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ABSTRACT

Federated Learning (FL) is a privacy-preserving distributed machine learning
paradigm. Nonetheless, the substantial distribution shifts among clients pose a
considerable challenge to the performance of current FL algorithms. To mitigate
this challenge, various methods have been proposed to enhance the FL training
process. This paper endeavors to tackle the issue of data heterogeneity from
another perspective—by improving FL algorithms prior to the actual training stage.
Specifically, we introduce the Client2Vec mechanism, which generates a unique
client index for each client before the commencement of FL training. Subsequently,
we leverage the generated client index to enhance the subsequent FL training
process. To demonstrate the effectiveness of the proposed Client2Vec method,
we conduct three case studies that assess the impact of the client index on the
FL training process. These case studies encompass enhanced client sampling,
model aggregation, and local training. Extensive experiments conducted on diverse
datasets and model architectures show the efficacy of Client2Vec across all three
case studies. Our code will be publicly available.

1 INTRODUCTION

Federated Learning (FL) is an emerging machine learning paradigm that preserves clients’ privacy
by only exchanging model parameters between clients and server, and maintains the local data
not exchanged. As the de facto algorithm in FL, FedAvg (McMahan et al., 2016) proposes to use
local SGD to improve the communication efficiency of FL. However, the non-i.i.d. nature of local
distributions significantly reduces the performance of FL algorithms (Lin et al., 2020b; Karimireddy
et al., 2020b; Li et al., 2020). Despite the great success of existing methods in addressing the non-i.i.d.
problem in FL (Li et al., 2021; Acar et al., 2020), most existing studies center on the training process
of FL by improving the key stages of the FL training, such as client sampling (Fraboni et al., 2021;
Luo et al., 2022; Wang et al., 2023), model aggregation (Wang et al., 2019; Lin et al., 2020a; Chen
et al., 2023), and local training (Li et al., 2020; 2021).

An additional line of research in FL aims to find efficient methods to improve the performance before
the training stage. Yet only a limited number of works exist, either utilizing dataset distillation before
the FL training (Yang et al., 2023), or generating global shared synthetic pseudo-data (Guo et al.,
2023b; Tang et al., 2022). Despite promising, these approaches incur additional computation costs
on local devices with a limited number of applicable scenarios and are incompatible with other FL
training stages like client sampling and model aggregation.

Taking inspiration from the Word2Vec technique in Natural Language Processing (NLP)
tasks (Mikolov et al., 2013) and domain indexing in Domain Generalization tasks (Xu et al., 2022),
we introduce a novel mechanism below, namely Client2Vec. Client2Vec generates an index vector
for each client, serving as their identity by incorporating information about the client’s local data
distribution. These vectors are used to measure label and feature distribution shifts among clients,
seamlessly integrate into the FL training pipeline, and allows efficiently (1) operating independently
of the FL training process, (2) combining with existing FL methods, while imposing a minimal addi-
tional computational load on local devices, and (3) enhancing FL training performance throughout all
stages.

Our contributions can be summarized as follows:
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• We explore a novel mechanism in FL called Client2Vec, which involves creating an index vector
for each client before the FL training phase. These vectors incorporate information about the local
distribution of clients and subsequently enhance the FL training process.

• We present the Distribution Shifts Aware Index Generation Network (DSA-IGN), a network
specifically designed to generate the client index prior to FL training. Our visualization results
demonstrate the effectiveness of the client index in measuring the similarities in clients’ local
distributions.

• We conduct three case studies, including client sampling, model aggregation, and local training, to
illustrate the potential and effectiveness of the generated client index. Our experiments, conducted
on various datasets and model architectures, consistently demonstrate significant performance
improvements with the use of Client2Vec.

2 RELATED WORKS

Information sharing in FL. Federated Learning (FL) is a distributed training methodology where
local data is retained and not exchanged between the central server and clients (Li et al., 2020;
Karimireddy et al., 2020b;a; Guo et al., 2023b; Jiang & Lin, 2023). FedAvg (McMahan et al., 2016;
Lin et al., 2020b), a foundational algorithm, uses local Stochastic Gradient Descent (local SGD)
to reduce communication. Nevertheless, the performance of FL algorithms is substantially impeded
by distribution shifts among clients. To address distribution shift in FL, existing works share local
distribution statistics (Shin et al., 2020; Zhou & Konukoglu, 2022), data representations (Hao et al.,
2021; Tan et al., 2022), and prediction logits (Chang et al., 2019; Luo et al., 2021). FedMix (Yoon
et al., 2020) and FedBR (Guo et al., 2023b) enhance local training with privacy-protected
augmentation data. VHL (Tang et al., 2022) employs randomly initialized generative models to
produce virtual data, regularizing local features to closely align with those of same-class virtual
data. FedFed (Yang et al., 2023) proposes a dataset distillation method, amalgamating distilled
datasets into all clients’ local datasets to mitigate distribution shifts. Compared to existing methods,
Client2Vec has the following advantages: (1) decouples index generation from FL training, reducing
FL training load; (2) generates one client index per client, improving efficiency; (3) contributes to
the entire FL training process, including client sampling, model aggregation, and local training.

Domain indexing. Domain Generalization (DG) tackles cross-domain generalization by generating
domain-invariant features. While conventional DG methods strive to make a data point’s latent
representation independent of its domain identity using a one-hot vector (Ganin et al., 2016; Tzeng
et al., 2017; Zhao et al., 2017), recent studies propose using real-value scalars or vectors as domain
indices to improve performance (Wang et al., 2020; Xu et al., 2021). However, obtaining domain
indices may be impractical. To address this, Xu et al. (2022) introduced variational domain indexing
(VDI) to infer domain indices without prior knowledge. Yet, challenges arise when applying VDI
to FL due to communication costs, privacy concerns, and neglect of label shifts. Further discussions
on related works can be found in Appendix B.

3 CLIENT2VEC: DISTRIBUTION SHIFTS AWARE CLIENT INDEXING

In this section, we introduce Client2Vec, a mechanism that generates an index vector for each client,
representing their identity and incorporating information about their local distribution. The client
index, which considers both label and feature distribution shifts, is defined in Section 3.1. We present
the Distribution Shifts Aware Index Generation Network (DSA-IGN) in Section 3.2, which generates
the client index based on the specified criteria. Visualization examples of the generated client index
are provided in Section 3.3.

3.1 CLIENT INDEX

We consider the FL setting with M clients, where each client i possesses Ni data samples. The j-th
data sample of client i is represented as (xi,j , yi,j).

Sample index u and Client index β. To ensure that the client index conveys information about all
data samples within the client, we first generate the sample index ui,j as the index vector for the data
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Figure 1: Illustration of the DSA-IGN Workflow: The local data from clients, denoted as (xi,j , yi,j), undergo
encoding by the CLIP encoders, resulting in the transformation to (Di,j ,Li,j) before the index generation
process. The CLIP image embedding Di,j is then split into a data encoding zi,j and a sample feature index uf

i,j .
The zi,j and uf

i,j are then concatenated and projected to D̃i,j to reconstruct Di,j . Lastly, client label index βl
i

and client feature index βf
i are obtained by averaging Li,j and ui,j , respectively.

sample (xi,j , yi,j). The client index βi is then computed as the average of all data samples for client
i: βi =

1
Ni

∑Ni

j=1 ui,j .

For FL scenarios where feature and label shifts occur simultaneously, the sample index ui,j consists
of two parts: sample feature index uf

i,j ∈ Rdi and sample label index ul
i,j ∈ Rdi , encoding the

feature and label information of the data sample (xi,j , yi,j), respectively. Similarly, the client index
βi is represented as βi = [βf

i ;β
l
i] ∈ R2di , where βf

i ∈ Rdi is the client feature index, and βl
i ∈ Rdi

is the client label index.

However, obtaining client and sample indices may not always be trivial in practice. To address this,
we extend the domain index idea in Xu et al. (2022) and define the expected properties of sample
index ui,j and client index βi below.

Definition 3.1 (Sample Index). Given the data sample (xi,j , yi,j) and its corresponding encoding
zi,j , which encode information that can be used to predict yi,j , the sample index ui,j of data sample
(xi,j , yi,j) is expected to satisfy the following properties:

• Independence between uf
i,j and zi,j . Sample feature index uf

i,j is independent of client-invariant
data encoding zi,j . This aims to encourage the sample feature index uf

i,j to encode the
client-dependent information—specifically, the distinct information about the client’s local
distribution, and unrelated to label prediction.

• Maximizing information in ul
i,j and zi,j for label prediction. The data encoding zi,j and sample

label index ul
i,j should contain as much information as possible to predict label y.

• Information Preservation of uf
i,j and zi,j . Data encoding zi,j and sample feature index uf

i,j
preserves as much information as possible to recover data xi,j .

Remark 3.2. Different from the definitions of domain index outlined in Xu et al. (2022) (refer to
Definition C.1), Definition 3.1 encompasses both label and feature distribution shifts by introducing
the sample label index ul

i,j . Additionally, generating domain-level index in Definition C.1 requires
to gather all sample indices ui,j from various data sources. We simplify this procedure and calculate
the client index as βi=

1
Ni

∑Ni

j=1 ui,j .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 GENERATING CLIENT INDEX

In this section, we describe the generation of βi and ui,j based on Definition 3.1, as depicted in
Figure 1. We use image datasets for clarity, and details for language datasets can be found in
Appendix D.1.

Encoding data using CLIP. Since the client index, denoted as βi, is computed as an average across
sample indices ui,j , the primary challenge in generating the client index lies in generating these
sample indices ui,j . According to Definition 3.1, we can observe that the sample label index ul

i,j
solely encodes label information, while the sample feature index encodes image feature information
independently of label information. Consequently, to generate the sample index, we must devise
a method that maps label information and image information into the same space, facilitating the
extraction of label-dependent sample label index ul

i,j and label-independent sample feature index uf
i,j .

We propose to leverage CLIP (Radford et al., 2021) to ease the index generation process. CLIP
is a pre-trained cross-modality model that contains an image encoder and a text encoder, aligning
image and text embedding. As shown in Figure 1, for a given input image-label pairs (xi,j , yi,j),
we utilize a CLIP image encoder to produce image embedding Di,j and a text encoder to generate
label embedding Li,j :

• Label Embedding Li,j: The Li,j only encodes label descriptions such as “A photo of a/an
{object}”. Therefore, we use Li,j as the embedding that only contains label information, which
is naturally invariant among clients.

• Image embedding Di,j: The Di,j is extracted from the whole image, serving as a compact feature
containing both client-independent (label information) and client-specific (background, style,
etc.) features.

Consequently, the original local dataset Di = {(xi,j , yi,j)} is transformed into the CLIP embedding
set Ei = {(Di,j ,Li,j)}. The Ei is then utilized to generate the index. Note that other cross-modality
models, such as BLIP (Li et al., 2022) and BLIP2 (Li et al., 2023a), can also align vision and language
like CLIP. Exploring the effectiveness of these models could be a valuable future research direction.

Generating sample indices using CLIP embedding and DSA-IGN. Given that Li,j only encodes
label information, we directly set ul

i,j = Li,j . On the contrary, by Definition 3.1, the sample
feature index uf

i,j needs to encode label-invariant client-specific information. Thus, we decompose
Di,j—which contains both label and client-specific information—to generate uf

i,j while isolating
the client-specific information from Di,j .

The entire process of generating the sample feature index is achieved by training the Distribution
Shifts Aware Generation Network (DSA-IGN). The training process of DSA-IGN includes three
components, corresponding to the three rules in Definition 3.1:

• Decompose CLIP image embedding Di,j . We decompose Di,j to sample feature index uf
i,j

and data encoding zi,j . Regularization is applied to ensure orthogonality between uf
i,j and zi,j ,

ensuring their independence. The decomposition block can be any non-linear neural network
architecture, and we use a three-layer transformer encoder as the decomposition block for the
sake of simplicity1.

• Aligning the data encoding zi,j and Li,j to ensure label sensitivity of zi,j . We force zi,j to
have a large cosine similarity with the label embedding Li,j , ensuring that zi,j encodes as much
information as possible to predict the label yi,j .

• Reconstruct CLIP image embedding Di,j . To ensure that uf
i,j and zi,j retain all the information

from the CLIP image embedding Di,j , we utilize uf
i,j and zi,j for the purpose of reconstructing

Di,j . In detail, we begin by concatenating uf
i,j and zi,j , followed by projecting the resultant

vector onto D̃i, j, and subsequently minimizing the distance between the reconstructed embedding

1Each transformer encoder layer will have 8 attention heads and the dimension of the model is 32. More
details about the network architectures of DSA-IGN can be found in Appendix D.2.
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Figure 2: Visualization of index similarities between clients. We illustrate the similarities of client index βi and
client feature index βf

i between clients. Results including both GLOBAL and FEDERATED training strategies are
reported. Ideally, clients in the same domain should share a similar client index, resulting in dark diagonal blocks.

D̃i, j and the original CLIP image embedding Di,j . Experiments on various projection layer
architectures can be found in Appendix D.3.

Objective functions of DSA-IGN. We define the following objective function:

L(uf
i,j , zi,j ,Di,j ,Li,j) = Ldiv(u

f
i,j)︸ ︷︷ ︸

Stable Training

+Lsim(zi,j ,Li,j) + Lorth(u
f
i,j , zi,j) + Lrecon(u

f
i,j , zi,j ,Di,j)︸ ︷︷ ︸

Following three components

,

where we use Lsim, Lorth, and Lrecon, corresponding to three components, to generate sample feature
indexes as defined in Definition 3.1. Additionally, we introduce Ldiv to improve training stability.
In detail,

• Lsim ensures label sensitivity for zi,j . It is defined as Lsim(zi,j ,Li,j) = 1 −
cosine similarity(zi,j ,Li,j), promoting a high cosine similarity between zi,j and Li,j .

• Lorth guarantees independence between uf
i,j and zi,j . It is defined as Lorth =

∥∥ZUT
∥∥ 1, where

Z = [zi,j ]
T and U = [uf

i,j ]
T .

• Lrecon for information preservation. It is defined as the mean squared distance between the
reconstructed embedding D̃i,j and the original CLIP image embedding Di,j .

• Ldiv is introduced to ensure stable training outcomes by promoting diversity in uf
ij across different

samples within the same batch. This is important because insufficient training epochs can result in
identical uf

ij values across all data samples. Ldiv = 1
B

∑B
j=1 log(

∑
k ̸=j exp(cos-sim(uf

i,j ,u
f
i,k)))

is designed to promise diversity between uf
i,j , and it is similar in concept to SimCLR (Chen et al.,

2020), focusing on negative pairs. B is the batch-size here.

Optimizing Client2Vec. We consider two training strategies, namely GLOBAL and FEDERATED
explained below:

• GLOBAL: Each client uploads one batch (128 samples) of (Di,j ,Li,j) pairs to the server. The
server trains the DSA-IGN using the collected pairs from all clients and then sends the trained
DSA-IGN to clients for generating client index.

• FEDERATED: The DSA-IGN is trained using all clients’ local data through FedAvg. In each
communication round, the server randomly selects 10% of clients, and the local epoch number
is set to 10.

3.3 VISUALIZATION EXAMPLES OF CLIENT INDEX

In this section, we visualize some examples of the generated client index on the DomainNet
dataset (Peng et al., 2019a). DomainNet contains data from 6 different domains, where data belonging
to different domains have significant feature shifts. We chose 50 out of 345 available classes, with each
domain randomly divided into 10 clients. Then the 6 domains will result in a total of 60 clients. Clients
0 to 9 correspond to the first feature domain, clients 10 to 19 to the second, and so forth, with clients
51 to 59 representing the last feature domain. Clients from various domains experience feature shifts
and possess varying sample sizes due to differences in the number of samples within each domain.
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Similarity of client indices among different clients. As the distribution shifts among clients
mainly come from the feature shifts among domains, in Figure 2 we depict the similarities of
the client index βi and the client feature index βf

i across clients, employing both GLOBAL and
FEDERATED training strategies. We have the following observations:

• Clients sharing the same feature domain show similar client indices. We observe the similarities
between client index βi and client feature index βf

i approach 1.0 for clients within the same
feature domain. Conversely, clients belonging to different feature domains have large distances
regarding the client feature index βf

i . This highlights the effectiveness of our method in learning
meaningful information about clients’ local distribution.

• Both the GLOBAL and FEDERATED training strategies produce client indices that encode meaning-
ful information about client distribution. We note that both the GLOBAL and FEDERATED training
strategies can generate similar client indices for clients with the same feature domain. Moreover,
the indices generated by the GLOBAL strategy exhibit a more clear boundary among domains.

4 IMPROVING FL VIA CLIENT2VEC

In this section, we showcase improving the FL training process by leveraging the trained client index
βi. Specifically, we explore three case studies aimed at refining crucial aspects of the FL training
pipeline: client sampling, model aggregation, and local training.

The intuition of using client index comes from the following reasons:

• The client index can measure the distance between clients, which helps for improving the
client sampling (case study 1) and model aggregation (case study 2) stages. As depicted in
Figure 3, clients with similar distributions tend to exhibit smaller distances between their respective
Client Indexes. The rationale for utilizing this distance information is derived from the analysis
presented in CyCP (Cho et al., 2023) and empirical findings in class incremental learning (He et al.,
2022). These sources indicate that reduced distances among client groups sampled in consecutive
rounds contribute to improved performance.

• The client feature index is orthogonal to the ideal client-invariant features, which are defined
as distribution bias in the domain generalization area. This orthogonal property contributes
to improved local training (case study 3). According to Definition 3.1, the Client Index is
independent of client-invariant features, which are highly desirable in practical applications.
Therefore, the objective of enhancing local training is to ensure that the model features maintain
their independence from the Client Indexes.

We will introduce the details of the three case studies in the following parts of this section.

Case study 1: improved client sampling. The client index, βi, is a natural metric for measuring dis-
tance between clients. Motivated by the theoretical findings in CyCP (Cho et al., 2023) and empirical
observations in class incremental learning (He et al., 2022)—where a smaller distance among client
groups sampled in adjacent rounds improves performance—we propose a greedy sampling approach.

In round t, let Ct−1 be the set of clients selected in round t − 1. Clients with greater similarity to
those in Ct−1 will have a higher probability of being selected. Specifically, the sampling probability
for client i is calculated as:

pti =
exp(S(βi, Ct−1)/τ)∑N
j=1 exp(S(βj , Ct−1)/τ)

. (1)

Here, τ is the hyper-parameter controlling the sampling distribution shape, and the similarity function
S is defined as:

S(βi, Ct−1) =
1

2N t−1

|Ct−1|∑
j=1

Nj

(
sim(βf

i ,β
f
j ) + sim(βl

i,β
l
j)
)
,

where N t−1 =
∑

j∈Ct−1 Nj , and Nj is the number of samples of client j. The “sim” refers to cosine
similarity. In practical implementation, to avoid resampling identical clients, those already sampled
within M

2|Ct−1| rounds will have pti set to 0, where M is the total number of clients.
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Case study 2: improved model aggregation. The enhanced model aggregation strategy follows
the same idea as client sampling. In detail, we assign higher aggregation weights to clients with
greater similarity to those in previous rounds. To achieve this, motivated by the Multiplicative Weight
Update algorithm (MWU) (Arora et al., 2012), we define the following optimization problem for
deriving the aggregation weights pti,g .

max
pti,g

Lagg =
∑
i∈Ct

pti,g

(
t∑

τ=1

γt−τS(βi, Cτ )

)
︸ ︷︷ ︸

A1:= profit function term

+λ1

∑
i∈Ct

pti,g log
qti
pti,g︸ ︷︷ ︸

A2 := entropy term

+λ0(
∑
i∈Ct

pti,g − 1)︸ ︷︷ ︸
A3:= regularization term

,
(2)

where γ is a hyper-parameter controlling the weights of historical information. A1 denotes the profit
function in the MWU algorithm, encouraging higher aggregation probability for clients with greater
similarity. A2 represents the entropy term, where qti = Ni/Nt denotes the prior distribution of aggrega-
tion probability (Li et al., 2020; Balakrishnan et al., 2021). A2 evaluates the risk associated with the ag-
gregation process. A3 serves as a regularization term, ensuring the total aggregation weights sum to 1.

In order to solve (2), we derive the aggregation weights pti,g on the communication round t below,
and defer the corresponding proof to Appendix A:

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τS(βi, Cτ )
)

∑
j∈Ct qtj exp

(
1
λ1

∑t
τ=1 γ

t−τS(βj , Cτ )
) , (3)

where λ1 denotes the heat parameter, controlling the entropy term’s strength. A higher λ1 value
emphasizes entropy, resulting in a more evenly distributed set of aggregation weights pti,g. λ0 is
tuning-free, as demonstrated in Appendix A, fixing

∑
i∈Ct pti,g = 1 results in a constant value for

λ0, which subsequently disappears from the Eq (3).

Case study 3: improved local training. According to Definition 3.1, the generated client feature
index βf

i contains client-specific information unrelated to label information. Thus, to promote label
sensitivity in local features, the local features should be independent of the client feature index βf

i .
To ensure this, we design the subsequent local objective function to enforce orthogonality between
the trained local features zi,j and the client feature index βf

i for any client i.
L(x, y) = Lcls(x, y) + Lorth(zP ,B

f ) + Ldist(z, zP ) , (4)

where Bf = [βf
1 , · · · ,β

f
N ], z represents local features, and zP ∈ Rdi is the projected feature. To

handle dimension mismatches between local features zi,j and client feature indices βf
i , we initially

project z ∈ Rd to zP ∈ Rdi using a trainable matrix P ∈ Rd×di (see Figure 3). An orthogonal loss
term Lorth =

∥∥zPBf
∥∥
1

further encourages orthogonality between zP and Bf .

To preserve maximum information from the original feature z in zP , we introduce an additional
distillation loss term, denoted as Ldist. This term regulates the Kullback-Leibler divergence between
the prediction logits of z and that of zP .

5 EXPERIMENTS

In this section, we investigate if the Client2Vec and the proposed three case studies can improve
the FL algorithm performance. More detailed experiment settings and additional experimental results
can be found in Appendix D.

5.1 EXPERIMENT SETTINGS

Datasets and models. In this paper, we utilize three datasets: Shakespeare, CIFAR10, and
DomainNet. Shakespeare’s partition uses LEAF benchmark’s method (Caldas et al., 2018). CIFAR10
is partitioned into 100 clients using Latent Dirichlet Allocation (LDA) (Yurochkin et al., 2019; Hsu
et al., 2019) with α = 0.1 for label distribution shifts. DomainNet randomly selects 50 classes
from the total 345 and divides sub-datasets into 10 clients per domain, resulting in a total of 60
clients. Further dataset partition details are available in Appendix D.2. We randomly select 10% of
clients in each of the 100 communication rounds, with a fixed number of 5 local epochs. Additional
hyper-parameter details can be found in Appendix D.2.
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Table 1: Performance improvement of Client2Vec. We assess the performance improvement achieved by
employing our proposed three case studies across diverse datasets, neural architectures, and baseline algorithms.
Each experiment comprises 100 communication rounds, with the number of local epochs set to 5. We measure
the average test accuracy of all clients in each communication round and report the best performance attained
across all rounds. The results are then averaged over three seeds. The i indicates improved client sampling,
ii indicates the improved model aggregation, and iii indicates the improved local training. The MI indicates
the maximum improvement of Client2Vec over baselines. The weight of the local regularization term in iii is
set to 1.0 for FEDERATED strategy, and 5.0 for GLOBAL strategy.

Datasets Algorithms Original Client2Vec (FEDERATED) Client2Vec (GLOBAL) MI

- + i + i+ ii + i+ ii+ iii + i + i+ ii + i+ ii+ iii -

Shakespeare
(LSTM)

FedAvg 49.93 ±0.12 50.33 ±0.03 50.28 ±0.04 50.51 ±0.10 50.30 ±0.08 50.38 ±0.07 50.40 ±0.08 0.58
FedAvgM 49.97 ±0.09 50.29 ±0.01 50.24 ±0.01 50.43 ±0.01 50.29 ±0.19 50.24 ±0.03 50.60 ±0.22 0.63
FedDyn 50.23 ±0.08 50.47 ±0.17 50.43 ±0.14 50.55 ±0.02 50.64 ±0.13 50.49 ±0.19 50.71 ±0.11 0.48
Moon 50.09 ±0.08 50.35 ±0.02 50.35 ±0.16 50.54 ±0.03 50.36 ±0.01 50.38 ±0.11 50.52 ±0.22 0.45
FedLC 49.89 ±0.19 50.43 ±0.08 50.37 ±0.09 50.46 ±0.05 50.34 ±0.05 50.29 ±0.07 50.50 ±0.05 0.61

CIFAR10
(ResNet18)

FedAvg 42.24 ±2.18 44.60 ±0.74 44.10 ±0.20 59.29 ±2.58 45.56 ±0.18 46.49 ±0.08 58.28 ±4.95 17.05
FedAvgM 42.56 ±2.23 45.81 ±1.36 45.05 ±1.24 63.48 ±2.16 46.55 ±0.83 46.24 ±1.36 69.37 ±4.49 26.81
FedDyn 37.22 ±3.26 39.49 ±0.01 39.45 ±0.20 69.10 ±1.17 39.42 ±0.08 39.84 ±0.16 70.59 ±3.86 33.37
Moon 41.12 ±1.23 44.28 ±0.45 43.79 ±0.43 60.26 ±3.29 45.20 ±0.36 44.85 ±1.22 65.55 ±0.27 24.43
FedLC 29.31 ±0.01 29.62 ±0.13 30.65 ±0.29 42.20 ±2.14 31.04 ±0.98 30.37 ±0.82 40.27 ±1.00 12.89

DomainNet
(MobileNet V2)

FedAvg 46.31 ±1.36 50.78 ±1.42 53.83 ±0.37 56.43 ±3.08 52.37 ±0.59 54.67 ±0.77 57.43 ±0.13 11.12
FedAvgM 45.50 ±1.21 50.61 ±1.73 55.70 ±0.69 58.34 ±0.01 53.50 ±2.33 53.56 ±0.81 57.44 ±1.04 12.84
FedDyn 45.41 ±0.89 47.24 ±0.29 49.90 ±0.34 55.53 ±1.49 52.42 ±0.23 50.68 ±0.26 53.33 ±0.26 10.12
Moon 50.56 ±0.89 59.39 ±0.47 59.54 ±0.44 57.03 ±0.60 60.48 ±0.10 59.93 ±0.41 57.50 ±0.52 9.92
FedLC 45.48 ±3.59 50.40 ±0.43 51.27 ±0.66 57.92 ±0.67 54.60 ±1.45 56.34 ±2.78 57.41 ±0.06 12.44
FedIIR 49.32 ±0.84 48.11 ±0.18 50.28 ±1.10 52.74 ±1.07 57.05 ±1.84 53.74 ±0.27 51.86 ±1.08 7.73
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Figure 4: Ablation studies on the number of training epochs and improved model aggregation for
Client2Vec. ’Original’ represents the algorithms in their original form, without enhancements, while other
results consider all three case studies with varying epoch numbers. The Figures 4(c) and 4(d) utilize client
indices generated by the GLOBAL strategies.

Client Inputs

Feature
Extractor

Classifier

Projection Layer

Projection
Classifier

Client Features

Projected Features

Align Logits

Client Indicies

Orthogonal

Classification
Loss

Figure 3: Workflow of the improved local
training (case study 3). The projection layer is
to project client features to the same dimension
with client feature index βf

i , and the projection
classifier is to ensure the projected features and the
original client features contain similar information.

Baseline Algorithms. We have selected widely
recognized FL baselines for our study, encompassing
established methods such as FedAvg (McMahan
et al., 2016), FedAvgM (Hsu et al., 2019), Fed-
Dyn (Acar et al., 2021), and Moon (Li et al., 2021).
Additionally, we have incorporated more recently
introduced baselines, namely FedLC (Zhang et al.,
2022) and FedIIR (Guo et al., 2023a). It is important
to note that FedIIR is specifically tailored for
addressing feature shift tasks and, as a result, its
evaluation is limited to the DomainNet dataset.

5.2 NUMERICAL RESULTS

Superior performance of Client2Vec on all three
case studies. In Table 1, we evaluate Client2Vec’s
performance in three case studies: enhanced client
sampling, improved model aggregation, and refined
local training. The results reveal the following
insights: (1) Each case study shows performance
improvements across all baselines, highlighting the potential of generated client indices to enhance
FL algorithms. (2) Enhanced local training provides the most significant performance boost,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Ablation studies on Client2Vec. We present naive baselines for Client2Vec. Feature Average: We
compute the average of CLIP image features for all data samples within each client as the client index. Class
Prototypes: We form each client’s index by averaging CLIP image features for each class and concatenating the
resulting class prototypes. Local Model Weights: We use the classifier model weights at the end of each training
epoch as the client index for each client. Notably, unlike other methods, these local model weights change with
each epoch, posing challenges for direct integration into our sampling and aggregation mechanisms.

CIFAR10 Sampling Sampling + Aggregation Sampling + Aggregation + Local Training

Ablation Study on Types of Client Index
Feature Average 52.95 31.99 11.40
Class Prototypes 44.89 49.88 15.41
Local Model Weights - - 32.85

Ablation Study on Generating Client Index
Omit Orthogonal Loss 38.58 44.39 15.32
Omit Text Align Loss 44.91 43.18 54.35
Omit Reconstruction Loss 43.19 30.86 31.65

Ablation Study on Label and Feature Index
Utilize Only Feature Index 42.34 23.57 44.99
Utilize Only Label Index 45.99 46.48

Ablation Study on Local Training
Omit Orthogonal Regularization in Improved Local Training - - 43.71

Client2Vec 45.56 46.49 58.28
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Figure 5: Ablation studies on improved local training and improved client sampling. We use the CIFAR10
dataset and client indices from both FEDERATED and GLOBAL strategies. Figure 5(a) and 5(b) different weights
for Eq (4); Figure 5(c) and 5(d) vary hyperparameter τ in Eq (1).

Table 3: Simulation time comparison. We compare the simulation time of Client2Vec and FedAvg on
DomainNet dataset.

Generate Client Index Training Total Training achieve FedAvg best performance Total achieve FedAvg best performance

Client2Vec 632s 24583s 10817s 11449s
FedAvg 0s 26224s 26224s 26224s

emphasizing the importance of refining local features for addressing distribution shifts. (3) The
FEDERATED strategy consistently matches the GLOBAL strategy in performance, except for
improved client sampling, where the GLOBAL strategy surpasses, showcasing its superior capability
in assessing client similarities (see Figure 2). (4) The performance gain from improved model
aggregation seems somewhat random compared to other case studies. This might be due to the shared
intuition between improved client sampling and model aggregation, limiting further improvements
when combining these approaches. However, solely using improved model aggregation consistently
outperforms the original algorithms, as seen in Figure 4(c) and 4(d).

In summary, utilizing the client indices significantly boost the model performance. In practice, we
can select which case studies to use, and we recommend combining all three case studies as this
approach provides a stable and significant performance gain compared to the baseline algorithms.

All the components of Client2Vec are necessary. In Table 2, we conduct ablation studies on
Client2Vec. The results indicate that: (1) The original Client2Vec achieves the highest final per-
formance among different client vector candidates. Although feature average and class prototypes
show potential for aiding in sampling, they cannot be readily employed in our local training phase,
which significantly contributes to the effectiveness of the Client2Vec algorithm. (2) All three losses
are essential for Client2Vec’s effectiveness. The orthogonal loss notably enhances the local training
phase, while removing the text align loss and reconstruction loss significantly diminishes model
performance. (3) Both feature and label indices are vital for optimizing Client2Vec’s performance.
The absence of the feature index hinders improved local training. Additionally, since the CIFAR10
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Table 4: Performance of Client2Vec on various network architectures. We evaluate the performance of
Client2Vec on the DomainNet dataset using diverse network architectures. The term ’Original’ refers to the
initial form of the algorithms, while Client2Vec (FEDERATED) and Client2Vec (GLOBAL) applied all three case
studies. Each experiment involves 100 communication rounds, with the number of local epochs set to 5. We
gauge the average test accuracy of all clients in each communication round and report the highest performance
achieved across all rounds. The results are averaged over three seeds. For the VIT experiments, we use the
CCT-7/3x1 models (Hassani et al., 2021).

DomainNet
MobileNet V2 (Pre-Trained) ResNet18 (Pre-Trained) VIT (From Scratch)

Original Client2Vec Original Client2Vec Original Client2Vec

FEDERATED GLOBAL FEDERATED GLOBAL FEDERATED GLOBAL

FedAvg 46.31 ±1.36 56.43 ±3.08 57.43 ±0.13 56.66 ±0.50 61.27 ±0.05 60.95 ±0.09 33.09 ±0.01 33.50 ±0.20 33.86 ±0.02
FedAvgM 45.50 ±1.21 58.34 ±0.01 57.44 ±1.04 57.44 ±0.42 61.22 ±0.11 60.81 ±0.18 33.67 ±0.56 34.47 ±0.20 34.21 ±0.11
FedDyn 45.41 ±0.89 51.49 ±0.17 53.33 ±0.26 58.17 ±0.61 61.67 ±0.42 59.88 ±0.42 29.57 ±0.40 31.64 ±0.13 31.36 ±0.12
MOON 50.56 ±0.89 57.03 ±0.60 57.50 ±0.52 53.80 ±0.46 60.76 ±0.25 59.90 ±0.17 32.29 ±0.52 33.58 ±0.12 33.73 ±0.03

dataset is partitioned using the Dirichlet method, introducing label shifts instead of feature shifts, the
label index is crucial for enhancing sampling and model aggregation performance in this context.
(4) Orthogonal loss is crucial for achieving optimal performance in local training. Without it, local
training fails to surpass the performance of the original FedAvg.

Ablation studies on the number of training epochs for Client2Vec. We conduct ablation studies
on the Client2Vec algorithm, varying the number of training epochs as shown in Figure 4(a) and 4(b).
The results indicate that: (1) Client indices generated with 100 or 500 training epochs notably enhance
FL algorithm performance. (2) Increasing the number of training epochs for Client2Vec does not con-
sistently lead to better results, as 100 epochs achieve similar performance to 500 epochs in most cases.

Ablation studies on hyper-parameters of improved client sampling. In Figure 5(c) and 5(d), we
perform ablation studies on the heat parameter τ in Eq (1). The results indicate that (1) algorithms
with improved client sampling consistently outperform the original algorithms across various τ
values; (2) the optimal τ value is smaller for client indices trained using the FEDERATED strategy
compared to the GLOBAL strategy. This observation aligns with our previous findings that GLOBAL
strategy-trained client indices exhibit larger inter-client distances.

Ablation studies on hyper-parameters of improved local training. In Figure 5, ablation studies
on the weight of the local regularization term (Eq (4)) were conducted. The findings suggest that: (1)
Using weights of 1.0 for the FEDERATED strategy and 5.0 for the GLOBAL strategy yields favorable
results for all algorithms. (2) FedDyn exhibits higher resilience to changes in the weights of the
local regularization terms.

Computation time comparison. In Table 3, we show the simulation time of Client2Vec and
FedAvg. Results show that (1) The additional computational overhead for generating the client index is
relatively insignificant compared to the subsequent training stage; (2) From the ‘Total achieve FedAvg
best performance’ column, Client2Vec requires less computational time to achieve comparable
performance to FedAvg, particularly noticeable on larger-scale datasets such as DomainNet.

Ablation Studies on Various Model Architectures. In Table 8, we show how Client2Vec improves
performance with different model architectures. Our results reveal that: (1) Client2Vec significantly
boosts the performance of original algorithms in all settings, and (2) pre-trained models like Mo-
bileNet V2 and ResNet18 produce better results, while Client2Vec also enhances the performance of
VIT models trained from scratch.

6 CONCLUSION AND FUTURE WORKS

In this paper, we explore the potential of enhancing FL algorithm performance through client index
vectors. Our three case studies clearly demonstrate the significant improvement in FL algorithm
performance achieved through client indices, highlighting client indexing as a valuable avenue for FL
algorithm enhancement. It’s important to note that these case studies may not cover all FL training
scenarios. Investigating the impact of client indices on other aspects, such as personalization and
clustering, would be valuable.
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A PROOF OF AGGREGATION WEIGHTS

Theorem A.1 (Aggregation weights). Define the following objective function

max
pt
i,g

Lagg =
∑
i∈St

pti,g

(
t∑

τ=1

γt−τS(βi,Sτ )

)
+ λ1

∑
i∈St

pti,g log
qti
pti,g

+ λ0(
∑
i∈St

pti,g − 1) , (5)

where pti,g is the aggregation weights on communication round t, S is the similarity function, and qti
is a prior distribution. Solving this optimization problem, the optimal pti,g is given by

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βi,Sτ )
)

∑
j∈St qtj exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βj ,Sτ )
) . (6)

Proof. Taking the derivation, we have

∂Lagg

∂pti,g
=

t∑
τ=1

γt−τdist(βi,Sτ ) + λ1

(
log qti − log pti,g − 1

)
+ λ0 , (7)

then we have

pti,g = exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ ) + log qti − 1 +
λ0

λ1

)
. (8)

Because
∑

i∈St pti,g = 1, we have

1− λ0

λ1
= log

(∑
i∈St

exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ ) + log qti

))
(9)

= log

(∑
i∈St

qti exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ )

))
, (10)

Then combine Equations (8) and (10) we have

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βi,Sτ )
)

∑
j∈St qtj exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βj ,Sτ )
) (11)
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B RELATED WORKS

Distribution shifts in FL. Federated Learning (FL) is introduced as a methodology for training
machine learning models in a distributed manner, wherein local data is retained and not exchanged
between the central server and individual clients. FedAvg (McMahan et al., 2016; Lin et al., 2020b),
serving as a foundational algorithm in this domain, advocates the use of local Stochastic Gradient
Descent (local SGD) to alleviate the communication burden. Nevertheless, the performance of FL
algorithms is substantially impeded by distribution shifts among clients. Addressing these local
distribution shifts has emerged as a primary focus in FL research (Li et al., 2020; Karimireddy et al.,
2020b;a; Guo et al., 2023b; Jiang & Lin, 2023). Many existing works address label distribution
shifts by incorporating additional regularization terms (Li et al., 2020; Karimireddy et al., 2020b;
Guo et al., 2021; Lee et al., 2022; Mendieta et al., 2022), enhancing feature learning (Tang et al.,
2022; Shi et al., 2023; Li et al., 2021; Zhou et al., 2023), and improving classifiers (Luo et al., 2021;
Li et al., 2023c). Regarding feature distribution shifts, the majority of FL methods concentrate on
the out-of-domain generalization problem. This objective aims to train robust models capable of
generalizing to previously unseen feature distributions (Nguyen et al., 2022; Li et al., 2023b; Guo
et al., 2023a). Approaches include investigating special cases (Reisizadeh et al., 2020), integrating
domain generalization algorithms in FL scenarios, such as domain-robust optimization (Mohri et al.,
2019; Deng et al., 2021), and training domain-invariant features (Peng et al., 2019b; Wang et al., 2022;
Shen et al., 2021; Sun et al., 2022; Gan et al., 2021). Notably, recent research has also considered
concept shifts by leveraging clustering methods (Jothimurugesan et al., 2022; ?; Guo et al., 2023c). In
this study, we address the challenge of distribution shifts in FL from another perspective—enhancing
the performance of FL algorithms prior to the training stage. Our approach holds the potential
for seamless integration with the aforementioned algorithms, and consider both feature and label
distribution shifts.

Information sharing in FL. Various methods have been developed to address the challenge of
distribution shifts among clients (Zhao et al., 2018; Jeong et al., 2018; Long et al., 2021). One
approach involves the sharing of information among clients, such as the exchange of local distribution
statistics (Shin et al., 2020; Zhou & Konukoglu, 2022), data representations (Hao et al., 2021; Tan
et al., 2022), and prediction logits (Chang et al., 2019; Luo et al., 2021). Additionally, techniques
leveraging global proxy datasets have been introduced to enhance FL training (Lin et al., 2020a; Duan
et al., 2019). Notably, FedMix (Yoon et al., 2020) and FedBR (Guo et al., 2023b) generate privacy-
protected augmentation data by averaging local batches, subsequently improving the local training
process. VHL (Tang et al., 2022) employs randomly initialized generative models to produce virtual
data, compelling local features to closely align with those of same-class virtual data. FedFed (Yang
et al., 2023) proposes a dataset distillation method, amalgamating distilled datasets into all clients’
local datasets to mitigate distribution shifts. In comparison to existing approaches, Client2Vec
presents several advantages: (1) the index generation process is decoupled from the FL training
process, thereby avoiding any additional burden on FL training; (2) Client2Vec generates only one
index vector per client, enhancing efficiency; (3) Client2Vec contributes to the whole FL training
stage, encompassing client sampling, model aggregation, and local training processes.

C PRELIMINARIES

In this section, we present essential background information on the techniques and definitions
employed in this paper to facilitate comprehension.

C.1 DOMAIN INDEXING

The Domain Generalization (DG) tasks are designed to address the cross-domain generalization prob-
lem by generating domain-invariant features. Typically, DG methods aim to establish independence
between a data point’s latent representation and its domain identity, represented by a one-hot vector
indicating the source domain (Ganin et al., 2016; Tzeng et al., 2017; Zhao et al., 2017). However,
recent studies have demonstrated that utilizing a domain index, which is a real-value scalar (or vector)
embedding domain semantics, as a substitute for domain identity, significantly enhances domain
generalization performance (Wang et al., 2020; Xu et al., 2021).
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For example, in the work by Wang et al. (2020), sleeping stage prediction models were adapted
across patients with varying ages, using "age" as the domain index. This approach yielded superior
performance compared to traditional models that categorized patients into groups based on age,
employing discrete group IDs as domain identities.

Nevertheless, obtaining domain indices may not always be feasible in practical scenarios. To
overcome this challenge, Xu et al. (2022) formally defined the domain index and introduced variational
domain indexing (VDI) to infer domain indices without prior knowledge. The definition of the domain
index in (Xu et al., 2022) is illustrated as follows.

Definition of domain index. Consider the unsupervised domain adaptation setting involving a
total of N domains, each characterized by a domain identity k ∈ K = [N ] ≜ {1, . . . , N}. Here,
k belongs to either the source domain identity set Ks or the target domain identity set Kt. Every
domain k comprises Dk data points. The task involves n labeled data points {(xis, ysi , ksi )}

n
i=1

originating from source domains (ksi ∈ Ks) and m unlabeled data points {xit, kti}
m
i=1 from target

domains (kti ∈ Kt). The objectives are twofold: (1) predict the labels {yti}
m
i=1 for the target domain

data, and (2) deduce global domain indices βk ∈ RBβ for each domain and local domain indices
ui ∈ RBu for each data point. It is important to note that each domain possesses a single global
domain index but multiple local domain indices, with one corresponding to each data point in the
domain. The data encoding generated from an encoder that takes x as input is represented as z ∈ RBz .
The mutual information is denoted by I(·; ·).
Definition C.1 (Domain Index). Given data x and label y, a domain-level variable β and a data-level
variable u are called global and local domain indices, respectively, if there exists a data encoding z
such that the following holds:

• Independence between β and z: Global domain index β is independent of data encoding
z, i.e., β ⊥⊥ z, or equivalently I(β; z) = 0. This is to encourage domain-invariant data
encoding z.

• Information Preservation of z: Data encoding z, local domain index u, and global domain
index β preserves as much information on x as possible, i.e., maximizing I(x;u,β, z). This
is to prevent β and u from collapsing to trivial solutions.

• Label Sensitivity of z: The data encoding z should contain as much information on the label
y as possible to maximize prediction power, i.e., maximizing I(y; z) conditioned on z ⊥⊥ β.
This is to make sure the previous two constraints on β, u, and z do not harm prediction
performance.

In this paper, we extend the Definition C.1 to Definition 3.1 by incorporating both client feature index
and client label index.

C.2 CLIP

CLIP (Radford et al., 2021) is a cross-modal model that establishes a connection between vision and
natural language by projecting image and text embeddings onto a shared space. When presented with
an image I and a corresponding descriptive sentence denoted as T, the CLIP image encoder and text
encoder encode the image and text into image embedding D and text embedding L, respectively.
Subsequently, the embeddings D and L are aligned to achieve a large cosine similarity, thereby
harmonizing the vision and language embedding spaces.

D ADDITIONAL EXPERIMENT RESULTS

D.1 WORKFLOW OF CLIENT2VEC ON LANGUAGE DATASETS

In Figure 6, we depict the workflow of Client2Vec on language datasets. The primary distinction
between Figure 1 and Figure 6 arises from the methods employed for encoding data and labels.
Specifically, for language datasets, particularly in the context of the next character prediction task, the
data is encoded as "The next character of {data}", while the label is encoded as "Character {label}".
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Figure 6: Overview of the workflow of the Client2Vec on language datasets.

In both cases, the CLIP text encoder is utilized by both the data encoder and label encoder for this
task.

D.2 EXPERIMENT SETTINGS

Dataset partition. The dataset partition follows the widely used settings in FL. In detail, we
consider three datasets in this paper, and the details are listed as the follows.

• Shakespeare: The partition of Shakespeare dataset directly use the partition method provided by
LEAF benchmark (Caldas et al., 2018), and we set the fraction of data sample to 0.1, fraction of
data in training set is set to 0.8, and minimum number of samples per user is set to 40.

• CIFAR10: We use the Latent Dirichlet Allocation (LDA) (Yurochkin et al., 2019; Hsu et al.,
2019) method with parameter α = 0.1 to introduce label distribution shifts among clients. The
dataset is partitioned into 100 clients.

• DomainNet: We randomly choose 50 classes from the overall 345 classes from DomainNet
dataset. Sub-datasets of each domain are partitioned into 10 clients, resulting in 60 clients in total.
Images are resized to 64× 64.

Training details and hyper-parameters. For every dataset and algorithm, we randomly select
10% of clients in each communication round and execute a total of 100 communication rounds. We
employ the SGD optimizer, with a momentum setting of 0.9 for the DomainNet dataset, and a weight
decay set to 5e-5. The number of local epochs is fixed at 5, and the learning rate is set to 1e-2. The
experiments are conduct on single NVIDIA 3090 GPU. The hyperparameters for our enhanced case
studies are detailed below.

• Improved client sampling. The heat parameter τ in Eq (1) is tuned in [0.1, 0.5, 1.0, 2.0].
• Improved model aggregation. We choose the optimal results by choosing γ = [0.1, 0.5, 0.9],

and set λ1 = 1.0 by default in Eq (8).
• Improved local training. For algorithms without extra local regularization terms, such as FedAvg,

FedAvgM, and FedLC, the weights assigned to Lorth and Ldist are explicitly fixed at 1.0. In
contrast, for approaches incorporating additional local regularization terms, such as Moon, FedDyn,
and FedIIR, the weights assigned to Lorth and Ldist are set equal to the respective values of those
additional local regularization terms in the respective algorithms.

The hyper-parameters utilized for each baseline algorithms are listed below.

• FedAvgM: The server momentum is tuned in [0.1, 0.5, 1.0].
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Table 5: Ablation studies on improved client sampling. We conduct ablation studies on hyper-parameter τ in
Equation (1). The term ’Original’ refers to the algorithm in its initial form, where the improved client sampling
is not applied. This ablation study focuses on improved client sampling, without integrating the other case
studies involving enhanced model aggregation and improved local training.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- τ = 0.1 τ = 0.5 τ = 1.0 τ = 2.0 τ = 0.1 τ = 0.5 τ = 1.0 τ = 2.0

FedAvg 42.24 44.60 44.21 42.88 42.49 41.28 43.10 45.56 43.28
FedAvgM 42.56 45.81 44.22 43.74 43.11 42.50 44.80 46.55 44.62

Moon 41.12 43.86 44.28 43.23 42.82 42.15 42.80 44.85 44.74

Table 6: Ablation studies on training epochs of Client2Vec. We perform ablation studies on the training
epochs of DSA-IGN, incorporating all three case studies.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- E = 100 E = 500 E = 100 E = 500

FedAvg 42.24 59.58 59.29 61.55 58.28
FedAvgM 42.56 61.84 63.48 61.12 69.37

Moon 41.12 63.61 60.26 63.79 65.55
FedDyn 37.22 80.75 69.10 78.01 70.59

• FedDyn: We set α = 0.1, and the max gradient norm to 10.
• Moon: The heat parameter is set to 0.5, and the weights of local regularization term is tuned in
[0.01, 0.1, 1.0].

• FedLC: We set τ = 1.0.
• FedIIR: We tuned ema = [0.95, 0.5, 0.1], and the weights of local regularization term are set to
1e− 3.

Model architectures and training details of DSA-IGN. The projection layer utilizes a three-
layer transformer encoder. Each transformer encoder layer consists of 8 attention heads, with the
model dimension set to 32, and the feed-forward layer dimension set to 2048. The projection
layer is represented as a matrix with dimensions 1024× 512. Given a batch of CLIP embeddings
D ∈ RN×512, the input for the decomposition block is constructed as Ii,j = [D,D] ∈ RN×1024.
Subsequently, I is reshaped into Ĩ = (N × 32 × 32), indicating that each sample comprises 32
patches, and each patch has a dimension of 32.

The reshaped Ĩ is fed into the decomposition block, producing an output Õ ∈ (N × 32× 32), which
is then reshaped to O = (N × 1024) = [Z,U]. Here, Z ∈ RN×512 represents the data encoding z
as defined in Definition 3.1, and U ∈ RN×512 corresponds to the sample feature index u. The input
to the projection layer is identical to the output of the decomposition block, represented as O.

D.3 ABLATION STUDIES ON CLIENT INDEX GENERATION

Generating client index w/o the use of the diversity loss Ldiv. As shown in Figure 7, the client
feature index βf

i become close to identical when do not use the diversity loss. This result suggest the
necessity of using the diversity loss to obtain the meaningful results.

Using different projection layers in DSA-IGN. In Figure 8, we use single Linear layer and
two-layer MLP as projection layers in DSA-IGN. Results show that both architectures can obtain
sufficient meaningful results.

D.4 ABLATION STUDIES ON CASE STUDIES

In Tables 5, 6, and 7, we conduct ablation studies on the three case studies we introduced in Section 4.
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(b) Diversity loss, 1000 epochs
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(c) Without Diversity loss, 500 epochs
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(d) Without Diversity loss, 1000 epochs

Figure 7: Comparison between client indexed generated with/without diversity loss. We use the DomainNet
dataset with 60 clients, and use the Global training strategy. The DSA-IGN is trained by 500 and 1000 global
epochs. We resport the cos-similarities of the client feature index βf
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(b) MLP Decoder

Figure 8: Comparison between client indexed generated using different projection layers. We use the
DomainNet dataset with 60 clients, and use the Global training strategy. The DSA-IGN is trained by 500 global
epochs. We resport the cos-similarities of the client feature index βf
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Table 7: Ablation studies on improved local training. We conduct ablation studies on the weights of the
improved local training. All three case studies are incorporated in this setting.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- 1.0 5.0 10.0 1.0 5.0 10.0

FedAvg 42.24 59.29 42.76 66.02 48.83 58.28 34.86
FedAvgM 42.56 63.48 70.04 68.34 49.77 69.37 35.51

Moon 41.12 60.25 51.41 59.02 46.61 60.53 33.39
FedDyn 37.22 69.10 79.96 78.70 43.87 70.59 69.57

Painting Quickdraw

Infograph

Real
-0.33

0.050.
42

0.350.54

Sketch

-0.21

0.
90

0.01

Clipart

-0.75-0.4
2

Figure 9: Illustration of feature index similarities between different domains. We present an analysis of
cos-similarities across various domains. The results are acquired employing the GLOBAL training strategy.

Table 8: Performance of Client2Vec on various network architectures. We evaluate the performance of
Client2Vec on the DomainNet dataset using diverse network architectures. The term ’Original’ refers to the
initial form of the algorithms, while Client2Vec (FEDERATED) and Client2Vec (GLOBAL) applied all three case
studies. Each experiment involves 100 communication rounds, with the number of local epochs set to 5. We
gauge the average test accuracy of all clients in each communication round and report the highest performance
achieved across all rounds. The results are averaged over three seeds. For the VIT experiments, we use the
CCT-7/3x1 models (Hassani et al., 2021).

DomainNet
MobileNet V2 (Pre-Trained) ResNet18 (Pre-Trained) VIT (From Scratch)

Original Client2Vec Original Client2Vec Original Client2Vec

FEDERATED GLOBAL FEDERATED GLOBAL FEDERATED GLOBAL

FedAvg 46.31 ±1.36 56.43 ±3.08 57.43 ±0.13 56.66 ±0.50 61.27 ±0.05 60.95 ±0.09 33.09 ±0.01 33.50 ±0.20 33.86 ±0.02
FedAvgM 45.50 ±1.21 58.34 ±0.01 57.44 ±1.04 57.44 ±0.42 61.22 ±0.11 60.81 ±0.18 33.67 ±0.56 34.47 ±0.20 34.21 ±0.11
FedDyn 45.41 ±0.89 51.49 ±0.17 53.33 ±0.26 58.17 ±0.61 61.67 ±0.42 59.88 ±0.42 29.57 ±0.40 31.64 ±0.13 31.36 ±0.12
MOON 50.56 ±0.89 57.03 ±0.60 57.50 ±0.52 53.80 ±0.46 60.76 ±0.25 59.90 ±0.17 32.29 ±0.52 33.58 ±0.12 33.73 ±0.03

D.5 ABLATION STUDIES ON VARIOUS MODEL ARCHITECTURES.

In Table 8, we show how Client2Vec improves performance with different model architectures. Our
results reveal that: (1) Client2Vec significantly boosts the performance of original algorithms in all
settings, and (2) pre-trained models like MobileNet V2 and ResNet18 produce better results, while
Client2Vec also enhances the performance of VIT models trained from scratch.

D.6 ABLATION STUDIES ON LEVEL OF DATA HETEROGENEITY

In Table 9, we present the performance of Client2Vec in situations of extreme data heterogene-
ity, where each client possesses data from only two classes. The results indicate that Client2Vec
significantly surpasses the original methods by a considerable margin.

D.7 INTER-DOMAIN SIMILARITY ASSESSMENT.

Utilizing the feature index βf
i for clients, we quantify similarity across different domains. Figure 9

illustrates the average cosine similarities of client feature index βf
i between clients belonging to
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CIFAR10 FedAVG FedAVG + Client2Vec FedAvgM FedAvgM + Client2Vec

two classes each client 21.35 66.43 18.05 63.30

Table 9: Ablation studies on level of data heterogeneity.

different domains. The results align with human intuitions, with the “Real” domain showing greater
proximity to “Clipart”, “Painting”, and “Sketch”, while exhibiting significant differences from
“Infograph” and “Quickdraw”. These findings validate the effectiveness of our generated client index.
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