WIN: VARIABLE-VIEW IMPLICIT LIDAR UPSAM-PLING NETWORK

Anonymous authors

004

010

033

035

043

Paper under double-blind review

ABSTRACT

011 LiDAR upsampling aims to increase the resolution of sparse point sets obtained 012 from low-cost sensors, providing better performance for various downstream tasks. Most existing methods transform LiDAR points into range view and design 013 complex neighborhood point interpolation strategies to increase the resolution of 014 point clouds. However, the range view presentation of LiDAR data provides only 015 a single perspective, preventing a holistic understanding of the scene geometry. 016 To address this issue, we propose WIN, a Variable-View Implicit lidar upsam-017 pling Network. First, we decouple the range view into two novel virtual view 018 representations, Horizon Range View (HRV) and Vertical Range View (VRV), to 019 compensate for the missing geometric information during interpolation. Secondly, our proposed two virtual views are orthogonal. The feature difference between the 021 two views is proportional to the complementarity of the information between the two views. So, we introduce a Contrast Selection Module (CSM) that guides the 023 selection process by capturing the feature differences between the different representations. In addition, we observe that it is difficult for CSM to predict the correct result because the label (which is the best view for each point) changes 025 frequently during training. Therefore, we model the selection of the best views 026 as a probability distribution problem. We predict the view confidence score rather 027 than the categorization label. As a result, compared with the current state-of-028 the-art (SOTA) method ILN, WIN introduces only 0.4M additional parameters, 029 yet achieves a +4.5% increase in the MAE on the CARLA dataset. Furthermore, our method also outperforms all existing methods in one downstream task (Depth 031 Completion). The pre-trained model and code will be released upon acceptance. 032

034 1 INTRODUCTION

By capturing point clouds from the surrounding environment, Multi-beam LiDAR (MBL) plays an important role in various tasks, such as object detection Lang et al. (2019), mapping Chen et al. (2021b), and localization Wang et al. (2021). The density of the LiDAR point cloud directly determines the performance of these downstream tasks. However, the commonly used high-end MBL sensors with 64-128 scan lines have high power consumption and cost, limiting, limiting their wide applications Chen et al. (2024). As a result, LiDAR upsampling, serving as a low-cost and highefficiency alternative, has attracted the attention of more and more researchers Tian et al. (2022); Savkin et al. (2022); Yang et al. (2024); Chen et al. (2022).

LiDAR Upsampling aims to increase the resolution of sparse point sets obtained by low-end MBL 044 sensors (such as VLP-16). Different from some object-level point cloud upsampling methods Yu 045 et al. (2018); Long et al. (2022); Lim et al. (2024), considering the characteristic line pattern of MBL 046 points, the groundbreaking work projects LiDAR points into range view via spherical projection and 047 obtains high-line LiDAR points by improving the image resolution Triess et al. (2019); Shan et al. 048 (2020). After that, some researchers used powerful visual encoder backbones to directly model the mapping relationship from low-resolution range images to high-resolution range images, and achieved good performance Jung et al. (2022); Yue et al. (2021); Chen et al. (2021a); Yang et al. 051 (2024). However, these explicit methods suffer from large parameters, low efficiency, and can only be used on fixed upscale factor, which limits their application scenarios. To this end, the implicit 052 function methods set the task as a pixel interpolation mission, which upsample LiDAR points by searching neighbor points and predicting corresponding interpolation weights Kwon et al. (2022);

Figure 1: General overview of our approach. We decompose the range view into two orthogonal views (horizon range view and vertical range view), eliminating shape distortion in the distance view. At the same time, our method can benefit from both views, which avoid the limitations of a single view interpolation. At the bottom of the image, we plot two typical scanning scenarios (object edge and ground), as well as a schematic diagram of the interpolation capabilities in different views. Intervals that can be represented by interpolation are marked in red.

082 083 084

078

079

080

081

Park et al. (2023). These methods have greater flexibility and allow upsampling at any upsampling rate, thus gradually leading the development of this field.

087 However, these mainstream implicit methods do not recognize a fundamental question: Is this range 088 view representation suitable for interpolation-based LiDAR Upsampling? As we know, the distri-089 butions of points are different in different views. While, the range view only reflects the distance 090 between the observer and the points in the scene. This single geometric representation makes it dif-091 ficult to accurately reflect the geometric character during interpolation, such as vertical or horizontal 092 surfaces. As shown in Fig. 1, based on the existing implicit interpolation algorithm, we illustrate the 093 possible interpolated position in red color. Due to the limitations of single-view representation, existing methods are insufficient to provide accurate interpolation results for critical boundary regions 094 and non-smooth surfaces, thus causes the upsampled point cloud to contain shape distortions. 095

096 To address these problems, we propose a novel Variable-View Implicit LiDAR upsampling Network (WIN), which decouples the 3D representation of Range View (RV) into two novel virtual view 098 representations Horizon Range View (HRV) and Vertical Range View (VRV), effective upsampling. Specifically, HRV is responsible for horizon range-based interpolation, which ignore the z values, 099 while VRV is cooresponding to vertical range-based, ignoring the x and y values. This key idea 100 stems from the fact that HRV and VRV, as an orthogonal transformation of RV, can provide more 101 perspectives for observation without losing any geometric information. Instead of designing com-102 plex feature fusion strategies for these views, we simply generalize the Implicit function methods 103 Kwon et al. (2022); Park et al. (2023) to interpolate points in different views. It allows us to en-104 joy the advantages of variable-view representations without introducing unnecessary parameters or 105 changing network architecture. 106

107 Furthermore, we observed that the interpolation points have strong geometric heterogeneity due to the orthogonal property between views. Specifically, horizon range *d* interpolation performs better at

the vertical surface of the object, while in some other flat areas, vertical range z has more advantages. This observation motivated us to design a contrast selection module, which help each interpolation point to choose the corresponding best view based on the geometric differences in the upsampled image from different representations.

112 However, during the training process, the classification label (which is the best view for each up-113 sample point) is constantly changing due to the different convergence speeds of different branches, 114 making it difficult to supervise the selection module using a binary label. Therefore, we model the 115 best view selection process as a probability distribution problem. Specifically, we set the result of 116 the selection module as the confidence level of the view instead of the classification probability. 117 We compute the distance between the predicted value and the ground truth, and define the truth 118 confidence through a Gaussian distribution, thus achieving effective supervision for the selection module. 119

To sum up, we propose a novel LiDAR upsampling framework named WIN, illstured in Fig. 2.
Extensive experiments shows that, WIN achieved SOTA performance on both virtual and real-world datasets. An improvement of 4.53% and 7.01% is achieved on MAE and IoU, respectively. For downstream task, we verified that the proposed method can significantly improve the accuracy of depth completion by low-resolution point clouds, and the improvement is greater than that of existing methods.

- ¹²⁶ In general, our major contributions can be summed up as follows:
- We analyze the limitations of ranging image-based methods and design a lightweight novel network, WIN, for more efficient LiDAR Upsampling.
 - We are the first to decouple the 3D representation of a ranging image into two orthogonal view representations. And, we propose a contrast selection module, which predicts a confidence score for each upsampled point, thus achieving effective LiDAR Upsampling.
- We evaluated our methods on large-scale synthetic and real-world datasets, it demonstrate that our WIN significantly improves interpolation accuracy while requiring minimal memory and computation time. Besides, our method also shows the best performance on one downstream task (Depth Completion).
- 137 138

130

131

132

2 RELATED WORKS

139 140 141

2.1 OBJECT-LEVEL POINT CLOUD UPSAMPLING

142 Point cloud upsampling is a fundamental task in 3D computer vision. Qi et al. proposed Point-143 Net Qi et al. (2017a) and PointNet++ Qi et al. (2017b), first using deep neural networks to handle 144 disordered point cloud data. Afterward, PU-Net Yu et al. (2018) was proposed as the first learning 145 method for point cloud upsampling. To improve the robustness, PU-Net splits the point cloud into 146 patches and encrypts them through feature extraction, feature expansion, coordinate reconstruction, 147 and patch merge. Subsequently, various upsampling algorithms were proposed to improve the per-148 formance on benchmark datasets Akhtar et al. (2022); Zhao et al. (2022); Feng et al. (2022); Qiu 149 et al. (2022); He et al. (2023); Qu et al. (2024); Rong et al. (2024). However, these methods all focus on object-level point cloud data. When applied to large-scale LiDAR point clouds, they will 150 bring huge computational burdens. Furthermore, the restricted receptive field limits the application 151 of object-level solutions. 152

153

154 2.2 Scene-level LiDAR Upsampling

Considering the line-scanning characteristics of LiDAR point clouds, existing methods transform
LiDAR points to the range image, and encrypt the point cloud through the image super-resolution.
According to the consensus, we divide these LiDAR Upsampling methods into explicit-based and
implicit-based methods.

1) Explicit methods. Explicit methods directly model the mapping relationship from low-resolution range images to high-resolution range images through the network. Thanks to the development of image super-resolution, some researcher tried to migrate image super-resolution methods to LiDAR

Figure 2: The interpolation framework of WIN. The same local features $f'_{1:4}$ are fed into two independent weight prediction branches to obtain weight values $w_{1:4}$ for the HRV and VRV, respectively. Based on the two upsampled results, we use a shared encoder to extract high-dimensional feature differences to predict the view confidence g. The dotted lines and red crosses in the figure indicate that the gradient is not returned here.

179 upsampling tasks. LiDAR-SR Tian et al. (2022) employs U-Net architecture and transposed convolution to achieve feature extraction and upsampling of range images, and applies MC-Dropout to overcome the edge fuzziness; HALS Eskandar et al. (2022) uses multiple upsampling branches 181 with different receptive fields to deal with the problem of uneven density, and uses virtual normal 182 loss to improve edge distortion; SGSR-Net Chen et al. (2024) combines a CNN model with vertical 183 space and channel attention enhancement, and proposed a structure-guided Monte Carlo filtering to achieve remarkable results on indoor data; Recently, TULIP Yang et al. (2024) is inspired by 185 Swin-IR Liang et al. (2021) and modifies the patch and window geometry of the network to better 186 adapt to LiDAR data. Although explicit methods report considerable accuracy, there is always a 187 need to adapt the network architecture for different input and output resolutions, which makes them 188 inflexible. In addition explicit methods do not directly benefit from sparse geometric information 189 and therefore are usually not geometrically reliable.

190 2) Implicit function methods. Implicit function methods transform the LIDAR upsampling task 191 into learning a continuous function on a 2D image domain. As a result, Implicit function methods are 192 more flexible than explicit methods, and can achieve upsampling of any rate with only one training. 193 LIIF Chen et al. (2021c) first proposed an implicit function for image super-resolution, by predicting 194 the color of a given query point. Inspired by LIIF, ILN Kwon et al. (2022) simulates the scanning 195 of LiDAR by learning weights in the interpolation instead of the values. Thank for the character of 196 convex combination, ILN has achieved great improvement in 3D accuracy. Subsequently, IPN Park et al. (2023) proposed so-called on-the-ray positional embedding to obtain more 3D information. 197 There are some other methods related to LiDAR interpolation, but they focus to increase the frame rate of scanning Zeng et al. (2022); Lu et al. (2021); Liu et al. (2021; 2020). Although these implicit 199 function methods are fast and effective, but they all ignore the limitations of geometric expression 200 of range view when interpolating. In contrast, our method decomposes the range image into two 201 virtual views to better express complex geometry while retaining lightweight and efficiency. 202

203 204

177 178

3 Methodology

- 205 206
- 206 3.1 OVERVIEW 207

Given a low-resolution LiDAR points $\mathcal{P}_l = \{p_1, p_2, \dots, p_n\}$ with *n* points (in which *H*, *W* are the vertical and horizontal resolution), our goal is to generate high-resolution ones with $k_1H \times k_2W$ resolution. k_1, k_2 are the upsampling factors.

The whole pipeline of WIN is illustrated in Fig. 2. Initially, the point clouds are converted to range images \mathcal{R}_l , and then pixel features \mathcal{F} are extracted from \mathcal{R}_l . We then feed \mathcal{F} into our variable view interpolation module to predict the neighborhood weights of the query points in each view. We interpolate from the different views based on the predicted weights to obtain high resolution range images \mathcal{R}_d and \mathcal{R}_z . To fuse the results of the two views, we input \mathcal{R}_d and \mathcal{R}_z into the CSM and select the best view for each upsampled point by the view confidence scores \mathcal{G} predicted by the CSM. Finally, we back project the fused range images \mathcal{R}_h to obtain the high-resolution point clouds \mathcal{P}_h .

3.2 FEATURE EXTRACTION

Firstly, we project LiDAR point clouds onto the range view. The range view projection process can be fomulated as

$$\begin{bmatrix} v \\ h \end{bmatrix} = \begin{bmatrix} \frac{H}{v_{\max} - v_{\min}} \cdot \left(\arctan(z/d) - v_{\min} \right) \\ W \cdot \arctan(y/x) / (2\pi) \end{bmatrix},$$
(1)

225 where $v_{\text{max}}, v_{\text{min}}$ represent the maximum and minimum vertical angles, $(v, h)^{\top}$ is the image co-226 ordinate of point $(x, y, z)^{\top}$. Then we feed the low-resolution range image \mathcal{R}_l into the backbone 227 network to obtain the set of pixel embeddings \mathcal{F} . Consistent with the existing implicit function 228 methods, we use the backbone network EDSR Lim et al. (2017) for feature extraction, which is 229 known for its efficient super-resolution ability. EDSR removes the redundant batch normalization 230 (BN) layers from SRResNet Ledig et al. (2017), which helps preserve the original scale information 231 in the super-resolution task. It is worth noting that our method can be seamlessly integrated into any backbone network. 232

233 234

235

219

220 221

223 224

3.3 VARIABLE-VIEW INTERPOLATION MODULE

Existing implicit function methods focus on designing complex interpolation schemes while ignoring the limitations imposed by RV. As shown in Fig. 1, RV is insufficient for describing non-smooth geometric surfaces, leading to the loss of sharp edges during the interpolation process. Unlike these methods, we propose the variable-view interpolation module, which decouples RV into HRV and VRV, the idea behind this is to uncover the distribution pattern of the point cloud through different views and eliminate the distortion caused by spherical projection.

241 242

251

Based on the features \mathcal{F} , we need to predict 243 the interpolation weights by utilzie the rela-244 tive relationship between the query point and its 245 neighboring points. First, for any query point q246 , we find its four nearest neighboring point fea-247 tures $f_{1:4}$ in the image plane. To incorporate the 248 relative position information, we use the rela-249 tive position of the pixel center to the query ray 250 Δq_t to generate a local feature embedding

$$f' = MLP_{pos}(\Delta q) + f,$$
 (2)

here the MLP refers to multi-layer perceptrons. With arbitrary encoders, we can predict weights from local features $f'_{1:4}$. We use multi-layer perceptrons(MLP) to improve training and inference speed. Specifically, For each view, the MLP projects the neighborhood embedding

Figure 3: Local embedding module. The figure represents a process embedding the relative position Δq_t and extracted features f to compose a local feature embedding f'_t .

features $f'_{1:4}$ into a lower-dimensional space, and then the interpolation weights $w_{1:4}$ are computed using the softmax function. Note that our two branches use different MLPs but share the same neighborhood embeddings $f'_{1:4}$. This design allows the variable-view interpolation module to be easily placed behind any encoder and decrease the parameters.

Based on the predicted weight, we project the points to the corresponding views for interpolation respectively. The specific interpolation process of HRV and VRV is expressed by Eq. 3:

$$\begin{bmatrix} r_d \\ r_z \end{bmatrix} = \begin{bmatrix} \left(\sum_t^4 w_d(\boldsymbol{f}_t'|\boldsymbol{\theta}_d) \cdot d_t \right) / \cos v \\ \left(\sum_t^4 w_z(\boldsymbol{f}_t'|\boldsymbol{\theta}_z) \cdot z_t \right) / \sin v \end{bmatrix},$$
(3)

where q = (u, v) is the coordinates of a query point, $w(f'_t|\theta)$ is the weight predictor. By using other plane for projection, this algorithm can be extended to arbitrary view. Here, we choose HRV and VRV for their regular distribution and easy transformation.

265 266 267

270 3.4 CONTRAST SELECTION MODULE 271

282

284

285 286

295 296

297

301 302 303

304

305 306 307

308

310

312

314

272 To benefit from the results of both views, we designed the contrast selection module(CSM). It predict the better one between HRV and VRV for each query point. We argue that the feature differences are 273 proportional to the view differences, so our CSM predicts the best view by capturing the difference 274 between two results. In addition, we note that the best view is quiet uncertain, so we model the 275 prediction confidence using a Gaussian distribution and set it as the optimization objective for the 276 CSM, encouraging the network to focus on key complementary regions. 277

278 Specially, we first use a shared convolutional network to obtain two high-resolution feature maps, \mathcal{F}_d and \mathcal{F}_z . Then, we compute the difference between these two feature maps, and use a MLP and 279 Sigmoid function to transform the feature difference into a confidence value \mathcal{G} , which range from 280 [0, 1].281

$$\mathcal{G} = \text{Sigmoid} \left(\text{MLP}_g \left(|\mathcal{F}_d - \mathcal{F}_z| \right) \right). \tag{4}$$

Then, the final prediciton of WIN can be expressed as 283

$$\mathcal{R} = \begin{cases} \mathcal{R}_d & \text{where } \mathcal{G} < 1/2, \\ \mathcal{R}_z & \text{where } \mathcal{G} \ge 1/2. \end{cases}$$
(5)

287 However, we need to set a suitable truth value $\hat{\mathcal{G}}$ to supervise the view confidence \mathcal{G} predicted by 288 the CSM. According to our requirements, this truth value should satisfy (i) in the range of [0, 1]; (ii) 289 VRV interpolation is chosen for confidence > 1/2, otherwise HRV; (iii) as the difference between the two predicted values gets larger, the confidence is closer to 0/1. 290

291 To achieve the desired properties, we use a probabilistic approach to model difference between 292 two views. For a query ray q, let the interpolation results from top and side view be r_d and r_z , 293 respectively, and the ground truth distance value be r. We express the distances of the two predicted 294 values relative to the ground truth with normalized probability values, as follows:

$$\hat{g} = \frac{P(r_z|r)}{P(r_d|r) + P(r_z|r)}.$$
 (6)

298 This ensures that \hat{g} remains within the interval [0, 1]. If r_z is closer to the true value, then $\hat{g} > \frac{1}{2}$; 299 otherwise, $\hat{q} < \frac{1}{2}$. Assuming $P(\cdot \mid r)$ is a one-dimensional Gaussian distribution with mean r and a standard deviation proportional to the distance, we have: 300

$$P(r_z|r) = \frac{1}{\sqrt{2\pi\lambda r}} e^{-\frac{(r_z - r)^2}{2(\lambda r)^2}}, P(r_d|r) = \frac{1}{\sqrt{2\pi\lambda r}} e^{-\frac{(r_d - r)^2}{2(\lambda r)^2}},$$
(7)

here, λr represents the standard deviation of the probability distribution, where λ is a constant. Substituting this into the formula, we obtain:

$$\hat{g} = e^{-\frac{(r_z - r)^2}{2(\lambda r)^2}} \left/ \left(e^{-\frac{(r_z - r)^2}{2(\lambda r)^2}} + e^{-\frac{(r_d - r)^2}{2(\lambda r)^2}} \right) \right.$$

$$= \text{SoftMax} \left(-\frac{(r_z - r)^2}{2(\lambda r)^2}, -\frac{(r_d - r)^2}{2(\lambda r)^2} \right)_1, \tag{8}$$

where subscript 1 represents the first element of the vector. 311

313 3.5 Loss Function

The loss function needed for our network can be divided into two parts: reconstruction loss and 315 selection loss. Where the reconstruction loss we use mean absolute error(MAE) to evaluate the 316 absolute error for each pixel on the range view. For the selection loss part, it is inappropriate to use 317 MAE or MSE, because when \hat{q} is greater than (or less than) 1/2, we hope that the loss is 0 when the 318 predicted value g is greater than (or less than) \hat{g} . Therefore, the selection loss function is expressed 319 in a form as: 320

$$\mathcal{L}_q = \max\left(0, \left(\hat{g} - g\right) \cdot \operatorname{sgn}(2\hat{g} - 1)\right).$$
(9)

321 Here sgn denotes the sign function. The final loss function is then obtained by directly adding the 322 reconstruction loss and the selection loss: 323

$$\mathcal{L} = \mathcal{L}_d + \mathcal{L}_z + \mathcal{L}_g. \tag{10}$$

It's worth to notice that we interrupt the propagation of gradients at \mathcal{R}_d and \mathcal{R}_z , aiming to prevent the gradients of CSM from being propagated back to the encoder, thereby ensuring the training stability of the interpolation network. Even so, our network can still be trained end-to-end.

- 4 EXPERIMENTAL RESULTS
- 329 330 331

328

4.1 EXPERIMENT SETTINGS

Datasets: In our experiments, we included both real and synthetic datasets. (i) For synthetic datasets, we use a virtual dataset built with CARLA simulator Dosovitskiy et al. (2017), followed by TULIPYang et al. (2024) and ILN Kwon et al. (2022). The virtual data capture noise-free point clouds with a vertical FoV of 30°. We use a (20699/2618) train/test split. (ii) For real-world datasets, we use KITTI. The KITTI dataset Geiger et al. (2012) was obtained using a Velodyne HDL-64E Li-DAR with a vertical FoV of 26.8° and a resolution of 64 × 1024. We sampled frames randomly from sequences of 2011_10_03 for test, and train all models with other sequences.

It is worth to notice that adjacent frames of LiDAR data usually have similar scene structures, we select point cloud sequences that have no spatial overlap with the training data as test data to more accurately compare the upsampling effect of the models.

Implementation Details: In all experiments, the initial learning rate is set as 1e-4 and decayed with
 a rate of 0.5 for every 50 epoch. Our optimizer is chosen as the Adam optimizer Kingma (2014). The
 models are implemented using the PyTorch framework Paszke et al. (2019) and run on an Nvidia
 RTX 4090 GPU with 24GB of memory.

Comparison Methods: To demonstrate the effectiveness of our network, We compare it with several LIDAR upsampling networks, where explicit methods include LiDAR-SR Shan et al. (2020) and TULIP Yang et al. (2024), implicit function methods include LIIF Chen et al. (2021c) and ILN Kwon et al. (2022).

Evaluation metrics: We use two commonly used metrics: MAE and Intersection-over-Union (IoU).
 We compute MAE of all pixels in the generated two-dimensional range images. For IoU, we voxelize the point cloud with a voxel size of 0.1m. A voxel is classified as an occupied voxel for each point cloud if it contains at least one point. We then compute the IoU based on the occupancy rate.

355 356

357

4.2 SINGLE UPSAMPLING SCALE

We use the same experimental setup and dataset as TULIP and report the precision reproduced by 358 TULIP. It is worth noting that TULIP's reproduction of ILN is not accurate. After discussions with 359 the original author, we retrained ILN for the experiments with single upsampling scale. Specific 360 modifications can be seen in the Supplementary material. Furthermore, we consider that the projec-361 tion center of KITTI data is not unique, leading to a large number of null shortcomings under the 362 range view. This will lead to unreasonable losses and does not reflect the true performance of the 363 models. For this reason, we adjusted the KITTI projection with reference to Fan et al. (2021). We 364 retrained and evaluated all methods under the same settings. 365

As can be seen from the Tab. 1, our WIN achieves the best performance on the CARLA dataset with only 1.7M parameters, where the MAE improves by 4.53% and the IoU improves by 7.01%. This is due to the fact that we take into account the close connection between the local geometry and the interpolated view, and benefit from it through the design of the CSM.

Since the projection center of KITTI is not unique, it makes the neighborhood geometry relationship under the distance view broken. This systematic error from KITTI places higher demands on
the model's ability to maintain geometric structure. We take advantage of the complementarity of
variable views, making our method far superior to existing methods in IOU. It is worth noticing that,
LIIF regresses the distance values directly from the features, making it easy to fit in this incorrect
setting, thus resulting in an optimal MAE.

In addition, we also conducted qualitative experimental comparisons. Figure 4 shows the visualization effects of TULIP, ILN and WIN on CARLA dataset. Compared with explicit method (TULIP) method, our WIN can robustly reconstruct 3D surfaces, with less noise and artifacts, and maintain Table 1: Quantitative experimental results with a single upsampling rate. We choose the virtual
 dataset created by CARLA simulator and the real-world dataset KITTI raw to evaluate related meth ods.

Method	Param(M)	CARLA	(32→128)	KITTI(16→64)		
		MAE↓	IoU↑	MAE↓	IoU↑	
LiDAR-SR	34.6	0.8216	0.2581	0.6956	0.1470	
TULIP	27.1	0.7699	0.5152	<u>0.6794</u>	0.4044	
Bilinear	0	1.8128	0.1382	1.6668	0.1541	
LIIF	1.4	0.8064	0.3502	0.6405	0.3958	
ILN	1.3	<u>0.7613</u>	0.5621	0.6869	0.4024	
WIN(Ours)	1.7	0.7268	0.6015	0.6799	0.4189	

Table 2: Quantitative experimental results with different upsampling rates. We choose the virtual dataset created by CARLA simulator. The resolution of input data is 16×1024 .

Method	64×1024		128×2048		256×4096	
	MAE↓	IoU↑	MAE↓	IoU↑	MAE↓	IoU↑
LiDAR-SR	1.5600	0.2782	1.7460	0.1610	1.7530	0.1270
TULIP	1.4776	0.3471	1.5422	0.3451	1.5984	0.2523
Bilinear	2.3720	0.2020	2.5910	0.1650	2.6460	0.1630
LIIF	1.5388	0.2713	1.6890	0.2480	1.7370	0.2130
ILN	1.4168	0.3927	1.5368	0.3476	1.6088	0.2653
WIN(Ours)	1.3834	0.4561	1.4971	0.3995	1.5698	0.2732

402 403

381 382

392

393

397

399 400 401

geometric characteristics. This is because we interpolate from a suitable view, enhancing the geometric reliability of the upsampling process; compared with implicit function method (ILN), our
WIN overcomes the limitations of interpolation, thus recovering better in sparse areas. At the same time, WIN retains more fine-grained geometric features. The qualitative results fully indicate that the previous analysis is reasonable, that is, the complementarity of the two views can help upsampling more refinedly, and eliminates geometric distortions introduced by range view projection.

410 411

4.3 MULTIPLE UPSAMPLING SCALES

412 413 Compared with the explicit methods, the core advantage of the implicit function methods is that the 414 upsampling scale can be flexibly adjusted. Therefore, in order to evaluate the adaptability of the 415 models at different upsampling scales, we conducted experiments with multiple upsampling scales 416 on the CARLA dataset. The CARLA dataset containing four different resolutions: 16×1024 , $64 \times$ 417 1024, 128×2048 , and 256×4096 . We use the 16×1024 resolution as the input and the others as 418 the target resolutions.

Tab. 2 reports the quantitative performances. Our method maintains the geometric reliability of interpolation while flexibly obtaining information from different views, thus achieving the best MAE and IoU. Moreover, as the target resolution increases, our method has an increasing advantage over existing methods. This is due to the fact that the increasing target resolution makes the distance view more limiting. Our WIN, on the other hand, dissolves this limitation by decoupling the range view into HRV and VRV, and thus exhibits more significant advantages at very high upsampling scales.

424 425 426

4.4 DOWNSTREAM TASK

In order to realistically evaluate the performance of the upsampling methods, we choose another
3D geometry base task (depth completion) to compare the model's contribution on the downstream
task. Specifically, we downsample the depth map in the KITTI depth dataset to 16 lines to simulate
the sparse point cloud. We then perform 4× upsampling using all models pre-trained on KITTI
raw Geiger et al. (2012) to reconstruct a 64-line point cloud. We use the reconstructed point cloud
for depth completion and compare it with ground truth. For validation metrics, we choose average

Figure 4: Qualitative results of LIDAR super-resolution obtained by different methods. The area in the red box on the left is shown enlarged in the right panel.

Table 3: Downstream mission performance comparison. We use the KITTI dataset and choose depth completion for comparison. Depth Completion is a geometry foundation task, we use RMSE and MAE for evaluation.

Method	MAE(mm)↓	RMSE(mm)↓
Low-resolution	1131.84	3470.70
LiDAR-SR	765.14	2630.86
TULIP	780.76	2796.88
LIIF	<u>671.39</u>	<u>2509.77</u>
ILN	686.52	2529.30
WIN(Ours)	659.18	2408.20

absolute baseline (MAE) and root mean square baseline (RMSE), which are calculated over all valid pixels.

The result of downstream task are shown in Tab. 3. It can be seen that basically all upsampling methods achieve the enhancement of downstream tasks. Our WIN reconstructs high-resolution point clouds with more accurate geometric properties by expressing richer geometries from different views, thus achieving a significant advantage in both MAE and RMSE. This suggests that WIN may have the greatest potential for application of any method.

4.5 ABLATION STUDY

484 To illustrate the effectiveness of every design proposed in WIN, we conducted ablation experiments 485 on CARLA and KITTI by removing each component as follows. (i) Removing Variable-View in favor of range image for interpolation, the overall model will degenerate into ILN. (ii) Removing the

Mathod	CARLA(32→128)		KITTI(16→64)	
	MAE↓	IoU↑	MAE↓	IoU↑
w/o Variable-view	0.7613	0.5621	0.6869	0.4024
w/o CSM(d)	0.7559	0.5836	<u>0.6849</u>	0.4082
w/o $\text{CSM}(z)$	0.7711	0.5601	0.6992	0.4033
w/o $\hat{g}(d+z)$	<u>0.7313</u>	0.5905	0.7123	0.3703
$\operatorname{WIN}(d+z)$	0.7268	0.6015	0.6799	0.4189

Table 4: Ablation study. The evaluation results of different components of WIN. We conducted
 experiments on CRALA and KITTI.

Contrast Selection Module, we report the interpolation results of the two different views separately. (iii) Removing the confidence score constraint, we use binary classification loss as a replacement.

It can be seen from table 4 that our full pipeline obtains the lowest MAE and IOU values, re-504 moving any component from it will lead to a 505 degradation in the network. On MAE and IoU, 506 the CSM achieved an average improvement of 507 2.3864% and 2.9459% respectively. It's inter-508 esting that in all experiments, using distance for 509 interpolation is less effective than using planar 510 distance. It is due to the fact that the range 511 view contains more shape distortion, while the 512 other two views alleviate this problem through orthogonal projection. 513

514 And, the network supervised by our confidence 515 values \hat{g} achieve a better performance than bi-516 nary cross-entropy. It's due to the fact that we 517 specify the output of the selection task as the 518 confidence level of the view in contrast to clas-

Figure 5: The selection loss curve of the network during training. The dataset is KITTI.

sification label. This allows us to ignore the loss due to the constant change of classification labels
during training and instead focus on regions where the gap between the two views is large. As shown
in Fig. 5, We compare the loss curves of the network under different supervision methods. The selection loss supervised by binary cross entropy rises rapidly and tends to be invariant, while our
CSM gradually converges by the confidence score constraint method. This shows that the strategy
of constraining the view selection process by predicting the confidence score allows us to achieve
more effective upsampling.

526

500

501 502

527 528

5 CONCLUSION

529 530

531 In this paper, we design a LiDAR upsampling network called WIN, which achieves the effect of 532 varying the interpolation view with geometric properties by cleverly incorporating different view 533 representations into the distance view. For the first time, we decouple the representation of range 534 view into two orthogonal view representations, HRV and VRV, and implement learnable implicit interpolation for each. We also present a contrast selection module that benefits from different views 536 by probabilistically modeling the confidence level of the predicted views. We evaluate our approach 537 on both large-scale synthetic datasets and real-world datasets. The experimental results show that our WIN significantly improves the interpolation accuracy, especially the geometric accuracy. At 538 the same time WIN occupies almost minimal memory. In addition, our method exhibits the best performance in a downstream task (depth completion).

540 REFERENCES 541

549

551

555

587

- Anique Akhtar, Zhu Li, Geert Van der Auwera, Li Li, and Jianle Chen. Pu-dense: Sparse tensor-542 based point cloud geometry upsampling. IEEE Transactions on Image Processing, 31:4133–4148, 543 2022. 544
- Chi Chen, Ang Jin, Zhiye Wang, Yongwei Zheng, Bisheng Yang, Jian Zhou, Yuhang Xu, and 546 Zhigang Tu. Sgsr-net: Structure semantics guided lidar super-resolution network for indoor li-547 dar slam. IEEE Transactions on Multimedia, 26:1842-1854, 2024. doi: 10.1109/TMM.2023. 548 3289752.
- Kai Chen, Chao Liu, and Yongsheng Ou. Channel attention based network for lidar super-resolution. 550 In 2021 China Automation Congress (CAC), pp. 5458–5463. IEEE, 2021a.
- 552 Tso-Yuan Chen, Ching-Chun Hsiao, and Ching-Chun Huang. Density-imbalance-eased lidar point 553 cloud upsampling via feature consistency learning. IEEE Transactions on Intelligent Vehicles, 8 554 (4):2875–2887, 2022.
- X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss. Range Image-based LiDAR Localization 556 for Autonomous Vehicles. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021b. 558
- 559 Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local 560 implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8628-8638, 2021c. 561
- 562 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An 563 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017. 564
- 565 George Eskandar, Sanjeev Sudarsan, Karim Guirguis, Janaranjani Palaniswamy, Bharath So-566 mashekar, and Bin Yang. Hals: A height-aware lidar super-resolution framework for autonomous 567 driving. arXiv preprint arXiv:2202.03901, 2022.
- 568 Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Rangedet: In defense of 569 range view for lidar-based 3d object detection. In Proceedings of the IEEE/CVF international 570 conference on computer vision, pp. 2918–2927, 2021. 571
- 572 Wanquan Feng, Jin Li, Hongrui Cai, Xiaonan Luo, and Juyong Zhang. Neural points: Point cloud 573 representation with neural fields for arbitrary upsampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18633–18642, 2022. 574
- 575 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti 576 vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, 577 pp. 3354–3361. IEEE, 2012. 578
- Yun He, Danhang Tang, Yinda Zhang, Xiangyang Xue, and Yanwei Fu. Grad-pu: Arbitrary-scale 579 point cloud upsampling via gradient descent with learned distance functions. In Proceedings of 580 the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5354–5363, 2023. 581
- 582 Younghwa Jung, Seung-Woo Seo, and Seong-Woo Kim. Fast point clouds upsampling with uncer-583 tainty quantification for autonomous vehicles. In 2022 International Conference on Robotics and 584 Automation (ICRA), pp. 7776–7782. IEEE, 2022. 585
- Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 586 2014.
- 588 Youngsun Kwon, Minhyuk Sung, and Sung-Eui Yoon. Implicit lidar network: Lidar super-resolution 589 via interpolation weight prediction. In 2022 International Conference on Robotics and Automa-590 tion (ICRA), pp. 8424–8430. IEEE, 2022. 591
- Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-592 pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12697–12705, 2019.

594 595 596 597	Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 4681–4690, 2017.
598 599 600 601	Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In <i>Proceedings of the IEEE/CVF international confer-</i> <i>ence on computer vision</i> , pp. 1833–1844, 2021.
602 603 604	Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep resid- ual networks for single image super-resolution. In <i>Proceedings of the IEEE conference on com-</i> <i>puter vision and pattern recognition workshops</i> , pp. 136–144, 2017.
605 606 607	Sangwon Lim, Karim El-Basyouny, and Yee Hong Yang. Pu-ray: Domain-independent point cloud upsampling via ray marching on neural implicit surface. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2024.
608 609 610	Haojie Liu, Kang Liao, Chunyu Lin, Yao Zhao, and Meiqin Liu. Plin: A network for pseudo-lidar point cloud interpolation. <i>Sensors</i> , 20(6):1573, 2020.
611 612 613	Haojie Liu, Kang Liao, Chunyu Lin, Yao Zhao, and Yulan Guo. Pseudo-lidar point cloud interpola- tion based on 3d motion representation and spatial supervision. <i>IEEE Transactions on Intelligent</i> <i>Transportation Systems</i> , 23(7):6379–6389, 2021.
614 615 616	Chen Long, WenXiao Zhang, Ruihui Li, Hao Wang, Zhen Dong, and Bisheng Yang. Pc2-pu: Patch correlation and point correlation for effective point cloud upsampling. In <i>Proceedings of the 30th ACM International Conference on Multimedia</i> , pp. 2191–2201, 2022.
618 619 620	Fan Lu, Guang Chen, Sanqing Qu, Zhijun Li, Yinlong Liu, and Alois Knoll. Pointinet: Point cloud frame interpolation network. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 35, pp. 2251–2259, 2021.
621 622 623	Minseong Park, Haengseon Son, and Euntai Kim. Implicit point function for lidar super-resolution in autonomous driving. <i>IEEE Robotics and Automation Letters</i> , 2023.
624 625 626	Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. <i>Advances in neural information processing systems</i> , 32, 2019.
627 628 629	Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 652–660, 2017a.
630 631 632 633	Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea- ture learning on point sets in a metric space. <i>Advances in neural information processing systems</i> , 30, 2017b.
634 635	Shi Qiu, Saeed Anwar, and Nick Barnes. Pu-transformer: Point cloud upsampling transformer. In <i>Proceedings of the Asian conference on computer vision</i> , pp. 2475–2493, 2022.
636 637 638 639	Wentao Qu, Yuantian Shao, Lingwu Meng, Xiaoshui Huang, and Liang Xiao. A conditional denois- ing diffusion probabilistic model for point cloud upsampling. In <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 20786–20795, 2024.
640 641 642	Yi Rong, Haoran Zhou, Kang Xia, Cheng Mei, Jiahao Wang, and Tong Lu. Repkpu: Point cloud upsampling with kernel point representation and deformation. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 21050–21060, 2024.
643 644 645	Artem Savkin, Yida Wang, Sebastian Wirkert, Nassir Navab, and Federico Tombari. Lidar upsam- pling with sliced wasserstein distance. <i>IEEE Robotics and Automation Letters</i> , 8(1):392–399, 2022.
647	Tixiao Shan, Jinkun Wang, Fanfei Chen, Paul Szenher, and Brendan Englot. Simulation-based lidar super-resolution for ground vehicles. <i>Robotics and Autonomous Systems</i> , 134:103647, 2020.

- 648 Di Tian, Dangjun Zhao, Dongyang Cheng, and Junchao Zhang. Lidar super-resolution based on 649 segmentation and geometric analysis. IEEE Transactions on Instrumentation and Measurement, 650 71:1-17, 2022.
- Larissa T Triess, David Peter, Christoph B Rist, Markus Enzweiler, and J Marius Zöllner. Cnn-based 652 synthesis of realistic high-resolution lidar data. In 2019 IEEE Intelligent Vehicles Symposium (IV), 653 pp. 1512-1519. IEEE, 2019. 654
- 655 Wei Wang, Bing Wang, Peijun Zhao, Changhao Chen, Ronald Clark, Bo Yang, Andrew Markham, 656 and Niki Trigoni. Pointloc: Deep pose regressor for lidar point cloud localization. IEEE Sensors Journal, 22(1):959-968, 2021. 657
- 658 Bin Yang, Patrick Pfreundschuh, Roland Siegwart, Marco Hutter, Peyman Moghadam, and Vaishakh 659 Patil. Tulip: Transformer for upsampling of lidar point clouds. In *Proceedings of the IEEE/CVF* 660 Conference on Computer Vision and Pattern Recognition, pp. 15354–15364, 2024. 661
- Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud 662 upsampling network. In Proceedings of the IEEE conference on computer vision and pattern 663 recognition, pp. 2790–2799, 2018. 664
- 665 Jiang Yue, Weisong Wen, Jin Han, and Li-Ta Hsu. 3d point clouds data super resolution-aided lidar 666 odometry for vehicular positioning in urban canyons. IEEE Transactions on Vehicular Technol-667 ogy, 70(5):4098–4112, 2021.
 - Yiming Zeng, Yue Qian, Qijian Zhang, Junhui Hou, Yixuan Yuan, and Ying He. Idea-net: Dynamic 3d point cloud interpolation via deep embedding alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6338–6347, 2022.
- 672 Wenbo Zhao, Xianming Liu, Zhiwei Zhong, Junjun Jiang, Wei Gao, Ge Li, and Xiangyang Ji. Self-673 supervised arbitrary-scale point clouds upsampling via implicit neural representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1999–2007, 674 2022. 675
- 676 677

678

680

686 687

688

689

690

691

692

693

668

669

670

671

651

А APPENDIX

679 A.1 COMPLEMENTARY OF HRV AND VRV

681 In order to more intuitively illustrate the distribution of HRV and VRV in different areas, we selected 682 some samples for visualization, as shown in Fig. 6. Combined with the distance map, it is easy 683 to find that the distribution is actually closely related to the geometry of the object surface. For 684 example, VRV is more advantageous on flat ground, while HRV performs better on the surface of 685 the object.

A.2 VISUALIZATION OF DEPTH COMPLETION

Here we present a qualitative evaluation of depth completion experiment. Observing the distribution of the error map, we can see that our WIN is more accurate in scene structure and produces smaller errors. We also observe that TULIP produces significant errors in flat regions, which may be due to the lack of geometric reliability of feature regression-based methods. Compared with ILN, because we alleviate the limitations of the interpolation method, smaller errors are produced in most areas.

694 A.3 OBJECT DETECTION 695

696 Object detection is also a important downstream task of point cloud. Similar to the experimental 697 setup of depth completion, we upsample the 16-line point clouds to match the raw data, directly use 698 a model pre-trained on KITTI Object Dataset and generate the 3D bounding boxes on the generated, 699 ground truth and low-resolution point clouds. We apply PointPillar Lang et al. (2019), which is commonly used for object detection. Since existing methods do not support upsampling of intensity 700 values, we perform nearest neighbor interpolation in 3D space to compensate for the lost intensity 701 information. The final results are shown in Tab. 5, The accuracy of other methods are reported by

Figure 6: Visulization of the complementary of HRV and VRV, where blue means HRV is better and red means VRV is better.

Figure 7: Qualitative results of depth completion using upsampled point clouds. The bottom three rows of error map fully illustrate that our WIN recovers the scene geometry more accurately.

Yang et al. (2024). The results show that our method outperforms ILN and achieves a significant improvement based on low-resolution point cloud. We also compared with the metrics reported by TULIP, although we were unable to reproduce similar results.

A.4 DISCUSSION

Is it better to use a weighted sum to fuse the HRV and VRV? Although using weighted sum to fuse the two views is a natural idea since it makes the model easier to train and the theoretical interpolation range larger (covering the interpolation range of HRV and VRV), we believe that it destroys the geometric reliability of the interpolation algorithm. To rigorously verify this idea, we retrained the model using a weighted sum. Note that at this point we no longer need to choose the

Table 5: Object detection performance comparison. We evaluate pretrained PointPillar on point clouds upsampled by different methods and report the overall results (averaged over classes 'Car', 'Cyclist' and 'Pedestrian').

Method	Easy	Moderate	Hard
Low-resolution	10.05	9.03	8.8
LiDAR-SR	29.27	24.15	20.39
TULIP	50.23	37.57	32.12
ILN	38.29	28.61	23.67
WIN(Ours)	40.11	28.80	26.67

767Table 6: Quantitative experimental results with different upsampling rates. We choose the virtual
dataset created by CARLA simulator. The resolution of input data is 16×1024 . We abbreviate the
weighted sum method as WS.

Method	64×1024		128×2048		256×4096	
	MAE↓	IoU↑	MAE↓	IoU↑	MAE↓	IoU↑
ILN	1.4168	0.3927	1.5368	0.3476	1.6088	0.2653
WS	<u>1.4131</u>	0.3604	<u>1.5004</u>	<u>0.4061</u>	1.7218	0.1938
WIN(Ours)	1.3834	0.4561	1.4971	0.3995	1.5698	0.2732

⁷⁷⁷ loss \mathcal{L}_g since the weights have been explicitly guided. The comparison on CARLA dataset is shown ⁷⁷⁹ in Tab. 6. The results show that the weighted sum cannot even achieve better results than ILN, ⁷⁸⁰ probably because the results are too dependent on the weights. On the other hand, the weighted ⁷⁸¹ sum model shows a significant decrease in IoU, which we believe supports the conjecture that the ⁷⁸² weighted sum geometry is insufficiently reliable.