

t∑
j=1

(V qj)⊗
∂pj
∂Q

=

t∑
j=1

pj (V qj)⊗ vec
(
K(qj − q̂)q⊤t

)⊤
,

Coming to the derivatives wrt qi, we have,

∂pj
∂qi

= pj

[
1{j = i}

(
K⊤Qqt

)⊤
+ 1{i = t}(Q⊤Kqj)

⊤
]

− pipj
(
K⊤Qqt

)⊤ − 1{i = t}pj
t∑

k=1

pk(Q
⊤Kqk)

⊤.

32

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Writing the above expression on case by case basis, we get,

∂pj
∂qi

=


pt(1− pt)

(
K⊤Qqt

)⊤
+ pj

(
Q⊤K(qj − q̂)

)⊤
, when i = j = t,

pj(1− pj)
(
K⊤Qqt

)⊤
, when i = j ̸= t,

−pipj
(
K⊤Qqt

)⊤
, when i ̸= j and i ̸= t,

−ptpj
(
K⊤Qqt

)⊤
+ pj

(
Q⊤K(qj − q̂)

)⊤
, when i = t and i ̸= j,

First computing the derivative wrt to qi for i ̸= t, we get,

∂q+t
∂qi

= pi V +

t∑
j=1

(V qj)⊗
∂pj
∂qi

,

= pi V + pi (V qi)⊗
(
K⊤Qqt

)⊤ − pi

t∑
j=1

pj (V qj)⊗
(
K⊤Qqt

)⊤
,

= pi V + pi (V qi)⊗
(
K⊤Qqt

)⊤ − pi (V q̂)⊗
(
K⊤Qqt

)⊤
,

= pi V + pi (V (qi − q̂))⊗
(
K⊤Qqt

)⊤
.

∂q+t
∂qi

= pt V + pt (V qt)⊗
(
K⊤Qqt

)⊤ − pt

t∑
j=1

pj (V qj)
(
K⊤Qqt

)⊤
+

t∑
j=1

pj (V qj)⊗
(
Q⊤K(qj − q̂)

)⊤
,

= pt V + pt (V (qt − q̂))⊗
(
K⊤Qqt

)⊤
+

t∑
j=1

pj (V qj)⊗
(
Q⊤K(qj − q̂)

)⊤
.

This proves the lemma.

H. Higher Order Markov Chain
Definition H.1 (Higher Order Markov Process). A Markov process pτ of order k generates a sequence of random variables
x1, x2, . . . ∈ [S] such that the conditional distribution of xt+1 given xt depends only on xt

t−k+1, i.e., for any t ⩾ k,

pτ

(
xt+1

∣∣∣∣xt

)
= pτ

(
xt+1

∣∣∣∣xt

t−k+1

)
.

Now, we define the transition tensor with is given by pτ .

Definition H.2 (Transition Tensor). The transition tensor of a Markov process of order k is a k-dimensional tensor P such
that

Pik+1 := pτ

(
xk+1 = ik+1

∣∣∣∣xk = ik
)
.

Now, we lift the process into the higher dimension and write it as a simple Markov process of order 1. We create a Markov
chain Ξ on the space [S]

k of order 1 Markov chain with transition matrix T . Index the states by ik ∈ [S]
k. Now the

transition probabilities for this are defined as

T
(
Y k

∣∣∣∣ik) =

{
̸= 0 if Y k = (ik2 , ik+1), for some ik+1 ∈ [S] ,

= 0 otherwise
.

The transition probabilities are explicitly given by

T
(
ik+1

2

∣∣∣∣ik) = Pik+1 .

33

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Stationary distribution. Let π ∈ R|S|k denote the stationary distribution of the chain Ξ, i.e.,

π⊤T = π⊤.

In the summation form , for the coordinate indexed by ik+1
2 , we get that,∑

jk

πjk · T
(
ik+1

2

∣∣∣∣ jk) = πik+1
2

.

Note that T
(
ik+1
2

∣∣∣∣ jk) = 0 whenever jk2 ̸= ik2 . Using this, we get,

∑
jk

πjk · T
(
ik+1

2

∣∣∣∣ jk) =
∑
jk

πjk · T
(
ik+1

2

∣∣∣∣ jk)(
1

{
jk2 ̸= ik2

}
+ 1

{
jk2 = ik2

})
,

=
∑
jk

πjk · T
(
ik+1

2

∣∣∣∣ jk)1

{
jk2 = ik2

}
,

=
∑
j1

π(j1,ik2)
T
(
ik+1

2

∣∣∣∣ (j1, ik2)) ,
=

∑
i1

πikT
(
ik+1

2

∣∣∣∣ ik) .
Using this expansion, we get the following stationarity condition,

πik+1
2

=
∑
i1

πikT
(
ik+1

2

∣∣∣∣ ik) . (33)

H.1. Generating Sequences with The Markov Chain Ξ

In this subsection, we show the subsequences of length k follow the stationary distribution when generated from the Markov
Chain Ξ. To generate sequences from the Markov Chain Ξ, we do the following generation,

a) Generate a sequence of length k sampling from the stationary distribution π (say ik)

b) Sample the next token from the distribution Pik,(.) say ik+1

c) After generating a sequence it of length t > k, the next token is generated by the sampling from the distribution
Pitt−k+1,(.)

Lemma H.3 (Stationarity of k-tuples). Let xt be the random variable representing the sequences generated from Ξ, the
distribution of subsequence xl

l−k+1 of length k is given by π.

Proof We will prove this using induction. For the base case, observe that for l = k, the value is sampled from π by
construction. Use the induction hypothesis, any k length subsequence of xl obeys the law given by π. It remains to show
that xl+1

l−k+2 are distributed according to π.

pτ
(
xl+1

l−k+2 = il+1

l−k+2

)
=

∑
il−k+1

pτ (x
l+1 = il+1) ,

=
∑

il−k+1

pτ (x
l = il) pτ

(
xl+1 = il+1

∣∣∣∣ xl = il
)

Using the Markov property of the sequence generation, we have,

pτ

(
xl+1 = il+1

∣∣∣∣ xl = il
)

= pτ

(
xl+1 = il+1

∣∣∣∣ xl

l−k+1 = ill−k+1

)
.

34

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Substuting this expression, we have,

pτ
(
xl+1

l−k+2 = il+1

l−k+2

)
=

∑
il−k+1

pτ (x
l = il)P

(
xl+1 = il+1

∣∣∣∣ xl

l−k+1 = ill−k+1

)
,

=
∑

il−k+1

∑
il−k

pτ (x
l = il) pτ

(
xl+1 = il+1

∣∣∣∣ xl

l−k+1 = ill−k+1

)
,

=
∑

il−k+1

[∑
il−k

pτ (x
l = il)

]
pτ

(
xl+1 = il+1

∣∣∣∣ xl

l−k+1 = ill−k+1

)
.

Using the fact that
∑

il−k pτ (x
l = il) = pτ

(
xl

l−k+1 = ill−k+1

)
. Using the induction hypothesis, we have that

pτ
(
xl

l−k+1 = ill−k+1

)
= πill−k+1

.

pτ
(
xl+1

l−k+2 = il+1

l−k+2

)
=

∑
il−k+1

πill−k+1
pτ

(
xl+1 = il+1

∣∣∣∣ xl

l−k+1 = ill−k+1

)
,

=
∑

il−k+1

πill−k+1
T
(
il+1

l−k+2

∣∣∣∣ ill−k+1

)
.

Using the Eq. (33),

pτ
(
xl+1

l−k+2 = il+1

l−k+2

)
=

∑
il−k+1

πill−k+1
T
(
il+1

l−k+2

∣∣∣∣ ill−k+1

)
,

= πil+1
l−k+2

.

This proves the hypothesis for length l + 1. Hence, by induction, the hypothesis holds for any length.

Lemma H.4 (Stationarity of sub-k-tuples). For any t ⩾ 0 and l ⩽ k, we have the following shift invariant property for the
marginals,

pτ (x
l = il) = pτ (x

t+l−1

t = il)

Proof Using Lemma H.3, we have that the distribution of the subsequence xt+k−1
t is given by π for any t ⩾ 0, i.e.,

pτ (x
k = ik) = pτ (x

t+k−1

t = ik) = πik .

Summing the above expression over all possible values of ikl+1, we get,∑
ikl+1

pτ (x
k = ik) =

∑
ikl+1

pτ (x
t+k−1

t = ik) =
∑
ikl+1

πik .

We know that ∑
ikl+1

pτ (x
k = ik) = pτ (x

l = il) ,

∑
ikl+1

pτ (x
t+k−1

t = ik) = pτ (x
t+l−1

t = il)

This proves the lemma.

35

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

H.2. Lower-order Conditional Probabilities

The following lemma show that the lower order conditional probabilities are time homogenous and are given by the stationary
distribution π.
Lemma H.5. For the sequences generated by the markov chain Ξ, for l ⩽ k, we have,

pτ

(
xT+1 = .

∣∣∣∣ xT

T−l+1 = il
)

= pτ

(
xl+1 = .

∣∣∣∣ xl = il
)

=

∑
ik−l
2

πik+1
2∑

ik−l

πik

Proof For l = k, this holds due the Markov property of order k and

pτ

(
xT+1 = .

∣∣∣∣ xT

T−k+1 = ik
)

= pτ

(
xk+1 = .

∣∣∣∣ xk = ik
)
.

Now, for l < k, we have,

pτ

(
xT+1 = il+1

∣∣∣∣ xT

T−l+1 = il
)

=
pτ

(
xT+1

T−l+1 = il+1
)

pτ
(
xT

T−l+1 = il
) ,

Using the shift-invariant property of the marginals, we have that,

pτ
(
xT+1

T−l+1 = il+1
)
= pτ (x

l+1 = il+1) =
∑
ikl+2

πik ,

pτ
(
xT

T−l+1 = il
)
= pτ (x

l = il) =
∑
ikl+1

πik .

This proves the lemma.

Conditional Probability for Any Subset of Sequence. Previously, we defined it for contiguous history; now, we can extend
the definition to any subset of sequence as well. Consider any set K ⊆ [0,S − 1], [S]−K is an ordered set defined as
{k − i : i ∈ K}. We define the sequence x[S]−K as the ordered set {xi : i ∈ [S]−K}. We define the conditional probability
of the next token given the sequence x[S]−K as

P[S]−K (i[S]−K, ik+1) := pτ (xk+1 = ik+1 |x[S]−K = i[S]−K) ,

=
pτ (xk+1 = ik+1, x

[S]−K = i[S]−K)

pτ (x[S]−K = i[S]−K)
,

=

∑
i([S]−K)c

pτ (x
k+1 = ik+1)∑

i([S]−K)c

pτ (xk = ik)
.

Consistency of the sub-k counting estimators. Here, we use the ergodic properties of the chain Ξ to show that the lower
order estimators convergence as T → ∞.
Lemma H.6. Consider the l+1-gram estimator p̂ l for 0 < l ⩽ k − 1, then as T → ∞, p̂ l(x

T) → pτ (.|xl).

Proof Using the ergodicity of the chain Ξ (Penev, 1991), the k+1−gram estimator converges to the stationary distribution
as it equivalent to counting the empirical frequency on the chain of higher order. Now we write the l−gram estimator in the
following way:

p̂l(ik+1|ikk−l+1) =

∑T
j=1 1{xj+1

j−l+1 = ik+1
k−l+1}∑T

j=1 1{x
j
j−l+1 = ikk−l+1}

36

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Now we can write the following expression as

T∑
j=1

1{xj+1

j−l+1 = ik+1

k−l+1} =
∑
il2

T∑
j=1

1{xj+1

j−k+1 = ik+1

2 },

T∑
j=1

1{xj

j−k+1 = ik+1

k−l+1} =
∑
il

T∑
j=1

1{xj

j−k+1 = ik}.

Now, using the ergodicity of the lifted markov chain, we can say that

∑T
j=1 1{xj+1

j−k+1 = ik+1
2 }

T

t→∞→ πik+1
2

,

∑
il2

∑T
j=1 1{xj+1

j−k+1 = ik+1
2 }

T

t→∞→
∑
il2

πik+1
2

Using the similar argument, the ratio can now be written as

∑T
j=1 1{xj+1

j−l+1 = ik+1
k−l+1}∑T

j=1 1{x
j
j−l+1 = ikk−l+1}

=

∑
il2
πik+1

2∑
il πik

= pτ (xl+1 = ik+1|xl = ikk−l+1)

The last equality flows from the lemma H.5.

I. More Experiments
I.1. Experiments with Attention Only Transformer

In this section, we repeat the main experiment in the paper with the common non-disentangled transformer architecture,
demonstrating the generality of our results. Figure 5, shows the evolution of attention matrices during training with both
one-hot and learned embeddings for the general architecture.

For the transformer experiments, we use vocabulary size S = 3. The length of the input sequences is T = 32, and the
sequences are sampled from an in-context tri-gram language model, i.e., n = 3. The transition matrices for a fixed context
are sampled from a Dirichlet prior with α = 1. The embedding dimension is set to d = S + T , to be consistent in both
setups, and we use one-hot or learned embeddings for both positional and semantic embeddings in different experiments.
The transformer is trained with Adam with a weight decay of 0.0001 for 4096 iterations, with a constant learning rate of
0.005 and a batch size of 128. The test loss is evaluated over 216 test sequences.

I.2. The Contiguous Solutions are Preferred during Training

In Figure 6, we repeat the procedure in Figure 3 for different seeds and plot the attention heads in the second plateau.
Through all the experiments transformer more often attends to the (−1)-token first, rather than the (−2)-token. Recall that
the underlying mechanism behind the sub-n-gram estimators is checking if the history of the token xT+1 and xj matches
and adding xj if they do. We conjecture that, since the token xT is always provided through the skip connection, it is easier
to learn to match xT with xj−1 than, for example, xT−1 and xj−2.

I.3. Plot of norms of the gradients along the trajectory

In Figures 7, 8, we plot the norm of the gradient during training along the similar lines as (Odonnat et al., 2025). The plots
demonstrate how the norm of gradients stays low during the plateau stages and spikes during the jump between the plateaus.

37

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

Figure 7: Norms of gradients for simplified transformer. A two layer simplified transformer for S = 5 and a sequence
length of L = 128 from a 3-gram language model. The plots show that the norm of gradients stays low during the plateau
stages and spikes during the jump between the plateaus.

Figure 8: Norms of gradients for transformers with MLP layers. A two layer simplified transformer for S = 5 and a
sequence length of L = 64 from a 3-gram language model. The plots show that the norm of gradients stays low during
the plateau stages and spikes during the jump between the plateaus. However, there is only a single intermediate plateau,
unlike attention-only transformers, as a single head attends to both the (−1,−2)-tokens, and it emerges after the plateau.
The plateau corresponds to the unigram.

38

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

(a)

A
tte

nt
io

n
Sc

or
es

h
=

2
h
=

1

t = 115 t = 5000 t = 16000

Training Step (t)

(b)

(c)

A
tte

nt
io

n
Sc

or
es

h
=

2
h
=

1

t = 115 t = 5000 t = 16000

Training Step (t)

(d)
Figure 5: The evolution of the attention heads in the first layer during training of an attention-only transformer with one-hot
(a-b) and learned embeddings(c-d). (a-c) Progression of the test loss during training. The highlighted points are the iterations
on the plateaus for which we demonstrate the attention matrices. (b-d) The evolution of attention scores of the heads of the
transformer during training representing the tokens it is attending. First, both of the attention heads attend to all the previous
tokens uniformly, i.e., the induction heads are not formed. At the second plateau, they both attend to the previous token, or
one head is not formed yet while the other attends to the previous token. Finally, as the model escapes this plateau, the
second attention head learns to attend to (−2)-token at the end of training.

39

Learning In-context nnn-grams with Transformers: Sub-nnn-grams Are Near-stationary Points

A
tte

nt
io

n
Sc

or
es

σ
(A

(h
)

1

)
h
=

2
h
=

1

s = 1 s = 2 s = 3 s = 4 s = 5

Random Seed (s)

(a)
Figure 6: Attention maps of the two heads in the second plateau for different random seeds denoted by s. It shows how the
transformers attends to (−1)-token first and never attends the (−2)-token before attending (−1)-token across 5 random
seeds.

40

	Introduction
	Related Work

	In-context n- .4 -grams and Transformers
	In-context Next Token Predictions
	In-context n- .4 -grams task
	Disentangled Transformer Architecture

	A Sufficient Stationary Condition for Population CE on Sequences
	Theoretical Insights into Stage-wise Dynamics Through the Loss Landscape
	Representing Sub-n-grams with Simplified Transformer
	Sub-n- .4 -grams Are Stationary Points
	Proof Sketch
	Extensions and Perspectives

	Experimental Evaluation
	Conclusion
	Organization of the Supplementary Material
	Links to Materials Referenced in The Main Text.
	Outline of the Supplementary Material.
	Notation and Definitions

	Construction and the Stationarity of the k-gram solutions
	Representing k-grams with Simplified Transformer
	Proof of Stationary Points with Simplified Transformer

	Supporting Lemmas for The Derivatives of Cross-entropy Loss
	Conditional Probabilities: Definition and Proper Asymptotics

	Derivatives of The Simplified Transformer
	Proofs of Representation with Simplified Transformers
	Possible Extensions of The Results
	General Transformer Architecture
	Other Constructions for Stationary points and Beyond Contigous history

	Derivatives of the self attention map.
	Higher Order Markov Chain
	Generating Sequences with The Markov Chain
	Lower-order Conditional Probabilities

	More Experiments
	Experiments with Attention Only Transformer
	The Contiguous Solutions are Preferred during Training
	Plot of norms of the gradients along the trajectory

