
Published as a conference paper at ICLR 2021

TEMPORALLY-EXTENDED ε-GREEDY EXPLORATION

Will Dabney, Georg Ostrovski & André Barreto
DeepMind
London, UK
{wdabney,ostrovski,andrebarreto}@google.com

ABSTRACT

Recent work on exploration in reinforcement learning (RL) has led to a series
of increasingly complex solutions to the problem. This increase in complexity
often comes at the expense of generality. Recent empirical studies suggest that,
when applied to a broader set of domains, some sophisticated exploration methods
are outperformed by simpler counterparts, such as ε-greedy. In this paper we
propose an exploration algorithm that retains the simplicity of ε-greedy while
reducing dithering. We build on a simple hypothesis: the main limitation of ε-
greedy exploration is its lack of temporal persistence, which limits its ability to
escape local optima. We propose a temporally extended form of ε-greedy that
simply repeats the sampled action for a random duration. It turns out that, for
many duration distributions, this suffices to improve exploration on a large set of
domains. Interestingly, a class of distributions inspired by ecological models of
animal foraging behaviour yields particularly strong performance.

1 INTRODUCTION

Exploration is widely regarded as one of the most important open problems in reinforcement learning
(RL). The problem has been theoretically analyzed under simplifying assumptions, providing reas-
surance and motivating the development of algorithms (Brafman and Tennenholtz, 2002; Asmuth
et al., 2009; Azar, Osband, and Munos, 2017). Recently, there has been considerable progress on
the empirical side as well, with new methods that work in combination with powerful function
approximators to perform well on challenging large-scale exploration problems (Bellemare et al.,
2016; Ostrovski et al., 2017; Burda et al., 2018; Badia et al., 2020b).

Despite all of the above, the most commonly used exploration strategies are still simple methods
like ε-greedy, Boltzmann exploration and entropy regularization (Peters, Mulling, and Altun, 2010;
Sutton and Barto, 2018). This is true for both work of a more investigative nature (Mnih et al., 2015)
and practical applications (Levine et al., 2016; Li et al., 2019). In particular, many recent successes of
deep RL, from data-center cooling to Atari game playing, rely heavily upon these simple exploration
strategies (Mnih et al., 2015; Lazic et al., 2018; Kapturowski et al., 2019).

Why does the RL community continue to rely on such naive exploration methods? There are several
possible reasons. First, principled methods usually do not scale well. Second, the exploration problem
is often formulated as a separate problem whose solution itself involves quite challenging steps.
Moreover, besides having very limited theoretical grounding, practical methods are often complex and
have significantly poorer performance outside a small set of domains they were specifically designed
for. This last point is essential, as an effective exploration method must be generally applicable.

Naive exploration methods like ε-greedy, Boltzmann exploration and entropy regularization are
general because they do not make strong assumptions about the underlying domain. As a consequence,
they are also simple, not requiring too much implementation effort or per-domain tuning. This makes
them appealing alternatives even when they are not as efficient as some more complex variants.

Perhaps there is a middle ground between simple yet inefficient exploration strategies and more
complex, though efficient, methods. The method we propose in this paper represents such a compro-
mise. We ask the following question: how can we deviate minimally from the simple exploration
strategies adopted in practice and still get clear benefits? In more pragmatic terms, we want a

1

Published as a conference paper at ICLR 2021

simple-to-implement algorithm that can be used in place of naive methods and lead to improved
exploration.

In order to achieve our goal we propose a method that can be seen as a generalization of ε-greedy,
perhaps the simplest and most widely adopted exploration strategy. As is well known, the ε-greedy
algorithm selects an exploratory action uniformly at random with probability ε at each time step.
Besides its simplicity, ε-greedy exploration has two properties that contribute to its universality:

1 It is stationary, i.e. its mechanics do not depend on learning progress. Stationarity is important
for stability, since an exploration strategy interacting with the agent’s learning dynamics results in
circular dependencies that can in turn limit exploration progress. In simple terms: bad exploratory
decisions can hurt the learned policy which can lead to more bad exploration.

2 It provides full coverage of the space of possible trajectories. All sequences of states, actions and
rewards are possible under ε-greedy exploration, albeit some with exceedingly small probability.
This guarantees, at least in principle, that no solutions are excluded from consideration. Conver-
gence results for RL algorithms rely on this sort of guarantee (Singh et al., 2000). This may also
explain sophisticated exploration methods’ use of ε-greedy exploration (Bellemare et al., 2016).

However, ε-greedy in its original form also comes with drawbacks. Since it does not explore
persistently, the likelihood of deviating more than a few steps off the default trajectory is vanishingly
small. This can be thought of as an inductive bias (or “prior”) that favors transitions that are likely
under the policy being learned (it might be instructive to think of a neighbourhood around the
associated stationary distribution). Although this is not necessarily bad, it is not difficult to think of
situations in which such an inductive bias may hinder learning. For example, it may be very difficult
to move away from a local maximum if doing so requires large deviations from the current policy.

The issue above arises in part because ε-greedy provides little flexibility to adjust the algorithm’s
inductive bias to the peculiarities of a given problem. By tuning the algorithm’s only parameter, ε,
one can make deviations more or less likely, but the nature of such deviations is not modifiable. To
see this, note that all sequences of exploratory actions are equally likely under ε-greedy, regardless of
the specific value used for ε. This leads to a coverage of the state space that is largely defined by the
current (“greedy”) policy and the environment dynamics (see Figure 1 for an illustration).

In this paper we present an algorithm that retains the beneficial properties of ε-greedy while at the
same time allowing for more control over the nature of the induced exploratory behavior. In order
to achieve this, we propose a small modification to ε-greedy: we replace actions with temporally-
extended sequences of actions, or options (Sutton, Precup, and Singh, 1999). Options then become a
mechanism to modulate the inductive bias associated with ε-greedy. We discuss how by appropriately
defining a set of options one can “align” the exploratory behavior of ε-greedy with a given environment
or class of environments; we then show how a very simple set of domain-agnostic options work
surprisingly well across a variety of well known environments.

2 BACKGROUND AND NOTATION

Reinforcement learning can be set within the Markov Decision Process (MDP) formalism (Puterman,
1994). An MDPM is defined by the tuple (X , A, P , R, γ), where x ∈ X is a state in the state
space, a ∈ A is an action in the action space, P (x′ | x, a) is the probability of transitioning from
state x to state x′ after taking action a, R : X ×A → R is the reward function and γ ∈ [0, 1) is the
discount factor. Let P(A) denote the space of probability distributions over actions; then, a policy
π : X →P(A) assigns some probability to each action conditioned on a given state. We will denote
by πa = 1a the policy which takes action a deterministically in every state.

The agent attempts to learn a policy π that maximizes the expected return or value in a given state,

V π(x) = EA∼πQπ(x,A) = Eπ

[∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where V π, Qπ are the value and action-value functions of π. The greedy policy for action-value
function Q takes the action arg maxa∈AQ(x, a),∀x ∈ X . In this work we primarily rely upon
methods based on the Q-learning algorithm (Watkins and Dayan, 1992), which attempts to learn the

2

Published as a conference paper at ICLR 2021

=1.0=0.1 =0.5 =0.9=1.0=0.1 =0.5 =0.9

Temporally-extended -Greedy(b)-Greedy(a)

Figure 1: Average (estimated) first-visit times, comparing ε-greedy policies (a) without and with (b)
temporal persistence, in an open gridworld (blue represents fewer steps to and red states rarely or
never seen). Greedy policy moves directly down from the top center. See Appendix for details.

optimal policy by approximating the Bellman optimality equation:

Q(x, a) = R(x, a) + γ E
X′∼P (·|x,a)

[
max
a′∈A

Q(X ′, a′)

]
. (1)

In practice, the state space X is often too large to represent exactly and thus we have Qθ(x, a) ≈
Q(x, a) for a function approximator parameterized by θ. We will generally use some form of
differentiable function approximator Qθ, whether it be linear in a fixed set of basis functions, or an
artificial neural network. We update parameters θ to minimize a squared or Huber loss between the
left- and right-hand sides of equation 1, with the right-hand side held fixed (Mnih et al., 2015).

In addition to function approximation, it has been argued that in order to scale to large problems, RL
agents should be able to reason at multiple temporal scales (Dayan and Hinton, 1993; Parr and Russell,
1998; Sutton, Precup, and Singh, 1999; Dietterich, 2000). One way to model temporal abstraction
is via options (Sutton, Precup, and Singh, 1999), i.e. temporally-extended courses of action. In the
most general formulation, an option can depend on the entire history between its initiation time step t
and the current time step t+ k, ht:t+k ≡ xtatxt+1...at+k−1xt+k. LetH be the space of all possible
histories; a semi-Markov option is a tuple ω ≡ (Iω, πω, βω), where Iω ⊆ X is the set of states where
the option can be initiated, πω : H →P(A) is a history-dependent policy, and βω : H 7→ [0, 1] gives
the probability that the option terminates after observing some history (Sutton, Precup, and Singh,
1999). As in this work we will use options for exploration, we will assume that Iω = X ,∀ω.

Once an option ω is selected, the agent takes actions a ∼ πω(· | h) after having observed history
h ∈ H and at each step terminates the option with probability βω(h). It is worth emphasizing that
semi-Markov options depend on the history since their initiation, but not before. Also, they are
usually defined with respect to a statistic of histories h ∈ H; for example, by looking at the length of
h one can define an option that terminates after a fixed number of steps.

3 EXPLORATION IN REINFORCEMENT LEARNING

At its core, RL presents the twin challenges of temporal credit assignment and exploration. The
agent must accurately, and efficiently, assign credit to past actions for their role in achieving some
long-term return. However, to continue improving the policy, it must also consider behaviours it
estimates to be sub-optimal. This leads to the well-known exploration-exploitation trade-off.

Because of its central importance in RL, exploration has been among the most studied topics in the
field. In finite state-action spaces, the theoretical limitations of exploration, with respect to sample
complexity bounds, are fairly well understood (Azar, Osband, and Munos, 2017; Dann, Lattimore,
and Brunskill, 2017). However, these results are of limited practical use for two reasons. First,
they bound sample complexity by the size of the state-action space and horizon, which makes their
immediate application in large-scale or continuous state problems difficult. Second, these algorithms
tend to be designed based on worst-case scenarios, and can be inefficient on problems of actual
interest. Bayesian RL methods for exploration address the explore-exploit problem integrated with the
estimation of the value-function itself (Kolter and Ng, 2009). Generally such methods strongly depend
upon the quality of their priors, which can be difficult to set appropriately. Thompson sampling
methods (Thompson, 1933; Osband, Russo, and Van Roy, 2013) estimate the posterior distribution of
value-functions, and act greedily according to a sample from this distribution. As with other methods
which integrate learning and exploration into a single estimation problem, this creates non-stationary,
but temporally persistent, exploration. Other examples of this type of exploration strategy include
randomized prior functions (Osband, Aslanides, and Cassirer, 2018), uncertainty Bellman equations
(O’Donoghue et al., 2018), NoisyNets (Fortunato et al., 2017), and successor uncertainties (Janz

3

Published as a conference paper at ICLR 2021

et al., 2019). Although quite different from each other, they share key commonalities: non-stationary
targets, temporal persistence, and exploration based on the space of value functions.

At the other end of the spectrum, there have recently been successful attempts to design algorithms
with specific problems of interest in mind. Certain games from the Atari-57 benchmark (e.g. MON-
TEZUMA’S REVENGE, PITFALL!, PRIVATE EYE) have been identified as ‘hard exploration games’
(Bellemare et al., 2016), attracting the attention of the research community, leading to significant
progress in terms of performance (Ecoffet et al., 2019; Burda et al., 2018). On the downside, these
results have been usually achieved by algorithms with little or no theoretical grounding, adopting
specialized inductive biases, such as density modeling of images (Bellemare et al., 2016; Ostrovski
et al., 2017), error-seeking intrinsic rewards (Pathak et al., 2017; Badia et al., 2020a), or perfect
deterministic forward-models (Ecoffet et al., 2019).

Generally, such algorithms are evaluated only on the very domains they are designed to perform well
on, raising questions of generality. Recent empirical analysis showed that some of these methods
perform similarly to each other on hard exploration problems and significantly under-perform ε-
greedy otherwise (Ali Taı̈ga et al., 2020). One explanation is that complex algorithms tend to be
more brittle and harder to reproduce, leading to lower than expected performance in follow-on work.
However, these results also suggest that much of the recent work on exploration is over-fitting to a
small number of domains.

4 TEMPORALLY-EXTENDED EXPLORATION

There are many ways to think about exploration: curiosity, experimentation, reducing uncertainty,
etc. Consider viewing exploration as a search for undiscovered rewards or shorter paths to known
rewards. In this context, the behaviour of ε-greedy appears shortsighted because the probability of
moving consistently in any direction decays exponentially with the number of exploratory steps. In
Figure 1a we visualize the behaviour of uniform ε-greedy in an open gridworld, where the agent starts
at the center-top and the greedy policy moves straight down. Observe that for ε ≤ 0.5 the agent is
exceedingly unlikely to reach states outside a narrow band around the greedy policy. Even the purely
exploratory policy (ε = 1.0) requires a large number of steps to visit the bottom corners of the grid.
This is because, under the uniform policy, the probability of moving consistently in any direction
decays exponentially (see Figure 1a). By contrast, a method that explores persistently with a directed
policy leads to more efficient exploration of the space at various values of ε (Figure 1b).

The importance of temporally-extended exploration has been previously highlighted (Osband et al.,
2016), and in general, count-based (Bellemare et al., 2016) or curiosity-based (Burda et al., 2018) ex-
ploration methods are inherently temporally-extended due to integrating exploration and exploitation
into the greedy policy. Here our goal is to leverage the benefits of temporally-extended exploration
without modifying the greedy policy.

There has been a wealth of research on learning options (McGovern and Barto, 2001; Stolle and
Precup, 2002; Şimşek and Barto, 2004; Bacon, Harb, and Precup, 2017; Harutyunyan et al., 2019),
and specifically for exploration (Machado, Bellemare, and Bowling, 2017; Machado et al., 2018b;
Jinnai et al., 2019; 2020; Hansen et al., 2020). These methods use options for exploration and to
augment the action-space, adding learned options to actions available at states where they can be
initiated.

In the remainder of this work, we argue for temporally-extended exploration, using options to encode
a set of inductive biases to improve sample-efficiency. This fundamental message is found throughout
the existing work on exploration with options, but producing algorithms that are empirically effective
on large environments remains a challenge for the field. In the next section, we discuss in more detail
how the options’ policy πω and termination βω can be used to induce different types of exploration.

Temporally-Extended ε-Greedy A temporally-extended ε-greedy exploration strategy depends on
choosing an exploration probability ε, a set of options Ω, and a sampling distribution p with support
Ω. On each step the agent follows the current policy π for one step with probability 1− ε, or with
probability ε samples an option ω ∼ p(Ω) and follows it until termination. Standard ε-greedy has
three desirable properties that help explain its wide adoption in practice: it is simple, stationary, and
promotes full coverage of the state-action space in the limit (guaranteeing convergence to the optimal
policy under the right conditions). We now discuss to what extent the proposed algorithm retains

4

Published as a conference paper at ICLR 2021

these properties. Although somewhat subjective, it seems fair to call temporally-extended ε-greedy a
simple method. It is also stationary when the set of options Ω and distribution p are fixed, for in this
case its mechanics are not influenced by the collected data. Finally, it is easy to define conditions
under which temporally-extended ε-greedy covers the entire state-action space, as we discuss next.

Obviously, the exploratory behavior of temporally-extended ε-greedy will depend on the set of options
Ω. Ideally we want all actions a ∈ A to have a nonzero probability of being executed in all states
x ∈ X regardless of the greedy policy π. This is clearly not the case for all sets Ω. In fact, this may
not be the case even if for all (x, a) ∈ X × A there is an option ω ∈ Ω such that πω(a|hx) > 0,
where hx represents all histories ending in x. To see why, note that, given a fixed Ω and ε > 0,
it may be impossible for an option ω ∈ Ω to be “active” in state x (that is, either start at or visit
x). For example, if all options in Ω terminate after a fixed number of steps that is a multiple of k,
temporally-extended ε-greedy with ε = 1 will only visit states of an unidirectional chain whose
indices are also multiples of k. Perhaps even subtler is that, even if all options can be active at state x,
the histories hx ∈ H associated with a given action a may themselves not be realizable under the
combination of Ω and the current π.

It is clear then that the coverage ability of temporally-extended ε-greedy depends on the interaction
between π, Ω, ε, and the dynamics P (·|x, a) of the MDP. One way to reason about this is to consider
that, once fixed, these elements induce a stochastic process which in turn gives rise to a well-defined
distribution over the space of historiesH.

Property 1 (Full coverage). LetM be the space of all MDPs with common state-action spaces X ,
A, and Ω a set of options defined over this state-action space. Then, Ω has full coverage forM if
∀M ∈M, ε > 0, and π, the semi-Markov policy µ := (1− ε)π+ επω , where ω is a random variable
uniform over Ω, visits every state-action pair with non-zero probability. Note that µ is itself a random
variable and not an average policy.

We can then look for simple conditions that would lead to having Property 1. For example, if the
options’ policies only depend on the last state of the history, πω(·|hx) = πω(·|x) (i.e. they are Markov,
rather than semi-Markov policies), we can get the desired coverage by having πω(a|x) > 0 for all
x ∈ X and all a ∈ A. The coverage of X ×A also trivially follows from having all primitive actions
a ∈ A as part of Ω. Note that if the primitive actions are the only elements of Ω we recover standard
ε-greedy, and thus coverage of X ×A. Of course, in these and similar cases, temporally-extended
ε-greedy allows for convergence to the optimal policy under the same conditions as its precursor.

This view of temporally-extended ε-greedy, as inducing a stochastic process, also helps us to under-
stand its differences with respect to its standard counterpart. Since the induced stochastic process
defines a distribution over histories we can also talk about distributions over sequences of actions.
With standard ε-greedy, every sequence of k exploratory actions has a probability of occurrence of
exactly (ε/|A|)k, where |A| is the size of the action space. By changing ε one can uniformly change
the probabilities of all length-k sequences of actions, but no sequence can be favored over the others.
Temporally-extended ε-greedy provides this flexibility through the definition of Ω; specifically, by
defining the appropriate set of options one can control the temporal correlation between actions. This
makes it possible to control how quickly the algorithm converges, as we discuss next.

Efficient exploration For sample-efficiency we want to cover the state-action space quickly.

Definition 1. The cover time of an RL algorithm is the number of steps needed to visit all state-action
pairs at least once with probability 0.5 starting from the initial state distribution.

Even-Dar and Mansour (2003) show that the sample efficiency of Q-learning can be bounded in
terms of the cover time of the exploratory policy used. Liu and Brunskill (2018) provide an upper
bound for the cover time of a random exploratory policy based on properties of the MDP. Putting
these results together, we have the characterization of a class of MDPs for which Q-learning plus
ε-greedy exploration is sample efficient (that is, it converges in polynomial time).

Normally, the efficiency of ε-greedy Q-learning is completely determined by the MDP: given an MDP,
either the algorithm is efficient or it is not. We now discuss how by replacing ε-greedy exploration
with its temporally-extended counterpart we can have efficient exploration on a much broader class of
MDPs. To understand why this is so, note that the definition of the set of options Ω can be seen as the
definition of a new MDP in which histories play the role of states and options play the role of actions.

5

Published as a conference paper at ICLR 2021

0

<latexit sha1_base64="E0H4qpcBLSd+MHc3raGLKiTivB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBe1+Muw==</latexit>

1

<latexit sha1_base64="RSOBfsC0h9n0lPM3VbiR0pceZig=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBfOOMvA==</latexit>

2

<latexit sha1_base64="XW0qcPrccSfI7onjbbF2xR2gGy4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6LHoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyterVJr1sr12zyOApzDBVyBB9dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBfmeMvQ==</latexit>

0

<latexit sha1_base64="E0H4qpcBLSd+MHc3raGLKiTivB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBe1+Muw==</latexit>

0

<latexit sha1_base64="E0H4qpcBLSd+MHc3raGLKiTivB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBe1+Muw==</latexit>

0

<latexit sha1_base64="E0H4qpcBLSd+MHc3raGLKiTivB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBe1+Muw==</latexit>

0

<latexit sha1_base64="E0H4qpcBLSd+MHc3raGLKiTivB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBe1+Muw==</latexit>

n

<latexit sha1_base64="v7UxZ5KQo00mkQMwcQYmx7IiW7M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A2VeM+Q==</latexit>

n

<latexit sha1_base64="v7UxZ5KQo00mkQMwcQYmx7IiW7M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A2VeM+Q==</latexit>

a0

<latexit sha1_base64="KReiKSA2LZT+Uj27BQYnEhdMZ/w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ7cQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPYzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqler1u5rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+lZjY8=</latexit>

a1

<latexit sha1_base64="fenAJM2m6zG3hI/p/kZ+m2C1HHY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3TgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqler1u5rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP+rdjZA=</latexit>

(a)

<latexit sha1_base64="ytd/1eZmANPFQe1kQ5HLBn0g29Y=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXAnoMevEYwTwwWcLsZJIMmZ1dZnrFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpn5rUeujYjUPU5i7od0qMRAMIpWeugif8K0TM+nvWLJrbhzkFXiZaQEGeq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8WugmhseUjemQdyxVNOTGT+cXT8mZVfpkEGlbCslc/T2R0tCYSRjYzpDiyCx7M/E/r5Pg4MpPhYoT5IotFg0SSTAis/dJX2jOUE4soUwLeythI6opQxtSwYbgLb+8SpoXFa9aqd5VS7XrLI48nMAplMGDS6jBLdShAQwUPMMrvDnGeXHenY9Fa87JZo7hD5zPH1ECkLA=</latexit>

(b) Chain: Q-Learning

<latexit sha1_base64="JNbwM1yee/E6Ek3JY2FcTcls+d8=">AAACBXicbVA9SwNBEN3zM8avqKUWi0GIheFOAopVMI2FRQLmA5IQ9jaTZHFv79idE8ORxsa/YmOhiK3/wc5/4+aj0OiDgcd7M8zM8yMpDLrul7OwuLS8sppaS69vbG5tZ3Z2ayaMNYcqD2WoGz4zIIWCKgqU0Ig0sMCXUPdvS2O/fgfaiFDd4DCCdsD6SvQEZ2ilTuaghXCPSc4/pqUBE+qCVk6ugWklVH/UyWTdvDsB/Uu8GcmSGcqdzGerG/I4AIVcMmOanhthO2EaBZcwSrdiAxHjt6wPTUsVC8C0k8kXI3pklS7thdqWQjpRf04kLDBmGPi2M2A4MPPeWPzPa8bYO28nQkUxguLTRb1YUgzpOBLaFRo4yqEljGthb6V8wDTjaINL2xC8+Zf/ktpp3ivkC5VCtng5iyNF9skhyRGPnJEiuSJlUiWcPJAn8kJenUfn2Xlz3qetC85sZo/8gvPxDQAxl6E=</latexit>

(b) Atari: R2D2

<latexit sha1_base64="qyty9CR5juBcw9oDw1LUUX5lE10=">AAAB/3icbVDJSgNBEO1xjXEbFbx4aQxCvISZEFA8xeXgMYpZIBlCT6cnadLTM3TXiGHMwV/x4kERr/6GN//GznLQxAcFj/eqqKrnx4JrcJxva2FxaXllNbOWXd/Y3Nq2d3ZrOkoUZVUaiUg1fKKZ4JJVgYNgjVgxEvqC1f3+5civ3zOleSTvYBAzLyRdyQNOCRipbe+3gD1AmveP8TkQxc/wbfGqOGzbOafgjIHniTslOTRFpW1/tToRTUImgQqiddN1YvBSooBTwYbZVqJZTGifdFnTUElCpr10fP8QHxmlg4NImZKAx+rviZSEWg9C33SGBHp61huJ/3nNBIJTL+UyToBJOlkUJAJDhEdh4A5XjIIYGEKo4uZWTHtEEQomsqwJwZ19eZ7UigW3VCjdlHLli2kcGXSADlEeuegEldE1qqAqougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx/rkpS/</latexit>

Zeta

<latexit sha1_base64="ruGMlfwAN5cgxklHVpPGljHDOLM=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mkoMeiF48V7Ae2oWy2k3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzPz2I2gjYnWPkwT8iA2VCAVnaKVuD+EJswdANu2XK27VnYOuEi8nFZKj0S9/9QYxTyNQyCUzpuu5CfoZ0yi4hGmplxpIGB+zIXQtVSwC42fzk6f0zCoDGsbalkI6V39PZCwyZhIFtjNiODLL3kz8z+umGF75mVBJiqD4YlGYSooxnf1PB0IDRzmxhHEt7K2Uj5hmHG1KJRuCt/zyKmldVL1atXZXq9Sv8ziK5IScknPikUtSJ7ekQZqEk5g8k1fy5qDz4rw7H4vWgpPPHJM/cD5/ANGokZw=</latexit>

Uniform

<latexit sha1_base64="pqzgit13QE8nIYGiP3xL9+l1VOI=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8lUQKeix68VjBtIU2ls122y7d3YTdiVpC/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJYIb9LxvZ2V1bX1js7BV3N7Z3dsvHRw2TJxqygIai1i3ImKY4IoFyFGwVqIZkZFgzWh0PfWbD0wbHqs7HCcslGSgeJ9Tgla67yB7wiywSqzlpFsqexVvBneZ+DkpQ456t/TV6cU0lUwhFcSYtu8lGGZEI6eCTYqd1LCE0BEZsLalikhmwmx29cQ9tUrPtYttKXRn6u+JjEhjxjKynZLg0Cx6U/E/r51i/zLMuEpSZIrOF/VT4WLsTiNwe1wzimJsCaGa21tdOiSaULRBFW0I/uLLy6RxXvGrlepttVy7yuMowDGcwBn4cAE1uIE6BEBBwzO8wpvz6Lw4787HvHXFyWeO4A+czx9HEZMG</latexit>

Exponential

<latexit sha1_base64="GPWGNsSgWwgiCbW3mNH9nKkReaw=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgqsxIQZdFEVxWsA9oh5JJM21oJhmSO9Iy9FfcuFDErT/izr8xbWehrQcCh3Pu4d6cMBHcgOd9O4WNza3tneJuaW//4PDIPS63jEo1ZU2qhNKdkBgmuGRN4CBYJ9GMxKFg7XB8O/fbT0wbruQjTBMWxGQoecQpASv13XIP2ASyu0miJJPAiZj13YpX9RbA68TPSQXlaPTdr95A0TS2eSqIMV3fSyDIiAZOBZuVeqlhCaFjMmRdSyWJmQmyxe0zfG6VAY6Utk8CXqi/ExmJjZnGoZ2MCYzMqjcX//O6KUTXQcZlkgKTdLkoSgUGhedF4AHXjIKYWkKo5vZWTEdEEwq2rpItwV/98jppXVb9WrX2UKvUb/I6iugUnaEL5KMrVEf3qIGaiKIJekav6M2ZOS/Ou/OxHC04eeYE/YHz+QPuhJUG</latexit>

Figure 2: (a) Modified chain MDP, action a0 moves right, a1 terminates with specified reward.
Rewards follow a pattern of n zeros followed by a single reward n, etc. Evaluation of performance
under various duration distributions and hyper-parameters on the chain. (b) Duration distribution
similarly compared for an R2D2-based deep RL agent in Atari.

Hence, by appropriately defining Ω, we can have an MDP in which random exploration is efficient.
We now formalize this notion by making explicit properties of Ω that lead to efficient exploration:

Assumption 1. For an MDP M and set of options Ω, there exists nmax ∈ N such that ∀x, y ∈ X ,
∃ω ∈ Ω leading to Eπω [t | x0 = x, xt = y] ≤ nmax.

Theorem 1. For any irreducible MDP, let Ω be a set of options satisfying Assumption 1 with
nmax ≤ Θ(|X ||A|). Then, temporally-extended ε-greedy with sampling distribution p satisfying

1
ρ(ω) ≤ Θ(|X ||A|),∀ω ∈ Ω, has polynomial sample complexity.

In many cases it is easy to define options that satisfy Assumption 1, as we will discuss shortly. But
even when this is not the case, one can learn options deliberately designed to have this property.
For example, Jinnai et al. (2019; 2020) learn point-options (transitioning from one state to one
other state) that explicitly minimize cover time. The approach proposed by Machado et al. (2017;
2018b) also leads to options with a small cover time. Alternatively, Whitney et al. (2020) learn an
embedding of action sequences such that sequences with similar representations also have similar
future state distributions. They observe that sampling uniformly in this abstracted action space yields
action sequences whose future state distribution is nearly uniform over reachable states. We can
interpret such an embedding, coupled with a corresponding decoder back into primitive actions, as an
appealing approach to learning open-loop options for temporally-extended ε-greedy exploration.

Next, we propose a concrete form of temporally-extended ε-greedy which requires neither learning Ω
nor specific domain knowledge. These options encode a commonly held inductive bias: actions have
(largely) consistent effects throughout the state-space.

εz-Greedy We begin with the options ωa ≡ (X , πa, β), where πa(h) = 1a and β(h) = 1 for
all h ∈ H, and consider a single modification, temporal persistence. Let ωan ≡ (X , πa, β(h) =
1|h|==n) be the option which takes action a for n steps and then terminates. Our proposed algorithm,
is to let Ω = {ωan}a∈A,n≥1 and p to be uniform over actions with durations distributed according
to some distribution z. Intuitively, we are proposing the set of semi-Markov options made up of
all “action-repeat” policies for all combinations of actions and repeat durations, with a parametric
sampling distribution on durations.

This exploration algorithm is described by two parameters, ε dictating when to explore, and z dictating
the degree of persistence. Notice that when z puts all mass on n = 1, this is standard ε-greedy; more
generally this combination of distributions forms a composite distribution with support [0,∞), which
is to say that with some probability the agent explores for n = 0 steps, corresponding to following its
usual policy, and for all other n > 0 the agent explores following an action-repeat policy.

A natural question arises: what distribution over durations should we use? To help motivate this
question, and to help understand the desirable characteristics, consider Figure 2 which shows a
modified chain MDP with two actions. Taking the ‘down’ action immediately terminates with the
specified reward, whereas taking the ‘right’ action progresses to the next state in the chain. Similar
to other exploration chain-like MDPs, ε-greedy performs poorly here because the agent must move
consistently in one direction for an arbitrary number of steps (determined by the discount) to reach the
optimal reward. Instead, we consider the effects of three classes of duration distribution: exponential

6

Published as a conference paper at ICLR 2021

-Greedy -Greedy(a) DeepSea

-Greedy -Greedy(b) GridWorld

-Greedy -Greedy(c) Mountain Car

-Greedy -Greedy(d) Cart Pole (sparse)

Figure 3: Comparing ε-greedy with εz-greedy on four small-scale domains requiring exploration.
(a) DeepSea is a tabular problem in which only one action-sequence receives positive reward, and
uniform exploration is exponentially inefficient, (b) GridWorld is a four-action gridworld with a
single reward, (c) MountainCar is the sparse reward (only at goal) version of the classic RL domain,
and (d) CartPole swingup-sparse only gives non-zero reward when the pole is perfectly balanced and
the cart near-center. For each, we show performance comparing ε-greedy with εz-greedy (left), as
well as average first-visit times over states for both algorithms during pure exploration (ε = 1). In
all first-visit plots, color levels are linearly scaled, except for DeepSea in which we use a log scale.

(z(n) ∝ λn−1), uniform (z(n) = 1n≤N/N), and zeta (z(n) ∝ n−µ). Figure 2b shows the average
return achieved by these distributions as their hyper-parameters are varied. This problem illustrates
that, without prior knowledge of the MDP, it is important to support long durations, such as with a
heavy-tailed distribution (e.g. the zeta distribution).

Why not simply allow uniform over an extremely large support? Doing so would effectively force
‘pure’ exploration without any exploitation, because this form of ballistic exploration would simply
continue exploring indefinitely. Indeed, we can see in Figure 2 that the uniform distribution leads to
poor performance (the same is true for the zeta distribution as µ→ 1, which also leads to ballistic
exploration). On the other hand, short durations lead to frequent switching and vanishingly small
probabilities of reaching larger rewards at all. This trade-off leads to the existence of an optimal value
of µ for the zeta distribution that can vary by domain (Humphries et al., 2010), and is illustrated by the
inverted U-curve in Figure 2. A class of ecological models for animal foraging known as Lévy flights
follow a similar pattern of choosing a direction uniformly at random, and following that direction for
a duration sampled from a heavy-tailed distribution. Under certain conditions, this has been shown to
be an optimal foraging strategy, a form of exploration for a food source of unpredictable location
(Viswanathan et al., 1996; 1999). In particular, a value of µ = 2 has consistently been found as
the best for modeling animal foraging, as well as performing best in our hyper-parameter sweep.
Thus, in the remainder of this work we will use the zeta distribution, with µ = 2 unless otherwise
specified, and call this combination of ε chance to explore and zeta-distributed durations, εz-Greedy
exploration1.

5 EXPERIMENTAL RESULTS

We have emphasized the importance of simplicity, generality (via convergence guarantees), and
stationarity of exploration strategies. We proposed a simple temporally-extended ε-greedy algorithm,
εz-greedy, and saw that a heavy-tailed duration distribution yielded the best trade-off between
temporal persistence and sample efficiency. In this section, we present empirical results on tabular,
linear, and deep RL settings, pursuing two objectives: The first is to demonstrate the generality of our
method in applying it across domains as well as across multiple value-based reinforcement learning
algorithms (Q-learning, SARSA, Rainbow, R2D2). Second, we make the point that exploration
comes at a cost, and that εz-greedy improves exploration with significantly less loss in efficiency on
dense-reward domains compared with existing exploration algorithms.

Small-Scale: Tabular & Linear RL We consider four small-scale environments (DeepSea, Grid-
World, MountainCar, CartPole swingup-sparse), configured to be challenging sparse-reward explo-

1Pronounce ‘easy-greedy’.

7

Published as a conference paper at ICLR 2021

(a) Rainbow

Environment frames (million) Environment frames (million) Environment frames

(b) R2D2

Environment frames

���������H
um

an
-n

or
m

al
iz

ed
 S

co
re

H
um

an
-n

or
m

al
iz

ed
 S

co
re

Figure 4: Results on the Atari-57 benchmark for (a) Rainbow-based and (b) R2D2-based agents.

ration problems. Full details for each are given in the Appendix. DeepSea and GridWorld use a
tabular representation while MountainCar and CartPole use linear function approximation on an order
5 and 7 Fourier basis respectively (Konidaris, Osentoski, and Thomas, 2011).

In Figure 3 we present results comparing ε-greedy and εz-greedy on these four domains. Unless
otherwise specified, the hyper-parameters and training settings for these two methods are identical.
For each domain we show (i) learning curves showing average return against training episodes2, (ii)
average first-visit times on states during pure (ε = 1.0) exploration for ε-greedy and (iii) εz-greedy.
The results show that εz-greedy provides significantly improved performance on these domains, and
the first-visit times indicate significantly better state-space coverage compared to ε-greedy.

Atari-57: Deep RL Motivated by the results in tabular and linear settings, we now turn to deep
RL and evaluate performance on 57 Atari 2600 games in the Arcade Learning Environment (ALE)
(Bellemare et al., 2013). To demonstrate the generality of the approach, we apply εz-greedy to two
state-of-the-art deep RL agents, Rainbow (Hessel et al., 2018) and R2D2 (Kapturowski et al., 2019).
We compare with baseline performance as well as the performance of a recent intrinsic motivation-
based exploration algorithm: CTS-based pseudo-counts (Bellemare et al., 2016) in Rainbow and
RND (Burda et al., 2018) in R2D2, each tuned for performance comparable with published results.
Finally, in R2D2 experiments we also compare with a Bootstrapped DQN version of R2D2 (Osband
et al., 2016), providing an exploration baseline without intrinsic rewards. We include pseudo-code
and hyper-parameters in the Appendix, though the implementation of εz-greedy in each case is
trivial, hyper-parameters are mostly identical to previous work, and we fix µ = 2 for results in
this section. Our findings (see Figure 4) show that εz-greedy improves performance on the hard
exploration tasks with little to no loss in performance on the rest of the suite. By comparison, we
observe that the intrinsic motivation methods often (although not always) outperform εz-greedy on
the hard exploration tasks, but at a significant loss of performance on the rest of the benchmark.

The results in Figure 4 show median human-normalized score over the 57 games and the human-gap,
measuring how much the agent under-performs humans on average (see Appendix D for details). We
consider the median to indicate overall performance on the suite and the human-gap to illustrate gains
on the hard exploration games where agents still under-perform relative to humans, with full per-game
and mean performance given in the Appendix. Table 1 gives the final performance of each of the
agents in terms of these summary statistics. Figure 5 shows representative examples of per-game
performance for the R2D2-based agents. These per-game results make a strong point, that even on the
hard exploration games the inductive biases of intrinsic motivation methods may be poorly aligned,
and that outside a small number of games these methods significantly hurt performance, whereas our
proposed method improves exploration while avoiding this significant loss elsewhere.

To demonstrate that the effectiveness of our method does not crucially depend on evaluation on
deterministic domains, in Appendix E we additionally show a similar comparison of the Rainbow-
based agents on a stochastic variant of the Atari-57 benchmark using ‘sticky actions’ (Machado et al.,
2018a). The results are qualitatively similar: while all agent variants do somewhat worse on the
stochastic compared to the deterministic case, εz-greedy improves over the baseline and ε-greedy on
the hardest exploration domains while not substantially affecting performance in others, and coming
out on top in terms of mean and median human-normalized performance as well as human-gap (Table
5, Figures 9, 10, 21).

2To compare with previous work on DeepSea, we report expected time to learn versus problem scale.

8

Published as a conference paper at ICLR 2021

���������

Figure 5: Results on the Atari-57 selected games showing R2D2-based agents.

Algorithm (@30B) Median Mean H-Gap Algorithm (@200M) Median Mean H-Gap
R2D2 14.31 39.55 0.102 Rainbow 2.09 8.82 0.139
R2D2+RND 9.40 42.17 0.151 Rainbow+ε-Greedy 2.26 9.17 0.143
R2D2+Bootstrap 15.75 37.69 0.096 Rainbow+CTS 1.72 6.77 0.150
R2D2+εz-greedy 16.64 40.16 0.077 Rainbow+εz-Greedy 2.35 9.34 0.130

Table 1: Atari-57 final performance. H-Gap denotes the human-gap, defined fully in the Appendix.

6 DISCUSSION AND CONCLUSIONS

We have proposed temporally-extended ε-greedy, a form of random exploration performed by sam-
pling an option and following it until termination, with a simple instantiation which we call εz-greedy.
We showed, across domains and algorithms spanning tabular, linear and deep reinforcement learning
that εz-greedy improves exploration and performance in sparse-reward environments with minimal
loss in performance on easier, dense-reward environments. Further, we showed that compared with
other exploration methods (pseudo-counts, RND, Bootstrap), εz-greedy has comparable performance
averaged over the hard-exploration games in Atari, but without the significant loss in performance on
the remaining games. Although action-repeats have been a part of deep RL algorithms since DQN,
and have been considered as a type of option (Schoknecht and Riedmiller, 2002; 2003; Braylan et al.,
2015; Lakshminarayanan, Sharma, and Ravindran, 2017; Sharma, Lakshminarayanan, and Ravindran,
2017), their use for exploration with sampled durations does not appear to have been studied before.

Generality and Limitations. Both ε- and εz-greedy are guaranteed to converge in the finite state-
action case, but they place probability mass over exploratory trajectories very differently, thus
encoding different inductive biases. We expect there to be environments where εz-greedy significantly
under-performs ε-greedy. Indeed, these are easy to imagine: DeepSea with action effects randomized
per-state (see Appendix Figure 14), GridWorld with many obstacles that immediately end the episode
(‘mines’), a maze changing direction every few steps, etc. More generally, the limitations of εz-greedy
are: (i) Actions may not homogeneously (over states) correspond to a natural notion of shortest-path
directions in the MDP. (ii) Action spaces may be biased (e.g. many actions have the same effect),
so uniform action sampling may produce undesirable biased drift through the MDP. (iii) Obstacles
and dynamics in the MDP can cause long exploratory trajectories to waste time (e.g. running into
a wall for thousands of steps), or produce uninformative transitions (e.g. end of episode, death).
In Appendix F we report on a series of experiments investigating εz-Greedy’s sensitivities to such
modifications of the Gridworld domain and find that its performance degrades gracefully overall.

These limitations are precisely where we believe future work is best motivated. How can an agent
learn stationary, problem-specific notions of direction, and explore in that space efficiently? How
to avoid wasteful long trajectories, perhaps by truncating early? This form of exploration bears
similarity to the Lévy-flights model of foraging, where an animal will abruptly end foraging as soon
as food is within sight. Could we use discrepancies in value along a trajectory to similarly truncate
exploration early? Recent work around learning action representations appear to be promising
directions (Tennenholtz and Mannor, 2019; Chandak et al., 2019).

REFERENCES

Ali Taı̈ga, A.; Fedus, W.; Machado, M. C.; Courville, A.; and Bellemare, M. G. 2020. On Bonus
Based Exploration Methods In The Arcade Learning Environment. In International Conference on
Learning Representations.

Asmuth, J.; Li, L.; Littman, M. L.; Nouri, A.; and Wingate, D. 2009. A Bayesian sampling approach
to exploration in reinforcement learning. In Conference on Uncertainty in Artificial Intelligence,

9

Published as a conference paper at ICLR 2021

19–26. AUAI Press.

Azar, M. G.; Osband, I.; and Munos, R. 2017. Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, 263–272. JMLR. org.

Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-critic architecture. In AAAI Conference on
Artificial Intelligence.

Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; and Blundell, C.
2020a. Agent57: Outperforming the atari human benchmark. arXiv:2003.13350 .

Badia, A. P.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; Piot, B.; Kapturowski, S.; Tieleman, O.;
Arjovsky, M.; Pritzel, A.; Bolt, A.; and Blundell, C. 2020b. Never Give Up: Learning Directed
Exploration Strategies. In International Conference on Learning Representations.

Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics (5):
834–846.

Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Saxton, D.; and Munos, R. 2016. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, 1471–1479.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research 47: 253–279.

Brafman, R. I.; and Tennenholtz, M. 2002. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research 3: 213–231.

Braylan, A.; Hollenbeck, M.; Meyerson, E.; and Miikkulainen, R. 2015. Frame skip is a powerful
parameter for learning to play atari. In Workshops at AAAI Conference on Artificial Intelligence.

Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018. Exploration by random network distillation.
arXiv:1810.12894 .

Chandak, Y.; Theocharous, G.; Kostas, J.; Jordan, S.; and Thomas, P. 2019. Learning Action
Representations for Reinforcement Learning. In International Conference on Machine Learning,
941–950.

Dann, C.; Lattimore, T.; and Brunskill, E. 2017. Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning. In Advances in Neural Information Processing Systems,
5713–5723.

Dayan, P.; and Hinton, G. E. 1993. Feudal reinforcement learning. In Advances in neural information
processing systems, 271–278.

Dietterich, T. G. 2000. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. Journal of Artificial Intelligence Research 13: 227–303.

Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and Clune, J. 2019. Go-Explore: a New
Approach for Hard-Exploration Problems. arXiv:1901.10995 .

Even-Dar, E.; and Mansour, Y. 2003. Learning rates for Q-learning. Journal of machine learning
Research 5: 1–25.

Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.;
Hassabis, D.; Pietquin, O.; et al. 2017. Noisy networks for exploration. arXiv:1706.10295 .

Hansen, S.; Dabney, W.; Barreto, A.; Warde-Farley, D.; de Wiele, T. V.; and Mnih, V. 2020. Fast Task
Inference with Variational Intrinsic Successor Features. In International Conference on Learning
Representations.

Harutyunyan, A.; Dabney, W.; Borsa, D.; Heess, N.; Munos, R.; and Precup, D. 2019. The Termination
Critic. In International Conference on Artificial Intelligence and Statistics, 2231–2240.

10

Published as a conference paper at ICLR 2021

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.;
Azar, M.; and Silver, D. 2018. Rainbow: Combining improvements in deep reinforcement learning.
In AAAI Conference on Artificial Intelligence.

Humphries, N. E.; Queiroz, N.; Dyer, J. R.; Pade, N. G.; Musyl, M. K.; Schaefer, K. M.; Fuller,
D. W.; Brunnschweiler, J. M.; Doyle, T. K.; Houghton, J. D.; et al. 2010. Environmental context
explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301): 1066.

Janz, D.; Hron, J.; Mazur, P.; Hofmann, K.; Hernández-Lobato, J. M.; and Tschiatschek, S. 2019.
Successor Uncertainties: exploration and uncertainty in temporal difference learning. In Advances
in Neural Information Processing Systems, 4509–4518.

Jinnai, Y.; Park, J. W.; Abel, D.; and Konidaris, G. 2019. Discovering options for exploration by
minimizing cover time. arXiv:1903.00606 .

Jinnai, Y.; Park, J. W.; Machado, M. C.; and Konidaris, G. 2020. Exploration in Reinforcement
Learning with Deep Covering Options. In International Conference on Learning Representations.

Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; and Dabney, W. 2019. Recurrent expe-
rience replay in distributed reinforcement learning. In International Conference on Learning
Representations.

Kolter, J. Z.; and Ng, A. Y. 2009. Near-Bayesian exploration in polynomial time. In International
Conference on Machine Learning, 513–520.

Konidaris, G.; Osentoski, S.; and Thomas, P. 2011. Value function approximation in reinforcement
learning using the Fourier basis. In AAAI conference on artificial intelligence.

Lakshminarayanan, A. S.; Sharma, S.; and Ravindran, B. 2017. Dynamic action repetition for deep
reinforcement learning. In AAAI Conference on Artificial Intelligence.

Lazic, N.; Boutilier, C.; Lu, T.; Wong, E.; Roy, B.; Ryu, M.; and Imwalle, G. 2018. Data center
cooling using model-predictive control. In Advances in Neural Information Processing Systems,
3814–3823.

Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research 17(1): 1334–1373.

Li, Y.; Wen, Y.; Tao, D.; and Guan, K. 2019. Transforming cooling optimization for green data center
via deep reinforcement learning. IEEE Transactions on Cybernetics .

Liu, Y.; and Brunskill, E. 2018. When simple exploration is sample efficient: Identifying sufficient
conditions for random exploration to yield pac rl algorithms. arXiv:1805.09045 .

Machado, M. C.; Bellemare, M. G.; and Bowling, M. 2017. A Laplacian Framework for Option
Discovery in Reinforcement Learning. In International Conference on Machine Learning, 2295–
2304.

Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness, J.; Hausknecht, M.; and Bowling, M. 2018a.
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research 61: 523–562.

Machado, M. C.; Rosenbaum, C.; Guo, X.; Liu, M.; Tesauro, G.; and Campbell, M. 2018b. Eigenop-
tion Discovery through the Deep Successor Representation. In International Conference on
Learning Representations.

McGovern, A.; and Barto, A. G. 2001. Automatic discovery of subgoals in reinforcement learning
using diverse density. In International Conference on Machine Learning.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.;
Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540): 529–533.

O’Donoghue, B.; Osband, I.; Munos, R.; and Mnih, V. 2018. The uncertainty bellman equation and
exploration. In International Conference on Machine Learning, 3836–3845.

11

Published as a conference paper at ICLR 2021

Osband, I.; Aslanides, J.; and Cassirer, A. 2018. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, 8617–8629.

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016. Deep exploration via bootstrapped DQN.
In Advances in neural information processing systems, 4026–4034.

Osband, I.; Russo, D.; and Van Roy, B. 2013. (More) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, 3003–3011.

Ostrovski, G.; Bellemare, M. G.; van den Oord, A.; and Munos, R. 2017. Count-based exploration
with neural density models. In International Conference on Machine Learning, 2721–2730.

Parr, R.; and Russell, S. J. 1998. Reinforcement learning with hierarchies of machines. In Advances
in neural information processing systems, 1043–1049.

Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017. Curiosity-driven exploration by
self-supervised prediction. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 16–17.

Peters, J.; Mulling, K.; and Altun, Y. 2010. Relative entropy policy search. In AAAI Conference on
Artificial Intelligence.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc.

Schoknecht, R.; and Riedmiller, M. 2002. Speeding-up reinforcement learning with multi-step
actions. In International Conference on Artificial Neural Networks, 813–818. Springer.

Schoknecht, R.; and Riedmiller, M. 2003. Reinforcement learning on explicitly specified time scales.
Neural Computing & Applications 12(2): 61–80.

Sharma, S.; Lakshminarayanan, A. S.; and Ravindran, B. 2017. Learning to repeat: Fine grained
action repetition for deep reinforcement learning. arXiv:1702.06054 .

Şimşek, Ö.; and Barto, A. G. 2004. Using relative novelty to identify useful temporal abstractions in
reinforcement learning. In International Conference on Machine Learning, 95.

Singh, S.; Jaakkola, T.; Littman, M. L.; and Szepesvári, C. 2000. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine learning 38(3): 287–308.

Stolle, M.; and Precup, D. 2002. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, 212–223. Springer.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT press.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2): 181–211.

Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.; Casas, D. d. L.; Budden, D.; Abdolmaleki, A.;
Merel, J.; Lefrancq, A.; et al. 2018. Deepmind control suite. arXiv:1801.00690 .

Tennenholtz, G.; and Mannor, S. 2019. The Natural Language of Actions. In International Conference
on Machine Learning, 6196–6205.

Thompson, W. R. 1933. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika 25(3/4): 285–294.

Van Seijen, H.; Van Hasselt, H.; Whiteson, S.; and Wiering, M. 2009. A theoretical and empiri-
cal analysis of Expected Sarsa. In IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, 177–184. IEEE.

Viswanathan, G. M.; Afanasyev, V.; Buldyrev, S.; Murphy, E.; Prince, P.; and Stanley, H. E. 1996.
Lévy flight search patterns of wandering albatrosses. Nature 381(6581): 413.

12

Published as a conference paper at ICLR 2021

Viswanathan, G. M.; Buldyrev, S. V.; Havlin, S.; Da Luz, M.; Raposo, E.; and Stanley, H. E. 1999.
Optimizing the success of random searches. Nature 401(6756): 911.

Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; and De Freitas, N. 2015. Dueling
network architectures for deep reinforcement learning. arXiv:1511.06581 .

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine learning 8(3-4): 279–292.

Whitney, W.; Agarwal, R.; Cho, K.; and Gupta, A. 2020. Dynamics-Aware Embeddings. In
International Conference on Learning Representations. URL https://openreview.net/
forum?id=BJgZGeHFPH.

13

https://openreview.net/forum?id=BJgZGeHFPH
https://openreview.net/forum?id=BJgZGeHFPH

Published as a conference paper at ICLR 2021

APPENDICES

A COVER TIME ANALYSIS

Assumption 1. For an MDP M and set of options Ω, there exists nmax ∈ N such that ∀x, y ∈ X ,
∃ω ∈ Ω leading to Eπω [t | x0 = x, xt = y] ≤ nmax.

Theorem 1. For any irreducible MDP, let Ω be a set of options satisfying Assumption 1 with
nmax ≤ Θ(|X ||A|). Then, temporally-extended ε-greedy with sampling distribution p satisfying

1
ρ(ω) ≤ Θ(|X ||A|),∀ω ∈ Ω, has polynomial sample complexity.

Proof. Liu and Brunskill (2018) establish a PAC RL bound, leading to polynomial sample complexity,
for random exploration using primitive actions when 1

minx φ(x) and 1
h are polynomial in states and

actions, with steady-state distribution φ and Cheeger constant h. However, their result does not
require actions to be primitive, and here we show how temporally-extended actions in the form of
exploratory options can be used for a similar result.

We begin by bounding the steady-state probability for any state x ∈ X , where x0 := arg maxx φ(x)
and nmax the maximum expected path distance between two states. We can understand this as
bounding the steady-state probability of x by the product of (1) the maximal steady-state probability
over states, (2) the probability of choosing an option from x0 that reaches x. Let ω be any option
satisfying Assumption 1 for starting in state x0 and reaching x,

φ(x) ≥ φ(x0)× p(ω), =⇒ 1

minx φ(x)
≤ Θ(|X ||A|)

φ(x0)
.

Next, we can similarly bound the Cheeger constant. Recall from (Liu and Brunskill, 2018) that
h = infU

F (∂U)
min{F (U),F (Ū)} where Ū denotes the set of states not in U ,

F (u, v) = φ(u)P (u, v), F (∂U) =
∑

u∈U,v 6∈U

F (u, v), F (U) =
∑
u∈U

φ(u).

Let U ′ = {x0}, then, the Cheeger constant can be bounded by,

h = inf
U

F (∂U)

min{F (U), F (Ū)}
,

≥ F (∂U ′)

min{F (U ′), F (Ū ′)}
,

≥
∑
x 6=x0

φ(x0)P (x0, x)

φ(x0)
,

=
∑
x 6=x0

P (x0, x),

≥ p(ω), =⇒
1

h
≤ Θ(|X ||A|).

EXAMPLE: CHAIN MDP

Theorem 1 clarifies the conditions under which temporally-extended ε-greedy is efficient. Given an
MDP, this will depend on two factors: the options and the sampling distribution. To illustrate this
point, we use the well known Chain MDP, for which εz-Greedy satisfies Assumption 1. Specifically,
the requirement on z is satisfied by the zeta distribution (z(n) = n−µ

ζ(µ)) but not by the geometric
distribution (exponential decay). This implies that εz-greedy on the Chain MDP will have polynomial
sample complexity when z is zeta distributed, but not when exponentially distributed.

14

Published as a conference paper at ICLR 2021

Figure 6: Environments used in this work: (a) DeepSea, (b) GridWorld, (c) MountainCar, (d)
CartPole, (e) Atari-57.

We can see this by observing that in a Chain MDP of sizeN any state can be reached from the starting
state within at most N steps, yielding nmax ≤ |X |. The sampling distribution ρ is uniform over
actions meaning that ρ(ω) ≥ z(nmax)/|A|. Finally, we consider the specific form of the duration
distribution z. When given by a zeta distribution, z(n) = n−µ/ζ(µ), we have

1

ρ(ω)
≤ |A|
z(nmax)

,

=
|A|ζ(µ)

n−µmax
,

= |A|nµmaxζ(µ),

≤ |A||X |µζ(µ),

thus satisfying our assumption. On the other hand, if we let the duration distribution be geometric,
z(n) = λ(1− λ)n−1, we have

1

ρ(ω)
≤ |A|
z(nmax)

,

=
|A|

λ(1− λ)n−1
,

=
1

λ
|A|
(

1

1− λ

)nmax−1

.

≤ 1

λ
|A|
(

1

1− λ

)|X |−1

.

As 1/(1− λ) > 1 and nmax is only bounded by the number of states, this results in an upper bound
that is exponential in the number of states and therefore does not satisfy the assumptions.

B DOMAIN SPECIFICATIONS

DeepSea (Osband, Aslanides, and Cassirer, 2018) Parameterized by problem size N , this envi-
ronment can be viewed as the lower triangle of an N ×N gridworld with two actions: “down-left”
and “down-right” which move diagonally down either left or right. There is a single goal state in the
far bottom-right corner, which can only be reached through a single action-sequence. The goal reward
is 1.0, and there is a per-step reward of −0.01/N . Finally, all episodes end after exactly N steps,
once the agent reaches the bottom. Therefore, the maximum possible undiscounted return is 0.99. An
example with N = 20 is shown in Figure 6a. Average first-passage times are shown for a problem
size of N = 20 in Figure 3a, and unlike other plots are logarithmically scaled, log(E [fpt] + 1) with
contour levels in the range [0, 16].

In this work we use the deterministic variant of DeepSea; however, the standard stochastic version
randomizes the action effects at every state. That is, “down-left” may correspond to action index 0
in one state and 1 in another, and these assignments are performed randomly for each training run
(consistently across episodes). We briefly mention this variant in our conclusions as an example in

15

Published as a conference paper at ICLR 2021

which our proposed method should be expected to perform poorly. Indeed, in Figure 14 we show that
such an adversarial modification reduces εz-greedy’s performance back to that of ε-greedy.

For experiments, we used Q-learning with a tabular function approximator, learning rate α = 1.0,
and ε = 1.0/(N + 1) for problem size N . Experiment results are averages over 30 random seeds.

GridWorld Shown in Figure 6b, this is an open single-room gridworld with four actions (“up”,
“down”, “left”, and “right”), and a single non-zero reward at the goal state. The initial state is in the
top center of the grid (offset from the wall by one row), and the goal state is diagonally across from it
at the other end of the room. Notice that if the goal were in the same row or column, as well as if it
were placed directly next to a wall, this could be argued to advantage an action-repeat exploration
method. Instead, the goal location was chosen to be harder for εz-greedy to find (offset from wall, far
from and not in same row/column as start state).

For experiments, we used Q-learning with a tabular function approximator, learning rate α = 0.1,
ε = 0.1, and maximum episode length 1000. Experiment results are averages over 30 random seeds.

Figure 1 shows average first-passage times on a similar gridworld, but with a fixed greedy policy
which takes the “down” action deterministically.

MountainCar (Sutton and Barto, 2018) This environment models an under-powered car stuck in
the valley between two hills. The agent must build momentum in order to reach the top of one hill
and obtain the goal reward. In this version of the domain all rewards are zero except for the goal,
which yields reward of 1.0. There are two continuous state variables, corresponding to the agent
location, x, and velocity, ẋ.

The dense-reward version of this environment can be solved reliably in less than a dozen episodes
using linear function approximation on top of a low-order Fourier basis (Konidaris, Osentoski, and
Thomas, 2011).

In our experiments using the sparse-reward variant of the environment, we used SARSA(λ) with a
linear function approximation on top of an order 5 Fourier basis. We used learning rate α = 0.005,
ε = 0.05, γ = 0.99, and λ = 0.9. The maximum episode length was set to 5000. Experiment results
are averages over 30 random seeds. A near-optimal policy, given this discount and ε, but without
confounds due to function-approximation, should reach approximately 0.29 episodic discounted
return.

CartPole (Barto, Sutton, and Anderson, 1983) We use the “swingup sparse” variant as imple-
mented in Tassa et al. (2018). In this sparse reward version of the environment, the agent receives
zero reward unless |x| < 0.25 and cos(θ) > 0.995, for the cart location x and pole angle θ. All
episodes run for 1000 steps, and observations are 5-dimensional continuous observation.

For experiments, we used SARSA(λ) with a linear function approximation on top of an order 7
Fourier basis. We used learning rate α = 0.0005, ε = 0.01, γ = 0.99, and λ = 0.7. The maximum
episode length was 1000. Weights were initialized randomly from a mean-zero normal distribution
with variance 0.001. Experiment results are averages over 30 random seeds.

Atari-57 (Bellemare et al., 2013), is a benchmark suite of 57 Atari 2600 games in the Arcade
Learning Environment (ALE). Observations are 210 × 160 color images (following Mnih et al.
(2015), in many agents these are down-scaled to 84× 84 and converted to grayscale). For the primary
results in this work we use the original ALE version of Atari 2600 games, which does not include
subsequently added games (beyond the 57) or features such as “sticky actions”. For results with
sticky actions enabled consult Appendix E.

Many existing results on Atari-57 report performance of the best agent throughout training, or simply
the maximum evaluation performance attained during training. We do not report this metric in the
main text because it does not reflect the true learning progress of agents and tends to reflect an over
estimate. However, for comparison purposes, “best” performance is included later in the Appendix.
In the next section, alongside other agent details, we will give hyper-parameters used in the Atari-57
experiments. An example frame from the game PRIVATE EYE is shown in Figure 6e.

16

Published as a conference paper at ICLR 2021

C AGENT AND ALGORITHM DETAILS

Except for ablation experiments on the duration distribution, all εz-greedy experiments use a duration
distribution z(n) ∝ n−µ with µ = 2.0. These durations were capped at n ≤ 10000 for all
experiments except for the Rainbow-based agents which were limited to n ≤ 100, but in this case no
other values were attempted.

PSEUDO-CODE

Algorithm 1 εz-Greedy exploration policy
1: function EZGREEDY(Q, ε, z)
2: n← 0
3: ω ← −1
4: while True do
5: Observe state x
6: if n == 0 then
7: if random() ≤ ε then
8: Sample duration: n ∼ z
9: Sample action: ω ∼ U(A)

10: Assign action: a← ω
11: else
12: Greedy action: a← arg maxaQ(x, a)

13: else
14: Assign action: a← ω
15: n← n− 1
16: Take action a

NETWORK ARCHITECTURE.

Rainbow-based agents use an identical network architecture as the original Rainbow agent (Hessel
et al., 2018). In particular, these include the use of NoisyNets (Fortunato et al., 2017), with the
exception of Rainbow-CTS, which uses a simple dueling value network like the “no noisy-nets”
ablation in Hessel et al. (2018). A preliminary experiment showed this setting with Rainbow-CTS
performed slightly better than when NoisyNets were included.

R2D2-based agents use a slightly enlarged variant of the network used in the original R2D2 (Kap-
turowski et al., 2019), namely a 4-layer convolutional neural network with layers of 32, 64, 128
and 128 feature planes, with kernel sizes of 7, 5, 5 and 3, and strides of 4, 2, 2 and 1, respectively.
These are followed by a fully connected layer with 512 units, an LSTM with another 512 hidden
units, which finally feeds a dueling architecture of size 512 (Wang et al., 2015). Unlike the original
R2D2, Atari frames are passed to this network without frame-stacking, and at their original resolution
of 210× 160 and in full RGB. Like the original R2D2, the LSTM receives the reward and one-hot
action vector from the previous time step as inputs.

HYPER-PARAMETERS AND IMPLEMENTATION NOTES

Unless stated otherwise, hyper-parameters for our Rainbow-based agents follow the original im-
plementation in Hessel et al. (2018), see Table 2. An exception is the Rainbow-CTS agent, which
uses a regular dueling value network instead of the NoisyNets variant, and also makes use of an
ε-greedy policy (whereas the baseline Rainbow relies on its NoisyNets value head for exploration).
The ε parameter follows a linear decay schedule 1.0 to 0.01 over the course of the first 4M frames,
remaining constant after that. Evaluation happens with an even lower value of ε = 0.001. The
same ε-schedule is used in Rainbow+ε-greedy and Rainbow+εz-greedy, on top of Rainbow’s regular
NoisyNets-based policy.

The CTS-based intrinsic reward implementation follows Bellemare et al. (2016), with the scale
of intrinsic rewards set to a lower value of 0.0005. This agent was informally tuned for better

17

Published as a conference paper at ICLR 2021

performance on hard-exploration games: Instead of the “mixed Monte-Carlo return” update rule from
Bellemare et al. (2016), Rainbow-CTS uses an n-step Q-learning rule with n = 5 (while the baseline
Rainbow uses n = 3), and differently from the baseline does not use a target network.

All of our R2D2-based agents are based on a slightly tuned variant of the published R2D2 agent
(Kapturowski et al., 2019) with hyper-parameters unchanged, unless stated otherwise - see Table
3. Instead of an n-step Q-learning update rule, our R2D2 uses expected SARSA(λ) with λ = 0.7
(Van Seijen et al., 2009). It also uses a somewhat shorter target network update period of 400 update
steps and the higher learning rate of 2 × 10−4. For faster experimental turnaround, we also use a
slightly larger number of actors (320 instead of 256). This tuning was performed on the vanilla R2D2
in order to match published results.

The RND agent is a modification of our baseline R2D2 with the addition of the intrinsic reward
generated by the error signal of the RND network from Burda et al. (2018). The additional networks
(“predictor” and “target” in the terminology of Burda et al. (2018)) are small convolutional neural
networks of the same sizing as the one used in Mnih et al. (2015), followed by a single linear layer
with output size 128. The predictor is trained on the same replay batches as the main agent network,
using the Adam optimizer with learning rate 0.0005. The intrinsic reward derived from its loss is
normalized by dividing by its variance, utilizing running estimates of its empirical mean and variance.
Note, the RND agent includes the use of ε-greedy exploration.

The Bootstrapped R2D2 agent closely follows the details of Osband et al. (2016). The R2D2 network
is extended to have k = 8 action-value function heads which share a common convolutional and
LSTM network, but with distinct fully-connected layers on top (each with the same dimensions
as in R2D2). During training, each actor samples a head uniformly at random, and follows that
action-value function’s ε-greedy policy for an entire episode. Each step, a mask is sampled, and
added to replay, with probability p = 0.5 indicating which heads will be trained on that step of
experience. During evaluation, we compute the average of each head’s ε-greedy policy to form an
ensemble policy that is followed.

Rainbow (baseline)
Replay buffer size 106 observations
Priority exponent 0.5

Importance sampling exponent annealed from 0.4 to 1.0
(over the course of 200M frames)

Multi-step returns n 3
Discount γ 0.99

Minibatch size 32
Optimiser Adam

Optimiser settings learning rate = 6.25× 10−5, ε = 1.5× 10−4

Target network update interval 2000 updates (32K environment frames)
ε (training) 0.0 (i.e. no ε-greedy used)
ε (evaluation) 0.0 (i.e. no ε-greedy used)

Rainbow+ε/εz-greedy, Rainbow+CTS
ε (training) linear decay from 1.0 to 0.001

(over the course of 4M frames)
ε (evaluation) 0.001

Rainbow+CTS only
Multi-step returns n 5

Intrinsic reward scale (β in Bellemare et al. (2016)) 0.0005
Target network update interval 1 (i.e., no target network used)

Table 2: Hyper-parameters values used in Rainbow-based agents (deviations from Hessel et al. (2018)
highlighted in boldface).

18

Published as a conference paper at ICLR 2021

Number of actors 320
Actor parameter update interval 400 environment steps

Sequence length 80 (+ prefix of 20 for burn-in)
Replay buffer size 4× 106 observations (105 part-overlapping sequences)
Priority exponent 0.9

Importance sampling exponent 0.6
Learning rule Expected SARSA(λ), λ = 0.7
Discount γ 0.997

Minibatch size 64
Optimiser Adam

Optimiser settings learning rate = 2× 10−4, ε = 10−3

Target network update interval 400 updates

Table 3: Hyper-parameters values used in R2D2-based agents (deviations from Kapturowski et al.
(2019) highlighted in boldface).

Environment # Trials # Steps Max Episode Length Contour Scale Discretization
DeepSea 30 500000 ×N N Log None
GridWorld 100 5000 5000 Linear None
MountainCar 50 5000 5000 Linear 12
CartPole 100 5000 5000 Linear 20

Table 4: Settings for experiments used to generate average first-visit visualizations found in main
text.

D EXPERIMENT DETAILS

First-visit visualizations These results (e.g. see Figure 1) are intended to illustrate the differences
in state-visitation patterns between ε-greedy and εz-greedy. These are generated with some fixed
ε, often ε = 1.0 for pure-exploration independent of the greedy policy, and are computed using
Monte-Carlo rollouts with each state receiving an integer indicating the first step at which that state
was visited on a given trial. States that are never seen in a trial receive the maximum step count, and
we then average these over many trials. For continuous-state problems we discretize the state-space
and count any state within a small region for the purposes of visitation. We give these precise values
in Table 4.

Atari experiments The experimental setup for the Rainbow-based and R2D2-based agents each
match those used in their respective baseline works. In particular, Rainbow-based agents perform a
mini-batch gradient update every 4 steps and every 1M environment frames learning is frozen and
the agent is evaluated for 500K environment frames. In the R2D2-based agents, acting, learning, and
evaluating all occur simultaneously and in parallel, as in the baseline R2D2.

In the Atari-57 experiments, all results for Rainbow agents are averaged over 5 random seeds, while
results for R2D2-based agents are averages over 3 random seeds.

Atari-57 is most often used with a built-in number (4) of action-repeats for every primitive action
taken (Mnih et al., 2015). We did not change this environment parameter, which means that an
exploratory action-repeat policy of length n will, in the actual game, produce 4× n low-level actions.
Similarly, DQN-based agents typically use frame-stacking, while agents such as R2D2 which use an
RNN do not. The robustness of our results across these different algorithms suggests that εz-greedy
is not greatly impacted by the presence or absence of frame-stacking.

Atari metrics The human-normalized score is defined as

score =
agent− random

human− random
,

where agent, random, and human are the per-game scores for the agent, a random policy, and a human
player respectively. The human-gap is defined as the average, over games, performance difference

19

Published as a conference paper at ICLR 2021

(a) (b)

Figure 7: Stochastic Gridworld experiments. (a) We show averaged training performance (over
100 episodes) with respect to the noise scale. (b) Example learning curves from these experiments
showing the effect of stochasticity on both agents.

between human-level over all games,

human gap = 1.0− Emin(1.0, score).

Computational Resources Small-scale experiments were written in Python and run on commodity
hardware using a CPU. Rainbow-based agents were implemented in Python using JAX, with each
configuration (game, algorithm, hyper-parameter setting) run on a single V100 GPU. Such experi-
ments generally required less than a week of wall-clock time. R2D2-based agents were implemented
in Python using Tensorflow, with each configuration run on a single V100 GPU and a number of
actors (specified above) each run on a single CPU. These agents were trained with a distributed
training regime, described in the R2D2 paper (Kapturowski et al., 2019), and required approximately
3 days to complete.

E EXPERIMENTAL RESULTS: STOCHASTICITY

In this section we present a series of experiments focused on the effects of stochasticity and non-
determinism in the environment on the performance of εz-Greedy.

SMALL-SCALE ENVIRONMENTS

We consider stochastic versions of two of our small-scale environments: GridWorld, and MountainCar.
In the Gridworld domain the “noise scale” is the probability of the action transitioning to a random
neighboring state. In MountainCar, where actions apply a force in −1, 0, 1 to the car, we add mean
zero Gaussian noise to this force with variance given by the specified noise scale. Finally, note that
these forces are clipped to be within the original range of [−1, 1].

Figure 7a shows the discounted return, averaged over the 100 episode training runs, as a function of
the noise scale. Figure 7b gives example learning curves for the agents (ε-Greedy and εz-Greedy)
for four levels of noise. We first note that for near-deterministic settings we replicate the original
findings in the main text, but that the performance of the ε-Greedy agent actually improves for small
amounts of transition noise, while both agents degrade performance as this noise becomes larger. We
interpret this to suggest that the ε-Greedy agent is initially benefiting from the increased exploration,
whereas εz-Greedy was already exploring more and begins to degrade slightly sooner.

Figure 8 similarly shows the two agent’s performance on MountainCar as we increase the scale of the
transition noise. Here we see both agents generally suffer reduced performance as the level of noise
increases and is maximal for both in the deterministic case, unlike in Gridworld.

ATARI-57 WITH STICKY-ACTIONS

The Arcade Learning Environment (Bellemare et al., 2013, ALE), supports a form of non-determinism
called sticky actions where with some probability ζ (typically set to 0.25) the agent’s action is ignored
and instead the previously executed action is repeated (Machado et al., 2018a). This is not exactly
equivalent to simpler transition noise, such as we used in the small-scale experiments above, because
there is now a non-Markovian dependence on the previous action executed in the environment. Two
additional details are important to keep in mind. First, the agent does not observe the action that
was executed, and instead only observes the action that it intended to take. Second, the sticky-action
effect applies at every step of the low-level ALE interaction. That is, it is standard practice to use

20

Published as a conference paper at ICLR 2021

(a) (b)

Figure 8: Stochastic MountainCar experiments. (a) We show averaged training performance (over
1000 episodes) with respect to the noise scale. (b) Example learning curves from these experiments
showing the effect of stochasticity on both agents.

Algorithm (@200M) Median Mean Human-gap
Rainbow 1.81 13.47 0.172
Rainbow+ε-Greedy 2.10 14.13 0.152
Rainbow+εz-Greedy 2.17 14.53 0.141

Table 5: Sticky-action Atari-57 final performance summaries for Rainbow-based agents after 200M
environment frames.

an action-repeat (usually 4) in Atari, such that each action selected by the agent is repeated some
number of times in the low-level interaction. Thus, sticky actions apply at every step of this low-level
interaction.

Because of the non-Markovian effects and the relatively fast decay in probability of action-repeats,
sticky actions do not provide similar exploration benefits as seen in εz-Greedy. Unlike in exploration
using action-repeats the agent is unable to learn about the actions that were actually executed, making
the underlying learning problem more challenging. In some environments, where precise control is
needed for high performance, sticky actions tend to significantly degrade performance of agents.

We note that sticky actions are a modification usually applied to the problem, not the agent, and
usually make the problem harder. The reason for this is that sticky actions increase the level of
stochasticity of the environment, but do so with a non-Markovian dependency on the previously
executed action. Given the superficial similarity with action-repeats, one might ask whether using
sticky actions might benefit exploration on hard exploration games similar to εz-Greedy. In order to
answer this question we compare our Rainbow-based ε-Greedy and εz-Greedy agents on the Atari-57
benchmark with sticky actions enabled (ζ = 0.25).

Figure 9 gives the median, mean, and human-gap values for the human-normalized scores. We
observe that much of the gap in performance in mean and median have disappeared, and that even
for human-gap the performance benefits of εz-Greedy over ε-Greedy have been partially reduced.
Nonetheless, we continue to see significant improvements in performance on the same set of harder
exploration games as in the non-sticky-action results (see Figure 10). Finally, we give the numeric
values for the final performance of these agents in Table 5.

F EXPERIMENTAL RESULTS: LIMITATIONS

To further study the limitations of εz-Greedy, and motivate work on learned options for exploration,
we consider the effect on performance of adding “obstacles” and “traps” in the Gridworld domain.
For our purposes, an obstacle is an interior wall in the gridworld, such that if the agent attempts to
occupy the location of the obstacle the result is a no-op action with no state transition. On the other
hand, a “trap” results in the immediate end of an episode, with zero reward, if the agent attempts to
occupy the same location as the trap. Figure 11 shows a set of example gridworlds with obstacles
and traps generated at varying target densities. We generate the environments by filling a 20× 20
gridworld with either obstacles or traps (not both), where each state has some probability of being so
filled (given by the target density). We then identify the largest connected component of open cells
and select the goal and start states randomly without replacement from the states in this component.
This ensures that all gridworlds can be solved.

21

Published as a conference paper at ICLR 2021

Environment frames (million)

H
um

an
-n

or
m

al
iz

ed
 S

co
re

Environment frames (million) Environment frames (million)

Figure 9: Sticky-action Atari-57 summary curves Rainbow-based agents.

Environment frames (millions) Environment frames (millions) Environment frames (millions) Environment frames (millions) Environment frames (millions) Environment frames (millions)

Re
tu

rn

Figure 10: Sticky-action Atari-57 results for selected games showing Rainbow-based agents. Curves
are averages over 3 seeds.

Note that increasing the density of obstacles and traps has two opposite effects: on one hand it reduces
the overall state space, thus making the problem easier, on the other hand it also makes exploration
more difficult, since obstacles result in a sparser transition graph and traps result in many absorbing
states. Based on our observations, the latter effect tends to be stronger than the former.

Our experiments focus on studying the performance of ε-Greedy and εz-Greedy as we scale the
density of the obstacles or traps. Figure 12 & 13 show our results in these two sets of experiments. In
both cases we observe that the gap in performance between εz-Greedy and ε-Greedy decreases with
the density of the problematic states. Interestingly, we see that ε-Greedy is not impacted as seriously.
We believe this is partly to be expected because ε-Greedy is exploring more locally and more densely
around the start state, making navigating around obstacles somewhat easier. Note that we have
increased the number of episodes from 100 (used in the main text) to 1000 in order to increase the
likelihood of both agents solving a given problem. Additionally, unlike in the main text, every trial
of these experiments is performed on a randomly generated gridworld with randomly selected start
and goal locations; although we do ensure that each agent is trained on the same environment, the
environment itself is different for each seed. This is reflected in the larger variances in performance
indicated by the shaded regions in the figures.

G FURTHER EXPERIMENTAL RESULTS

In this section, we include several additional experimental results that do not fit into the main text
but may be helpful to the reader. In the conclusions we highlight a limitation of εz-greedy which
occurs when the effects of actions differ significantly between states. In Figure 14 we present results
for such an adversarial setting in the DeepSea environment, where the action effects are randomly
permuted for every state. We observe, as expected, that in this setting εz-greedy no longer provides
more efficient exploration than ε-greedy.

In Figure 15 we compare with RMax (Brafman and Tennenholtz, 2002) on the Gridworld domain. We
consider two values for the threshold for a state-action being marked as known: N = 1, effectively
encoding an assumption that the domain is deterministic, and N = 10 which is a more generally
reasonable value. We observe that, if tuned aggressively, RMax can significantly outperform εz-
Greedy, as should be expected. However, we note that unlike RMax εz-Greedy does not assume
access to a tabular representation and can scale to large-scale problems.

Next, in Figures 16 & 17 we report the per-game percentage of relative improvement, using human-
normalized scores, over an ε-greedy baseline for εz-greedy in both the Rainbow and R2D2 agents.

22

Published as a conference paper at ICLR 2021

Figure 11: Example Gridworlds with varying density of (top) obstacles and (bottom) traps. The
shades of grey represent the type of each cell: white cells are open states, light grey cells are the
start state, grey cells are traps, dark grey cells are goal states, and black cells are obstacles. These
environments are randomly generated to a target density of obstacle / trap, while ensuring there exists
a path between the start and goal states.

(a) (b)

Figure 12: Gridworld with obstacles at varying density. (a) We show averaged training performance
(over 1000 episodes) with respect to the obstacle density. (b) Example learning curves from these
experiments showing the effect on both agents.

In both cases we give the corresponding results for improvement of CTS, for Rainbow, and RND,
for R2D2, over the same baselines. Additionally, we give these results for both the final agent
performance and the performance averaged over training. The percent relative improvement of a
score over a baseline is computed as

100× score− baseline
baseline

.

Note that we limit the maximum vertical axis in such a way that improvement in some games is cut
off. This is because for some games these relative improvements are so large that it becomes difficult
to see the values for other games on the same scale.

In the main text we give summary learning curves on Atari-57 for Rainbow- and R2D2-based agents
in terms of median human-normalized score and human-gap. In Figure 18 we show these as well as
the mean human-normalized score learning curves. In Figures 19 & 20 we give full, per-game results
for Rainbow- and R2D2-based agents respectively. These results offer additional context on those we
reported in the main text, demonstrating more concretely the nature of the performance trade-offs
being made by each algorithm.

Finally, in Table 1 we give mean and median human-normalized scores and the human-gap on
Atari-57 for the final trained agents. However, this is a slightly different evaluation method than is
often used (Mnih et al., 2015; Hessel et al., 2018), in which only the best performance for each game,
over training, is considered. For purposes of comparison we include these results in Table 6.

23

Published as a conference paper at ICLR 2021

(a) (b)

Figure 13: Gridworld with traps at varying density. (a) We show averaged training performance (over
1000 episodes) with respect to the trap density. (b) Example learning curves from these experiments
showing the effect on both agents.

-Greedy -GreedyDeepSea (Adv)

Figure 14: Adversarial modification to DeepSea environment causes εz-greedy to perform no better
than ε-greedy.

Algorithm (@30B) Median Mean Human-gap Median (best) Mean (best)
R2D2 14.31 39.55 0.102 19.36 46.98
R2D2+RND 9.40 42.17 0.151 14.34 48.02
R2D2+Bootstrap 15.75 37.69 0.096 19.35 43.87
R2D2+εz-greedy 16.64 40.16 0.077 22.63 45.33
Algorithm (@200M)
Rainbow 2.09 8.82 0.139 2.20 12.24
Rainbow+ε-Greedy 2.26 9.17 0.144 2.56 12.23
Rainbow+CTS 1.72 6.77 0.157 2.09 7.62
Rainbow+εz-Greedy 2.35 9.34 0.130 2.74 12.28

Table 6: Atari-57 final performance summaries. R2D2 results are after 30B environment frames,
and Rainbow results are after 200M environment frames. We also include median and mean human-
normalized scores obtained by using best (instead of final) evaluation scores for each training run, to
allow comparison with past publications which often used this metric (e.g. Hessel et al. (2018)).

0 20 40 60 80 100
Episodes

0.0

0.2

0.4

0.6

0.8

Di
sc

ou
nt

ed
 re

tu
rn

z-Greedy
-Greedy

RMax(1)
RMax(10)

Figure 15: Experiment in the Gridworld domain comparing Rmax, with visitation thresholds 1 and
10 with ε-Greedy and εz-Greedy.

24

Published as a conference paper at ICLR 2021

-Greedy Improvement Over -Greedy (Rainbow, Final) CTS Improvement Over -Greedy (Rainbow, Final)

-Greedy Improvement Over -Greedy (Rainbow, Average) CTS Improvement Over -Greedy (Rainbow, Average)

Figure 16: Percent relative improvement of exploration methods (εz-Greedy and CTS) over ε-Greedy
for the Rainbow-based agents on Atari-57 per-game. We report this for both final performance (top)
and average over training (bottom).

-Greedy Improvement Over -Greedy (R2D2, Final) RND Improvement Over -Greedy (R2D2, Final)

-Greedy Improvement Over -Greedy (R2D2, Average) RND Improvement Over -Greedy (R2D2, Average)

Figure 17: Percent relative improvement of exploration methods (εz-Greedy and RND) over ε-Greedy
for the R2D2-based agents on Atari-57 per-game. We report this for both final performance (top) and
average over training (bottom).

25

Published as a conference paper at ICLR 2021

���������

Environment frames Environment frames Environment frames

H
um

an
-n

or
m

al
iz

ed
 S

co
re

Environment frames (million)

H
um

an
-n

or
m

al
iz

ed
 S

co
re

Environment frames (million) Environment frames (million)

Figure 18: Atari-57 summary curves for R2D2-based methods (top) and Rainbow-based methods
(bottom).

26

Published as a conference paper at ICLR 2021

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

alien

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000
amidar

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500
assault

0 50 100 150 200
0

100000

200000

300000

400000

500000

600000
asterix

0 50 100 150 200
0

20000

40000

60000

80000

100000

asteroids

0 50 100 150 200
0

200000

400000

600000

800000

atlantis

0 50 100 150 200
0

250

500

750

1000

1250

1500

1750
bank_heist

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

battle_zone

0 50 100 150 200
0

2500
5000
7500

10000
12500
15000
17500

beam_rider

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

berzerk

0 50 100 150 200
0

10
20
30
40
50
60
70
80

bowling

0 50 100 150 200

50

25

0

25

50

75

100
boxing

0 50 100 150 200
0

100

200

300

400

breakout

0 50 100 150 200
0

2000

4000

6000

8000

centipede

0 50 100 150 200
0

5000

10000

15000

20000

25000

30000

chopper_command

0 50 100 150 200
0

50000

100000

150000

200000

crazy_climber

0 50 100 150 200
0

25000
50000
75000

100000
125000
150000
175000

defender

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

demon_attack

0 50 100 150 200
20

10

0

10

20

double_dunk

0 50 100 150 200
0

500

1000

1500

2000

enduro

0 50 100 150 200
100

80
60
40
20

0
20
40
60

fishing_derby

0 50 100 150 200
0

5

10

15

20

25

30

35
freeway

0 50 100 150 200
0

2000

4000

6000

8000

10000

frostbite

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

70000
gopher

0 50 100 150 200
0

1000

2000

3000

4000

gravitar

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

70000
hero

0 50 100 150 200

15

10

5

0

5
ice_hockey

0 50 100 150 200
0

2500
5000
7500

10000
12500
15000
17500

jamesbond

0 50 100 150 200
0

5000

10000

15000

20000

25000
kangaroo

0 50 100 150 200
0

2000

4000

6000

8000

krull

0 50 100 150 200
0

10000

20000

30000

40000

kung_fu_master

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

montezuma_revenge

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000
ms_pacman

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

name_this_game

0 50 100 150 200
0

50000

100000

150000

200000

250000
phoenix

0 50 100 150 200
800
700
600
500
400
300
200
100

0
pitfall

0 50 100 150 200
20

10

0

10

20

pong

0 50 100 150 200

0

2000

4000

6000

8000

10000

12000

private_eye

0 50 100 150 200
0

5000
10000
15000
20000
25000
30000
35000

qbert

0 50 100 150 200
0

5000

10000

15000

20000

25000

30000
riverraid

0 50 100 150 200
0

10000
20000
30000
40000
50000
60000
70000
80000

road_runner

0 50 100 150 200
0

10
20
30
40
50
60
70

robotank

0 50 100 150 200
0

50000

100000

150000

200000

seaquest

0 50 100 150 200
30000
27500
25000
22500
20000
17500
15000
12500
10000

skiing

0 50 100 150 200
0

500

1000

1500

2000

2500

solaris

0 50 100 150 200
0

5000

10000

15000

20000

25000

30000

space_invaders

0 50 100 150 200
0

50000

100000

150000

200000

250000
star_gunner

0 50 100 150 200
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
surround

0 50 100 150 200

20

10

0

10

20

tennis

0 50 100 150 200
0

5000

10000

15000

20000

time_pilot

0 50 100 150 200
0

50

100

150

200

250

tutankham

0 50 100 150 200
0

20000
40000
60000
80000

100000
120000
140000

up_n_down

0 50 100 150 200
0

200
400
600
800

1000
1200
1400

venture

0 50 100 150 200
0

100000

200000

300000

400000

500000

600000

video_pinball

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500
wizard_of_wor

0 50 100 150 200
0

20000

40000

60000

80000

100000

yars_revenge

0 50 100 150 200
0

5000

10000

15000

20000

zaxxon

Rainbow
Rainbow+ -Greedy
Rainbow+ z-Greedy
Rainbow+CTS

Figure 19: Per-game Atari-57 results for Rainbow-based methods.

27

Published as a conference paper at ICLR 2021

Figure 20: Per-game Atari-57 results for R2D2-based methods.

28

Published as a conference paper at ICLR 2021

0 25 50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

12000

alien

0 25 50 75 100 125 150 175 200
0

1000

2000

3000

4000

5000
amidar

0 25 50 75 100 125 150 175 200
0

2000
4000
6000
8000

10000
12000
14000
16000

assault

0 25 50 75 100 125 150 175 200
0

100000

200000

300000

400000

asterix

0 25 50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

12000

asteroids

0 25 50 75 100 125 150 175 200
0

200000

400000

600000

800000

atlantis

0 25 50 75 100 125 150 175 200
0

200
400
600
800

1000
1200
1400

bank_heist

0 25 50 75 100 125 150 175 200
0

10000

20000

30000

40000

50000

60000

battle_zone

0 25 50 75 100 125 150 175 200
0

2000
4000
6000
8000

10000
12000
14000
16000

beam_rider

0 25 50 75 100 125 150 175 200
0

1000

2000

3000

4000

5000

6000

7000

berzerk

0 25 50 75 100 125 150 175 200

10

20

30

40

50

60

70
bowling

0 25 50 75 100 125 150 175 200

20

0

20

40

60

80

100
boxing

0 25 50 75 100 125 150 175 200
0

50
100
150
200
250
300
350
400

breakout

0 25 50 75 100 125 150 175 200

2000

3000

4000

5000

6000

7000

8000
centipede

0 25 50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

chopper_command

0 25 50 75 100 125 150 175 200
0

25000

50000

75000

100000

125000

150000

175000

crazy_climber

0 25 50 75 100 125 150 175 200
0

10000

20000

30000

40000

50000

60000

70000
defender

0 25 50 75 100 125 150 175 200
0

20000

40000

60000

80000

100000

120000

demon_attack

0 25 50 75 100 125 150 175 200

20

15

10

5

0
double_dunk

0 25 50 75 100 125 150 175 200
0

500

1000

1500

2000

enduro

0 25 50 75 100 125 150 175 200
100

80
60
40
20

0
20
40

fishing_derby

0 25 50 75 100 125 150 175 200
0

5

10

15

20

25

30

35
freeway

0 25 50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

frostbite

0 25 50 75 100 125 150 175 200
0

10000

20000

30000

40000

gopher

0 25 50 75 100 125 150 175 200
0

500

1000

1500

2000

2500

3000
gravitar

0 25 50 75 100 125 150 175 200
0

10000

20000

30000

40000

50000

60000

hero

0 25 50 75 100 125 150 175 200
20

15

10

5

0

ice_hockey

0 25 50 75 100 125 150 175 200
0

2500

5000

7500

10000

12500

15000

17500

jamesbond

0 25 50 75 100 125 150 175 200
0

2000
4000
6000
8000

10000
12000
14000

kangaroo

0 25 50 75 100 125 150 175 200
0

1000
2000
3000
4000
5000
6000
7000
8000

krull

0 25 50 75 100 125 150 175 200
0

5000

10000

15000

20000

25000

30000

35000

kung_fu_master

0 25 50 75 100 125 150 175 200
0

500

1000

1500

2000

2500
montezuma_revenge

0 25 50 75 100 125 150 175 200

1000

2000

3000

4000

5000

6000

ms_pacman

0 25 50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

12000

14000

name_this_game

0 25 50 75 100 125 150 175 200
0

20000

40000

60000

80000

phoenix

0 25 50 75 100 125 150 175 200
400
350
300
250
200
150
100

50
0

pitfall

0 25 50 75 100 125 150 175 200
20

10

0

10

20

pong

0 25 50 75 100 125 150 175 200

0

2000

4000

6000

8000

10000

private_eye

0 25 50 75 100 125 150 175 200
0

5000

10000

15000

20000

25000

30000

35000
qbert

0 25 50 75 100 125 150 175 200
0

5000

10000

15000

20000

25000

riverraid

0 25 50 75 100 125 150 175 200
0

10000
20000
30000
40000
50000
60000
70000

road_runner

0 25 50 75 100 125 150 175 200
0

10

20

30

40

50

60

70

robotank

0 25 50 75 100 125 150 175 200
0

10000

20000

30000

40000

50000

60000

seaquest

0 25 50 75 100 125 150 175 200
30000
28000
26000
24000
22000
20000
18000
16000
14000

skiing

0 25 50 75 100 125 150 175 200

1000

1500

2000

2500

3000

solaris

0 25 50 75 100 125 150 175 200
0

5000

10000

15000

20000

25000

30000

space_invaders

0 25 50 75 100 125 150 175 200
0

25000

50000

75000

100000

125000

150000

175000

star_gunner

0 25 50 75 100 125 150 175 200
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
surround

0 25 50 75 100 125 150 175 200

20

15

10

5

0
tennis

0 25 50 75 100 125 150 175 200
0

2500
5000
7500

10000
12500
15000
17500
20000

time_pilot

0 25 50 75 100 125 150 175 200
0

50

100

150

200

250

tutankham

0 25 50 75 100 125 150 175 200
0

20000

40000

60000

80000

100000

120000

up_n_down

0 25 50 75 100 125 150 175 200
0

200
400
600
800

1000
1200
1400
1600

venture

0 25 50 75 100 125 150 175 200
0

100000

200000

300000

400000

500000

600000

video_pinball

0 25 50 75 100 125 150 175 200
0

2500

5000

7500

10000

12500

15000

17500

wizard_of_wor

0 25 50 75 100 125 150 175 200
0

20000

40000

60000

80000

100000
yars_revenge

0 25 50 75 100 125 150 175 200
0

5000

10000

15000

20000

zaxxon

Rainbow
Rainbow+ -Greedy
Rainbow+ z-Greedy

Figure 21: Per-game Sticky-action Atari-57 results for Rainbow-based methods.

29

	Introduction
	Background and Notation
	Exploration in Reinforcement Learning
	Temporally-Extended Exploration
	Experimental Results
	Discussion and Conclusions
	Cover Time Analysis
	Example: Chain MDP

	Domain specifications
	Agent and Algorithm Details
	Pseudo-code
	Network Architecture.
	Hyper-parameters and Implementation Notes

	Experiment Details
	Experimental Results: Stochasticity
	Small-Scale Environments
	Atari-57 with Sticky-Actions

	Experimental Results: Limitations
	Further Experimental Results

