
Under review as a conference paper at ICLR 2023

TOWARDS FEDERATED LEARNING OF DEEP GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) learn node representations by recursively aggre-
gating neighborhood information on graph data. However, in the federated setting,
data samples (nodes) located in different clients may be connected to each other,
leading to huge information loss to the training method. Existing federated graph
learning frameworks solve such a problem by generating missing neighbors or
sending information across clients directly. None are suitable for training deep
GNNs, which require a more expansive receptive field and higher communication
costs. In this work, we introduce a novel framework named Fed2GNN for feder-
ated graph learning of deep GNNs via reconstructing neighborhood information
of nodes. Specifically, we design a graph structure named rooted tree. The node
embedding obtained by encoding on the rooted tree is the same as that obtained
by encoding on the induced subgraph surrounding the node, which allows us to
reconstruct the neighborhood information by building the rooted tree of the node.
An encoder-decoder framework is then proposed, wherein we first encode missing
neighbor information and then decode it to build the rooted tree. Extensive experi-
ments on real-world network datasets show the effectiveness of our framework for
training deep GNNs while also achieving better performance for training shadow
GNN models1.

1 INTRODUCTION

Recently, Graph Neural Networks (GNNs) have attracted significant attention due to their powerful
ability for representation learning of graph-structured data (Hamilton et al., 2017a; Kipf & Welling,
2017; Hamilton et al., 2017b). Generally speaking, it adopts a recursive neighborhood aggregation
(or message passing) scheme to learn node representations by considering the node features and
graph topology information together (Xu et al., 2018). After k iterations of aggregation, a node
captures the information within the node’s k-hop neighborhood.

Similar to learning tasks of other domains, training a well-performed GNN model requires its train-
ing data to be not only sufficiently large but also heterogeneous for better generalization of the
model. However, in reality, heterogeneous data are often separately stored in different clients and
cannot be shared due to policies and privacy concerns. To that end, recent works have proposed fed-
erated training of GNNs (Zhang et al., 2021; Peng et al., 2021; Yao & Joe-Wong, 2022; Chen et al.,
2022). They typically consider a framework wherein each client iteratively updates node represen-
tations with a semi-supervised model on its local graph; the models are then aggregated at a central
server. The main challenge is that data samples (nodes) located in different clients may be connected
to each other. Hence, it is non-trivial to consider the connected nodes (i.e., neighbor nodes) located
in other clients when applying node updates. Although existing works focus on recovering missing
neighborhood information for nodes, they either only consider immediate neighbors (Zhang et al.,
2021; Peng et al., 2021) or require communication costs to increase exponentially as the neighbors’
distance increases (Yao & Joe-Wong, 2022; Chen et al., 2022). None of them are suitable for train-
ing deeper GNN models, which require a more expansive receptive field and have been shown to
be beneficial for representation learning for graph-structured data (Li et al., 2019; Liu et al., 2020;

1Code available at https://www.dropbox.com/s/unizcyixsmip0je/Fed%5E2GNN.zip?
dl=0

1

https://www.dropbox.com/s/unizcyixsmip0je/Fed%5E2GNN.zip?dl=0
https://www.dropbox.com/s/unizcyixsmip0je/Fed%5E2GNN.zip?dl=0

Under review as a conference paper at ICLR 2023

Zhou et al., 2020a). For GNNs, the receptive field of a node representation is its entire neighbor-
hood. Moreover, (Yao & Joe-Wong, 2022) also requires calculating the weighted matrix in advance,
which is not available in practice.

In this work, we aim to fundamentally address the above limitations of existing federated graph
learning methods by proposing a novel framework named Fed2GNN. The key idea lies in designing
a principled approach to reconstructing the neighborhood information of nodes that considers both
structure-based (i.e., graph topology) and feature-based information (i.e., node features). For the
structure-based information, we propose a novel graph structure named rooted tree, which has a
more regular structure than the original structure of the node neighborhood. More importantly, the
node embedding obtained by encoding on the rooted tree is the same as that obtained by encoding
on the node’s ego-graph (i.e., the induced subgraph surrounding the node). Such a property allows
us to easily reconstruct the structure-based information by building the rooted tree of the node.

For the feature-based information, since the structure of the node neighborhood changes, we aim
to generate features of the nodes in the rooted tree. Inspired by the structure of the rooted tree,
we design a protocol wherein clients recursively transmit information across each other. The data
transmitted in the k-th round correspond to nodes in the k+1-th layer of the rooted tree. Furthermore,
we utilize the encoder-decoder framework to reduce the communication costs such that it grows
only linearly as the number of iterations increases. In more detail, each client first encodes the
information and sends the output to other clients. Other clients build the rooted tree by decoding the
received information. By merging all trees into the local graph (with the rooted node as an anchor),
each client obtains a complete graph on which applying graph representation learning has limited
information loss. In summary, we make the following contributions:

• We introduce Fed2GNN, an framework for federated training of GNNs to solve node-level pre-
diction tasks. We achieve such a goal by devising a principled approach to reconstructing missing
neighborhood information that considers both structure-based and feature-based information.

• To reconstruct the structure-based information, we propose a novel graph structure named rooted
tree, which is easier to construct than the original irregular structures of the node neighborhood.
More importantly, the node embedding obtained by encoding on the rooted tree is the same as that
obtained by encoding on the node’s ego-graph.

• To reconstruct the feature-based information, we propose an encoder-decoder framework to reduce
communication costs while having limited information loss.

• We conduct extensive experiments to verify the utility of Fed2GNN. The results show that it is
effective for training deep GNNs while achieving better performance for training shadow GNN
models.

We outline related works in Section 2 before introducing the problem statement of federated graph
learning in Section 3. We then introduce Fed2GNN in Section 4, wherein we first introduce the
structure of the rooted tree and then presents the neighborhood reconstruction process. We analyze
its performance experimentally in Section 5 and concluding in Section 6.

2 RELATED WORKS

Graph Neural Networks (GNNs) learn a representation for each node in the graph using a set of
stacked graph convolution layers. Each layer gets an initial vector for each node and outputs a new
embedding vector by aggregating vectors of neighbor nodes followed by a non-linear transform.
After k aggregations, the source of information encoded in the representation of a node essentially
comes from its k-hop neighborhood. Following the above framework, which is usually called mes-
sage passing, several GNN models have been proposed, such as GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017b), GAT (Velickovic et al., 2018), and so on. However, unlike
the learning tasks in other domains, simply stacking graph convolution layers usually suffer from
an over-smoothing issue, leading to even worse performance. Surprisingly, with the research on
the above issues, several works (Liu et al., 2020; Li et al., 2019; Zhou et al., 2020b) propose effec-
tive deep GNNs and obtain better performance on graph learning tasks. Its excellent performance
suggests its great potential for federated learning on distributed subgraph data.

2

Under review as a conference paper at ICLR 2023

Federated Learning (FL) is a privacy computing technology that enables collaborative machine
learning without exposing private data. It was first proposed by (McMahan et al., 2017)’s FedAvg,
which allows clients to collaboratively train a common model while each of them only possesses a
local dataset. During training, each client periodically uploads the local update to the server. The
server then aggregates the updates to a global model and distributes the model to clients for further
training. Recently, personalized federated learning (Finn et al., 2017; Li et al., 2020), which aims
to learn heterogeneous models for different local tasks, also attracted attention from the community.
However, our paper focuses on learning a global model from multiple clients for a common task.
Hence, we mainly borrow the idea of FedAvg to train GNNs collaboratively.

Federated Graph Learning aims to solve the graph learning problem on distributed subgraph data.
Recent researchers have made progress on federated graph learning, and several frameworks have
been proposed (Fu et al., 2022; Liu & Yu, 2022). (Zhang et al., 2021) proposed a framework named
FedSage+, which utilizes a neighbor generator to recover cross-client neighbors of subgraphs. How-
ever, they only consider immediate neighbors and can not fully recover the cross-client information.
FedGraph (Chen et al., 2022) develops a cross-client graph convolution operation to enable embed-
ding sharing among clients, which requires sending updated embedding in every iteration during
model training. FedGCN (Yao & Joe-Wong, 2022) solves such a problem by proposing to transmit
the aggregated features of the cross-subgraph neighbor nodes directly. However, it assumes that
the weighted matrix is calculated in advance and requires communication costs to increase expo-
nentially as the number of layers increases. Baek et al., (Baek et al., 2022) propose a personalized
federated subgraph learning method, mainly focusing on heterogeneous subgraphs. In more detail,
it develops an aggregation method based on similarity among clients. However, it does not consider
the missing neighbor information. In summary, none of the existing works are suitable for federated
learning for deep GNNs; we are the first to achieve such a goal.

3 PROBLEM STATEMENT.

Given an attributed non-directed graph G = (V, E ,X), where V is the vertex set, E is the edge set,
and X include the node features. Each node has a feature xv ∈ X with a corresponding label yi for
the downstream task, e.g., node classification. We have xv ∈ Rdx .

In the FL system, we assume there exist a central server S and M clients Pp, p ∈ [M], where
[M] represents {1, ...,M} for any M ∈ N+. The server only maintains a graph learning model
with no graph data stored, and each client holding a subgraph Gp = (Vp, Ep,Xp), where Vp, Ep,Xp

are subset of V, E ,X respectively. We assume no overlapping nodes shared across clients, namely
Vp ∩ Vq = ∅,∀p, q ∈ [M], p ̸= q, and all subset constitute the full set, i.e.,

⋃p Vp = V . Given a
node v ∈ V , we define its k-hop neighborhood as the nodes which have shortest paths of length
k from v. Let c(v) denote the index of the client that contains node v and Nv denote the 1-hop
neighborhood of v. For any node v ∈ V , we assume Pc(v) knows all v’s 1-hop neighbors even they
are distributed across different clients. The set of neighborhoods contained in the same client as v is
denoted as N p

v , and the set of other neighborhoods is denoted as N cp
v := Nv\N p

v . We name Pc(v)

as the active client and other clients {Pc(j)|j ∈ N cp
v } as passive clients of v for ease of expression.

4 METHODS

In this section, we propose a novel framework for federated learning of deep GNNs (Fed2GNN).
The framework relies on a principled approach to reconstructing neighborhood information, with
the core idea of building rooted trees for all nodes. After constructing all trees, we can get complete
local graphs, on which applying graph representation learning has no neighborhood information
loss. The FedAvg (McMahan et al., 2017) algorithm is then adopted to train a GNN on complete
local graphs. Next, we start with designing a rooted tree of a node and then show how to build the
tree with an encoder-decoder framework.

4.1 DESIGN OF THE ROOTED TREE

Given a K-layer GNN model, it learns node representation by recursively aggregating neighbor-
hood information around the node. After K times aggregation, it could encode information from the

3

Under review as a conference paper at ICLR 2023

(c) Rooted tree with 3-hop
neighborhood

(b) Rooted tree with 2-hop
neighborhood

(a) Rooted tree with 1-hop
neighborhood

𝑖

𝑚!
𝑚!

𝑚! 𝑚!

𝑚!
𝑚!

𝑚!

𝑚"

𝑚"

𝑚"

𝑚"

𝑚"

𝑚#

𝑚#

𝑚#

𝑚#

𝑚#

𝑚#

𝑖
𝑖

𝑖

𝑖𝑖 𝑗𝑗𝑗

𝑗

𝑗𝑗

Figure 1: Examples of constructing rooted trees with different neighborhood for node i.

k-hop subgraph of the node, wherein the subgraph is often called the ego-graph. In order to recon-
struct the missing neighborhood information for each node, the rooted tree is designed by following
two principles: (1) it could fully preserve the neighborhood information, i.e., the node embedding
obtained by encoding on the rooted tree is the same as that obtained by encoding on the node’s ego-
graph, and (2) it has an easy-to-build structure. To that end, we design the rooted tree by unfolding
the ego-graph for each node.

An example of constructing rooted trees with 1,2,3-hop neighborhoods is depicted in Figure 1.
Specifically, for a node i ∈ G, we first set i as the rooted node. We then can set i’s 1-hop neighbors
m ∈ Ni as nodes in the second layer of the rooted tree (Figure 1 (a)). The third layer, intuitively, can
be constructed using m’s neighbors for each m ∈ Ni. However, note that i is also included in Nm

and connected to it as the father note of m. Hence, we exclude i and connect the remaining nodes
in Nm to m to further construct the rooted tree (Figure 1 (b)). Following the above procedure, we
construct the k + 1-th (k > 1) layer by connecting the neighbors of nodes in the k-th layer to itself
except for its father node. Finally, for a K-layer GNN model, we construct a rooted tree with K +1
layers.
Proposition 1. Given a K-layer GNN model, for any node i and its corresponding ego-graph, we
can construct a K + 1-layer rooted tree following the above procedure such that i’s embedding
obtained by encoding on the rooted tree is the same as that obtained by encoding on its ego-graph.

It’s worth noting that the rooted tree is actually an undirected graph. For any node on the tree,
it treats its father node and children nodes as one-hop neighbors and recursively aggregates their
information to update its embedding. Meanwhile, the nodes in the k-th layer of the rooted tree have
the complete neighborhood information of K+1−k hops, and the rooted node at the first layer have
the complete K-hop neighborhood information. Thus, for a K-layer GNN model, a rooted node has
the same embedding as obtained by encoding on its K-hop ego-graph. Meanwhile, although the
degree of nodes in the last layer changes, which affects the convolution results of nodes at K-th
layer to models like GCN (Kipf & Welling, 2017), we can manipulate the edge weight to guarantee
the correctness of the convolution process. Details are presented in Appendix A.

In practice, we aggregate the leaf nodes into a single node. It does not affect the encoding process
when applying the sum function to aggregate features of neighbor nodes. Meanwhile, we only
construct the rooted tree of missing neighborhood information. For instance, assume that nodes
i,m1,m3, j in Figure 1 are located in the same client while node m2 locates in a different client. We
can construct the rooted tree of i by only considering the m2 branch in the second layer. Although
m2 also acts as i’s 2-hop neighbor node, affecting i’s encoding result through the path m2−m1− i,
which does not exist in i’s rooted tree, we solve this problem by merging the rooted trees of i and
m1 into the original subgraph, wherein the path m2 − m1 exists in m1’s rooted tree. Finally, by
merging rooted trees of all nodes into the local graph (with the rooted node as an anchor), we obtain
a complete graph.

4.2 NEIGHBORHOOD RECONSTRUCTION

To construct the rooted tree of K+1 layers, we have clients recursively transmit information across
each other for K iterations. Meanwhile, an encoder-decoder framework is further used to reduce
communication costs. An visual illustration of the information transmitting process across clients
is presented in Figure 2. For ease of presentation, we start from 1-hop and 2-hop neighborhood
reconstruction and then generalize to K-hop neighborhood reconstruction.

One-hop neighborhood Reconstruction. Constructing a rooted tree with 1-hop neighborhood in-

4

Under review as a conference paper at ICLR 2023

k=1

k=2

𝒫!

𝒫"

𝒫#

Decoder

𝒫!

1. Transmit 1-hop
neighbor information

2. Transmit 2-hop
neighbor information

3. Transmit 3-hop
neighbor information

4. Construct the rooted tree to get
the complete graph

Figure 2: Visual illustration of the information transmitting process across clients and the approach
to get the complete graph by constructing a rooted tree. The information transmitted between clients
is encoded and represented by the bold arrow.

formation only requires the features of 1-hop neighbors of the rooted node. According to the ex-
pression of a 1-layer GNN model presented below,

ŷi = σ(
∑

m∈Ni∪{i}

xmW (1)) = σ((
∑

m∈Np
i ∪{i}

xm +
∑

m∈N cp
i

xm)W (1)). (1)

It is sufficient for the passive client Pz send
∑

m ∈N cp
i

1z[c(m)]xm to the active client, where the
indicator 1z[c(m)] is 1 if z = c(m) and zero otherwise. The active client then sums all received
information to get f1

i :=
∑

m ∈N cp
i

xm and treats it as a pseudo node to construct the rooted tree.
We treat the sum function as an encoder and do not require a decoder here. The same idea is also
presented in (Yao & Joe-Wong, 2022). However, it assumes that the weight matrix is calculated in
advance, which is unavailable when training GCN (Kipf & Welling, 2017) models in practice since
the degrees of neighbor nodes in other clients are usually unknown.

Two-hop neighborhood Reconstruction. Constructing the rooted tree of 2-hop neighborhood in-
formation is a continuation of the process of 1-hop neighborhood Reconstruction. Specifically, for
all i ∈ G, we assume Pc(i) knows f1

i already.

Our intuition lies in the expression of a 2-layer GNN.

ŷi = σ(
∑

m∈Ni∪{i}

σ(
∑

j∈Nm∪{m}

xjW
(1))W (2))

= σ((
∑

m∈Np
i ∪{i}

σ((
∑

j∈Np
m∪{m}

xj +
∑

j∈N cp
m

xj)W
(1)) +

∑
m∈N cp

i

σ(
∑

j∈Nm∪{m}

xjW
(1)))W (2))

(2)
Although three items are missing to get ŷi, including the missing one-hop information

∑
j∈N cp

i
xj as

well as the missing two-hop information ∀m ∈ N p
i ,

∑
j∈N cp

m
xj and ∀m ∈ N cp

i ,
∑

j∈Nm∪{m} xj ,
only the third item remains unknown for Pc(i) after constructing the 1-hop neighborhood for all
nodes. To that end, we have passive clients encode the missing information first and send the result
to the active client. Specifically, for a passive client Pz , who owes a subset N cp−z

i ⊂ N cp
i , it

calculate q2z :=
∑

m∈N cp−z
i

1z[c(m)]
∑

j∈Nm
xj and send q2z to the active client Pc(i). Pc(i) then

sum all received information to get z2i :=
∑

m∈N cp
i

∑
j∈Nm

xj . By minis i’s information, Pc(i)

gets f2
i := z2i − |N

cp
i |xi, which is the sum of features of nodes in the third layer of the rooted tree,

where | · | represents the size of a set.

Given f1
i and f2

i , we design a decoder ϕ to extract features of nodes in the second layer and third
layer of the rooted tree simultaneously. Specifically, the decoder is designed to achieve the following
capability:

ϕ(CONCAT(f1
i , f

2
i)) = {CONCAT(x̂m, ĤNm\{i})|m ∈ N cp

i }, (3)

where ĤNm\{i} =
∑

j∈Nm\{i} x̂j is the neighbour information of m except for i. According
to the dimension of features, we can split the outputs into two sets Gi = {x̂m|m ∈ N cp

i } and
Hi = {ĤNm\{i}|m ∈ N cp

i } corresponding to features of nodes in the second and third layer of the
rooted tree. The rooted tree can be easily constructed by connecting nodes in Gi to the rooted node
and nodes in Hi to the corresponding node in Gi.

5

Under review as a conference paper at ICLR 2023

Generalizing to K-hop neighborhood reconstruction

Following the derivation for the 1-hop and 2-hop cases, one can similarly generalize the method to
reconstruct K-hop neighborhood. For every node i ∈ V , denote Rk

i , k ∈ [K] as the set of neighbor
nodes in the k + 1-th layer of the rooted tree for the missing neighborhood. To construct the rooted
tree, we first get the sum of features of nodes in each layer fk

i =
∑

m∈Rk
i
xm, k ∈ [K], and then

input them to the decoder to reconstruct the entire neighborhood information (Figure 2). Meanwhile,
denoteN k

i , k ∈ [K] as the set of neighbor nodes in the k+1-th layer of the rooted tree for the entire
neighborhood,Rk

i ⊂ N k
i . We further denote µk

i =
∑

m∈Nk
i
xm, k ∈ [K].

Protocol 1 in the Appendix F depicts the process of getting fk
i . The core idea is that the k-hop

neighbor information of any node i is contained in the k−1-hop neighbor information of i’s neighbor
nodes. To that end, we only require passive participants send information to the active participant.
Specifically, for every node i ∈ V , denote Ci = {Pp|∃m ∈ N cp

i , s.t, p = c(m)} as the set of
passive participants for node i. We first get f1

i (line 3-8) and f2
i (line 13-20) following the process

described above. Meanwhile, We also get µ1
i , η

1
i := µ1

i − f1
i (line 9-10) and µ2

i , η
2
i := µ2

i − f2
i

(line 19-20), where ηi denotes neighbor information without loss for node i. To construct f3
i , we

have passive client Pp ∈ Ci sends q3p :=
∑

m∈N cp
i

1p[c(m)]µ2
m to the active client. After summing

all received information, it is then required to minus (|N cp
i | − 1) · f1

i , wherein f1
i is missed 1-

hop neighbor information that already exists in the second layer of the rooted tree. Meanwhile,
as each q3p contains i’s information without loss, it is required minus |N cp

i | · η1i and finally get
f3
i =

∑
Pp∈Ci

q3p − (|N cp
i | − 1) · f1

i − |N
cp
i | · η1i (line 22). Similarly, µ3

i =
∑

Pp∈Ci∪{c(i)} q
3
p −

(|N cp
i | + |N

p
i | − 1) · µ1

i (line 23), and η3i = µ3
i − f3

i (line 24). Repeating the above procedure, we
can get fk

i for any k > 3.

The decoding process is challenging, as we need to decode feature information of nodes in the rooted
tree and reconstruct the edges between them. To achieve such a goal, we propose an algorithm to
reconstruct the neighborhood with the help of multiple decoders ϕk, k ∈ [K − 1], where ϕk can
extract features of k-hop neighborhood information. In more detail, ϕk is designed to achieve the
following capability:

ϕk

(
CONCAT

(
fk
i , ..., f

K
i

))
= {CONCAT(x̂lk ,

∑
lk+1∈Nlk

\{lk−1}

x̂lk+1
, ...,

∑
lk+1∈Nlk

\{lk−1}

...
∑

lK∈NlK−1
\{lK−2}

x̂lK) | lk ∈ N cp
k−1)},

(4)
where lk, k ∈ [K] corresponding to k-hop neighbor nodes.

Algorithm 2 in the Appendix F presents the pseudo-code of the construction process.
We first concatenate fk

i , k ∈ [K] (line 4) and input it to ϕ1 (line 9). We split
the outputs into two sets G1

i , H
1
i , where G1

i = {x̂l1 |l1 ∈ N cp
i } and H1

i =
{CONCAT(

∑
l2∈Nl1

\{i} x̂l2 , ...,
∑

l2∈Nl1
\{i} ...

∑
lK∈NlK−1

\{lK−2} x̂lK)|l1 ∈ N cp
i }. The sec-

ond layer of the rooted tree for i is constructed by generating nodes with features cor-
responding to elements in G1

i . We then input each vector in H1
i to ϕ2 to decode fea-

tures of nodes in the next layer (line 8-12). Specifically, for every l1 ∈ N cp
i , we input

the corresponding vector to ϕ2 and get two sets G2
i = {x̂l2 |l2 ∈ Nl1\{i}} and H2

i =
{CONCAT(

∑
l3∈Nl2

\{l1} x̂l3 , ...,
∑

l3∈Nl3
\{l1} ...

∑
lK∈NlK−1

\{lK−2} x̂lK)|l2 ∈ Nl1\{i}}. The

third layer is constructed by generating nodes with features corresponding to elements in G2
i and

connecting them to l1. Repeat the above procedure, we can fully construct the first K layers of the
rooted tree. The last layer is constructed by directly generating nodes with features corresponding
to elements in HK

i and connecting them to lK−1.

4.3 DESIGN OF ENCODER-DECODER.

In the design of our encoder-decoder framework, we use the sum function as our encoder, which
has the advantage of no need to learn. So the active client can learn an end-to-end decoder with
the training dataset generated from her local graph. Although decoders ϕi, i ∈ [K] extract features
of nodes in different layers separately, they are designed by the same principle, i.e., extract node’
features and the corresponding neighbor information simultaneously. The main difference is that the

6

Under review as a conference paper at ICLR 2023

scope of the neighbor information is different, where ϕ1 extracts K − 1-hop neighbor information
while ϕK−1 extracts 1-hop neighbor information. To that end, it is only needed to train ϕ1 and apply
it to extract features of nodes in all layers.

For ease of presentation, we show the training process of ϕ1 when K = 2. Specifically, we consider
the following principle to reconstruct the 1-hop and 2-hop neighborhood information simultane-
ously. We have

min
ϕ1

∑
i∈V
M (Yi, ϕ1(Xi)) , s.t. Xi =

∑
h∈Yi

h,∀i ∈ V (5)

where Xi = CONCAT(f1
i , f

2
i), Yi =

{
CONCAT

(
x̂m, ĤNm\{i}

)
| m ∈ N cp

i

}
, and M(·, ·) is

the loss function that measures the loss to reconstruct a set Yi. The task of learning ϕ1 is hard to
characterize, and there are two fundamental challenges: First, as the distribution of node degrees is
often long-tailed in real-world networks, the size of each set may vary differently. Second, a match-
ing problem has to be solved to compare two equal-sized sets, which is costly if the set size is large.
The first problem is easy to solve. As each node knows its neighbor nodes, the active client can sam-
ple at most d neighbor nodes and ask passive clients to send the information of sample nodes only.
For the second problem, we transform the decoding task into learning the probability distribution
of the neighborhood information from a source distribution. Specifically, for node i, the neighbor-
hood information is represented as an empirical realization of i.i.d sampling of di elements from Pi,
where Pi ≜ 1

di

∑
m∈Ni

CONCAT(xm, HNm\{i}) and the source distribution Qi ≜
∑

m∈Ni
P(m)
i .

Therefore, we adopt
M (Yi, ϕ1(Xi)) =W2

2 (Pi, ϕ1(Xi)) , (6)
whereW2 is the 2-Wasserstein distance (Villani, 2009).

We make use of the architecture of a U-Net network (Ronneberger et al., 2015) to construct the
decoder, which has the advantage of generating features of all neighbors in one forward pass. A
theoretical analysis of the capability of the decoder is stated in Theorem 4.1 (See the proof in Ap-
pendix B, reproduced in Theorem 2.1 in (Lu & Lu, 2020)).
Theorem 4.1. For any ϵ > 0, if the support of the distribution Pi lies in a bounded space of Rd,
and Qi is absolutely continuous with respect to the Lebesgue measure, there exists a feed-forward
neural network u(·) : Rd → R (and thus its gradient ∇u(·) : Rd → Rd) with large enough width
and depth (depending on ϵ) such thatW2

2 (Pi, (∇u)#Qi) < ϵ.

The decoder ϕ1 requires knowing the number of missing neighbors in advance, which is unavailable
for the active client when applying it to extract features of k-hop (k > 1) neighbors. To that end, we
use a predictor to predict the number of neighbors. Specifically, predictor ϕd takes x̂m and ĤNm\{i}
as inputs to predict the size of |Nm\{i}|. Denote L as the loss function. ϕd is joint training with ϕ1

by optimizing the following loss function:

M (Yi, ϕ1(Xi)) +
∑

m∈N cp
i

L(ϕd(x̂m, ĤNm\{i}), |Nm\{i}|). (7)

In practice, we adopt the empirical Wasserstein distance that can provably approximate the popula-
tion one. For node i, for every forward pass, the model will get |Yi| outputs denoted as ξ̂1, . . . , ξ̂|Yi|.
Inspired by the work of (Tang et al., 2022), which propose an auto-encoder framework for graph
data, we adopt the surrogated loss defined as follow:

min
π∈Π

|Yi|∑
j=1

∥∥∥ξji − ξ̂
π(j)
i

∥∥∥2 , s.t. π is a bijective mapping: [|Yi|]→ [|Yi|]. (8)

Meanwhile, the original node features could be high-dimensional, and reconstructing them directly
may introduce a lot of noise. Instead, we may first map node features into a latent space. In more
detail, all clients could collectively learn a model and map features to a low dimension with linear
layers in the model.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate Fed2GNN focusing on the following
research questions: RQ1: How does Fed2GNN perform in comparison to state-of-the-art federated

7

Under review as a conference paper at ICLR 2023

Table 1: Summary of node classification accuracy results in percent (GCN, GraphSAGE).

Model Cora MSAcademic DBLP

GCN M=5 M=10 M=15 M=5 M=1 M=15 M=5 M=10 M=15

FedAvg 86.02±0.55 81.39±1.55 77.88±1.96 93.03±0.15 90.78±0.64 87.94±0.61 84.29±0.32 82.02±0.31 79.57±0.77
FedAvg-Full 86.49±0.37 82.89±1.84 81.53±1.57 93.50±0.13 92.12±0.56 91.25±0.50 84.72±0.34 83.40±0.23 82.44±0.52
Fed2GNN 86.15±0.51 83.30±1.76 82.20±1.15 93.59±0.14 92.12±0.43 91.81±0.59 84.90±0.18 84.02±0.08 83.42±0.19

Central 87.88 ±0.48 93.72 ±0.14 85.01 ±0.09

Model Cora MSAcademic DBLP

GraphSAGE M=5 M=10 M=15 M=5 M=10 M=15 M=5 M=10 M=15

FedAvg 84.64±0.49 81.37±0.85 77.62±1.08 93.29±0.16 91.17±0.69 89.06±0.80 83.82±0.27 82.43±0.11 81.54±0.15
FedAvg-Full 85.19±0.71 83.41±0.79 80.84±0.60 93.40±0.40 91.99±0.74 90.53±1.03 84.25±0.23 83.74±0.18 83.00±0.16
FedSage+ 84.66±0.75 83.54±0.70 82.39±0.59 92.59±0.22 91.32±0.05 89.97±0.16 79.96±0.59 80.79±0.69 81.18±0.79
Fed2GNN 86.07±0.99 84.22±0.76 80.46±0.69 93.14±0.55 91.04±1.37 90.01±1.24 84.28±0.18 83.36±0.26 83.07±0.13

Central 87.15 ±0.60 94.76 ±0.19 84.51 ±0.23

Table 2: Summary of node classification accuracy results in percent (5-layer deep GNN).

Model Cora MSAcademic DBLP

DAGNN M=5 M=10 M=15 M=5 M=10 M=15 M=5 M=10 M=15

FedAvg 87.62±0.54 84.04±0.73 81.42±0.90 93.71±0.26 92.63±0.26 90.57±0.81 84.49±0.07 83.26±0.07 82.38±0.15
FedAvg-Full 87.65±0.45 86.79±0.55 85.20±0.97 94.15±0.26 93.40±0.42 92.57±0.57 84.74±0.09 84.34±0.15 84.41±0.10
FedSage+ 83.87±1.14 83.06±0.75 83.74±1.14 92.31±0.43 91.24±0.24 91.00±0.06 80.44±0.26 80.74±0.50 80.80±0.28
Fed2GNN 87.41±0.20 86.78±0.77 86.72±1.02 94.01±0.01 93.65±0.47 92.89±0.36 84.56±0.20 84.16±0.21 83.91±0.09

Central 88.15 ±0.54 94.56 ±0.14 85.04 ±0.35

graph learning baselines for training 2-layer GNNs? RQ2: How does Fed2GNN perform on deep
GNNs compared to baselines? RQ3: What are the impacts of the max node degree d to Fed2GNN?

5.1 EXPERIMENTAL SETTING

We conduct experiments on three citation network datasets, Cora (Sen et al., 2008), MSAca-
demic (Shchur et al., 2018), and DBLP (Fu et al., 2020). We randomly split all datasets with 40%
training set, 30% validation set, and 30% testing set. To synthesize the distributed subgraph sys-
tem, we generate hierarchical graph clusters on each dataset with the Louvain algorithm (Blondel
et al., 2008) following the work of FedSage+ (Zhang et al., 2021). We consider three scenarios of
M = 5, 10, 15. The statistics of datasets are presented in Appendix C.

We compare Fed2GNN with four baselines to demonstrate its effectiveness. All experiments were
repeated ten times with different random seeds.

• Central learning: models are trained in a centralized manner with a global graph dataset.
• FedAvg: models are trained by utilizing the FedAvg algorithm on distributed subgraph data.
• FedAvg-Full: models are trained by utilizing the FedAvg algorithm, but the node representations

have no neighborhood information loss. This baseline is in line with FedGCN (Yao & Joe-Wong,
2022)’s goal in terms of accuracy and represents the target of our framework.

• FedSage+ (Zhang et al., 2021): a federated graph learning framework with the idea of generating
cross-subgraph neighbor nodes.

5.2 PERFORMANCE FOR 2-LAYER GNNS.(RQ1)

We conduct experiments on two GNN models: GCN (Kipf & Welling, 2017) and Graph-
SAGE (Hamilton et al., 2017b), and compare the performance of Fed2GNN with all baselines.
The results are depicted in Table 1. It shows that Fed2GNN has the best performance over FedAvg
and is better than FedSage+ in most cases. Meanwhile, Fed2GNN has a comparable performance
with FedAvg-full, corroborating the effectiveness of our method for reconstructing neighborhood
information.

5.3 PERFORMANCE FOR DEEP GNNS (RQ2)

We conduct experiments to evaluate the performance of our framework for deep GNNs. We adopt
the model DAGNN proposed in (Liu et al., 2020), which has a better performance for node repre-
sentation learning than GCN (Kipf & Welling, 2017) on many dataset. Table 2 presents the results

8

Under review as a conference paper at ICLR 2023

(a) Cora (b) MSAcademic (c) DBLP

Figure 3: Results of Fed2GNN for training deep GNNs with different
number of layers.

Max Node Degree

Figure 4: Accuracy v.s.
Max Node Degree

when the number of layers is 5. It shows that Fed2GNN still has a good performance even for
deep GNNs, demonstrating the effectiveness of our methods for reconstructing neighborhood in-
formation. Meanwhile, another important observation emerging from the results is that learning
for DAGNN significantly bridges the gap between central learning and federated learning on the
Cora dataset. Specifically, as can be observed in Table 1, the gaps between central learning and
Fed2GNN is 4.58% when M = 10 and 5.68% when M = 15 for GCN model,while the gaps are
only 1.37% and 1.43% for deep GNNs. Such an observation assay the benefits brought by DAGNN
in the federated setting.

We further conduct experiments for DAGNN with different depths. The results are illustrated in
Figure 3. It shows that node representation learning on Cora and DBLP datasets benefits from
training the DAGNN model. Meanwhile, applying DAGNN on the MSAcademic dataset degrades
the performance in central learning. Both of the observations are aligned with the results in (Liu
et al., 2020). However, federated graph learning on the MSAcademic dataset could benefit from
applying deeper DAGNN, probably because deep GNNs have a better generalization ability and
compensate for the federated learning. Moreover, Fed2GNN still performs better than FedAvg and
has comparable performance with FedAvg-full, showing that our method is effective for federated
learning of deep GNNs.

5.4 IN-DEPTH ANALYSIS FOR FED2GNN(RQ3)

In Figure 4, we present results on studying the impact of max node degree d for Fed2GNN. The size
of d not only affects the efficiency of reconstructing neighborhood information but also affects of
performance of downstream tasks. We experiment on models with a different number of layers with
the Core dataset and try q varies from 3 to 20. It shows that the performance of Fed2GNN is robust
to the max node degree, with large d only leading to slightly better performance them small d.

Finally, to further understand the effectiveness of our proposed framework for federated graph learn-
ing, we perform convergence analysis in Appendix E. The results show that the method has a sim-
ilar converge rate as FedAvg-full, indicating that we can indeed recover the missing neighborhood.
Meanwhile, we conduct experiments on training the decoder locally or collectively; the results show
that the decoder has a good generalization ability.

6 CONCLUSION

In this work, we address the limitations of existing works of federated learning on graph-structured
data and propose a new framework that can better tackle the issue of missing cross-client neighbor-
hood information during training. Our framework utilizes the idea of reconstructing neighborhood
information that considers both structured-based and feature-based information. Such an advantage
allows us to train deep GNNs in the federated setting, leading to better performance for node rep-
resentation learning. Extensive experiments have been conducted to verify the effectiveness of our
framework, which is consistent with our theoretical analysis. Though our framework manifests good
performance, it confronts potential privacy concerns as other works in federated learning. Solving
such a problem could be a promising direction in the future.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang. Personalized
subgraph federated learning. CoRR, abs/2206.10206, 2022. doi: 10.48550/arXiv.2206.10206.
URL https://doi.org/10.48550/arXiv.2206.10206.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast un-
folding of community hierarchies in large networks. CoRR, abs/0803.0476, 2008. URL
http://arxiv.org/abs/0803.0476.

Fahao Chen, Peng Li, Toshiaki Miyazaki, and Celimuge Wu. Fedgraph: Federated graph learn-
ing with intelligent sampling. IEEE Trans. Parallel Distributed Syst., 33(8):1775–1786, 2022.
doi: 10.1109/TPDS.2021.3125565. URL https://doi.org/10.1109/TPDS.2021.
3125565.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 2017. URL
http://proceedings.mlr.press/v70/finn17a.html.

Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, and Jundong Li. Federated graph machine
learning: A survey of concepts, techniques, and applications. CoRR, abs/2207.11812, 2022. doi:
10.48550/arXiv.2207.11812. URL https://doi.org/10.48550/arXiv.2207.11812.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: metapath aggregated graph neural
network for heterogeneous graph embedding. In Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (eds.), WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020, pp. 2331–2341. ACM / IW3C2, 2020. doi: 10.1145/3366423.3380297. URL https:
//doi.org/10.1145/3366423.3380297.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Meth-
ods and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017a. URL http://sites.
computer.org/debull/A17sept/p52.pdf.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–
1034, 2017b. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pp. 9266–9275. IEEE, 2019. doi: 10.1109/ICCV.
2019.00936. URL https://doi.org/10.1109/ICCV.2019.00936.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papail-
iopoulos, and Vivienne Sze (eds.), Proceedings of Machine Learning and Systems 2020, MLSys
2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020. URL https://proceedings.
mlsys.org/book/316.pdf.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Rajesh
Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pp. 338–348. ACM, 2020. doi: 10.1145/3394486.3403076. URL https://doi.org/
10.1145/3394486.3403076.

10

https://doi.org/10.48550/arXiv.2206.10206
http://arxiv.org/abs/0803.0476
https://doi.org/10.1109/TPDS.2021.3125565
https://doi.org/10.1109/TPDS.2021.3125565
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.48550/arXiv.2207.11812
https://doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/3366423.3380297
http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/ICCV.2019.00936
https://proceedings.mlsys.org/book/316.pdf
https://proceedings.mlsys.org/book/316.pdf
https://doi.org/10.1145/3394486.3403076
https://doi.org/10.1145/3394486.3403076

Under review as a conference paper at ICLR 2023

Rui Liu and Han Yu. Federated graph neural networks: Overview, techniques and challenges. CoRR,
abs/2202.07256, 2022. URL https://arxiv.org/abs/2202.07256.

Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural networks for express-
ing probability distributions. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/2000f6325dfc4fc3201fc45ed01c7a5d-Abstract.html.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Aarti Singh
and Xiaojin (Jerry) Zhu (eds.), Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, vol-
ume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR, 2017. URL
http://proceedings.mlr.press/v54/mcmahan17a.html.

Liang Peng, Nan Wang, Nicha C. Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. Fedni: Federated graph
learning with network inpainting for population-based disease prediction. CoRR, abs/2112.10166,
2021. URL https://arxiv.org/abs/2112.10166.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells
III, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9,
2015, Proceedings, Part III, volume 9351 of Lecture Notes in Computer Science, pp. 234–241.
Springer, 2015. doi: 10.1007/978-3-319-24574-4\ 28. URL https://doi.org/10.1007/
978-3-319-24574-4_28.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Mag., 29(3):93–106, 2008. doi: 10.1609/aimag.
v29i3.2157. URL https://doi.org/10.1609/aimag.v29i3.2157.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.
org/abs/1811.05868.

Mingyue Tang, Pan Li, and Carl Yang. Graph auto-encoder via neighborhood wasserstein recon-
struction. In The Tenth International Conference on Learning Representations, ICLR 2022, Vir-
tual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=ATUh28lnSuW.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. Representation learning on graphs with jumping knowledge networks. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 5449–5458. PMLR, 2018. URL
http://proceedings.mlr.press/v80/xu18c.html.

Yuhang Yao and Carlee Joe-Wong. Fedgcn: Convergence and communication tradeoffs in feder-
ated training of graph convolutional networks. CoRR, abs/2201.12433, 2022. URL https:
//arxiv.org/abs/2201.12433.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu-Ming Yiu. Subgraph fed-
erated learning with missing neighbor generation. In Marc’Aurelio Ranzato, Alina

11

https://arxiv.org/abs/2202.07256
https://proceedings.neurips.cc/paper/2020/hash/2000f6325dfc4fc3201fc45ed01c7a5d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2000f6325dfc4fc3201fc45ed01c7a5d-Abstract.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/2112.10166
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1609/aimag.v29i3.2157
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://openreview.net/forum?id=ATUh28lnSuW
https://openreview.net/forum?id=ATUh28lnSuW
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v80/xu18c.html
https://arxiv.org/abs/2201.12433
https://arxiv.org/abs/2201.12433

Under review as a conference paper at ICLR 2023

Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
6671–6682, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
34adeb8e3242824038aa65460a47c29e-Abstract.html.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. To-
wards deeper graph neural networks with differentiable group normalization. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
33dd6dba1d56e826aac1cbf23cdcca87-Abstract.html.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. To-
wards deeper graph neural networks with differentiable group normalization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 4917–4928. Curran Asso-
ciates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
33dd6dba1d56e826aac1cbf23cdcca87-Paper.pdf.

A FED2GNN FOR GCN MODEL

The rooted tree recovers the structure-based information of one node. However, in practice, the last
layer of the rooted tree is not fully splitted, which change the degrees of nodes in the last two layers.
Specifically, the nodes in the last layer has a constant degree 2 (including self-loop) and the nodes
in the second to last layer has a constant degree 3 (including self-loop), which affects the encoding
process of models such as GCN (Kipf & Welling, 2017). Surprisingly, we can slightly change the
encoding process and manipulate the edge weight to solve the problem.

Recall that the representation of a GCN model is formulated as H
(k)
i =

σ(
∑

j∈Ni∪{i}
1√

(|Ni|+1)·(|Nj |+1)
H

(k−1)
j W (k)). In the 1-hop neighborhood reconstruc-

tion phase, instead of sending
∑

m∈N cp
i

1z[c(m)]xm directly, the passive client Pz sends∑
m∈N cp

i
1z[c(m)] xm√

|Nm|+1
to the active client, and

∑
m∈N cp

i
1z[c(m)]

∑
j∈Nm

xj√
(|Nj |+1)

in the 2-hop neighborhood reconstruction phase. With a decoder, we get two set
Gi = { x̂m√

|Nm|+1
|m ∈ N cp

i } and Hi = {
∑

j∈Nm\{i}
x̂j√

|Nj |+1
|m ∈ N cp

i }. We represent

the 1-hop neighbors as
√
3·x̂m√

|Nm|+1
and 2-hop neighbors as

∑
j∈Nm\{i}

√
2·x̂j√

(|Nj |+1)
,∀m ∈ N cp

i .

We further manipulate the edge weight between node i and the generated neighbor nodes including
1-hop neighbors m ∈ N cp

i and the corresponding 2-hop neighbor jm connecting to m. For pair of
nodes A,B, we denote the message passing from A to B as A → B. In undirectd graphs, message
passing between two nodes bidirectionally, hence we present the weights of A → B and B → A
separately. We have the following results:

Direction Weight Direction Weight

i→ m
√
3

(|Ni|+1)·(
√

|Nm|+1)
m→ i 1√

3
√

|Ni|+1

i→ i 1
|Nm|+1 jm → m

√
3√

2(|Nm|+1)

Note that the message passing from m → jm does not affect the encoding process for note i; we
omit it here.

12

https://proceedings.neurips.cc/paper/2021/hash/34adeb8e3242824038aa65460a47c29e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/34adeb8e3242824038aa65460a47c29e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/33dd6dba1d56e826aac1cbf23cdcca87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/33dd6dba1d56e826aac1cbf23cdcca87-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/33dd6dba1d56e826aac1cbf23cdcca87-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/33dd6dba1d56e826aac1cbf23cdcca87-Paper.pdf

Under review as a conference paper at ICLR 2023

Proof. For easy of presentation, for every node v ∈ V , we denote Dv as the degree of v including
self loop. For a two layer GCN model, we have:

ŷi = σ1(
∑

m∈Ni∪{i}

1√
Di ·Dm

σ2(
∑

j∈Nm∪{m}

1√
Dm ·Dj

xjW
(1))W (2))

= σ1((
1

Di
σ2((

1

Di
xi +

∑
j∈Ni

1√
Di ·Dm

xj)W
(1))

+
∑

m∈Ni

1√
Di ·Dm

σ2((
1

Dm
xm +

∑
j∈Nm

1√
Dm ·Dj

xj)W
(1)))W (2))

(9)

In our methods, we manipulate the edge weight and features of neighbors, such that encoding result
is the same as Equation 9.

ŷi = σ1((
1

Di
σ2((

1

Di
xi +

∑
j∈Ni

1√
3Di

·
√
3xj√
Dm

)W (1))

+
∑

m∈Ni

1√
3Di

σ2((
1

Dm

√
3xm√
Dm

+

√
3xi

Di ·
√
Dm

+

√
3√

2Dm

∑
j∈Nm\{i}

√
2xj√
Dj

)W (1)))W (2))

(10)

Note that σ2 is the ReLU function, rearranging the above formula, we can get Equation 9.

B PROOF OF THEOREM 4.1

Theorem 4.1 is reproduced from Theorem 2.1 in Lu & Lu (2020), which is stated as below:

Theorem B.1. (Theorem 2.1 in Lu & Lu (2020)). Let P and Q be the target and the source distri-
butions respectively, both defined on Rd. Assume thatQ is absolutely continuous with respect to the
Lebesgue measure and EX∼P |X|3 < ∞, it holds that for any given approximation error ε, there
exists a positive integer n = O(1

εd
), and a fully connected and feed-forward deep neural network

u(·) of depth L = ⌈log2 n⌉ and width N = 2L = 2⌈log2 n⌉, with d inputs and a single output and
with ReLU activation such thatW1 ((∇u)#Q,P) ≤ ε.

To prove Theorem 4.1, we only need to verify the conditions presented in the above theorem. We
need to show that P = Pi has a bound EX∼P |X|3 < ∞ and Q = Qi is absolutely continuous
with respect to the Lebesgue measure. Furthermore, we also need to show the connection between
W1(·, ·) andW2(·, ·).

Proof. P = Pi has a bounded 3-order moment because the support of P is in a bound space ofRd

Q = Qi is absolutely continuous with respect to the Lebesgue measure because Pi is absolutely
continuous with respect to the Lebesgue measure.

Last, we show the connection between W1(·, ·) and W2(·, ·). Note that the support P = Pi is
bounded, i.e., ∀δ ∈ supp(P), there exist C ∈ ∞, s.t. ||δ|| < C. According to (Lu & Lu, 2020),
Q̃ = (∇u)#Q also has bounded support. Wlog, we have ∀δ ∈ supp(Q̃), ||δ|| < C. Then, we show
that

13

Under review as a conference paper at ICLR 2023

W2
2 (P, Q̃) = inf

γ∈Γ(P,Q̃)

[∫
Z×Z′

∥Z − Z ′∥22 dγ (Z,Z
′)

]
≤ 2C inf

γ∈Γ(P,Q̃)

[∫
Z′Z′

∥Z − Z ′∥2 dγ (Z,Z
′)

]
≤ 2C

√
dx inf

γ∈Γ(P,Q̃)

[∫
Z×Z′

∥Z − Z ′∥1 dγ (Z,Z
′)

]
= 2C

√
dxW1(P, Q̃)

< 2C
√
dxϵ.

As C and
√
dx are constant, we have W2

2 (P, Q̃) = O(ε). The first inequality is because
∥Z − Z ′∥2 ≤ ∥Z∥2 + ∥Z ′∥2 = 2C. The second inequality is because√

dx inf
γ∈Γ(P,Q)

[∫
Z×Z′

∥Z − Z ′∥1 dγ (Z,Z
′)

]
= lim

i→∞

[∫
Z×Z′

√
dx ∥Z − Z ′∥1 dγi (Z,Z

′)

]
(There exists a sequence of measures {γi}∞i=1 achieving the infimum)

≥ lim
i→∞

[∫
Z×Z′

∥Z − Z ′∥2 dγi (Z,Z
′)

]
≥ inf

γ∈Γ(P,Q)

[∫
Z×Z′

∥Z − Z ′∥2 dγ (Z,Z
′)

]
.

C DATASET STATISTICS

In this section, we present details of the datasets used in our experiments. We conduct experiments
on three citation network datasets, Cora (Sen et al., 2008), MSAcademic (Shchur et al., 2018), and
DBLP (Fu et al., 2020). We summarize the statistics of the datasets in Table 3. Meanwhile, we also
summarize the statistics of subgraphs obtained by the Louvain algorithm (Blondel et al., 2008) in
Table 4.Table 3: Statistics of the datasets, where |V| represents the number of nodes, |E| represents the
number of edges, |X | represents the number of features and Classes is the number of label classes.

Dataset |V| |E| |X | Classes

Cora 2,708 5,429 1,433 7
MSAcademic 18,333 81,894 6,805 15
DBLP 17,716 52,867 1,639 4

Table 4: Statistics of subgraphs, where |V| represents the average number of nodes, |E| represents
the average number of edges and ∆|E| is the total number of the cross-client edges.

Dataset Cora MSAcademic DBLP

M=5 M=10 M=15 M=5 M=10 M=15 M=5 M=10 M=15

|V| 542 271 181 3667 1833 1222 3543 1772 1181
|E| 946 443 254 13933 6099 3409 8898 4358 2826
∆|E| 697 1002 1613 12230 20906 30765 8379 9287 10471

D HYPER-PARAMETER SETTING

In Table 5, we present the descriptions of hyper-parameters and the range of them used in our
experiments. The details of hyper-parameters settings used in experiments are shown in Table 6.

14

Under review as a conference paper at ICLR 2023

Table 5: Hyper-parameter range of GNN and Decoder

Hyper-parameter Description Range
Learning rate The learning rate for Adam optimization [0.1, 0.01, 0.001]
Dropout rate The Dropout rate [0.0, 0.25, 0.50, 0.75]
L2 regularization The L2 regularization [1 · 10−3, 1 · 10−4]
Hidden dimension The hidden layer dimensions of GNN [16, 32]
M Number of clients in federated learning [5, 10, 15]
Epoch Training epochs, also federated learning rounds 200
Delta Louvain split parameter 40

Hyper-parameter Description Range
d Max node degree [3, 5, 10, 15, 20]
Pool size The pool size of Decoder [2, 3, 4]
Blocks Blocks number of Separator [4, 5]
Separator lr Learning rate of Separator training 1 · 10−3

Predictor lr Learning rate of Predictor training 1 · 10−2

Decoder epoch training epochs of Decoder [20, 50, 100, 200]

Table 6: Hyper-parameter setting

Hyper-parameter GCN GraphSAGE
Cora MSAcdemic DBLP Cora MSAcdemic DBLP

Learning rate 0.01 0.1 0.01 0.01 0.01 0.01
Dropout rate 0.5 0.0 0.75 0.5 0.0 0.75
L2 regularization 1 · 10−3 1 · 10−3 1 · 10−4 1 · 10−3 1 · 10−3 1 · 10−4

Hidden dimension 16 16 32 16 16 32
Epoch 200 200 200 200 200 200
Delta 40 40 40 40 40 40
d 10 10 10 10 10 10
Pool size 3 3 2 3 3 3
Blocks 4 4 5 5 5 5
Separator lr 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

Predictor lr 1 · 10−2 1 · 10−2 1 · 10−2 1 · 10−2 1 · 10−2 1 · 10−2

Decoder epoch 200 200 200 50 20 100

15

Under review as a conference paper at ICLR 2023

Louvain Split Random Split

(a) Train accuracy curves

Louvain Split Random Split

(b) Loss curves

Figure 5: Average accuracy curves and loss curves on DBLP, M = 10

(a) Decoders on Cora (b) Decoders on DBLP

Figure 6: Decoder training methods study

E ADDITIONAL EXPERIMENTS

E.1 CONVERGENCE STUDY

In this subsection, we repeat five times experimental runs and show the average (a) train accuracy
curves and (b) loss curves in Figure 5 to demonstrate the convergence of our model. In addition to
the Louvain split method applied in the previous work (Zhang et al., 2021), we also apply the random
split method, which randomly selects nodes to form subgraphs and maintains only the edges between
the selected nodes in the subgraph.

The results show that Fed2GNN model achieves almost the same convergence as the FedAvg-Full
baseline. Since nodes are randomly selected to form subgraphs, there will be more cross-client edges
in the subgraphs under the random split method. Therefore, our experimental results will be more
evident under the random split method.

E.2 DECODER TRAINING METHODS STUDY

In this subsection, we study the training methods of the decoder by comparing the test accuracy
obtained under different decoder training methods. We tried locally trained decoders and federated
trained decoders and set baselines FedAvg for comparison. We conduct experiments on Cora and
DBLP datasets using the hyper-parameters setting in Table6. As shown in Figure 6, the federated
trained decoder only slightly better that the locally trained decoder, showing that the decoder has a
good generalization ability to decode information from unseen data.

E.3 COMMUNICATION COST

Communication cost is widely recognized as a major bottleneck for federated learning. Particularly
in federated graph learning, additional communication across clients may be required to recover
missing neighborhood information. Recall that each client recursively aggregates information from
its neighbor nodes during the information transmitting process in our methods; the communication
is O(ndK), where n is the number of nodes, d is the average degree of all nodes, and K is the
number of layers of a GNN model.

We conduct experiments to evaluate the communication cost on real-world datasets with the base-
lines of FedGCN (Yao & Joe-Wong, 2022) and FedGraph (Chen et al., 2022), which have the com-
munication cost of O(ndk) and O(ndT), where T >> k is the number of iterations. We ignore the
influence of feature dimension since all methods can reduce the feature dimension in advance. The
results are presented in Figure 7.

16

Under review as a conference paper at ICLR 2023

Figure 7: Communication cost of Fed2GNN in comparison with FedGCN (Yao & Joe-Wong, 2022)
and FedGraph (Chen et al., 2022) for training models with different number of layers and different
number of clients.

Cora MSAcademic DBLP

Figure 8: Average tree-building time and training time of all clients.

We vary the number of GNN layers and the number of clients. It shows that our methods have the
lowest cost in all settings. Meanwhile, partitioning more clients requires more communication costs
since more nodes have missing neighborhood information.

E.4 EFFICIENCY OF CONSTRUCTING ROOTED TREES

Constructing the rooted tree for a node is simple. Algorithm 2 presents the pseudo-code of the
process for one tree. It mainly consists of a sequence of predicting processes of the decoder ϕ. For
each vector h ∈ Hk, the decoder takes it as input and outputs G and H (line 9 in Algorithm 2).
The K + 1-th layer of the tree is constructed by generating nodes with features corresponding to
elements in G and connecting them to g corresponding to h.

In practice, the vectors in the set Hk can be fed to the decoder simultaneously. Meanwhile, we can
even input all H1s (of different root nodes) into the decoder to construct the rooted trees simulta-
neously. To that end, building rooted trees of K layers for all nodes requires the decoder to predict
only K − 1 times.

We conduct experiments to evaluate the efficiency of the tree-building process and report the average
tree-building time and training time for all clients. All experiments are implemented on a server
equipped with an A100 GPU. The results are presented in Figure 8. It shows that the tree-building
time increases as the number of layers grows. Indeed, as the number of layers increases, the number
of generated nodes increases exponentially, hence requiring more time. However, it is still efficient
to build rooted trees for all nodes, which only requires a few seconds.

F ADDITIONAL PROTOCOL AND ALGORITHM

17

Under review as a conference paper at ICLR 2023

Protocol 1: Neighbor information transmission
1 Input: Pp has data Gp = (Vp, Ep,Xp), p ∈ [M], Xp = {xi,∀i ∈ Vp}; depth K; neighborhood

function N : i→ 2V ; the set of passive participants Ci = {Pp |∃m ∈ N cp
i , s.t, p = c(m)} for

each i ∈ ∪Mp=1Vp
2 Output: Information of k-hop neighbors fk

i , k = [K], i ∈ ∪Mp=1Vp.
3 for i ∈ ∪Mp=1Vp do
4 µ0

i , f
0
i ← xi

5 for Pp ∈ Ci do
6 Pp sends q1p ←

∑
m∈N cp

i
1p[c(m)]µ0

m to Pc(i)

7 end
8 f1

i ←
∑

Pp∈Ci
q1p

9 µ1
i ←

∑
Pp∈Ci∪{Pc(i)} q

1
p

10 η1i ← µ1
i − f1

i

11 end
12 for k = 2...K do
13 for i ∈ ∪Mp=1Vp do
14 for Pp ∈ Ci do
15 Pp sends qkp ←

∑
m∈N cp

i
1p[c(m)]µk−1

m to Pc(i)

16 end
17 if k == 2 then
18 fk

i ←
∑

Pp∈Ci
qkp − |N

cp
i | · f

k−2
i

19 µk
i ←

∑
Pp∈Ci∪{Pc(i)} q

k
p − (|N cp

i |+ |N
p
i |) · µ

k−2
i

20 ηki ← µk
i − fk

i

21 else
22 fk

i ←
∑

Pp∈Ci
qkp − (|N cp

i | − 1) · fk−2
i − |N cp

i | · η
k−2
i

23 µk
i ←

∑
Pp∈Ci∪{c(i)} q

k
p − (|N cp

i |+ |N
p
i | − 1) · µk−2

i

24 ηki ← µk
i − fk

i

25 end
26 end
27 end

18

Under review as a conference paper at ICLR 2023

Algorithm 2: Rooted tree construction

1 Input: Node i and its neighbor information f1
i , f

2
i ,, f

K
i ; decoders ϕk, k ∈ [K − 1] trained

in advance; An operator ZIP which iterate over two set in parallel and producing a set of tuples
with an item from each one.

2 Output: The rooted tree for i.
3 G0 ← {xi}
4 H1 = {CONCAT(f1

i , f
2
i ,, f

K
i)}

5 for k = [K − 1] do
6 Gk ← ∅
7 Hk+1 ← ∅
8 for (gk−1, hk) ∈ ZIP(Gk−1, Hk) do
9 G,H ← ϕk(h

k)

10 Gk ← Gk ∪G

11 Hk+1 ← Hk+1 ∪H
12 Generating nodes with features corresponding to elements in G and connecting them to

gk−1;
13 if k == K − 1 then
14 Generating nodes with features corresponding to elements in H and connecting

them to gK−1.
15 end
16 end
17 end

19

	Introduction
	Related works
	Problem statement.
	Methods
	Design of the Rooted Tree
	Neighborhood Reconstruction
	Design of Encoder-Decoder.

	Experiments
	Experimental setting
	Performance for 2-layer GNNs.(RQ1)
	Performance for deep GNNs (RQ2)
	In-depth analysis for Fed2GNN(RQ3)

	Conclusion
	Fed2GNN for GCN model
	Proof of Theorem 4.1
	Dataset statistics
	Hyper-parameter setting
	Additional experiments
	Convergence Study
	Decoder training methods study
	Communication cost
	Efficiency of constructing rooted trees

	Additional Protocol and Algorithm

