
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CLIENT2VEC: IMPROVING FEDERATED LEARNING BY
DISTRIBUTION SHIFTS AWARE CLIENT INDEXING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a privacy-preserving distributed machine learning
paradigm. Nonetheless, the substantial distribution shifts among clients pose a
considerable challenge to the performance of current FL algorithms. To mitigate
this challenge, various methods have been proposed to enhance the FL training
process. This paper endeavors to tackle the issue of data heterogeneity from
another perspective—by improving FL algorithms prior to the actual training stage.
Specifically, we introduce the Client2Vec mechanism, which generates a unique
client index for each client before the commencement of FL training. Subsequently,
we leverage the generated client index to enhance the subsequent FL training
process. To demonstrate the effectiveness of the proposed Client2Vec method,
we conduct three case studies that assess the impact of the client index on the
FL training process. These case studies encompass enhanced client sampling,
model aggregation, and local training. Extensive experiments conducted on diverse
datasets and model architectures show the efficacy of Client2Vec across all three
case studies. Our code will be publicly available.

1 INTRODUCTION

Federated Learning (FL) is an emerging machine learning paradigm that preserves clients’ privacy
by only exchanging model parameters between clients and server, and maintains the local data
not exchanged. As the de facto algorithm in FL, FedAvg (McMahan et al., 2016) proposes to use
local SGD to improve the communication efficiency of FL. However, the non-i.i.d. nature of local
distributions significantly reduces the performance of FL algorithms (Lin et al., 2020b; Karimireddy
et al., 2020b; Li et al., 2020). Despite the great success of existing methods in addressing the non-i.i.d.
problem in FL (Li et al., 2021; Acar et al., 2020), most existing studies center on the training process
of FL by improving the key stages of the FL training, such as client sampling (Fraboni et al., 2021;
Luo et al., 2022; Wang et al., 2023), model aggregation (Wang et al., 2019; Lin et al., 2020a; Chen
et al., 2023), and local training (Li et al., 2020; 2021).

An additional line of research in FL aims to find efficient methods to improve the performance before
the training stage. Yet only a limited number of works exist, either utilizing dataset distillation before
the FL training (Yang et al., 2023), or generating global shared synthetic pseudo-data (Guo et al.,
2023b; Tang et al., 2022). Despite promising, these approaches incur additional computation costs
on local devices with a limited number of applicable scenarios and are incompatible with other FL
training stages like client sampling and model aggregation.

Taking inspiration from the Word2Vec technique in Natural Language Processing (NLP)
tasks (Mikolov et al., 2013) and domain indexing in Domain Generalization tasks (Xu et al., 2022),
we introduce a novel mechanism below, namely Client2Vec. Client2Vec generates an index vector
for each client, serving as their identity by incorporating information about the client’s local data
distribution. These vectors are used to measure label and feature distribution shifts among clients,
seamlessly integrate into the FL training pipeline, and allows efficiently (1) operating independently
of the FL training process, (2) combining with existing FL methods, while imposing a minimal addi-
tional computational load on local devices, and (3) enhancing FL training performance throughout all
stages.

Our contributions can be summarized as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

• We explore a novel mechanism in FL called Client2Vec, which involves creating an index vector
for each client before the FL training phase. These vectors incorporate information about the local
distribution of clients and subsequently enhance the FL training process.

• We present the Distribution Shifts Aware Index Generation Network (DSA-IGN), a network
specifically designed to generate the client index prior to FL training. Our visualization results
demonstrate the effectiveness of the client index in measuring the similarities in clients’ local
distributions.

• We conduct three case studies, including client sampling, model aggregation, and local training, to
illustrate the potential and effectiveness of the generated client index. Our experiments, conducted
on various datasets and model architectures, consistently demonstrate significant performance
improvements with the use of Client2Vec.

2 RELATED WORKS

Information sharing in FL. Federated Learning (FL) is a distributed training methodology where
local data is retained and not exchanged between the central server and clients (Li et al., 2020;
Karimireddy et al., 2020b;a; Guo et al., 2023b; Jiang & Lin, 2023). FedAvg (McMahan et al., 2016;
Lin et al., 2020b), a foundational algorithm, uses local Stochastic Gradient Descent (local SGD)
to reduce communication. Nevertheless, the performance of FL algorithms is substantially impeded
by distribution shifts among clients. To address distribution shift in FL, existing works share local
distribution statistics (Shin et al., 2020; Zhou & Konukoglu, 2022), data representations (Hao et al.,
2021; Tan et al., 2022), and prediction logits (Chang et al., 2019; Luo et al., 2021). FedMix (Yoon
et al., 2020) and FedBR (Guo et al., 2023b) enhance local training with privacy-protected
augmentation data. VHL (Tang et al., 2022) employs randomly initialized generative models to
produce virtual data, regularizing local features to closely align with those of same-class virtual
data. FedFed (Yang et al., 2023) proposes a dataset distillation method, amalgamating distilled
datasets into all clients’ local datasets to mitigate distribution shifts. Compared to existing methods,
Client2Vec has the following advantages: (1) decouples index generation from FL training, reducing
FL training load; (2) generates one client index per client, improving efficiency; (3) contributes to
the entire FL training process, including client sampling, model aggregation, and local training.

Domain indexing. Domain Generalization (DG) tackles cross-domain generalization by generating
domain-invariant features. While conventional DG methods strive to make a data point’s latent
representation independent of its domain identity using a one-hot vector (Ganin et al., 2016; Tzeng
et al., 2017; Zhao et al., 2017), recent studies propose using real-value scalars or vectors as domain
indices to improve performance (Wang et al., 2020; Xu et al., 2021). However, obtaining domain
indices may be impractical. To address this, Xu et al. (2022) introduced variational domain indexing
(VDI) to infer domain indices without prior knowledge. Yet, challenges arise when applying VDI
to FL due to communication costs, privacy concerns, and neglect of label shifts. Further discussions
on related works can be found in Appendix B.

3 CLIENT2VEC: DISTRIBUTION SHIFTS AWARE CLIENT INDEXING

In this section, we introduce Client2Vec, a mechanism that generates an index vector for each client,
representing their identity and incorporating information about their local distribution. The client
index, which considers both label and feature distribution shifts, is defined in Section 3.1. We present
the Distribution Shifts Aware Index Generation Network (DSA-IGN) in Section 3.2, which generates
the client index based on the specified criteria. Visualization examples of the generated client index
are provided in Section 3.3.

3.1 CLIENT INDEX

We consider the FL setting with M clients, where each client i possesses Ni data samples. The j-th
data sample of client i is represented as (xi,j , yi,j).

Sample index u and Client index β. To ensure that the client index conveys information about all
data samples within the client, we first generate the sample index ui,j as the index vector for the data

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

A photo of
a/an

{object}.

airplane
bird

camel
hat

Data Inputs

C
lie

nt
 3

C
lie

nt
 1

C
lie

nt
 2

Pretrained
Data

Encoder

Client Copies

Locally

�3,4�3,3�3,2�3,1

�2,4�2,3�2,2�2,1

�1,4�1,3�1,2�1,1

Label Inputs

�4�3�2�1

De
co

m
po

sit
io

n
Bl

oc
k

� 3,4� 3,3� 3,2� 3,1

� 2,4� 2,3� 2,2� 2,1

� 1,4� 1,3� 1,2� 1,1

�3,4
��3,3

��3,2
��3,1

�
�2,4

��2,3
��2,2

��2,1
�

�1,4
��1,3

��1,2
��1,1

�

Align

Orthogonal

�3,4�3,3�3,2�3,1

�2,4�2,3�2,2�2,1

�1,4�1,3�1,2�1,1
Reconstruction

Error

Projection Layer

+

Pretrained
Label

Encoder

Freezed

+ Concatenate

Figure 1: Illustration of the DSA-IGN Workflow: The local data from clients, denoted as (xi,j , yi,j), undergo
encoding by the CLIP encoders, resulting in the transformation to (Di,j ,Li,j) before the index generation
process. The CLIP image embedding Di,j is then split into a data encoding zi,j and a sample feature index uf

i,j .
The zi,j and uf

i,j are then concatenated and projected to D̃i,j to reconstruct Di,j . Lastly, client label index βl
i

and client feature index βf
i are obtained by averaging Li,j and ui,j , respectively.

sample (xi,j , yi,j). The client index βi is then computed as the average of all data samples for client
i: βi =

1
Ni

∑Ni

j=1 ui,j .

For FL scenarios where feature and label shifts occur simultaneously, the sample index ui,j consists
of two parts: sample feature index uf

i,j ∈ Rdi and sample label index ul
i,j ∈ Rdi , encoding the

feature and label information of the data sample (xi,j , yi,j), respectively. Similarly, the client index
βi is represented as βi = [βf

i ;β
l
i] ∈ R2di , where βf

i ∈ Rdi is the client feature index, and βl
i ∈ Rdi

is the client label index.

However, obtaining client and sample indices may not always be trivial in practice. To address this,
we extend the domain index idea in Xu et al. (2022) and define the expected properties of sample
index ui,j and client index βi below.

Definition 3.1 (Sample Index). Given the data sample (xi,j , yi,j) and its corresponding encoding
zi,j , which encode information that can be used to predict yi,j , the sample index ui,j of data sample
(xi,j , yi,j) is expected to satisfy the following properties:

• Independence between uf
i,j and zi,j . Sample feature index uf

i,j is independent of client-invariant
data encoding zi,j . This aims to encourage the sample feature index uf

i,j to encode the
client-dependent information—specifically, the distinct information about the client’s local
distribution, and unrelated to label prediction.

• Maximizing information in ul
i,j and zi,j for label prediction. The data encoding zi,j and sample

label index ul
i,j should contain as much information as possible to predict label y.

• Information Preservation of uf
i,j and zi,j . Data encoding zi,j and sample feature index uf

i,j
preserves as much information as possible to recover data xi,j .

Remark 3.2. Different from the definitions of domain index outlined in Xu et al. (2022) (refer to
Definition C.1), Definition 3.1 encompasses both label and feature distribution shifts by introducing
the sample label index ul

i,j . Additionally, generating domain-level index in Definition C.1 requires
to gather all sample indices ui,j from various data sources. We simplify this procedure and calculate
the client index as βi=

1
Ni

∑Ni

j=1 ui,j .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 GENERATING CLIENT INDEX

In this section, we describe the generation of βi and ui,j based on Definition 3.1, as depicted in
Figure 1. We use image datasets for clarity, and details for language datasets can be found in
Appendix D.1.

Encoding data using CLIP. Since the client index, denoted as βi, is computed as an average across
sample indices ui,j , the primary challenge in generating the client index lies in generating these
sample indices ui,j . According to Definition 3.1, we can observe that the sample label index ul

i,j
solely encodes label information, while the sample feature index encodes image feature information
independently of label information. Consequently, to generate the sample index, we must devise
a method that maps label information and image information into the same space, facilitating the
extraction of label-dependent sample label index ul

i,j and label-independent sample feature index uf
i,j .

We propose to leverage CLIP (Radford et al., 2021) to ease the index generation process. CLIP
is a pre-trained cross-modality model that contains an image encoder and a text encoder, aligning
image and text embedding. As shown in Figure 1, for a given input image-label pairs (xi,j , yi,j),
we utilize a CLIP image encoder to produce image embedding Di,j and a text encoder to generate
label embedding Li,j :

• Label Embedding Li,j: The Li,j only encodes label descriptions such as “A photo of a/an
{object}”. Therefore, we use Li,j as the embedding that only contains label information, which
is naturally invariant among clients.

• Image embedding Di,j: The Di,j is extracted from the whole image, serving as a compact feature
containing both client-independent (label information) and client-specific (background, style,
etc.) features.

Consequently, the original local dataset Di = {(xi,j , yi,j)} is transformed into the CLIP embedding
set Ei = {(Di,j ,Li,j)}. The Ei is then utilized to generate the index. Note that other cross-modality
models, such as BLIP (Li et al., 2022) and BLIP2 (Li et al., 2023a), can also align vision and language
like CLIP. Exploring the effectiveness of these models could be a valuable future research direction.

Generating sample indices using CLIP embedding and DSA-IGN. Given that Li,j only encodes
label information, we directly set ul

i,j = Li,j . On the contrary, by Definition 3.1, the sample
feature index uf

i,j needs to encode label-invariant client-specific information. Thus, we decompose
Di,j—which contains both label and client-specific information—to generate uf

i,j while isolating
the client-specific information from Di,j .

The entire process of generating the sample feature index is achieved by training the Distribution
Shifts Aware Generation Network (DSA-IGN). The training process of DSA-IGN includes three
components, corresponding to the three rules in Definition 3.1:

• Decompose CLIP image embedding Di,j . We decompose Di,j to sample feature index uf
i,j

and data encoding zi,j . Regularization is applied to ensure orthogonality between uf
i,j and zi,j ,

ensuring their independence. The decomposition block can be any non-linear neural network
architecture, and we use a three-layer transformer encoder as the decomposition block for the
sake of simplicity1.

• Aligning the data encoding zi,j and Li,j to ensure label sensitivity of zi,j . We force zi,j to
have a large cosine similarity with the label embedding Li,j , ensuring that zi,j encodes as much
information as possible to predict the label yi,j .

• Reconstruct CLIP image embedding Di,j . To ensure that uf
i,j and zi,j retain all the information

from the CLIP image embedding Di,j , we utilize uf
i,j and zi,j for the purpose of reconstructing

Di,j . In detail, we begin by concatenating uf
i,j and zi,j , followed by projecting the resultant

vector onto D̃i, j, and subsequently minimizing the distance between the reconstructed embedding

1Each transformer encoder layer will have 8 attention heads and the dimension of the model is 32. More
details about the network architectures of DSA-IGN can be found in Appendix D.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

(a) Client Index GLOBAL

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(b) Client Index FEDERATED

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Feature IndexGLOBAL

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Feature Index FEDERATED

Figure 2: Visualization of index similarities between clients. We illustrate the similarities of client index βi and
client feature index βf

i between clients. Results including both GLOBAL and FEDERATED training strategies are
reported. Ideally, clients in the same domain should share a similar client index, resulting in dark diagonal blocks.

D̃i, j and the original CLIP image embedding Di,j . Experiments on various projection layer
architectures can be found in Appendix D.3.

Objective functions of DSA-IGN. We define the following objective function:

L(uf
i,j , zi,j ,Di,j ,Li,j) = Ldiv(u

f
i,j)︸ ︷︷ ︸

Stable Training

+Lsim(zi,j ,Li,j) + Lorth(u
f
i,j , zi,j) + Lrecon(u

f
i,j , zi,j ,Di,j)︸ ︷︷ ︸

Following three components

,

where we use Lsim, Lorth, and Lrecon, corresponding to three components, to generate sample feature
indexes as defined in Definition 3.1. Additionally, we introduce Ldiv to improve training stability.
In detail,

• Lsim ensures label sensitivity for zi,j . It is defined as Lsim(zi,j ,Li,j) = 1 −
cosine similarity(zi,j ,Li,j), promoting a high cosine similarity between zi,j and Li,j .

• Lorth guarantees independence between uf
i,j and zi,j . It is defined as Lorth =

∥∥ZUT
∥∥ 1, where

Z = [zi,j]
T and U = [uf

i,j]
T .

• Lrecon for information preservation. It is defined as the mean squared distance between the
reconstructed embedding D̃i,j and the original CLIP image embedding Di,j .

• Ldiv is introduced to ensure stable training outcomes by promoting diversity in uf
ij across different

samples within the same batch. This is important because insufficient training epochs can result in
identical uf

ij values across all data samples. Ldiv = 1
B

∑B
j=1 log(

∑
k ̸=j exp(cos-sim(uf

i,j ,u
f
i,k)))

is designed to promise diversity between uf
i,j , and it is similar in concept to SimCLR (Chen et al.,

2020), focusing on negative pairs. B is the batch-size here.

Optimizing Client2Vec. We consider two training strategies, namely GLOBAL and FEDERATED
explained below:

• GLOBAL: Each client uploads one batch (128 samples) of (Di,j ,Li,j) pairs to the server. The
server trains the DSA-IGN using the collected pairs from all clients and then sends the trained
DSA-IGN to clients for generating client index.

• FEDERATED: The DSA-IGN is trained using all clients’ local data through FedAvg. In each
communication round, the server randomly selects 10% of clients, and the local epoch number
is set to 10.

3.3 VISUALIZATION EXAMPLES OF CLIENT INDEX

In this section, we visualize some examples of the generated client index on the DomainNet
dataset (Peng et al., 2019a). DomainNet contains data from 6 different domains, where data belonging
to different domains have significant feature shifts. We chose 50 out of 345 available classes, with each
domain randomly divided into 10 clients. Then the 6 domains will result in a total of 60 clients. Clients
0 to 9 correspond to the first feature domain, clients 10 to 19 to the second, and so forth, with clients
51 to 59 representing the last feature domain. Clients from various domains experience feature shifts
and possess varying sample sizes due to differences in the number of samples within each domain.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Similarity of client indices among different clients. As the distribution shifts among clients
mainly come from the feature shifts among domains, in Figure 2 we depict the similarities of
the client index βi and the client feature index βf

i across clients, employing both GLOBAL and
FEDERATED training strategies. We have the following observations:

• Clients sharing the same feature domain show similar client indices. We observe the similarities
between client index βi and client feature index βf

i approach 1.0 for clients within the same
feature domain. Conversely, clients belonging to different feature domains have large distances
regarding the client feature index βf

i . This highlights the effectiveness of our method in learning
meaningful information about clients’ local distribution.

• Both the GLOBAL and FEDERATED training strategies produce client indices that encode meaning-
ful information about client distribution. We note that both the GLOBAL and FEDERATED training
strategies can generate similar client indices for clients with the same feature domain. Moreover,
the indices generated by the GLOBAL strategy exhibit a more clear boundary among domains.

4 IMPROVING FL VIA CLIENT2VEC

In this section, we showcase improving the FL training process by leveraging the trained client index
βi. Specifically, we explore three case studies aimed at refining crucial aspects of the FL training
pipeline: client sampling, model aggregation, and local training.

The intuition of using client index comes from the following reasons:

• The client index can measure the distance between clients, which helps for improving the
client sampling (case study 1) and model aggregation (case study 2) stages. As depicted in
Figure 3, clients with similar distributions tend to exhibit smaller distances between their respective
Client Indexes. The rationale for utilizing this distance information is derived from the analysis
presented in CyCP (Cho et al., 2023) and empirical findings in class incremental learning (He et al.,
2022). These sources indicate that reduced distances among client groups sampled in consecutive
rounds contribute to improved performance.

• The client feature index is orthogonal to the ideal client-invariant features, which are defined
as distribution bias in the domain generalization area. This orthogonal property contributes
to improved local training (case study 3). According to Definition 3.1, the Client Index is
independent of client-invariant features, which are highly desirable in practical applications.
Therefore, the objective of enhancing local training is to ensure that the model features maintain
their independence from the Client Indexes.

We will introduce the details of the three case studies in the following parts of this section.

Case study 1: improved client sampling. The client index, βi, is a natural metric for measuring dis-
tance between clients. Motivated by the theoretical findings in CyCP (Cho et al., 2023) and empirical
observations in class incremental learning (He et al., 2022)—where a smaller distance among client
groups sampled in adjacent rounds improves performance—we propose a greedy sampling approach.

In round t, let Ct−1 be the set of clients selected in round t − 1. Clients with greater similarity to
those in Ct−1 will have a higher probability of being selected. Specifically, the sampling probability
for client i is calculated as:

pti =
exp(S(βi, Ct−1)/τ)∑N
j=1 exp(S(βj , Ct−1)/τ)

. (1)

Here, τ is the hyper-parameter controlling the sampling distribution shape, and the similarity function
S is defined as:

S(βi, Ct−1) =
1

2N t−1

|Ct−1|∑
j=1

Nj

(
sim(βf

i ,β
f
j) + sim(βl

i,β
l
j)
)
,

where N t−1 =
∑

j∈Ct−1 Nj , and Nj is the number of samples of client j. The “sim” refers to cosine
similarity. In practical implementation, to avoid resampling identical clients, those already sampled
within M

2|Ct−1| rounds will have pti set to 0, where M is the total number of clients.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Case study 2: improved model aggregation. The enhanced model aggregation strategy follows
the same idea as client sampling. In detail, we assign higher aggregation weights to clients with
greater similarity to those in previous rounds. To achieve this, motivated by the Multiplicative Weight
Update algorithm (MWU) (Arora et al., 2012), we define the following optimization problem for
deriving the aggregation weights pti,g .

max
pti,g

Lagg =
∑
i∈Ct

pti,g

(
t∑

τ=1

γt−τS(βi, Cτ)

)
︸ ︷︷ ︸

A1:= profit function term

+λ1

∑
i∈Ct

pti,g log
qti
pti,g︸ ︷︷ ︸

A2 := entropy term

+λ0(
∑
i∈Ct

pti,g − 1)︸ ︷︷ ︸
A3:= regularization term

,
(2)

where γ is a hyper-parameter controlling the weights of historical information. A1 denotes the profit
function in the MWU algorithm, encouraging higher aggregation probability for clients with greater
similarity. A2 represents the entropy term, where qti = Ni/Nt denotes the prior distribution of aggrega-
tion probability (Li et al., 2020; Balakrishnan et al., 2021). A2 evaluates the risk associated with the ag-
gregation process. A3 serves as a regularization term, ensuring the total aggregation weights sum to 1.

In order to solve (2), we derive the aggregation weights pti,g on the communication round t below,
and defer the corresponding proof to Appendix A:

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τS(βi, Cτ)
)

∑
j∈Ct qtj exp

(
1
λ1

∑t
τ=1 γ

t−τS(βj , Cτ)
) , (3)

where λ1 denotes the heat parameter, controlling the entropy term’s strength. A higher λ1 value
emphasizes entropy, resulting in a more evenly distributed set of aggregation weights pti,g. λ0 is
tuning-free, as demonstrated in Appendix A, fixing

∑
i∈Ct pti,g = 1 results in a constant value for

λ0, which subsequently disappears from the Eq (3).

Case study 3: improved local training. According to Definition 3.1, the generated client feature
index βf

i contains client-specific information unrelated to label information. Thus, to promote label
sensitivity in local features, the local features should be independent of the client feature index βf

i .
To ensure this, we design the subsequent local objective function to enforce orthogonality between
the trained local features zi,j and the client feature index βf

i for any client i.
L(x, y) = Lcls(x, y) + Lorth(zP ,B

f) + Ldist(z, zP) , (4)

where Bf = [βf
1 , · · · ,β

f
N], z represents local features, and zP ∈ Rdi is the projected feature. To

handle dimension mismatches between local features zi,j and client feature indices βf
i , we initially

project z ∈ Rd to zP ∈ Rdi using a trainable matrix P ∈ Rd×di (see Figure 3). An orthogonal loss
term Lorth =

∥∥zPBf
∥∥
1

further encourages orthogonality between zP and Bf .

To preserve maximum information from the original feature z in zP , we introduce an additional
distillation loss term, denoted as Ldist. This term regulates the Kullback-Leibler divergence between
the prediction logits of z and that of zP .

5 EXPERIMENTS

In this section, we investigate if the Client2Vec and the proposed three case studies can improve
the FL algorithm performance. More detailed experiment settings and additional experimental results
can be found in Appendix D.

5.1 EXPERIMENT SETTINGS

Datasets and models. In this paper, we utilize three datasets: Shakespeare, CIFAR10, and
DomainNet. Shakespeare’s partition uses LEAF benchmark’s method (Caldas et al., 2018). CIFAR10
is partitioned into 100 clients using Latent Dirichlet Allocation (LDA) (Yurochkin et al., 2019; Hsu
et al., 2019) with α = 0.1 for label distribution shifts. DomainNet randomly selects 50 classes
from the total 345 and divides sub-datasets into 10 clients per domain, resulting in a total of 60
clients. Further dataset partition details are available in Appendix D.2. We randomly select 10% of
clients in each of the 100 communication rounds, with a fixed number of 5 local epochs. Additional
hyper-parameter details can be found in Appendix D.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Performance improvement of Client2Vec. We assess the performance improvement achieved by
employing our proposed three case studies across diverse datasets, neural architectures, and baseline algorithms.
Each experiment comprises 100 communication rounds, with the number of local epochs set to 5. We measure
the average test accuracy of all clients in each communication round and report the best performance attained
across all rounds. The results are then averaged over three seeds. The i indicates improved client sampling,
ii indicates the improved model aggregation, and iii indicates the improved local training. The MI indicates
the maximum improvement of Client2Vec over baselines. The weight of the local regularization term in iii is
set to 1.0 for FEDERATED strategy, and 5.0 for GLOBAL strategy.

Datasets Algorithms Original Client2Vec (FEDERATED) Client2Vec (GLOBAL) MI

- + i + i+ ii + i+ ii+ iii + i + i+ ii + i+ ii+ iii -

Shakespeare
(LSTM)

FedAvg 49.93 ±0.12 50.33 ±0.03 50.28 ±0.04 50.51 ±0.10 50.30 ±0.08 50.38 ±0.07 50.40 ±0.08 0.58
FedAvgM 49.97 ±0.09 50.29 ±0.01 50.24 ±0.01 50.43 ±0.01 50.29 ±0.19 50.24 ±0.03 50.60 ±0.22 0.63
FedDyn 50.23 ±0.08 50.47 ±0.17 50.43 ±0.14 50.55 ±0.02 50.64 ±0.13 50.49 ±0.19 50.71 ±0.11 0.48
Moon 50.09 ±0.08 50.35 ±0.02 50.35 ±0.16 50.54 ±0.03 50.36 ±0.01 50.38 ±0.11 50.52 ±0.22 0.45
FedLC 49.89 ±0.19 50.43 ±0.08 50.37 ±0.09 50.46 ±0.05 50.34 ±0.05 50.29 ±0.07 50.50 ±0.05 0.61

CIFAR10
(ResNet18)

FedAvg 42.24 ±2.18 44.60 ±0.74 44.10 ±0.20 59.29 ±2.58 45.56 ±0.18 46.49 ±0.08 58.28 ±4.95 17.05
FedAvgM 42.56 ±2.23 45.81 ±1.36 45.05 ±1.24 63.48 ±2.16 46.55 ±0.83 46.24 ±1.36 69.37 ±4.49 26.81
FedDyn 37.22 ±3.26 39.49 ±0.01 39.45 ±0.20 69.10 ±1.17 39.42 ±0.08 39.84 ±0.16 70.59 ±3.86 33.37
Moon 41.12 ±1.23 44.28 ±0.45 43.79 ±0.43 60.26 ±3.29 45.20 ±0.36 44.85 ±1.22 65.55 ±0.27 24.43
FedLC 29.31 ±0.01 29.62 ±0.13 30.65 ±0.29 42.20 ±2.14 31.04 ±0.98 30.37 ±0.82 40.27 ±1.00 12.89

DomainNet
(MobileNet V2)

FedAvg 46.31 ±1.36 50.78 ±1.42 53.83 ±0.37 56.43 ±3.08 52.37 ±0.59 54.67 ±0.77 57.43 ±0.13 11.12
FedAvgM 45.50 ±1.21 50.61 ±1.73 55.70 ±0.69 58.34 ±0.01 53.50 ±2.33 53.56 ±0.81 57.44 ±1.04 12.84
FedDyn 45.41 ±0.89 47.24 ±0.29 49.90 ±0.34 55.53 ±1.49 52.42 ±0.23 50.68 ±0.26 53.33 ±0.26 10.12
Moon 50.56 ±0.89 59.39 ±0.47 59.54 ±0.44 57.03 ±0.60 60.48 ±0.10 59.93 ±0.41 57.50 ±0.52 9.92
FedLC 45.48 ±3.59 50.40 ±0.43 51.27 ±0.66 57.92 ±0.67 54.60 ±1.45 56.34 ±2.78 57.41 ±0.06 12.44
FedIIR 49.32 ±0.84 48.11 ±0.18 50.28 ±1.10 52.74 ±1.07 57.05 ±1.84 53.74 ±0.27 51.86 ±1.08 7.73

FedAvg FedAvgM Moon FedDyn

Algorithms

30

40

50

60

70

80

A
cc

ur
ac

y

original 100 500

(a) Client2Vec FEDERATED

FedAvg FedAvgM Moon FedDyn

Algorithms

30

40

50

60

70

80

A
cc

ur
ac

y

original 100 500

(b) Client2Vec GLOBAL

FedAvg FedAvgM Moon FedDyn

Algorithms

36

38

40

42

44

A
cc

ur
ac

y

Original Improved Aggregation

(c) CIFAR10

FedAvg FedAvgM Moon FedDyn

Algorithms
35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

A
cc

ur
ac

y

Original Improved Aggregation

(d) DomainNet

Figure 4: Ablation studies on the number of training epochs and improved model aggregation for
Client2Vec. ’Original’ represents the algorithms in their original form, without enhancements, while other
results consider all three case studies with varying epoch numbers. The Figures 4(c) and 4(d) utilize client
indices generated by the GLOBAL strategies.

Client Inputs

Feature
Extractor

Classifier

Projection Layer

Projection
Classifier

Client Features

Projected Features

Align Logits

Client Indicies

Orthogonal

Classification
Loss

Figure 3: Workflow of the improved local
training (case study 3). The projection layer is
to project client features to the same dimension
with client feature index βf

i , and the projection
classifier is to ensure the projected features and the
original client features contain similar information.

Baseline Algorithms. We have selected widely
recognized FL baselines for our study, encompassing
established methods such as FedAvg (McMahan
et al., 2016), FedAvgM (Hsu et al., 2019), Fed-
Dyn (Acar et al., 2021), and Moon (Li et al., 2021).
Additionally, we have incorporated more recently
introduced baselines, namely FedLC (Zhang et al.,
2022) and FedIIR (Guo et al., 2023a). It is important
to note that FedIIR is specifically tailored for
addressing feature shift tasks and, as a result, its
evaluation is limited to the DomainNet dataset.

5.2 NUMERICAL RESULTS

Superior performance of Client2Vec on all three
case studies. In Table 1, we evaluate Client2Vec’s
performance in three case studies: enhanced client
sampling, improved model aggregation, and refined
local training. The results reveal the following
insights: (1) Each case study shows performance
improvements across all baselines, highlighting the potential of generated client indices to enhance
FL algorithms. (2) Enhanced local training provides the most significant performance boost,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Ablation studies on Client2Vec. We present naive baselines for Client2Vec. Feature Average: We
compute the average of CLIP image features for all data samples within each client as the client index. Class
Prototypes: We form each client’s index by averaging CLIP image features for each class and concatenating the
resulting class prototypes. Local Model Weights: We use the classifier model weights at the end of each training
epoch as the client index for each client. Notably, unlike other methods, these local model weights change with
each epoch, posing challenges for direct integration into our sampling and aggregation mechanisms.

CIFAR10 Sampling Sampling + Aggregation Sampling + Aggregation + Local Training

Ablation Study on Types of Client Index
Feature Average 52.95 31.99 11.40
Class Prototypes 44.89 49.88 15.41
Local Model Weights - - 32.85

Ablation Study on Generating Client Index
Omit Orthogonal Loss 38.58 44.39 15.32
Omit Text Align Loss 44.91 43.18 54.35
Omit Reconstruction Loss 43.19 30.86 31.65

Ablation Study on Label and Feature Index
Utilize Only Feature Index 42.34 23.57 44.99
Utilize Only Label Index 45.99 46.48

Ablation Study on Local Training
Omit Orthogonal Regularization in Improved Local Training - - 43.71

Client2Vec 45.56 46.49 58.28

FedAvg FedAvgM Moon FedDyn

Algorithms

30

40

50

60

70

80

A
cc

ur
ac

y

original 1.0 5.0 10.0

(a) FEDERATED

FedAvg FedAvgM Moon FedDyn

Algorithms

30

40

50

60

70

A
cc

ur
ac

y

original 1.0 5.0 10.0

(b) GLOBAL

FedAvg FedAvgM Moon

Algorithms
20

25

30

35

40

45

A
cc

ur
ac

y

original = 0.1 = 0.5 = 1.0 = 2.0

(c) FEDERATED

FedAvg FedAvgM Moon

Algorithms
20

25

30

35

40

45

A
cc

ur
ac

y

original = 0.1 = 0.5 = 1.0 = 2.0

(d) GLOBAL

Figure 5: Ablation studies on improved local training and improved client sampling. We use the CIFAR10
dataset and client indices from both FEDERATED and GLOBAL strategies. Figure 5(a) and 5(b) different weights
for Eq (4); Figure 5(c) and 5(d) vary hyperparameter τ in Eq (1).

Table 3: Simulation time comparison. We compare the simulation time of Client2Vec and FedAvg on
DomainNet dataset.

Generate Client Index Training Total Training achieve FedAvg best performance Total achieve FedAvg best performance

Client2Vec 632s 24583s 10817s 11449s
FedAvg 0s 26224s 26224s 26224s

emphasizing the importance of refining local features for addressing distribution shifts. (3) The
FEDERATED strategy consistently matches the GLOBAL strategy in performance, except for
improved client sampling, where the GLOBAL strategy surpasses, showcasing its superior capability
in assessing client similarities (see Figure 2). (4) The performance gain from improved model
aggregation seems somewhat random compared to other case studies. This might be due to the shared
intuition between improved client sampling and model aggregation, limiting further improvements
when combining these approaches. However, solely using improved model aggregation consistently
outperforms the original algorithms, as seen in Figure 4(c) and 4(d).

In summary, utilizing the client indices significantly boost the model performance. In practice, we
can select which case studies to use, and we recommend combining all three case studies as this
approach provides a stable and significant performance gain compared to the baseline algorithms.

All the components of Client2Vec are necessary. In Table 2, we conduct ablation studies on
Client2Vec. The results indicate that: (1) The original Client2Vec achieves the highest final per-
formance among different client vector candidates. Although feature average and class prototypes
show potential for aiding in sampling, they cannot be readily employed in our local training phase,
which significantly contributes to the effectiveness of the Client2Vec algorithm. (2) All three losses
are essential for Client2Vec’s effectiveness. The orthogonal loss notably enhances the local training
phase, while removing the text align loss and reconstruction loss significantly diminishes model
performance. (3) Both feature and label indices are vital for optimizing Client2Vec’s performance.
The absence of the feature index hinders improved local training. Additionally, since the CIFAR10

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Performance of Client2Vec on various network architectures. We evaluate the performance of
Client2Vec on the DomainNet dataset using diverse network architectures. The term ’Original’ refers to the
initial form of the algorithms, while Client2Vec (FEDERATED) and Client2Vec (GLOBAL) applied all three case
studies. Each experiment involves 100 communication rounds, with the number of local epochs set to 5. We
gauge the average test accuracy of all clients in each communication round and report the highest performance
achieved across all rounds. The results are averaged over three seeds. For the VIT experiments, we use the
CCT-7/3x1 models (Hassani et al., 2021).

DomainNet
MobileNet V2 (Pre-Trained) ResNet18 (Pre-Trained) VIT (From Scratch)

Original Client2Vec Original Client2Vec Original Client2Vec

FEDERATED GLOBAL FEDERATED GLOBAL FEDERATED GLOBAL

FedAvg 46.31 ±1.36 56.43 ±3.08 57.43 ±0.13 56.66 ±0.50 61.27 ±0.05 60.95 ±0.09 33.09 ±0.01 33.50 ±0.20 33.86 ±0.02
FedAvgM 45.50 ±1.21 58.34 ±0.01 57.44 ±1.04 57.44 ±0.42 61.22 ±0.11 60.81 ±0.18 33.67 ±0.56 34.47 ±0.20 34.21 ±0.11
FedDyn 45.41 ±0.89 51.49 ±0.17 53.33 ±0.26 58.17 ±0.61 61.67 ±0.42 59.88 ±0.42 29.57 ±0.40 31.64 ±0.13 31.36 ±0.12
MOON 50.56 ±0.89 57.03 ±0.60 57.50 ±0.52 53.80 ±0.46 60.76 ±0.25 59.90 ±0.17 32.29 ±0.52 33.58 ±0.12 33.73 ±0.03

dataset is partitioned using the Dirichlet method, introducing label shifts instead of feature shifts, the
label index is crucial for enhancing sampling and model aggregation performance in this context.
(4) Orthogonal loss is crucial for achieving optimal performance in local training. Without it, local
training fails to surpass the performance of the original FedAvg.

Ablation studies on the number of training epochs for Client2Vec. We conduct ablation studies
on the Client2Vec algorithm, varying the number of training epochs as shown in Figure 4(a) and 4(b).
The results indicate that: (1) Client indices generated with 100 or 500 training epochs notably enhance
FL algorithm performance. (2) Increasing the number of training epochs for Client2Vec does not con-
sistently lead to better results, as 100 epochs achieve similar performance to 500 epochs in most cases.

Ablation studies on hyper-parameters of improved client sampling. In Figure 5(c) and 5(d), we
perform ablation studies on the heat parameter τ in Eq (1). The results indicate that (1) algorithms
with improved client sampling consistently outperform the original algorithms across various τ
values; (2) the optimal τ value is smaller for client indices trained using the FEDERATED strategy
compared to the GLOBAL strategy. This observation aligns with our previous findings that GLOBAL
strategy-trained client indices exhibit larger inter-client distances.

Ablation studies on hyper-parameters of improved local training. In Figure 5, ablation studies
on the weight of the local regularization term (Eq (4)) were conducted. The findings suggest that: (1)
Using weights of 1.0 for the FEDERATED strategy and 5.0 for the GLOBAL strategy yields favorable
results for all algorithms. (2) FedDyn exhibits higher resilience to changes in the weights of the
local regularization terms.

Computation time comparison. In Table 3, we show the simulation time of Client2Vec and
FedAvg. Results show that (1) The additional computational overhead for generating the client index is
relatively insignificant compared to the subsequent training stage; (2) From the ‘Total achieve FedAvg
best performance’ column, Client2Vec requires less computational time to achieve comparable
performance to FedAvg, particularly noticeable on larger-scale datasets such as DomainNet.

Ablation Studies on Various Model Architectures. In Table 8, we show how Client2Vec improves
performance with different model architectures. Our results reveal that: (1) Client2Vec significantly
boosts the performance of original algorithms in all settings, and (2) pre-trained models like Mo-
bileNet V2 and ResNet18 produce better results, while Client2Vec also enhances the performance of
VIT models trained from scratch.

6 CONCLUSION AND FUTURE WORKS

In this paper, we explore the potential of enhancing FL algorithm performance through client index
vectors. Our three case studies clearly demonstrate the significant improvement in FL algorithm
performance achieved through client indices, highlighting client indexing as a valuable avenue for FL
algorithm enhancement. It’s important to note that these case studies may not cover all FL training
scenarios. Investigating the impact of client indices on other aspects, such as personalization and
clustering, would be valuable.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2020.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith, and Jeff Bilmes.
Diverse client selection for federated learning: Submodularity and convergence analysis. In ICML
2021 International Workshop on Federated Learning for User Privacy and Data Confidentiality,
2021.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. Cronus: Robust and heteroge-
neous collaborative learning with black-box knowledge transfer. arXiv preprint arXiv:1912.11279,
2019.

Dengsheng Chen, Jie Hu, Vince Junkai Tan, Xiaoming Wei, and Enhua Wu. Elastic aggregation for
federated optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12187–12197, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu, Satyen Kale, and Tong Zhang. On the
convergence of federated averaging with cyclic client participation. 2023.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distributionally robust federated
averaging, 2021.

Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang.
Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep
learning applications. In 2019 IEEE 37th international conference on computer design (ICCD), pp.
246–254. IEEE, 2019.

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
variance and improved representativity for clients selection in federated learning. In International
Conference on Machine Learning, pp. 3407–3416. PMLR, 2021.

Shaoduo Gan, Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas Lane.
Fruda: Framework for distributed adversarial domain adaptation. IEEE Transactions on Parallel
and Distributed Systems, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1–35, 2016.

Yaming Guo, Kai Guo, Xiaofeng Cao, Tieru Wu, and Yi Chang. Out-of-distribution generalization of
federated learning via implicit invariant relationships. In International Conference on Machine
Learning, pp. 11905–11933. PMLR, 2023a.

Yongxin Guo, Tao Lin, and Xiaoying Tang. Towards federated learning on time-evolving heteroge-
neous data. arXiv preprint arXiv:2112.13246, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yongxin Guo, Xiaoying Tang, and Tao Lin. FedBR: improving federated learning on heterogeneous
data via local learning bias reduction. In International Conference on Machine Learning, pp.
12034–12054. PMLR, 2023b.

Yongxin Guo, Xiaoying Tang, and Tao Lin. Find your optimal assignments on-the-fly: A holistic
framework for clustered federated learning. arXiv preprint arXiv:2310.05397, 2023c.

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3310–3319, 2021.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers. 2021. URL https://arxiv.
org/abs/2104.05704.

Chen He, Ruiping Wang, and Xilin Chen. Rethinking class orders and transferability in class
incremental learning. Pattern Recognition Letters, 161:67–73, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. In International
Conference on Learning Representations, 2023.

Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B Gibbons. Federated
learning under distributed concept drift. arXiv preprint arXiv:2206.00799, 2022.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the
global knowledge by not-true distillation in federated learning. Advances in Neural Information
Processing Systems, 35:38461–38474, 2022.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023a.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Qinbin Li, Bingsheng He, and Dawn Song. Adversarial collaborative learning on non-iid features. In
International Conference on Machine Learning, pp. 19504–19526. PMLR, 2023b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural collapse
inspired federated learning with synthetic and fixed classifier. arXiv preprint arXiv:2303.10058,
2023c.

12

https://arxiv.org/abs/2104.05704
https://arxiv.org/abs/2104.05704

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020a.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd. In International Conference on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=B1eyO1BFPr.

Yunhui Long, Boxin Wang, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl Gunter, and
Bo Li. G-pate: Scalable differentially private data generator via private aggregation of teacher
discriminators. Advances in Neural Information Processing Systems, 34:2965–2977, 2021.

Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling system and
statistical heterogeneity for federated learning with adaptive client sampling. In IEEE INFOCOM
2022-IEEE conference on computer communications, pp. 1739–1748. IEEE, 2022.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. Advances in Neural Information
Processing Systems, 34:5972–5984, 2021.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. 2016. doi: 10.48550/
ARXIV.1602.05629. URL https://arxiv.org/abs/1602.05629.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen. Local
learning matters: Rethinking data heterogeneity in federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8397–8406, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning, 2019.

A Tuan Nguyen, Philip Torr, and Ser Nam Lim. Fedsr: A simple and effective domain generalization
method for federated learning. Advances in Neural Information Processing Systems, 35:38831–
38843, 2022.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019a.

Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adaptation,
2019b. URL https://arxiv.org/abs/1911.02054.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts, 2020.

Yan Shen, Jian Du, Han Zhao, Benyu Zhang, Zhanghexuan Ji, and Mingchen Gao. Fedmm: Saddle
point optimization for federated adversarial domain adaptation. arXiv preprint arXiv:2110.08477,
2021.

Yujun Shi, Jian Liang, Wenqing Zhang, Vincent Tan, and Song Bai. Towards understanding and
mitigating dimensional collapse in heterogeneous federated learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=EXnIyMVTL8s.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv
preprint arXiv:2006.05148, 2020.

13

https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1911.02054
https://openreview.net/forum?id=EXnIyMVTL8s
https://openreview.net/forum?id=EXnIyMVTL8s

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Yuwei Sun, Ng Chong, and Ochiai Hideya. Multi-source domain adaptation based on federated
knowledge alignment. arXiv preprint arXiv:2203.11635, 2022.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8432–8440, 2022.

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, and Xiaowen Chu. Virtual
homogeneity learning: Defending against data heterogeneity in federated learning. arXiv preprint
arXiv:2206.02465, 2022.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

Bin Wang, Gang Li, Chao Wu, WeiShan Zhang, Jiehan Zhou, and Ye Wei. A framework for self-
supervised federated domain adaptation. EURASIP Journal on Wireless Communications and
Networking, 2022(1):1–17, 2022.

Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain adaptation. In International
Conference on Machine Learning, pp. 9898–9907. PMLR, 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2019.

Lin Wang, YongXin Guo, Tao Lin, and Xiaoying Tang. Delta: Diverse client sampling for fasting
federated learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Zihao Xu, Hao He, Guang-He Lee, Bernie Wang, and Hao Wang. Graph-relational domain adaptation.
In International Conference on Learning Representations, 2021.

Zihao Xu, Guang-Yuan Hao, Hao He, and Hao Wang. Domain-indexing variational bayes: In-
terpretable domain index for domain adaptation. In The Eleventh International Conference on
Learning Representations, 2022.

Zhiqin Yang, Yonggang Zhang, Yu Zheng, Xinmei Tian, Hao Peng, Tongliang Liu, and Bo Han.
Fedfed: Feature distillation against data heterogeneity in federated learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup under
mean augmented federated learning. In International Conference on Learning Representations,
2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated
learning with label distribution skew via logits calibration. In International Conference on Machine
Learning, pp. 26311–26329. PMLR, 2022.

Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S Jaakkola, and Matt T Bianchi. Learning sleep
stages from radio signals: A conditional adversarial architecture. In International Conference on
Machine Learning, pp. 4100–4109. PMLR, 2017.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Tailin Zhou, Jun Zhang, and Danny HK Tsang. Fedfa: Federated learning with feature anchors to
align features and classifiers for heterogeneous data. IEEE Transactions on Mobile Computing,
2023.

Tianfei Zhou and Ender Konukoglu. Fedfa: Federated feature augmentation. In The Eleventh
International Conference on Learning Representations, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

CONTENTS OF APPENDIX

A Proof of Aggregation Weights 15

B Related Works 16

C Preliminaries 16
C.1 Domain Indexing . 16
C.2 CLIP . 17

D Additional Experiment Results 17
D.1 Workflow of Client2Vec on Language Datasets 17
D.2 Experiment Settings . 18
D.3 Ablation Studies on Client Index Generation . 19
D.4 Ablation Studies on Case Studies . 19
D.5 Ablation Studies on Various Model Architectures. 21
D.6 Ablation Studies on Level of Data Heterogeneity 21
D.7 Inter-Domain Similarity Assessment. 21

A PROOF OF AGGREGATION WEIGHTS

Theorem A.1 (Aggregation weights). Define the following objective function

max
pt
i,g

Lagg =
∑
i∈St

pti,g

(
t∑

τ=1

γt−τS(βi,Sτ)

)
+ λ1

∑
i∈St

pti,g log
qti
pti,g

+ λ0(
∑
i∈St

pti,g − 1) , (5)

where pti,g is the aggregation weights on communication round t, S is the similarity function, and qti
is a prior distribution. Solving this optimization problem, the optimal pti,g is given by

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βi,Sτ)
)

∑
j∈St qtj exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βj ,Sτ)
) . (6)

Proof. Taking the derivation, we have

∂Lagg

∂pti,g
=

t∑
τ=1

γt−τdist(βi,Sτ) + λ1

(
log qti − log pti,g − 1

)
+ λ0 , (7)

then we have

pti,g = exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ) + log qti − 1 +
λ0

λ1

)
. (8)

Because
∑

i∈St pti,g = 1, we have

1− λ0

λ1
= log

(∑
i∈St

exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ) + log qti

))
(9)

= log

(∑
i∈St

qti exp

(
1

λ1

t∑
τ=1

γt−τdist(βi,Sτ)

))
, (10)

Then combine Equations (8) and (10) we have

pti,g =
qti exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βi,Sτ)
)

∑
j∈St qtj exp

(
1
λ1

∑t
τ=1 γ

t−τdist(βj ,Sτ)
) (11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B RELATED WORKS

Distribution shifts in FL. Federated Learning (FL) is introduced as a methodology for training
machine learning models in a distributed manner, wherein local data is retained and not exchanged
between the central server and individual clients. FedAvg (McMahan et al., 2016; Lin et al., 2020b),
serving as a foundational algorithm in this domain, advocates the use of local Stochastic Gradient
Descent (local SGD) to alleviate the communication burden. Nevertheless, the performance of FL
algorithms is substantially impeded by distribution shifts among clients. Addressing these local
distribution shifts has emerged as a primary focus in FL research (Li et al., 2020; Karimireddy et al.,
2020b;a; Guo et al., 2023b; Jiang & Lin, 2023). Many existing works address label distribution
shifts by incorporating additional regularization terms (Li et al., 2020; Karimireddy et al., 2020b;
Guo et al., 2021; Lee et al., 2022; Mendieta et al., 2022), enhancing feature learning (Tang et al.,
2022; Shi et al., 2023; Li et al., 2021; Zhou et al., 2023), and improving classifiers (Luo et al., 2021;
Li et al., 2023c). Regarding feature distribution shifts, the majority of FL methods concentrate on
the out-of-domain generalization problem. This objective aims to train robust models capable of
generalizing to previously unseen feature distributions (Nguyen et al., 2022; Li et al., 2023b; Guo
et al., 2023a). Approaches include investigating special cases (Reisizadeh et al., 2020), integrating
domain generalization algorithms in FL scenarios, such as domain-robust optimization (Mohri et al.,
2019; Deng et al., 2021), and training domain-invariant features (Peng et al., 2019b; Wang et al., 2022;
Shen et al., 2021; Sun et al., 2022; Gan et al., 2021). Notably, recent research has also considered
concept shifts by leveraging clustering methods (Jothimurugesan et al., 2022; ?; Guo et al., 2023c). In
this study, we address the challenge of distribution shifts in FL from another perspective—enhancing
the performance of FL algorithms prior to the training stage. Our approach holds the potential
for seamless integration with the aforementioned algorithms, and consider both feature and label
distribution shifts.

Information sharing in FL. Various methods have been developed to address the challenge of
distribution shifts among clients (Zhao et al., 2018; Jeong et al., 2018; Long et al., 2021). One
approach involves the sharing of information among clients, such as the exchange of local distribution
statistics (Shin et al., 2020; Zhou & Konukoglu, 2022), data representations (Hao et al., 2021; Tan
et al., 2022), and prediction logits (Chang et al., 2019; Luo et al., 2021). Additionally, techniques
leveraging global proxy datasets have been introduced to enhance FL training (Lin et al., 2020a; Duan
et al., 2019). Notably, FedMix (Yoon et al., 2020) and FedBR (Guo et al., 2023b) generate privacy-
protected augmentation data by averaging local batches, subsequently improving the local training
process. VHL (Tang et al., 2022) employs randomly initialized generative models to produce virtual
data, compelling local features to closely align with those of same-class virtual data. FedFed (Yang
et al., 2023) proposes a dataset distillation method, amalgamating distilled datasets into all clients’
local datasets to mitigate distribution shifts. In comparison to existing approaches, Client2Vec
presents several advantages: (1) the index generation process is decoupled from the FL training
process, thereby avoiding any additional burden on FL training; (2) Client2Vec generates only one
index vector per client, enhancing efficiency; (3) Client2Vec contributes to the whole FL training
stage, encompassing client sampling, model aggregation, and local training processes.

C PRELIMINARIES

In this section, we present essential background information on the techniques and definitions
employed in this paper to facilitate comprehension.

C.1 DOMAIN INDEXING

The Domain Generalization (DG) tasks are designed to address the cross-domain generalization prob-
lem by generating domain-invariant features. Typically, DG methods aim to establish independence
between a data point’s latent representation and its domain identity, represented by a one-hot vector
indicating the source domain (Ganin et al., 2016; Tzeng et al., 2017; Zhao et al., 2017). However,
recent studies have demonstrated that utilizing a domain index, which is a real-value scalar (or vector)
embedding domain semantics, as a substitute for domain identity, significantly enhances domain
generalization performance (Wang et al., 2020; Xu et al., 2021).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

For example, in the work by Wang et al. (2020), sleeping stage prediction models were adapted
across patients with varying ages, using "age" as the domain index. This approach yielded superior
performance compared to traditional models that categorized patients into groups based on age,
employing discrete group IDs as domain identities.

Nevertheless, obtaining domain indices may not always be feasible in practical scenarios. To
overcome this challenge, Xu et al. (2022) formally defined the domain index and introduced variational
domain indexing (VDI) to infer domain indices without prior knowledge. The definition of the domain
index in (Xu et al., 2022) is illustrated as follows.

Definition of domain index. Consider the unsupervised domain adaptation setting involving a
total of N domains, each characterized by a domain identity k ∈ K = [N] ≜ {1, . . . , N}. Here,
k belongs to either the source domain identity set Ks or the target domain identity set Kt. Every
domain k comprises Dk data points. The task involves n labeled data points {(xis, ysi , ksi)}

n
i=1

originating from source domains (ksi ∈ Ks) and m unlabeled data points {xit, kti}
m
i=1 from target

domains (kti ∈ Kt). The objectives are twofold: (1) predict the labels {yti}
m
i=1 for the target domain

data, and (2) deduce global domain indices βk ∈ RBβ for each domain and local domain indices
ui ∈ RBu for each data point. It is important to note that each domain possesses a single global
domain index but multiple local domain indices, with one corresponding to each data point in the
domain. The data encoding generated from an encoder that takes x as input is represented as z ∈ RBz .
The mutual information is denoted by I(·; ·).
Definition C.1 (Domain Index). Given data x and label y, a domain-level variable β and a data-level
variable u are called global and local domain indices, respectively, if there exists a data encoding z
such that the following holds:

• Independence between β and z: Global domain index β is independent of data encoding
z, i.e., β ⊥⊥ z, or equivalently I(β; z) = 0. This is to encourage domain-invariant data
encoding z.

• Information Preservation of z: Data encoding z, local domain index u, and global domain
index β preserves as much information on x as possible, i.e., maximizing I(x;u,β, z). This
is to prevent β and u from collapsing to trivial solutions.

• Label Sensitivity of z: The data encoding z should contain as much information on the label
y as possible to maximize prediction power, i.e., maximizing I(y; z) conditioned on z ⊥⊥ β.
This is to make sure the previous two constraints on β, u, and z do not harm prediction
performance.

In this paper, we extend the Definition C.1 to Definition 3.1 by incorporating both client feature index
and client label index.

C.2 CLIP

CLIP (Radford et al., 2021) is a cross-modal model that establishes a connection between vision and
natural language by projecting image and text embeddings onto a shared space. When presented with
an image I and a corresponding descriptive sentence denoted as T, the CLIP image encoder and text
encoder encode the image and text into image embedding D and text embedding L, respectively.
Subsequently, the embeddings D and L are aligned to achieve a large cosine similarity, thereby
harmonizing the vision and language embedding spaces.

D ADDITIONAL EXPERIMENT RESULTS

D.1 WORKFLOW OF CLIENT2VEC ON LANGUAGE DATASETS

In Figure 6, we depict the workflow of Client2Vec on language datasets. The primary distinction
between Figure 1 and Figure 6 arises from the methods employed for encoding data and labels.
Specifically, for language datasets, particularly in the context of the next character prediction task, the
data is encoded as "The next character of {data}", while the label is encoded as "Character {label}".

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Character
“{char}”.

Data Inputs

Pretrained
Data

Encoder

Client Copies

Locally

�3,4�3,3�3,2�3,1

�2,4�2,3�2,2�2,1

�1,4�1,3�1,2�1,1

Label Inputs

�4�3�2�1

De
co

m
po

sit
io

n
Bl

oc
k

� 3,4� 3,3� 3,2� 3,1

� 2,4� 2,3� 2,2� 2,1

� 1,4� 1,3� 1,2� 1,1

�3,4�3,3�3,2�3,1

�2,4�2,3�2,2�2,1

�1,4�1,3�1,2�1,1

Align

Orthogonal

�3,4�3,3�3,2�3,1

�2,4�2,3�2,2�2,1

�1,4�1,3�1,2�1,1
Reconstruction

Error

Projection Layer

+

Pretrained
Label

Encoder

Freezed

+ Concatenate

The next
character of
“{sentence}”.

Figure 6: Overview of the workflow of the Client2Vec on language datasets.

In both cases, the CLIP text encoder is utilized by both the data encoder and label encoder for this
task.

D.2 EXPERIMENT SETTINGS

Dataset partition. The dataset partition follows the widely used settings in FL. In detail, we
consider three datasets in this paper, and the details are listed as the follows.

• Shakespeare: The partition of Shakespeare dataset directly use the partition method provided by
LEAF benchmark (Caldas et al., 2018), and we set the fraction of data sample to 0.1, fraction of
data in training set is set to 0.8, and minimum number of samples per user is set to 40.

• CIFAR10: We use the Latent Dirichlet Allocation (LDA) (Yurochkin et al., 2019; Hsu et al.,
2019) method with parameter α = 0.1 to introduce label distribution shifts among clients. The
dataset is partitioned into 100 clients.

• DomainNet: We randomly choose 50 classes from the overall 345 classes from DomainNet
dataset. Sub-datasets of each domain are partitioned into 10 clients, resulting in 60 clients in total.
Images are resized to 64× 64.

Training details and hyper-parameters. For every dataset and algorithm, we randomly select
10% of clients in each communication round and execute a total of 100 communication rounds. We
employ the SGD optimizer, with a momentum setting of 0.9 for the DomainNet dataset, and a weight
decay set to 5e-5. The number of local epochs is fixed at 5, and the learning rate is set to 1e-2. The
experiments are conduct on single NVIDIA 3090 GPU. The hyperparameters for our enhanced case
studies are detailed below.

• Improved client sampling. The heat parameter τ in Eq (1) is tuned in [0.1, 0.5, 1.0, 2.0].
• Improved model aggregation. We choose the optimal results by choosing γ = [0.1, 0.5, 0.9],

and set λ1 = 1.0 by default in Eq (8).
• Improved local training. For algorithms without extra local regularization terms, such as FedAvg,

FedAvgM, and FedLC, the weights assigned to Lorth and Ldist are explicitly fixed at 1.0. In
contrast, for approaches incorporating additional local regularization terms, such as Moon, FedDyn,
and FedIIR, the weights assigned to Lorth and Ldist are set equal to the respective values of those
additional local regularization terms in the respective algorithms.

The hyper-parameters utilized for each baseline algorithms are listed below.

• FedAvgM: The server momentum is tuned in [0.1, 0.5, 1.0].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 5: Ablation studies on improved client sampling. We conduct ablation studies on hyper-parameter τ in
Equation (1). The term ’Original’ refers to the algorithm in its initial form, where the improved client sampling
is not applied. This ablation study focuses on improved client sampling, without integrating the other case
studies involving enhanced model aggregation and improved local training.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- τ = 0.1 τ = 0.5 τ = 1.0 τ = 2.0 τ = 0.1 τ = 0.5 τ = 1.0 τ = 2.0

FedAvg 42.24 44.60 44.21 42.88 42.49 41.28 43.10 45.56 43.28
FedAvgM 42.56 45.81 44.22 43.74 43.11 42.50 44.80 46.55 44.62

Moon 41.12 43.86 44.28 43.23 42.82 42.15 42.80 44.85 44.74

Table 6: Ablation studies on training epochs of Client2Vec. We perform ablation studies on the training
epochs of DSA-IGN, incorporating all three case studies.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- E = 100 E = 500 E = 100 E = 500

FedAvg 42.24 59.58 59.29 61.55 58.28
FedAvgM 42.56 61.84 63.48 61.12 69.37

Moon 41.12 63.61 60.26 63.79 65.55
FedDyn 37.22 80.75 69.10 78.01 70.59

• FedDyn: We set α = 0.1, and the max gradient norm to 10.
• Moon: The heat parameter is set to 0.5, and the weights of local regularization term is tuned in
[0.01, 0.1, 1.0].

• FedLC: We set τ = 1.0.
• FedIIR: We tuned ema = [0.95, 0.5, 0.1], and the weights of local regularization term are set to
1e− 3.

Model architectures and training details of DSA-IGN. The projection layer utilizes a three-
layer transformer encoder. Each transformer encoder layer consists of 8 attention heads, with the
model dimension set to 32, and the feed-forward layer dimension set to 2048. The projection
layer is represented as a matrix with dimensions 1024× 512. Given a batch of CLIP embeddings
D ∈ RN×512, the input for the decomposition block is constructed as Ii,j = [D,D] ∈ RN×1024.
Subsequently, I is reshaped into Ĩ = (N × 32 × 32), indicating that each sample comprises 32
patches, and each patch has a dimension of 32.

The reshaped Ĩ is fed into the decomposition block, producing an output Õ ∈ (N × 32× 32), which
is then reshaped to O = (N × 1024) = [Z,U]. Here, Z ∈ RN×512 represents the data encoding z
as defined in Definition 3.1, and U ∈ RN×512 corresponds to the sample feature index u. The input
to the projection layer is identical to the output of the decomposition block, represented as O.

D.3 ABLATION STUDIES ON CLIENT INDEX GENERATION

Generating client index w/o the use of the diversity loss Ldiv. As shown in Figure 7, the client
feature index βf

i become close to identical when do not use the diversity loss. This result suggest the
necessity of using the diversity loss to obtain the meaningful results.

Using different projection layers in DSA-IGN. In Figure 8, we use single Linear layer and
two-layer MLP as projection layers in DSA-IGN. Results show that both architectures can obtain
sufficient meaningful results.

D.4 ABLATION STUDIES ON CASE STUDIES

In Tables 5, 6, and 7, we conduct ablation studies on the three case studies we introduced in Section 4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Diversity loss, 500 epochs

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Diversity loss, 1000 epochs

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Without Diversity loss, 500 epochs

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(d) Without Diversity loss, 1000 epochs

Figure 7: Comparison between client indexed generated with/without diversity loss. We use the DomainNet
dataset with 60 clients, and use the Global training strategy. The DSA-IGN is trained by 500 and 1000 global
epochs. We resport the cos-similarities of the client feature index βf

i .

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Linear Decoder

0 10 20 30 40 50
Clients

0
10

20
30

40
50

Cl
ie

nt
s

Client Index Similarity (Global)

0.0

0.2

0.4

0.6

0.8

1.0

(b) MLP Decoder

Figure 8: Comparison between client indexed generated using different projection layers. We use the
DomainNet dataset with 60 clients, and use the Global training strategy. The DSA-IGN is trained by 500 global
epochs. We resport the cos-similarities of the client feature index βf

i .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 7: Ablation studies on improved local training. We conduct ablation studies on the weights of the
improved local training. All three case studies are incorporated in this setting.

CIFAR10 Original Client2Vec (Federated) Client2Vec (Global)

- 1.0 5.0 10.0 1.0 5.0 10.0

FedAvg 42.24 59.29 42.76 66.02 48.83 58.28 34.86
FedAvgM 42.56 63.48 70.04 68.34 49.77 69.37 35.51

Moon 41.12 60.25 51.41 59.02 46.61 60.53 33.39
FedDyn 37.22 69.10 79.96 78.70 43.87 70.59 69.57

Painting Quickdraw

Infograph

Real
-0.33

0.050.
42

0.350.54

Sketch

-0.21

0.
90

0.01

Clipart

-0.75-0.4
2

Figure 9: Illustration of feature index similarities between different domains. We present an analysis of
cos-similarities across various domains. The results are acquired employing the GLOBAL training strategy.

Table 8: Performance of Client2Vec on various network architectures. We evaluate the performance of
Client2Vec on the DomainNet dataset using diverse network architectures. The term ’Original’ refers to the
initial form of the algorithms, while Client2Vec (FEDERATED) and Client2Vec (GLOBAL) applied all three case
studies. Each experiment involves 100 communication rounds, with the number of local epochs set to 5. We
gauge the average test accuracy of all clients in each communication round and report the highest performance
achieved across all rounds. The results are averaged over three seeds. For the VIT experiments, we use the
CCT-7/3x1 models (Hassani et al., 2021).

DomainNet
MobileNet V2 (Pre-Trained) ResNet18 (Pre-Trained) VIT (From Scratch)

Original Client2Vec Original Client2Vec Original Client2Vec

FEDERATED GLOBAL FEDERATED GLOBAL FEDERATED GLOBAL

FedAvg 46.31 ±1.36 56.43 ±3.08 57.43 ±0.13 56.66 ±0.50 61.27 ±0.05 60.95 ±0.09 33.09 ±0.01 33.50 ±0.20 33.86 ±0.02
FedAvgM 45.50 ±1.21 58.34 ±0.01 57.44 ±1.04 57.44 ±0.42 61.22 ±0.11 60.81 ±0.18 33.67 ±0.56 34.47 ±0.20 34.21 ±0.11
FedDyn 45.41 ±0.89 51.49 ±0.17 53.33 ±0.26 58.17 ±0.61 61.67 ±0.42 59.88 ±0.42 29.57 ±0.40 31.64 ±0.13 31.36 ±0.12
MOON 50.56 ±0.89 57.03 ±0.60 57.50 ±0.52 53.80 ±0.46 60.76 ±0.25 59.90 ±0.17 32.29 ±0.52 33.58 ±0.12 33.73 ±0.03

D.5 ABLATION STUDIES ON VARIOUS MODEL ARCHITECTURES.

In Table 8, we show how Client2Vec improves performance with different model architectures. Our
results reveal that: (1) Client2Vec significantly boosts the performance of original algorithms in all
settings, and (2) pre-trained models like MobileNet V2 and ResNet18 produce better results, while
Client2Vec also enhances the performance of VIT models trained from scratch.

D.6 ABLATION STUDIES ON LEVEL OF DATA HETEROGENEITY

In Table 9, we present the performance of Client2Vec in situations of extreme data heterogene-
ity, where each client possesses data from only two classes. The results indicate that Client2Vec
significantly surpasses the original methods by a considerable margin.

D.7 INTER-DOMAIN SIMILARITY ASSESSMENT.

Utilizing the feature index βf
i for clients, we quantify similarity across different domains. Figure 9

illustrates the average cosine similarities of client feature index βf
i between clients belonging to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CIFAR10 FedAVG FedAVG + Client2Vec FedAvgM FedAvgM + Client2Vec

two classes each client 21.35 66.43 18.05 63.30

Table 9: Ablation studies on level of data heterogeneity.

different domains. The results align with human intuitions, with the “Real” domain showing greater
proximity to “Clipart”, “Painting”, and “Sketch”, while exhibiting significant differences from
“Infograph” and “Quickdraw”. These findings validate the effectiveness of our generated client index.

22

	Proof of Aggregation Weights
	Related Works
	Preliminaries
	Domain Indexing
	CLIP

	Additional Experiment Results
	Workflow of Client2Vec on Language Datasets
	Experiment Settings
	Ablation Studies on Client Index Generation
	Ablation Studies on Case Studies
	Ablation Studies on Various Model Architectures.
	Ablation Studies on Level of Data Heterogeneity
	Inter-Domain Similarity Assessment.

