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ABSTRACT

Generating diverse reasoning paths by varying the context, such as demonstra-
tions, prompts, instructions, efc, or sampling methods, such as top-k, top-p, beam-
search, efc, and then selecting appropriate paths via majority voting or verifier-
based strategies to enhance the reasoning capabilities of large language models
(LLMs) is a commonly recognized approach. Although both different contexts
and sampling techniques can generate diverse contents, using sampling methods
alone does not significantly enhance the diversity of generation. Context varia-
tion, however, while fostering greater diversity in reasoning, can also introduce
negative effects. It causes that switching contexts can not necessarily lead to pro-
portional improvements in performance. Therefore, there is a need to investigate
how context influences LLM generation and mitigate any adverse impacts. The
primary challenge lies in the inability to conduct comparative studies once diver-
gences occur in reasoning paths generated under different contexts. Specifically,
once the predicted tokens at a given step differ, it becomes unclear whether sub-
sequent tokens in the inference path are influenced by the context or the content
already generated. In this paper, we propose a Cross-Generation Reasoning Tree
(CGRT) algorithm for studying the impact of different contexts on LLM genera-
tion and enhancing LLMs’ reasoning performance. Experimental findings reveal
that, beyond enhancing interpretability, CGRT integrates the positive effects of
both context and sampling strategies more effectively than previous approaches,
leading to more rational inference paths. Experiments conducted on Llama?2,
Llama3, and Qwen demonstrate that, when generating an equivalent number of
diverse inference paths, those produced via the “reasoning tree” method exhibit
higher accuracy.

1 INTRODUCTION

Large Language Models (LLMs) have emerged with impressive performance in generative reason-
ing, often approaching that of human experts. OpenAl et al|(2023); |Anil et al.|(2023)); Dubey et al.
(2024); |clal (2024) However, when confronted with more complex problems, LLMs may still make
unexpected mistakes. A commonly recognized solution to this issue is generating diverse infer-
ence paths and then deciding the final answer via appropriate judgment strategies, such as “self-
consistency” [Wang et al.; Aggarwal et al.| (2023)) or “best-of-N" Liu et al.| (2020), etc.

Typically, diversifying generated content can be achieved through appropriate sampling methods|Fan
et al.| (2018); [Holtzman et al.; Freitag & Al-Onaizan|(2017); Chuang et al.|(2023)). Nevertheless, the
diversity of sampling via decoding strategies remains constrained by the model’s own distribution
for answering the query question, which means that the diversity of sampled paths is limited when
the model is highly confident. Besides, varying the context can also produce more diverse reason-
ing. However, inappropriate contexts can overly change the model’s original distribution, sometimes
resulting in significant negative effects. Therefore, it is necessary to investigate how context influ-
ences LLM generation and to correct any adverse impacts, which is a key topic that requires urgent
attention in the field of LLM reasoning.
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Often, conditioned with different contexts, once the LLMs’ generation diverges at a certain token,
the subsequent generated tokens cannot be compared. Therefore, previous interpretability analysis
methods can only study the first inconsistent token or a few unexpected tokens but cannot track
the entire reasoning process, i.e., they cannot analyze the entire generation process under different
contextual scenarios. Starting from the first inconsistent token, the subsequent predicted tokens are
influenced not only by the context but also by the previously generated contents. To address this
issue, we propose the “Cross-Generation Reasoning Tree ” (CGRT). For each reasoning problem,
CGRT constructs the LLMs generation into a tree structure. Each node in the tree represents a
token generated by the LLM at a certain step. CGRT determines the next step of generation by
placing different contexts before and after the problem, i.e. .few-shot chain-of-thought (CoT) Wei
et al.| (2022) demonstrations, prompts |[Kojima et al.[(2022); [Sahoo et al.|(2024)), instructions Efrat &
Levy|(2020); Mishra et al.[(2022), etc, and then selects the child nodes of the current step node via
certain sampling strategies, such as top-k, top-p, beam-search decoding, efc. When the generation
at the current step diverges, the tree structure branches out. For each branch path of the tree, when
determining the child nodes of a certain node, i.e., the next step of generation by the LLM, the full
combination of contexts and sampling strategies is applied. An example of the CGRT is illustrated
in Figure[T] Thus, each branching point in the CGRT structure represents a divergence caused solely
by the context, as the preceding generated reasoning path is controlled.

Through experiments using the Cross-Generation Reasoning Tree (CGRT), we further confirmed
the widely acknowledged fact that context has both positive and negative effects on the LLMs’
reasoning. Additionally, we conducted further investigations and found the following:

1. In CGRT constructed entirely from good contexts, a significant number of erroneous rea-
soning paths exist. Similarly, in CGRT constructed entirely from bad contexts, there are
also correct reasoning paths.

2. The critical branching nodes in CGRT that determine the correctness of reasoning are pre-
dominantly composed of tokens with strong semantic information, such as numbers, opera-
tors, nouns efc. In contrast, words with weaker semantic significance, such as prepositions,
conjunctions, punctuation, pronouns efc, are often not the critical branching nodes that
determine the correctness of reasoning.

where good context refers to the context that, when placed before the question and decoded using
greedy decoding, results in a correct reasoning answer; bad context, conversely, leads to an incorrect
reasoning answer under the same conditions. Critical branching nodes represent nodes in a CGRT
where all paths following the branching point lead to correct (or incorrect) reasoning answers, while
their sibling nodes lead to the opposite, i.e., all paths following its sibling nodes lead to incorrect (or
correct) reasoning answers.

However, for real-world reasoning problems, it is challenging to determine which path to take at a
branching point. From the perspective of a branching point, although some critical branching nodes
determine the correctness of subsequent reasoning paths, this determination is based on the CGRT
constructed by the current context combinations. Exhaustively enumerating all possible contexts
to generate an exceptionally large CGRT is obviously impractical. Furthermore, from a semantic
perspective, most critical branching nodes cannot be fully understood as to why they determine the
correctness of reasoning when viewed only from the current step. Human experts would find that,
from the token of critical branching nodes that lead to wrong answers, it is possible to reason towards
the correct answer. However, the performance of LLMs does not reflect this. The most likely
explanation is that LLMs remain biased causal language models. LLMs do not possess genuine
reasoning capabilities but rather model human f. Due to factors such as training data and parameter
scales, they are unable to model the reasoning embedded within human language completely.

To address the challenge of selecting the appropriate path at branching nodes, we propose the infer-
ence version of the Cross-Generation Reasoning Tree (CGRT), referred to as iCGRT. iCGRT draws
inspiration from the majority voting strategies but applies it at both the token-level and path-level.
When studying the interpretability of LLMs, CGRT typically selects a limited number of context
combinations (usually 2 — 4), and a small number of sampling tokens for each context combination
(typically one token decoded via greedy strategy or 1 — 2 tokens sampled via top-k/p strategy). In
contrast, iCGRT selects a larger number of context combinations (< 8) and usually generates 4 — 8
samples for each context combination. At each node, if the generated tokens across all samples



Under review as a conference paper at ICLR 2025
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Context 1
Question: The highest ever recorded in ia is -48 degrees
Fahrenheit. The highest temperature ever recorded in Northlandia is 21 degrees
Fahrenheit. The highest temperature recorded in Midlandia is -3 degrees Fahrenheit.
‘What is the average highest temperature of these 3 countries?
Answer: -48 + 21 + (-3) =-30
-30/3 = -10 degrees
The average highest temperature recorded in Southlandia, Northlandia, and Midlandia is
-10 degrees Fahrenheit. 4000 gallons + 6000
The answer is -10. gallons = 14000 gallons
(& J/ The total amount of water,
- N passing through the river
Context 2 at :Ihal point is 14000 18000 16000
Quesliur\: Pancho walks gO miles a day. Except on weekends when he walks 10 miles. Hoy g—i;::éwer is 14000.
many miles does he walk in a week?
Answer: He wglks 100 miles during the weekdays because 5 x 20 = 100 +4000 + 6000 = 14000 gallons gallons 16000 gallons
He walks 20 miles on the weekend because 2 x 10 = 20 The total amount of water The total amount of water passing The total amount of water passing
He walks 120 miles total because 100 + 20 = 120 passing through the river at that through the river at that point is through the river at that point is
The answer is 120. point is 14000 gallons. 18000 gallons. 16000 gallons,
The answer is 14000. The answer is 18000. The answer is 16000.
4000 + 4000 + 6000 = 14000 gallons\nThe total amount of water passing through the river at that point is 14000
Query gallons\nThe answer is 14000
Question: The amount of water passing through a river at one point in time is 4000 gallons. 4000 gallons + 4000 gallons + 6000 gallons = 14000 gallons\nThe total amount of water passing through the river
After a day of heavy rain, the amount of water passing through the river doubles at the at that point is 14000 gallons.\nThe answer is 14000.
same point. If the volume of water passing through the river at that pointincreases by 6000 | | = = = 7 = 7 7 o m T T T T T TS TS ST T ST s
gallons on the third day, calculate the total amount of water passing through the river at that 4000 gallons + 8000 gallons + 6000 gallons = 18000 gallons\nThe total amount of water passing through the river
point. at that point is 18000 gallons.\nThe answer is 18000.
Let's think step by step. 4000 gallons + 8000 gallons + 6000 gallons = 16000 gallons\nThe total amount of water passing through the river
Answer: at that point is 16000 gallons.\nThe answer is 16000.

Figure 1: An Example of Cross-Generation Reasoning Tree (CGRT).

are inconsistent, a majority voting strategy is employed to select the top 2 predicted tokens as the
nodes for that step. This approach has two benefits: firstly, the tokens selected through majority
voting reduce the probability of leading to incorrect answers at that node; secondly, by restricting
iCGRT to a binary tree, the computational burden of reasoning is reduced. Finally, the reasoning
answer is chosen from all the reasoning paths in the iCGRT through a majority voting strategy.
Experiments conducted on mainstream open-source LL.Ms, such as Llama2 [Touvron et al.| (2023)),
Llama3 Al@Metal (2024), and Qwen [Team| (2024}, demonstrate that under the same number of
context combinations and sampling quantities, iCGRT can produce more accurate reasoning paths.

2 METHODOLOGY

In this section, we first elaborate on the construction algorithm of the Cross-Generation Reasoning
Tree (CGRT) after defining the mathematical notation. Subsequently, we present the interpretability
conclusions of LLMs derived from CGRT experiments. Finally, we show the algorithm details of
the inference-version CGRT, iCGRT.

2.1 MATHEMATICAL NOTATION

A N-ary tree can be represented as the pair of node set and edge set & = {V, £}, where V is the
node set and £ is the edge set. The element of edge set, (u, v) € £, u € V, v € &, represents that
the node v is one of the children node of the node u. We define the insert operation as:

Insert(7, w,p) = (V=VU{w}, E=EU(p, w))

For a node v, we use the corresponding non-bold italic v to denote the token it represents. With
the notation conventions for an N-ary tree established, we define the Cross-Generation Reasoning
Tree (CGRT) for the language model. For a query question g and a C is the set of contexts, define
the CGRT as 7, ¢ = {V, &, C}. Each node represents a token generated at a certain step, and each
node can have up to |C| child nodes, where |C| is the number of elements in the context set.

2.2 CROSS-GENERATION REASONING TREE

When generating the i*" token, the LLMs’ prediction distribution is influenced by three factors:
context (such as demonstrations, prompts, instructions, etc.), the query question, and the content
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Figure 2: Figure 1: Illustration of the iCGRT construction algorithm. For each node in the iCGRT,
when generating the next step’s tokens, it considers n. contexts, and takes ns samplings for each
context, generating n. - ng candidate tokens. If the candidate tokens are not entirely consistent, the
top 2 tokens among them are selected as the child nodes of this node, thus limiting iCGRT to a
binary tree. In practice, there are additional implementation details of iCGRT not illustrated in this
figure; for a full explanation, please refer to section @

already generated. Under different contexts or samplings, or a combination of both, when diver-
gence occurs in two inference paths from a certain step, the subsequent reasoning paths will appear
different, although semantically they may convey the same meaning. Previous analyzing methods to
seek LLMs’ interpretability, such as probing |[Belinkov| (2022), information flow |Abnar & Zuidema
(2020); [Wang et al.| (2023a), could only study the first branching position or manually identify loca-
tions in the reasoning path where unexpected errors occur. In order to delve deeper into the impact of
different contexts on content generation, we propose the CGRT (Cross-Generation Reasoning Tree)
structure.

For each query, given two contexts, CGRT constructs the model’s generation into a tree structure.
Specifically, CGRT represents each step of the LLM’s prediction as a node in the tree, with each
branch corresponding to a reasoning path. If the predicted token is < |end_of_sentence|>,
the node is marked as a leaf node. For each step, one of the non-leaf nodes serves as the parent
node. If the model predicts the same token for the current step under both contexts, a single child
node is inserted for the parent node. If the predictions are inconsistent, two child nodes are inserted,
indicating a bifurcation in the tree at this step. This process is recursively iterated until all terminal
nodes in the tree are leaf nodes. In the case of binary CGRTSs constructed from two contexts, only
the paths of the leftmost and rightmost branches are generated based on information from a single
context. Most other paths in the CGRT combine information from both contexts, which is the most
significant difference from traditional tree structures and is the reason why we name the algorithm
as a “Cross-Generation” Tree.

The formalized algorithm for constructing CGRT (Cross-Generation Reasoning Tree) is presented
in Algorithm |1} It is important to note that the flexibility of language permits the same concept
to be articulated in numerous varied manners. Hence, if no limitations are applied to the CGRT,
this variability can lead to an extraordinarily high number of branches in some instances, poten-
tially extending the construction time of a CGRT to several days. In practice, therefore, we opt
to disregard branch point tokens that possess lesser semantic significance. The precise definitions
of these non-significant tokens are delineated in Appendix [A.T.4] If, at a branching point, some
branches are determined to be non-significant, these will be disregarded; if all branches are deemed
non-significant, a single branch will be chosen at random. However, even disregarding these tokens,
the number of branches in CGRT might still grow uncontrollably for certain queries. Therefore, in
practical implementation, it may be necessary to impose a limit on the maximum width of the tree.
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Algorithm 1: CGRT (Cross-Generation Reasoning Tree)

Input: a language model M, a query question g, the set of contexts C

Output: CGRT 7, ¢ = {V, £}

Initialize: a non-leaf root node r with empty data, 7, ¢ + {V = {r}, £ = &}

while there are non-leaf nodes without child nodes in the tree 7, ¢ do

Select a non-leaf node v € V, v ¢ Weos without child nodes

Get the path from the root node r to node v: Sequence(v)

For each context ¢; € C, given the input ¢; + ¢ + Sequence(v), obtain the model M’s
predicted token of the next step: wu; = M(c; + ¢ + Sequence(v))

Remove duplicates from the predicted tokens across different contexts, resulting in j
(where 1 < j < |C]) unique tokens:

{wi, wo, ..., w;} = Set(uy, ug, ..., ug)

for w € {wy, wy, ..., w;} do
if w € Weos then
\ The node w is marked as a leaf node.
end
else
\ The node w is marked as a non-leaf node.
end
Insert the node w as a child node of the node v:

Ty.c  Insert(Fy e, v, w) = (V U {w}, € U {(v,w)})

end

end

2.3 INFERENCE-VERSION CGRT

Theoretically, after obtaining a complete CGRT, an advanced selector could be employed to make
choices at the branching nodes of the tree, thereby navigating the correct reasoning path. However,
in practical application, it poses an almost insurmountable challenge. Firstly, at the step of branch-
ing nodes, although some branching nodes within a given CGRT may lead to entirely correct or
incorrect subsequent reasoning paths, it is a phenomenon limited to the current CGRT. Given that
CGRTs can vary infinitely due to the countless combinations of contexts, exhaustively enumerating
all possible contexts to construct an extraordinarily large CGRT is impractical. Secondly, from a
semantic perspective, most critical branching nodes cannot be discerned by human experts to de-
termine what factors decide the correctness or incorrectness of subsequent reasoning paths. Often,
even when a branching node leads to all incorrect reasoning paths within a certain CGRT, human
experts are still capable of reasoning correctly from the current step. We enumerate many such cases
in Appendix@ Numerous studies Jin et al.f [Valmeekam et al.|(2024)); Kambhampati| (2024) indi-
cate that LLMs lack genuine reasoning capabilities - they merely model human language, and this
modeling is biased. Due to factors such as training data and parameter scale, LLMs are unable to
fully model the reasoning embedded within human language. This explains why the performance of
LLMs diverges from that of human experts, influenced as it is by contextual factors. Consequently,
making the right decision at the branching nodes of a CGRT, viewed solely from the step at the
branching node, remains a challenging task.

Therefore, during the practical inference process, a solution to this problem is required. To address
this, we propose the inference version of CGRT, referred to as iCGRT (inference-version ). The
algorithm of building iCGRT is elaborated on the Algorithm 2} Compared to the standard building
CGRT algorithm, iCGRT introduces the following modifications to adapt to the inference demands:

1. Employing a larger number of context combinations and more diverse sampling than used
in interpretability studies to avoid biases caused by insufficient sampling. This adjustment
is reflected in Line 5 of Algorithm 2]
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Algorithm 2: iCGRT (inference-version Cross-Generation Reasoning Tree)

Input: a language model M, a query question g, the set of contexts C, the decoding function .S,

the number of sampling steps per context n,, the maximum number of iCGRT branches
Np

Output: iCGRT 7,2 ¢ = {V, £}

1 Initialize: a non-leaf root node r with empty data, ,Z](IC) s {y={r}, =0}

2 while there are non-leaf nodes without child nodes in the tree ﬂq(g g do
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21

Select a non-leaf node v € V, v & Weos without child nodes

Get the path from the root node r to node v: Sequence(v)

For each context ¢; € C, given the input ¢; + g + Sequence(v), obtain the model M’s n,
predicted tokens of the next step via the decoding method S:

U—{ui1, ..., Uin,} = S(M(c; + g+ Sequence(v)), ng)
Select the top 2 tokens from |C'| - ns predicted tokens:
{’LUl, ’lUQ} = TOP'Q(UI,I; ceey Uling, U215 - -y U2 0y, u|C|,1a ey u\C|,ns)

if fweld|w=w}|>I\{weld|w=uw} or PathNuInber(%slc)’S) > n,, then
‘ Wkept — {wl}
end
else
‘ Wkept — {wh w2}
end
for w € Wiept do
if w € W, then
\ The node w is marked as a leaf node.
end
else
\ The node w is marked as a non-leaf node.
end
Insert the node w as a child node of the node v:

T g Insert(Z 0 g, v, w) = (V U {w}, £ U {(v,w)})

end

2 end

2. Introducing a majority voting strategy during the inference at each node (each step gener-
ated by LLMs). This serves two purposes: firstly, it maximizes the avoidance of undesirable
token generation; secondly, since a large number of tokens (often < 32) are generated per
step, leading to an overly extensive tree structure, retaining only the top-2 tokens limits the
tree structure to a binary tree, thus significantly reducing the number of reasoning paths in
the iCGRT. This modification is reflected in Line 6 of Algorithm 2]

3. Building upon the previous improvement, if the quantity of the top-1 token far exceeds
that of the top-2 token (for example, if the top-1 token count is more than 4 times that
of the top-2 token), we consider it as a non-branching node. It is controlled by the input
hyperparameter A and the first condition in Line 6 of Algorithm 2}

4. iCGRT imposes limitations on the size of the tree to prevent issues arising from excessive
branching in rare cases. Specifically, when the total number of paths in the tree exceeds
a predefined maximum, only the top-1 token is selected during node generation. This
limitation is governed by the input hyperparameter n,, and the second condition in Line 6
of Algorithm

In addition to the methods mentioned above for accelerating and preventing excessive computational
costs, iICGRT can also process only half the number of tokens at each prediction step to approxi-
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Table 1: maj-vote acc. represents the accuracy of the predicted answer via majority voting strategy,
and prop. of correct paths represents the proportion of correct reasoning paths among the total
reasoning paths. The experiment uses the Llama3-8B model on the GSMS8K test set via the 1-shot
CoT setting. For each context, the CGRT generates predictions via greedy decoding.

num of context 2 4 8
. maj-vote prop. of maj-vote prop. of maj-vote prop. of
metric
acc. correct paths acc. correct paths acc. correct paths
hard level 1 20.83 14.57 23.31 15.28 28.65 19.81
hard level 2 0.00 1.34 7.54 3.63 8.01 3.34
hard level 3 0.00 2.75 6.89 3.22 5.04 3.19
hard level 4 0.00 2.65 3.01 4.13 2.89 1.34

mately to accelerate the inference. Specifically, in Step 6 of Algorithm 2] only half of the n; - n.
tokens that originally should be generated are predicted. If the first half n, - n./2 tokens are con-
sistent or the number of top-1 tokens far exceeds the number of top-2 tokens, the generation of the
remaining half is skipped. In practice, there is a considerable number of prediction steps where all
ns - n. tokens are consistent. This approach can reduce the computational load by approximately
1/3. Throughout this paper, unless otherwise specified, all iCGRT experiments employ this method
to accelerate inference.

3 EXPERIMENTS

3.1 MINING CORRECT REASONING PATHS FROM BAD CONTEXT

By constructing the CGRT, we found that even when using bad contexts, i.e., contexts that cause
LLMs to answer query questions incorrectly, the CGRT still generates some correct reasoning paths.
To quantify this phenomenon, we first define four criteria to measure the difficulty levels of samples:

A. Randomly select N combinations of demonstrations, and generate one inference path per
combination using greedy decoding. The answer derived from the majority voting of these
N inference paths is incorrect.

B. In addition to satisfying criterion A, all N inference paths generated must have incorrect
answers.

C. From the N combinations of demonstrations mentioned in criteria A and B, randomly
select M (where M < N) combinations. Generate S inference paths for each of these M
combinations using top-k or top-p sampling. The answer derived from the majority voting
of the M - S generated inference paths is incorrect.

D. In addition to satisfying criterion C, all M - S generated inference paths must have incorrect
answers.

With these four criteria, we categorize more challenging samples into four levels, ordered from less
difficult to most difficult:

1. Hard Level 1 (Not Very Hard): Meets criterion A

2. Hard Level 2 (Normal Hard): Meets criterion B

3. Hard Level 3 (Very Hard): Meets both criteria B and C

4. Hard Level 4 (Extremely Hard): Meets both criteria B and D
Conventional self-consistency/majority voting strategies do not effectively address hard-level sam-
ples arbitrarily. Furthermore, criteria B and D involve even stricter constraints on the difficulty,
requiring that none of the generated paths are correct. Therefore, for samples classified within Hard
Levels 2-4, particularly those at Hard Level 4, it is challenging for models to produce correct infer-

ences based on ordinary diverse sampling methods. We leverage CGRT to generate reasoning paths
for these difficult samples, with the results provided in Table
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Figure 3: Part-of-Speech Analysis at Branching Nodes in CGRT, conducted on the GSMSK test set
under 1-shot CoT setting via greedy decoding. For each query, we use two contexts to construct
a binary CGRT. In the figure, good (or bad) context represents the model can reason correctly (or
incorrectly) when we place it before the query.

From the experimental results, it can be observed that for challenging samples where majority vot-
ing strategy fails, CGRT is capable of predicting some of these samples correctly. Furthermore,
for extremely difficult samples, i.e., those for which correct inferences are not generated through
normal sampling methods even after numerous attempts, although CGRT cannot predict a majority
of correct inference paths, it does include some correct paths among its predictions. The reason can
be roughly inferred to be that, CGRT employs a ’cross-generation” paradigm, allowing certain paths
to benefit from multiple contexts. Due to the limitations of the model’s capability, extremely diffi-
cult samples cannot be resolved with appropriate contexts or sampling methods, and in such cases,
CGRT is similarly unable to generate correct answers.

In the experiments, to avoid excessive computational costs due to an unmanageable number of
branches generated by CGRT for certain samples, we limited the maximum number of paths for
CGRT to 16, 32, and 48 when using 2, 4, and 8 contexts, respectively. We observed that as the num-
ber of contexts increased, the accuracy of the paths generated by CGRT using majority voting also
generally improved (although the cost of constructing CGRT also increased). However, it is noted
that the metrics for 8 contexts is not always better than those for 4 contexts. This is because while
an increase in the number of contexts indeed raises the probability of uncovering correct inference
paths, it also leads to an increase in the number of incorrect inference paths generated.

3.2 PART-OF-SPEECH ANALYSIS AT BRANCHING NODES IN CGRT

We use two contexts for each query to construct a binary tree form of CGRT, using Llama3-8B
model on the GSMSK test set with a 1-shot CoT (Chain of Thought) setting. Since the goal is to
perform Part-of-Speech Analysis, we did not ignore the non-significant tokens defined in section 2.2
during the construction of the CGRT. The statistical results are shown in Figure[3] It can be seen
that in mathematical reasoning tasks, the proportion of numbers and operators in critical branching
nodes is higher, intuitively. However, because the figure only shows proportions and the number of
non-critical branching nodes far exceeds that of critical ones, even if a branching node is a number
or an operator, it is difficult to determine whether it is a critical one. In fact, if a branching node is a
number or an operator, it is still more likely to be non-critical. In the appendix [A.2.1] we illustrate
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Table 2: Performance Comparison with SC Baseline

Models\ Dataset GSMEK MAWPS SVAMP AQuA
SC iCGRT | SC iCGRT | SC iCGRT | SC iCGRT
Llama2-7B 18.59 1998 | 53.97 5294 | 40.00 39.00 | 1220 11.81
Llama2-13B 49.09 5095 | 67.65 69.32 | 70.00 70.00 | 14.17 14.57
Llama3-8B 67.26  69.29 | 7899 79.83 | 68.00 71.00 | 18.11 18.50
Qwen2.5-7B-Instruct | 42.03  44.21 | 8445 85.29 | 75.00 76.00 | 16.53 15.74

this point more clearly. In mathematical reasoning, parts of mathematical equations can adjust the
order of computation, or the numbers or operators in the equation can be rearranged; for example,
writing 16 — 3 — 4 as 16 — 4 — 3 is also acceptable. The part-of-speech analysis elucidates the
complexity of branching nodes in the CGRT.

3.3 PERFORMANCE COMPARISON WITH TRADITIONAL SC BASELINE

We evaluate iCGRT against SC Wang et al. on four mathematical reasoning datasets:
GSMSK [Cobbe et al.[(2021), SVAMP Patel et al. (2021}, MAWPS Koncel-Kedziorski et al.| (2016),
and AQuA [Ling et al.| (2017), using four open-source LLMs: Llama2-7B [Touvron et al.| (2023),
Llama2-13B, Llama3-8B |Al@Metal (2024)), and Qwen2.5-7B-Instruct(Team|(2024)). The test results
are shown in Table[2] All experiments are conducted using a 2-shot CoT setting. For each sample,
two different examples are randomly selected as demonstrations. In the baseline experiments for
SC, eight sets of 2-shot demonstrations are randomly selected for each query to serve as context.
For each context, top-3 sampling is employed to generate four inference paths, resulting in a total
of 32 inference paths. For iCGRT, the same eight sets of context are selected, and the same top-3
sampling method is applied to generate 32 tokens at each step (if the first 16 tokens is consistent or
if the count of the top 1 token exceeded 12, the remaining 16 tokens will not be computed). The
maximum number of paths for iCGRT is capped at n, = 32.

4 RELATED WORKS

The paradigm of Chain-of-Thought (CoT) |Wei et al.| (2022)) is commonly employed today to en-
hance the reasoning capabilities of models. Whether the manually or automatically constructed CoT
demonstrations, or prompts [Sahoo et al.| (2024) or instructions Efrat & Levy| (2020); Mishra et al.
(2022) used to inform the model to think step-by-step, these can all be considered as context. The
response given by LLMs to the same question can vary depending on the context. However, most
current research on how context influences LLM generation remains at a relatively macro level, such
as the length of the context L1 et al.|(2024), sequence order |Chen et al.; |Pezeshkpour & Hruschka
(2024), domain conflicts [Wang et al.|(2023b), efc. A barrier that limits researchers from examining
this issue from a more microscopic angle, such as at the token level, is that from the first inconsis-
tent output token, subsequent generations will be jointly influenced by the context and the already
generated content. Moreover, as language sequences progress, deviations become increasingly pro-
nounced. Due to the polysemy of language, the same semantics can be expressed in many different
ways. Therefore, finding a method to compare the reasoning content generated by LLMs under
different contexts poses an exceptionally challenging problem.

This paper addresses the issue by constructing CGRT, a specialized tree structure with a cross-
generative approach. Other methods that combine tree structures with Chain-of-Thought (CoT),
such as ToT|Yao et al.|(2024), GoT Besta et al.|(2024), XoT Ding et al.| (2023), LLM+MCTS Zhang
et al.| (2024azb), etc., differ from CGRT in two main aspects: Firstly, these methods use “thoughts”
as units for tree nodes, whereas CGRT generates a tree structure at the token level. Secondly, the
core objective of these methods is to enhance the model’s reasoning performance, requiring the in-
troduction of additional verifiers or evaluators to validate and assess the thoughts. In contrast, CGRT
is a pure inference method that does not require an additional verifier. Instead, it leverages “cross-
generation” to integrate positive influences from multiple contexts, thereby generating diversified
reasoning paths with a higher probability of correctness.
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Due to the frequent occurrence of hallucinations and logical errors in LLMs Huang et al.| (2023);
Xu et al.| (2024), self-consistency Wang et al.| is a widely adopted method to enhance the accuracy
of LLMs’ reasoning. The underlying insight is that LLMs may produce occasional errors in a
single reasoning; thus, correct reasoning can be more possibly achieved through a majority voting
on multiple diversely-sampled reasoning paths (by changing different contexts or utilizing varied
decoding strategies |Shi et al.| (2024)).

5 DISCUSSIONS & FUTURE WORKS

Inference Cost. The inference speed of iCGRT is influenced by two factors: the number of tokens
predicted per step (n. - ns in Algorithm[2)), and the width of the tree (with the maximum width con-
strained by n,, in Algorithm . Under all experiment settings presented in this paper, it is generally
set that n. - ng = ny, and the SC baseline for comparison is also configured to generate an equiva-
lent number of inference paths. If the number of tokens generated at each step matches that of the
baseline inference path, and considering the cumulative length of the paths within the tree structure
is typically longer than the average path length generated by the baseline, the computational cost
would be higher than that of the SC baseline. However, iCGRT can avoid excessive computational
burden by halving the number of tokens predicted at each step (as detailed in Section [2.3), which is
satisfied during most generation steps. Additionally, the actual width of iCGRT often does not reach
the predefined maximum width (n,, in Algorithm[2) in many scenarios. Therefore, the computational
overhead introduced by iCGRT is minimal.

Future Works: More In-depth Research on the Impact of Context on LLMs’ Generation. As
a tool of analyzing the impact of context on LLMs’ generation at the token level, CGRT utilizes
a “cross-generation” approach to eliminate the influence of previously generated content on the
current token, attributing the branching nodes in reasoning paths solely to variations in context.
However, the interpretability conclusions derived from this study remain preliminary, due to the
following two challenges: Firstly, while CGRT can generate all possible reasoning paths for LLMs
under different contexts for the same question, the polysemy of language means there are numerous
ways to express correct or incorrect reasoning. This multiplicity leads to a large number of tokens
non-decisive for the correctness of the reasoning. Future research should focus on identifying critical
branching nodes within CGRT. Secondly, the topic of how context affects LLMs’ generation is still
acknowledged as a challenging subject, influenced by factors such as model size, pre-training, and
post-training data, efc. Furthermore, whether LLMs merely represent powerful modeling of human
language or possess genuine cognitive abilities remains a widely debated topic without definitive
resolution Jin et al.; [Valmeekam et al.| (2024)); |[Kambhampati| (2024). Therefore, future works can
focus on two aspects: On one hand, we can gain more profound insights into the interpretability of
LLMs via CGRT. On the other hand, for the critical branching nodes of CGRT, efforts can be made
to develop a robust token-level decision-maker to improve LLMs’ reasoning performance.

6 CONCLUSIONS

In this paper, we introduced a novel algorithm, Cross-Generation Reasoning Tree (CGRT), aimed
at enhancing the reasoning capabilities and interpretability of large language models (LLMs). The
key challenge addressed is the impact of context variation on LLM generation, particularly the dif-
ficulties posed by diverging reasoning paths. CGRT tackles this by constructing a reasoning tree
that tracks token generation across different contexts, enabling a thorough analysis of the role that
context plays in model outputs. Our experimental results demonstrate that CGRT integrates the
strengths of different context variations and samplings, generating more accurate and diverse rea-
soning paths. Moreover, CGRT reveals that even bad contexts can lead to correct reasoning paths
and provides insights into the critical branching points that determine the success of reasoning. We
also introduced an inference version, iCGRT, which uses majority voting at both token and path lev-
els to improve decision-making at branching nodes, leading to more efficient and accurate reasoning
in LLMs. In conclusion, CGRT offers a powerful tool for understanding and improving LLMs by
combining multiple contexts and sampling techniques, enhancing both reasoning performance and
interpretability. Future work could focus on deeper investigations into critical branching nodes and
further optimizing the balance between reasoning accuracy and computational costs.
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A APPENDIX

A.1 IMPLEMENT DETAILS
A.1.1 DATASETS

GSMEK |Cobbe et al.|(2021) is a dataset of diverse grade school math word problems created by
human problem writers. The test set contains 1,319 problems. These problems need multi-step
mathematical reasoning, usually taking between 2 and 8 steps to solve, and solutions primarily
involve performing a sequence of elementary calculations using basic arithmetic operations (+ —
X =) to reach the final answer.

MAWPS [Koncel-Kedziorski et al.| (2016) dataset is a collection of simple math word problems
focused on arithmetic. Its test set contains 238 samples.

SVAMP Patel et al.|(2021)) is a challenge set for elementary-level Math Word Problems (MWP). An
MWP consists of a short Natural Language narrative that describes a state of the world and poses a
question about some unknown quantities. The test set contains 100 problems.

AQUuA [Ling et al.| (2017) test set consists 254 algebraic word problems with natural language ratio-
nales. Each question provides 5 options and only 1 option is correct.

A.1.2 MODELS

We perform experiments using the model Llama2-13B [Touvron et al.|(2023)), Llama3-8B |Al@Meta
(2024)) and Qwen2.5-7B [Team!| (2024)). We use the base models for Llama2 and Llama3, instead of
the -chat or -instruct version. For Qwen2.5-7B, we use the -instruct version.

A.1.3 FEW-SHOT COT SETTINGS

We use the following templates for the few-shot CoT inference:

Question: [QUESTION]
Answer: [RATIONALE]

The answer is [ANSWER].
Question: [QUESTION]
Answer: [RATIONALE]

The answer is [ANSWER].

Question: [QUERY]
Answer:

where [QUESTION], [RATIONALE], and [ANSWER] represent the question, rationale, and the
final answer of the demonstrations respectively. [QUERY] represent the question to be reasoned.

A.1.4 DEFINITION NON-SIGNIFICANT TOKENS

Due to that the flexibility of language permits the same concept to be articulated in numerous var-
ied manners, we have to apply some limitations on the algorithm of building CGRT to avoid an
extraordinarily high number of branches for some query question. we define the following tokens
as non-significant ones. If, at a branching point, some branches are non-significant, these will be
disregarded; if all branches are deemed non-significant, a single branch will be chosen at random.

non_significant_words = [
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A.2 SUPPLEMENTARY EXPERIMENTS

A.2.1 PART-OF-SPEECH ANALYSIS AT BRANCHING NODES
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Figure 4: Part-of-Speech Analysis at Branching Nodes

As Figure [ shows, the quantity of non-critical branching nodes greatly exceeds that of their criti-
cal counterparts. Hence, despite the fact that within critical branching nodes, tokens that represent
numbers or operators do comprise a significant portion, such an assertion cannot be reciprocally ap-
plied. Mathematical reasoning frequently encompasses non-serial logical computations that permit
diverse permutations of operational hierarchies. Consequently, even in the CGRT, a branching node
that represents a number or an operator cannot be easily identified as critical.
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A.3 EXAMPLES OF CGRT

\

Here we present some examples from the CGRT of the GSMS8K test set. The symbols -, ——, |,
in the figures are used only for better visualization of the tree structure and have no actual meaning.
Because unrestricted CGRT often generates trees with a large number of branches, we have ignored
the branching nodes representing non-significant tokens.

And for better visualization, we have selected examples with an appropriate number and length of
reasoning steps. These examples are presented in the form of vector graphics (Figure [3) rather than
text.
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Figure 5: Examples of CGRT.
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