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ABSTRACT

Physics-informed neural networks (PINNs) provide a powerful approach for solv-
ing partial differential equations (PDEs), but constructing a usable PINN remains
labor-intensive and error-prone. Scientists must interpret problems as PDE for-
mulations, design architectures and loss functions, and implement stable train-
ing pipelines. Existing large language model (LLM) approaches address isolated
steps such as code generation or architecture suggestion, but typically assume
a formal PDE is already specified and therefore lack an end-to-end perspective.
We present Lang-PINN, an LLM-driven multi-agent system that builds trainable
PINNs directly from natural language task descriptions. Lang-PINN coordinates
four complementary agents: a PDE Agent that parses task descriptions into sym-
bolic PDEs, a PINN Agent that selects architectures, a Code Agent that gener-
ates modular implementations, and a Feedback Agent that executes and diagnoses
errors for iterative refinement. This design transforms informal task statements
into executable and verifiable PINN code. Experiments show that Lang-PINN
achieves substantially lower errors and greater robustness than competitive base-
lines: mean squared error (MSE) is reduced by up to 3–5 orders of magnitude,
end-to-end execution success improves by more than 50%, and reduces time over-
head by up to 74%.

1 INTRODUCTION

Partial differential equations (PDEs) are central to scientific computing, underpinning applications in
physics, engineering, and materials science. Physics-informed neural networks (PINNs) (26) have
emerged as a flexible framework that embeds governing equations into trainable neural models,
offering a unified approach for forward, inverse, and data-scarce problems (12; 22). Despite their
promise, training PINNs remains highly challenging: they suffer from gradient pathologies (36), ill-
conditioning from the neural tangent kernel perspective (37), failure modes in complex regimes (13),
and sensitivity to activation functions, sampling, and decomposition strategies (10; 46; 42; 30; 9).
Although libraries and benchmarks, such as DeepXDE (22), PINNacle (7), and PDEBench (34),
have been developed to to solve these problems , deploying a trainable PINN still requires expert-
level manual effort in PDE specification, architecture design, and optimization tuning.

Efforts to reduce this burden remain fragmented. Traditional automation focuses on hyperparam-
eter search (32; 16; 6; 8) or architecture variants (30; 40; 39), but these approaches assume that
the governing PDE has already been written down in an explicit and computationally usable form.
Recent progress in large language models (LLM) enables natural-language interfaces to computa-
tional tools, including code generation (27; 17; 21) and multi-step reasoning (45; 29; 23; 38; 41).
Domain-specific prototypes such as CodePDE (18) and PINNsAgent (43) show that LLM-driven
PDE solvers are feasible, but they still require manually defined PDE schemas or provide limited
verification and iterative refinement. As a result, current automation begins only after the PDE has
been fully specified and provides no assistance for constructing the equation itself. This limitation
is substantial because designing or revising a PDE is often the most technically demanding part of
developing a PINN. It requires precise reasoning about operators, coefficients, and boundary or ini-
tial conditions, and even small changes in the scientific setting can lead to meaningful adjustments
of the equation. In contrast, describing a new configuration or an updated setting in natural language
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is straightforward for researchers. For example, expressing that “the heat source is moved from the
center of the domain to the boundary” is simple in text, yet it alters the source term, the boundary
conditions, and the spatial dependence of the governing equation. The contrast between the ease
of expressing such scientific changes in language and the difficulty of updating the corresponding
PDE reveals a clear gap: existing systems lack a mechanism that links natural-language descriptions
to the fully specified equations required for PINN training. This gap motivates the development of
automated text-to-PDE construction.

System Overview
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Figure 1: System overview of Lang-PINN. The framework decomposes end-to-end PINN design
into four agents: PDE Agent (canonical PDE formulation), PINN Agent (training-free architecture
selection), Code Agent (modularized code generation), and Feedback Agent (runtime error analysis
and multi-dimensional evaluation). Iterative refinement with feedback forms a closed loop, yielding
reliable and executable PINN programs from natural language descriptions.

To address this gap, we propose a multi-agent framework, namely Lang-PINN, that decomposes
the workflow into four cooperating roles, as shown in Fig. 1. The PDE Agent formulates natu-
ral language into operators, coefficients, and boundary/initial conditions. The PINN Agent aligns
PDE characteristics—periodicity, geometric complexity, and multiscale or chaotic dynamics—with
inductive biases via a requirement vector and utility score. The Code Agent generates modular,
contract-preserving training code, while the Feedback Agent executes the code, monitors residuals
and convergence, and iteratively guides corrections. This structured, verifiable pipeline ensures that
scientific consistency, executability, and trainability are treated as first-class design goals.

Our contributions are as follows:

• We propose the first framework that starts directly from natural language task descriptions
and automatically produces complete PINN solutions, including PDE formulations, archi-
tecture selection, code generation, and feedback-driven refinement, thereby lowering the
entry barrier for domain scientists.

• We construct a benchmark dataset that pairs four-level difficulty task descriptions with
ground-truth PDEs, enabling systematic evaluation of semantic-to-symbol grounding and
supporting verifiable, reproducible PINN design.

• We demonstrate that our multi-agent framework achieves substantial improvements across
diverse PDEs, reducing mean squared error by up to 3–5 orders of magnitude, increasing
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code executability success rates by more than 50%, and reducing time overhead up to 74%
compared to strong agent-based baselines.

2 RELATED WORK

Physics-Informed Neural Networks. Physics-Informed Neural Networks (PINNs) (26) integrate
governing equations into neural training by penalizing PDE residuals and boundary violations. Nu-
merous variants improve convergence and accuracy through adaptive activations (10), gradient-
enhanced residuals (46), adaptive sampling (22; 42), or domain decomposition (30; 9). Yet, these
approaches still require experts to manually specify PDE formulations, architectures, and loss terms.
Our work instead seeks to automate these design choices from task descriptions.

LLM Agents and Reasoning Strategies. Large language and code models have enabled text-to-
code generation (27; 17) and agentic software engineering (11; 44). In scientific domains, Code-
PDE (18) demonstrates that inference-time reasoning and self-debugging can produce PDE solvers
directly from text. Complementary prompting strategies such as SCoT (15) and Self-Debug (3)
improve logical consistency and error correction through structured reasoning or iterative reflection.
However, these remain single-agent methods without physics-grounded validation, limiting their ap-
plicability to scientific surrogates. Our framework extends this direction by coupling reasoning and
feedback across multiple specialized agents tailored to PINNs.

Automated PINN Design. Classical Automated Machine Learning (AutoML) methods (8), in-
cluding Bayesian optimization (32), Hyperband (16), and BOHB (6), aim to reduce manual effort
in tuning architectures and hyperparameters. Applied to physics-informed settings, however, they
struggle with residual imbalance, unit inconsistency, and multi-scale stiffness, often requiring ex-
pert intervention. Recent PINN-oriented searches (36; 42) mitigate some challenges but still assume
human-specified PDEs and loss structures. In contrast, our approach introduces a dedicated multi-
agent system for PINN automation, integrating PDE translation, architecture design, and feedback-
driven refinement to minimize manual design effort and achieve end-to-end trainability.

3 AN INVESTIGATION ON MODULES OF PINNS

Despite recent progress concentrating on PDE parsing and PINN architecture search, the properties
of the modules in PINNs remain under-explored. Since the ultimate goal of this paper is to build an
end-to-end, automated PINN pipeline, it is crucial to obtain a comprehensive understanding of these
modules in PINNs. To this end, in this section, we conduct a series of empirical analyses on three
pivotal modules in PINN pipelines, including PDE parsing, architecture curation, and code genera-
tion, and demonstrate that existing PINN pipelines suffer from three bottlenecks in practice: problem
formulation linguistic variability, model performance variability, and code generation complexity.

3.1 LINGUISTIC VARIABILITY OF TASK FORMULATION FROM TEXTUAL DESCRIPTION TO
PDES

Typically, a PINN pipeline begins with translating natural-language descriptions into formal PDEs.
In the generated PDEs, the loss terms are defined, the solution space is constrained, and all down-
stream stages are conditioned. As the foundation of the entire pipeline, any error in this step invali-
dates the pipeline. Thus, it is essential to formulate the PDEs in a reliable way.

In this section, we propose to determine the significance of the reliable PDE formulation. Specifi-
cally, we propose a tiny augmented dataset, Task2PDE, where eight examples are randomly sampled
from PINNacle benchmark (7) and re-expressed with four levels of linguistic variability. Details
about re-expression are available in Appendix 4. In this way, each sample is paired with 50 de-
scriptions for each level of variability, yielding 1,600 description-PDE pairs. We adopt four popular
open-source LLMs (Llama2 (35), Vicuna (4), DeepSeek-V3 (5), Qwen (1)) and evaluate them with
symbolic equivalence over the Task2PDE dataset. Results in Fig. 2 show that symbolic accuracy
declines steadily as the linguistic variability of the descriptions increases, indicating that even small
shifts in wording can substantially alter the PDE inferred by an LLM and undermine the reliability
of the formulation.
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Figure 2: Impact of linguistic variability
on PDE translation. Accuracy is reported
across four levels of description difficulty us-
ing symbolic equivalence.

Although symbolic equivalence provides a math-
ematically precise way to verify PDE forms, it
is overly brittle when applied directly to natural-
language derived expressions: mathematically iden-
tical terms (e.g., uxx vs. ∂2u/∂x2) are flagged as
mismatches, and benign coefficient variations are
misclassified. These limitations do not undermine
the value of symbolic checking itself, but rather in-
dicate that symbolic matching cannot be the sole val-
idation mechanism when inputs are noisy or stylis-
tically diverse. This motivates the PDE Agent
(Sec. 4.2), which augments symbolic checks with
semantic evaluation and consensus voting, enabling
robust PDE formulation while still benefiting from symbolic verification as a final correctness safe-
guard.

3.2 VARIABILITY OF ARCHITECTURE PERFORMANCE ACROSS PDES
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Figure 3: Comparative MSE of different PINN ar-
chitectures on representative PDEs. Results are
shown in log scale for clarity.

Once the PDE is specified, selecting a suit-
able PINN architecture is crucial. The induc-
tive bias of the network, such as its prefer-
ence for local patterns, long-range dependen-
cies, or structural constraints, directly affects
stability and accuracy. A poor match can lead
to slow convergence or large residual errors.
To demonstrate this effect, we benchmark four
representative architectures (MLP, CNN, GNN,
and Transformer) on PDEs including Shallow
Water, Convection, Poisson, and Heat. As
shown in Fig. 3, performance varies markedly
across PDEs. CNNs and Transformers excel on
Convection and Heat, while MLPs and GNNs
achieve the lowest error on Poisson. For Shal-
low Water, differences are minor. These results
show that no single architecture is universally effective, motivating approaches that adapt PINN
designs to the operators and structures of different PDEs.

3.3 COMPLEXITY OF CODE GENERATION IN END-TO-END WORKFLOWS
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Figure 4: Comparative Success Rate(%) of
different code generation paradigm (mono-
lithic vs. modular) on six PDEs.

After the PDE and PINN architecture are specified,
the next step is to generate executable code, includ-
ing model definitions, physics-informed losses, data
pipelines, and training routines. This process is com-
plex because multiple components must not only be
correct in isolation but also interact reliably, making
executability a central challenge.

To study code generation paradigms, we compare
monolithic generation, where an LLM produces the
entire pipeline in a single pass, with modular gen-
eration, where code is synthesized by components.
As shown in Fig. 4, modular generation consistently
achieves more than twice the success rate of mono-
lithic generation across six representative PDEs (Burgers, KS, Heat-CG, GS, Poisson-MA, Heat-
ND). The modular design localizes errors, preserves correct components, and avoids regenerating
the full script, thereby substantially improving executability. These results motivate the design of the
Code Agent, which adopts the modular paradigm. We note that this experiment isolates the effect
of modularization alone; when combined with the Feedback Agent in our full framework, success
rates improve even further, as shown in later sections.
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4 METHOD

4.1 SYSTEM OVERVIEW

According to the analyses in the previous section, we observe that end-to-end PINN automation
breaks down due to cascading dependencies: minor linguistic variations in PDE formulation propa-
gate into architecture mismatches, and monolithic code generation further amplifies upstream errors.
Thus, in this section, we propose to construct an end-to-end automated PINN framework to enhance
verification and reliability.

Fig. 1 presents Lang-PINN, our multi-agent framework that converts natural-language task descrip-
tions into executable PINN training code. It consists of four agents with distinct roles: the PDE
Agent formalizes task descriptions into governing equations, the PINN Agent selects suitable ar-
chitectures, the Code Agent generates modular implementations, and the Feedback Agent executes
and evaluates outputs. These agents interact in a sequential workflow, with the Feedback Agent
providing iterative diagnostics that refine earlier stages, particularly code generation. This modular
and feedback-driven design reduces error propagation and ensures reliable, scientifically valid PINN
implementations.

4.2 PDE AGENT

To alleviate the sensitivity to linguistic variability identified in Sec. 3.1, the PDE Agent uses a
label-free reasoning–selection pipeline. Given a task description d, the agent samples K chain-
of-thought (CoT) trajectories, cleans each trajectory into a normalized description d̂k, and for-
mulates a canonical PDE candidate Ek. Invalid candidates are filtered by template validation
(operator well-formedness, residual form, admissible boundary/initial terms). The remaining set
E = {E1, . . . , EK} is then resolved via consensus voting, and the agent selects the candidate that is
most similar to the others under a joint symbolic–semantic criterion.

Symbolic Equivalence. To assess whether two candidate PDEs express the same operator structure,
we compute a symbolic equivalence score based on their abstract syntax trees (ASTs). Each PDE E
is parsed into a canonical symbolic tree T (E) using Sympy, where nodes represent operators (e.g.,
∂t, ∂2x, nonlinear products) and leaves correspond to variables or constants.

Given two trees T (Ei) and T (Ej), we define their symbolic equivalence as a normalized tree-
matching score,

sym(Ei, Ej) =
|M(T (Ei), T (Ej))|

max
(
|T (Ei)|, |T (Ej)|

) , (1)

where M(T (Ei), T (Ej)) denotes the set of matched subtrees under operator-preserving alignment,
and |T (·)| counts the total nodes. This yields a score in [0, 1], equal to 1 if two PDEs are symbolically
equivalent (identical operator trees) and decreasing smoothly as structural discrepancies grow.

This formulation abstracts our Sympy-based implementation, where equivalence is resolved by re-
cursively comparing operator nodes and their children up to commutativity and normalization rules.
It aligns with symbolic regression principles (28; 14), while providing robustness to variations in
coefficient presentation or term ordering.

Semantic Consistency. Symbolic matching alone cannot capture cases where mathematically
equivalent PDEs are expressed in different notations or variable names. Following ideas from math-
ematical information retrieval (47), we therefore introduce a semantic consistency score. Each can-
didate PDE E is paraphrased into a normalized summary g(E) that encodes its domain, operator
types, and forcing terms. The semantic consistency between two candidates Ei and Ej is then
defined as

sem(Ei, Ej) = σ
(
g(Ei), g(Ej)

)
, (2)

where σ is a sentence-level similarity function such as embedding cosine similarity or LLM-based
entailment scoring. This yields values in [0, 1] and provides robustness to symbol renaming, coeffi-
cient scaling, or algebraic rearrangements that preserve meaning but alter surface form.

Consensus Voting. Finally, we combine symbolic and semantic similarities into a composite score
S(Ei, Ej) = α sym(Ei, Ej) + (1 − α) sem(Ei, Ej). Each candidate is then compared against the
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others, and the one with the highest average similarity is selected as the final PDE. This simple
consensus step ensures that the chosen equation is both structurally consistent and semantically
faithful to the task description. We use a calibrated similarity threshold of 0.80; details are provided
in Appendix 3.4.

4.3 PINN AGENT

Different PDEs exhibit distinct sensitivities to network architecture, and no single model is uni-
formly optimal (Sec. 3.2). The PINN Agent selects an appropriate architecture for a newly extracted
PDE without any training-time search. Given a canonical PDE representation E, the agent follows
a two-stage process: it first queries a history cache H to reuse the architecture and hyperparameters
of a previously solved, highly similar PDE; if no such entry exists, it performs knowledge-guided
matching using a knowledge base K, which scores architectures by their compatibility with the char-
acteristics of E. This design enables efficient reuse for recurring PDEs while providing principled
generalization to unseen ones.

History Reuse. The history cache H is an automatically maintained collection of past tasks. Each
entry records: 1) the natural-language task description, 2) the extracted PDE together with its feature
vector ϕ(E), and 3) the architecture and hyperparameters that produced the best PINN solution.

Knowledge-guided Matching. In the absence of reusable history, the agent applies knowledge-
guided matching to select architectures based on knowledge base K. The key idea is to embed PDEs
and architectures into a representation vector, where their alignment can be systematically evaluated.
We first describe how PDEs are represented, then how architectures are encoded, and finally how
the two are matched.

1. PDE Feature Representation. To represent the input side of the matching process, each PDE E is
encoded as a feature vector

ϕ(E) = [f1(E), f2(E), . . . , fn(E)]⊤, (3)

where fi(E) denotes a quantifiable physical property, including periodicity, geometry complexity,
and multi-scale demand. Periodicity reflects whether domains or boundary conditions repeat, ge-
ometry complexity captures whether the domain is structured or irregular, and multi-scale demand
indicates the extent of interacting scales or chaotic regimes. Formal definitions are given in Ap-
pendix 1. These dimensions are motivated by prior findings that Fourier or sinusoidal layers align
with periodic problems (31; 19), graph-based models are effective for irregular geometries (24; 2),
and attention or spectral operators handle multi-scale demand, e.g., dynamics (25).

2. Architecture Capability Representation. To make architectures comparable with PDE features,
each architecture A is represented by a capability vector

ψ(A) = [a1(A), a2(A), . . . , an(A)]⊤, (4)

where ai(A) measures its competence on property i within PDE feature representation. Capabil-
ity values are inferred through LLM reasoning and refined with historical experimental outcomes,
ensuring adaptability across tasks. Formal definitions are given in Appendix 1.

3. PDE–Architecture Matching The compatibility between a PDE E and an architecture A is mea-
sured using a weighted cosine similarity:

S(A, E) =
(Wϕ(E))⊤ψ(A)

∥Wϕ(E)∥2 · ∥ψ(A)∥2
, (5)

where W = diag(wper, wgeo, wms) assigns importance weights to each property. In practice, we
prioritize multi-scale demand over geometry and periodicity, as mismatches on the former are most
detrimental to convergence (19; 24; 2; 31). The final architecture is then selected as

A⋆ = argmax
A∈Θ

S(A | E). (6)

Architecture Template Instantiation. After selecting A⋆, the agent instantiates the model via
predefined architecture templates. Each template specifies the essential architectural parameters,
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such as the number of layers, hidden width, activation function, embedding dimension, and the
training hyperparameters, including learning rate, batch size, and optimizer. These templates expose
their parameters as fillable fields, which are populated using the configuration stored in K for A⋆ (or
default entries when unavailable). This templated instantiation avoids errors from free-form code
generation and ensures consistent, reproducible construction of PINN models across tasks.

4.4 CODE AGENT

Directly prompting an LLM to generate the entire PINN pipeline in one pass often produces brittle
code, where model definition, loss formulation, and training loops are tightly coupled. Errors be-
come difficult to isolate, and fixing them typically requires regenerating the whole script. To avoid
this, the Code Agent adopts a modular strategy with explicit verification mechanisms.

Modularized code generation. Instead of producing a monolithic script, the Code Agent decom-
poses the pipeline into independent modules: (i) model definition, (ii) PDE loss, (iii) data pre-
processing, (iv) training loop, (v) validation, and (vi) main function. Each module is generated
separately, allowing faults to be localized and corrected without regenerating unrelated components.

Interface constraints. Modules are connected through standardized input–output formats, ensuring
compatibility and composability. This design makes it possible to update or replace one module
without introducing inconsistencies elsewhere, thereby reducing correction cost and enabling fine-
grained refinement.

PDE loss verification. For the PDE loss module, the generated code is parsed back into a symbolic
PDE Ê and checked for equivalence with the PDEE provided by the PDE Agent. Only loss modules
that pass this symbolic check are retained, ensuring that the optimization objective faithfully encodes
the governing equation.

4.5 FEEDBACK AGENT

The Feedback Agent closes the loop by leveraging runtime signals to refine earlier stages. Built on
the modular code of the Code Agent, it translates execution diagnostics into localized suggestions,
avoiding global regeneration and improving reliability.

Error localization and correction. When executing the generated code, two scenarios arise. If
runtime errors occur, the Feedback Agent analyzes the error messages and attributes them to the
most likely module (e.g., model structure, loss function, training loop). It then instructs the Code
Agent to regenerate only the faulty component, avoiding unnecessary changes to other modules. If
the issue originates upstream (e.g., in PDE specification or PINN architecture), the Feedback Agent
can escalate its directive to the corresponding agent, ensuring that corrections are applied at the
appropriate level.

Multi-dimensional quality evaluation. If execution succeeds, the Feedback Agent evaluates the
code along three complementary dimensions: (i) effectiveness, measured by PDE residual error (e.g.,
MSE); (ii) efficiency, measured by convergence speed and resource cost (steps, FLOPs, parameters);
and (iii) robustness, measured by loss smoothness and the absence of gradient pathologies. Each
metric is normalized, and a weighted sum produces an overall quality score:

S(C) =

3∑
i=1

wi m̂i(C), (7)

where C denotes the generated code, m̂i the normalized value of the i-th metric, and wi its weight.
Detailed definitions and quantification of these metrics are provided in Appendix 2.

Iterative refinement. The decision to accept or reject a new version is based on comparing the
current score S(C(t)) with the previous score S(C(t−1)). If the new version improves, the agent
proceeds; otherwise, it reverts and restarts optimization. By coupling modular generation with run-
time feedback, the system ensures that diagnostic signals can be acted upon locally rather than
globally, providing fine-grained corrections that improve reliability and efficiency over iterations.

7
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5 EXPERIMENTS

5.1 EXPERIMETAL SETTINGS

Benchmark Datasets We evaluate Lang-PINN on the PINNacle benchmark (7), which com-
prises 14 representative PDEs across 1D, 2D, 3D, and ND settings: Burgers, Wave-C, KS, Burgers-C,
Wave-CG, Heat-CG, NS-C, GS, Heat-MS, Heat-VC, Poisson-MA, Poisson-CG, Poisson-ND, Heat-
ND. This collection spans diverse dimensionalities, geometric complexities, and dynamical regimes,
providing a rigorous testbed for automated PINN design. At the task-to-PDE stage, Lang-PINN
operates from natural-language inputs: for each PDE we construct three distinct textual problem
descriptions, which must be translated into canonical PDE formulations before downstream model-
ing. In contrast, baseline methods cannot perform this translation step and are therefore provided
directly with the canonical PDE formulations from the benchmark. For fairness, all quantitative met-
rics are computed solely on the resulting PINN performance, independent of whether the PDE was
inferred or given. Each task is evaluated over 10 independent runs, and within each run the agent is
allowed up to three refinement iterations, ensuring both fairness across methods and robustness to
stochasticity in generation.

Table 1: Comparison of methods across five
functional dimensions: PF (PDE formula-
tion), AD (architecture design), CG (code
generation), and FS (feedback signal). For
feedback signal, “Err+Metrics” augments
runtime error with validation metrics.

Method PF AD CG FS

PINNacle × × × ×
RandomAgent × ✓ Partial ×
BayesianAgent × ✓ Partial ×
SCoT × × Partial ×
Self-Debug × × Partial Err-only
PINNsAgent × ✓ Full Err+Metrics
Lang-PINN ✓ ✓ Full Err+Metrics

Baselins We include PINNacle (7) as a non-agent
reference that fixes both PDEs and architectures and
directly trains PINNs. All other baselines adopt
LLM-based agent but still assume the PDE and ar-
chitecture are given. RandomAgent and Bayesian-
Agent explore architectures through random or
Bayesian search with error-only feedback, while
SCoT (15), Self-Debug (3), and PINNsAgent (43)
rely on prompting to generate losses or partial
code, again without full feedback or PDE formu-
lation. As summarized in Table 1, none of these
baselines support PDE formulation, code gener-
ation is at best partial, and feedback is limited
to error detection, whereas Lang-PINN spans all
dimensions in a coordinated multi-agent system.
We adopt Deepseek-V3 (5) (top-p=0.9, tempera-
ture=0.2, max tokens=2048) as the LLM backbone for all agent-based baselines and our Lang-PINN
for a fair comparison.

Metrics The success rate measures robustness by reporting the proportion of runs in which the
generated code executes end-to-end without runtime errors, independent of training accuracy. The
mean squared error (MSE) quantifies numerical fidelity of the resulting PINN solution. The itera-
tions to a successful run capture how many refinement cycles are required before the first runnable
version emerges, reflecting convergence speed. Finally, the end-to-end time cost records the wall-
clock time from pipeline start to the first executable program, characterizing practical efficiency. All
results are averaged over 10 runs with up to 30 refinement cycles per run.

5.2 MAIN RESULTS

MSE Results. Table 2 shows that Lang-PINN achieves the lowest errors on most PDEs, despite being the only
approach that must first infer PDE formulations from natural language descriptions. In contrast, PINNacle rep-
resents a human-expert–designed reference, where both the governing PDEs and PINN architectures are fixed
in advance. Even against this strong baseline, Lang-PINNdelivers significant improvements. For instance,
errors on KS (1D), Poisson-MA (2D), and Heat-ND (ND) are reduced by over three orders of magnitude. Com-
pared to agent-based baselines, the advantage is equally clear: while their errors on KS and Poisson-MA remain
around 100 to 104, Lang-PINN reaches 10−3, demonstrating far stronger fidelity in solution quality.

Success Rate. Fig. 5 reports the average success rate across PDEs of different dimensionalities. Lang-
PINN consistently delivers the highest reliability, with success exceeding 80% in 1D and 2D regimes
where baselines such as RandomAgent, BayesianAgent, and PINNsAgent typically remain below 35%.
Performance also remains robust in 3D, where Lang-PINN maintains success rates close to 75%, much
higher than all baselines. Time Overhead. We evaluate efficiency by measuring the number of it-
erations required to obtain executable PINNs, with all methods capped at 50 iterations for fairness.
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Table 2: Comparative performance (MSE) on 14 different PDEs (averaged over 10 runs).
Dim PDE RandomAgent BayesianAgent PINNsAgent SCoT Self-Debug Ours PINNacle

1D
Burgers 6.63E-02 8.70E-02 1.10E-04 1.40E+01 1.26E+01 6.48E-05 7.90E-05
Wave-C 1.50E-01 1.78E-01 3.74E-02 1.28E+00 1.18E+00 2.25E-03 3.01E-03
KS 1.09E+00 1.10E+00 1.09E+00 3.33E+00 2.93E+00 1.62E-03 1.04E+00

2D

Burgers-C 2.48E-01 2.42E-01 2.93E-01 4.54E-01 4.09E-02 2.88E-03 1.09E-01
Wave-CG 2.87E-02 2.11E-02 4.59E-02 2.00E+00 1.90E+00 2.52E-03 2.99E-02
Heat-CG 3.96E-01 1.17E-01 9.06E-02 4.38E+00 3.81E-02 1.35E-03 8.53E-04
NS-C 4.02E-03 5.12E-03 1.40E-05 5.67E-01 5.27E-01 4.05E-05 2.33E-05
GS 4.28E-03 4.03E-03 3.37E+08 3.76E+00 3.35E+00 1.89E-03 4.32E-03
Heat-MS 1.84E-02 7.48E-03 1.06E-04 7.10E-02 6.04E-03 2.27E-05 5.27E-05
Heat-VC 3.57E-02 3.93E-02 1.43E-02 4.46E+00 4.01E-02 1.62E-03 1.76E-03
Poisson-MA 5.87E+00 5.82E+00 3.16E+00 1.24E+04 1.07E+04 2.25E-03 1.83E+00

3D Poisson-CG 3.82E-02 2.55E-02 3.35E-02 4.17E-02 9.51E-03 1.35E-03 9.51E-04

ND Poisson-ND 1.30E-04 4.72E-05 4.77E-04 9.93E+00 9.43E+00 8.42E-06 2.09E-06
Heat-ND 2.58E-00 1.18E-04 8.57E-04 3.74E+00 3.40E-03 4.72E-04 8.52E+00

1D 2D 3D ND0

25
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75
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Figure 5: Comparative success rates (%) of
different methods for generating executable
PINNs across 1D, 2D, 3D, and ND PDEs.

Our Lang-PINN converges in only 8 iterations on aver-
age, which is about 74% fewer than the worst baseline
(31), demonstrating substantial efficiency gains. Com-
pared to other methods such as BayesianAgent (29),
PINNsAgent (21), SCoT (17), and Self-Debug (14), our
Lang-PINN consistently reduces iteration counts, con-
firming that the joint design of modular code generation
and feedback refinement accelerates convergence across
diverse PDEs.

We also report the end-to-end time cost, measured from
the start of the pipeline until runnable code is produced. As shown in Appendix 3.5, Lang-PINN reduces total
PDE-solving time by about 21%–52% compared with all baselines.

5.3 ABLATION STUDIES

The Impact of PDE Agent Since Sec. 3.1 highlighted the difficulty of faithfully grounding natural-
language descriptions into PDEs, we conduct an ablation study to assess the contribution of our proposed
PDE Agent. Fig. 6 illustrates translation accuracy under increasing linguistic complexity. While all baselines
degrade sharply from Level 1 to Level 4, our full agent consistently achieves the highest semantic consis-
tency and maintains competitive symbolic equivalence. The gains are most evident under noisy and fragmented
settings, where reasoning–canonicalization–validation steps prevent collapse and self-consistency selection sta-
bilizes outputs. This demonstrates that the PDE Agent not only alleviates sensitivity to surface-form variation
but also provides robust task-to-equation translation, complementing the improvements observed in MSE and
executable success rate.
The Impact of PINN Agent. To evaluate the contribution of the PINN Agent in dynamically selecting
architectures, we compare it with a variant where the architecture is fixed to an MLP across all PDEs, with
only depth and width tuned. In contrast, the PINN Agent leverages PDE, prior knowledge, and history to select
among different architecture families ( MLP, CNN, GNN, and Transformer). As shown in Fig. 7, dynamic
selection achieves substantially lower MSEs across 14 PDEs, with the largest gains on periodic, irregular,
or multi-scale problems ( KS, Poisson-MA, Heat-ND). These results highlight that the adaptive architecture
selection ability of the PINN Agent is essential for PDE-aware architecture choice and cross-task generalization.

The Impact of Code Agent. To validate the Impact of the Code Agent, we compare its modular code
generation paradigm with a monolithic generator that attempts to produce the entire code in one pass. In the
monolithic setting, runtime errors are hard to localize and every correction requires regenerating the full script,
resulting in fragile execution. By contrast, the Code Agent decomposes the pipeline into modules (model, loss,
training loop), allowing localized correction and reuse of valid components. As shown in Fig. 8, this modular
design improves the execution success rate by over 20% across PDEs, highlighting the central role of the Code
Agent in ensuring executability.

The Impact of Feedback Agent. We next evaluate the Feedback Agent, focusing on how different
feedback signals affect the quality of the trained PINNs. The baseline uses only error messages from failed
executions to guide refinement. Our full design augments these signals with the multi-dimensional quality

9
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across 14 PDEs, demonstrating the effectiveness of adap-
tive architecture design.

metrics introduced in Sec 4.5, including loss smoothness, gradient stability, and convergence behavior. As
shown in Fig. 9, the additional metrics consistently reduce MSE across PDE benchmarks, in some cases by
several orders of magnitude. These results confirm that the Feedback Agent’s metric-guided feedback is crucial
for achieving accuracy improvements once executability has been secured by the Code Agent.
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Figure 8: Ablation on the Code Agent:
success rate (%) of monolithic vs. mod-
ular code generation.
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Figure 9: Ablation on the Feedback Agent: MSE compar-
ison of error-only feedback (Err) vs. error feedback aug-
mented with code quality metrics (Err&Metrics).

Quantitatively, modular generation yields a +22% improvement in success rate, metric-guided feedback reduces
mean MSE by 2.5×, and the PDE Agent improves semantic consistency by 18% on average across linguistic
levels.

6 CONCLUSION

We introduced Lang-PINN, a multi-agent framework that constructs trainable physics-informed neural net-
works (PINNs) directly from natural-language task descriptions by integrating PDE parsing, architecture se-
lection, modular code generation, and feedback refinement. Experiments on 14 PDEs show that Lang-PINN
achieves lower errors, higher execution success rates, and significantly reduced time overhead compared to
strong baselines, while ablations confirm the value of modular generation, feedback-driven diagnostics, and
knowledge-guided design. This work highlights the potential of LLM-based agents to bridge scientific intent
and executable models, with future efforts focusing on multi-physics systems, irregular geometries, and noisy
real-world data.
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APPENDIX

1 DETAILS OF KNOWLEDGE-BASED MATCHING IN THE PINN AGENT

In Sec. 4.3 of the main text, we introduced knowledge-based matching, which aligns PDE features with archi-
tecture capabilities through a weighted similarity score. This appendix provides the detailed definitions of the
PDE feature representation used on the PINN side.

1.1 PDE FEATURE REPRESENTATION

Each PDE E is mapped to a three-dimensional feature vector

ϕ(E) = [fper(E), fgeo(E), fms(E)]⊤, (1)

which captures periodicity, geometry complexity, and multi-scale demand, respectively.

Periodicity. The degree of periodicity is quantified as

fper(E) =
|P(E)|
d

, (2)

where d denotes the number of spatial dimensions and P(E) is the set of spatial axes with periodic boundary
conditions. If all spatial directions are periodic then |P(E)| = d and fper(E) = 1; if none are periodic then
|P(E)| = 0 and fper(E) = 0; mixed cases lie between 0 and 1.

Geometry complexity. Geometry complexity combines the irregularity of the domain shape and the irreg-
ularity of the numerical discretization. We first define two scalar scores: cΩ(E) for the domain and cdisc(E)
for the discretization. The domain score cΩ(E) is assigned as 0 for axis-aligned rectangles or boxes, 0.3 for
smoothly curved domains, 0.6 for multi-component domains, and 0.9 for highly irregular or fractured geome-
tries. The discretization score cdisc(E) is set to 0 for Cartesian grids, 0.5 for structured curvilinear grids, and
0.8 for unstructured meshes (e.g., FEM-type discretizations). We then combine these scores as

fgeo(E) = clip(λΩ cΩ(E) + λdisc cdisc(E), 0, 1) , (3)

where λΩ, λdisc ≥ 0 are fixed weights satisfying λΩ + λdisc = 1, and clip(x, 0, 1) = min(max(x, 0), 1)
projects the value into [0, 1]. In our experiments we use λΩ = 0.6 and λdisc = 0.4 and keep them fixed for all
PDEs.

Multi-scale demand. The multi-scale demand reflects the presence of strong scale separation, nonlinear
interactions, or stiff transport phenomena. We construct an intermediate score

f̃ms(E) = α1 1{m(E)≥3} + α2 1{NL(E)=1} + α3 log
(
1 + Re(E) + Pe(E)

)
+ α4 1{FR(E)=1}, (4)

where:

• m(E) is the highest derivative order in the PDE;

• NL(E) ∈ {0, 1} indicates whether the PDE contains nonlinear terms;

• Re(E) and Pe(E) are Reynolds and Péclet numbers when applicable (set to 0 otherwise);

• FR(E) ∈ {0, 1} indicates the presence of nonlocal, fractional, or integral operators;

• 1{·} is the indicator function.

The final multi-scale feature is normalized into [0, 1] by a logistic mapping,

fms(E) = σ
(
f̃ms(E)

)
=

1

1 + exp(−f̃ms(E))
. (5)

We use the fixed weights (α1, α2, α3, α4) = (0.8, 0.8, 0.4, 1.0) for all experiments.

1.2 PINN ARCHITECTURE CAPABILITY REPRESENTATION

To support automatic and interpretable architecture selection, we represent each PINN architectureA by a three
dimensional capability vector

ψ(A) =
(
aper(A), ageo(A), ams(A)

)
, (6)

where aper(A), ageo(A), and ams(A) denote the capability of A on highly periodic, geometrically complex,
and strongly multi scale PDEs, respectively. All three entries lie in [0, 1], with larger values indicating better
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performance on the corresponding class of tasks. This vector is estimated directly from data, using controlled
benchmark PDEs and a combination of absolute and relative performance measures.

We consider a collection of benchmark PDE tasks, each denoted byE. From the previous subsection, each task
is associated with a PDE attribute vector ϕ(E) =

(
fper(E), fgeo(E), fms(E)

)
, where fper(E), fgeo(E), and

fms(E) are scalar scores in [0, 1] that quantify the periodicity, geometry complexity, and multi scale demand of
E. Based on the largest component of ϕ(E), we assign each task to one of three attribute focused subsets: the
high periodicity set Eper, the high geometry complexity set Egeo, and the high multi scale set Ems.

For each architecture A (e.g., CNN, MLP, GNN, and Transformer) and task E, we train a PINN and record a
scalar error metric y(A,E), e.g., the mean squared PDE residual or the relativeL2 error. The values {y(A,E)}
form an architecture–task error matrix that serves as the basis for capability estimation. At a high level, we use
this matrix in three steps: 1) we first compute normalized average scores for each architecture within each
attribute subset, 2) then derive Bradley–Terry based relative scores from pairwise win–loss comparisons, and
3) finally fuse the absolute and relative scores to obtain the capability vector ψ(A).

Absolute Capability from Normalized Error For a given attribute, such as periodicity, we first derive
an absolute capability estimate from average error. Restricting attention to the high periodicity set Eper, we
compute the mean error of architecture A as

ȳper(A) =
1

|Eper|
∑

E∈Eper

y(A,E), (7)

where |Eper| is the number of tasks in this subset and ȳper(A) is a scalar summarizing the overall error of A on
periodic tasks. We then apply min–max normalization across architectures,

ỹper(A) =
ȳper(A)−minA′ ȳper(A

′)

maxA′ ȳper(A′)−minA′ ȳper(A′) + ε
, (8)

where ε is a small constant that avoids division by zero. Finally, we convert normalized error into an absolute
capability score

aAbs
per (A) = 1− ỹper(A), (9)

so that smaller errors correspond to larger capability values in [0, 1]. The same procedure applied to Egeo and
Ems yields the absolute geometry and multi scale capability estimates aAbs

geo (A) and aAbs
ms (A).

Relative Capability via Bradley–Terry Model Absolute errors can be influenced by the overall diffi-
culty of a task subset. To obtain a complementary measure that focuses on relative ordering between architec-
tures, we employ the Bradley–Terry (BT) model (33; 20) on win–loss statistics.

Again considering the high periodicity subset Eper, for any pair of architectures (Ai, Aj) and task E ∈ Eper, we
say that Ai wins over Aj on E if

y(Ai, E) < y(Aj , E). (10)

Aggregating over all tasks in Eper, we count the number of wins

nij = number of tasks in Eper where y(Ai, E) < y(Aj , E), (11)

and similarly nji for wins of Aj over Ai. The collection {nij} is treated as the observed win–loss data for
periodic tasks.

The BT model introduces, for this attribute, a scalar ability parameter θper(A) for each architecture A. This
parameter is not a neural network weight, but a one dimensional statistical parameter that reflects the overall
strength of A on high periodicity tasks. Under the BT model, the probability that Ai wins against Aj in a
generic periodic task is

pij = Pr(Ai ≻ Aj) =
exp(θper(Ai))

exp(θper(Ai)) + exp(θper(Aj))
. (12)

Given the observed win counts nij and nji, the likelihood of these data under the model is

L(θper) =
∏
i<j

p
nij

ij (1− pij)
nji , (13)

where the product ranges over all unordered architecture pairs (i, j) and θper denotes the collection of all ability
parameters. Intuitively, L(θper) is the probability that, if the true win probabilities were given by the BT model
with parameters θper, one would observe exactly the win–loss counts recorded in {nij}.

We obtain the BT ability parameters by maximizing this likelihood, or equivalently the log likelihood, with
respect to θper. This yields a set of scalar values θ⋆per(A), one for each architecture, that best explains the
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observed win–loss data on periodic tasks. To convert these unnormalized abilities into a [0, 1] scale, we apply
min–max normalization

aBT
per (A) =

θ⋆per(A)−minA′ θ⋆per(A
′)

maxA′ θ⋆per(A′)−minA′ θ⋆per(A′) + ε
. (14)

The same BT procedure applied to Egeo and Ems produces relative capability scores aBT
geo (A) and aBT

ms (A) for
geometry and multi scale attributes.

Capability Fusion and Final Representation For each attribute dimension k ∈ {per, geo,ms} we
now have two capability estimates: an absolute estimate aAbs

k (A) derived from normalized average errors, and
a relative estimate aBT

k (A) derived from win–loss relationships. The two measures capture complementary
information: absolute performance level and relative ordering across architectures. We therefore form the final
capability entry along dimension k by a simple linear fusion

ak(A) = ωk a
BT
k (A) +

(
1− ωk

)
aAbs
k (A), (15)

where ωk ∈ [0, 1] is a data–driven fusion weight for attribute k. To determine ωk, we draw bootstrap resamples
of the task subset Ek, recompute aBT

k (A) and aAbs
k (A) on each resample, and estimate their empirical variances

σ2
k,BT and σ2

k,Abs. We then set

ωk =
σ2
k,Abs

σ2
k,Abs + σ2

k,BT
, (16)

so that the estimator with smaller variance (more stable across resamples) receives a larger effective weight.

The final architecture capability vector

ψ(A) =
(
aper(A), ageo(A), ams(A)

)
(17)

is stored in the knowledge base and later matched against PDE attribute vectors ϕ(E) for new tasks. This
representation allows the system to reason about architecture–PDE alignment in a quantitative and interpretable
manner.

2 FEEDBACK AGENT QUALITY METRICS

The validation score produced by the Feedback Agent agent aggregates four normalized metrics, each designed
to capture a complementary aspect of code quality. Below we detail the first three metrics; the robustness metric
is described separately.

(i) Convergence efficiency. Convergence efficiency measures how quickly a model reaches a stable so-
lution. We define it based on the number of training steps required for the loss to fall below a pre-specified
tolerance τ :

Tconv = min{t | Lt ≤ τ}, mconv =
1

Tconv
, (18)

where Lt denotes the training loss at iteration t. A smaller Tconv leads to a higher convergence score. For
comparability across models, we normalize the score using the range of convergence steps observed in the
search space:

m̂conv =
Tmax − Tconv

Tmax − Tmin
, (19)

where Tmin and Tmax denote, respectively, the fastest and slowest convergence times among all candidates.
This normalization ensures m̂conv ∈ [0, 1], with higher values indicating more efficient convergence.

(ii) Predictive accuracy. Accuracy is assessed by the discrepancy between the model output and the gov-
erning PDE. Specifically, we compute the mean squared error (MSE) of the PDE residual over the training
domain:

macc = −MSE
(
Nθ, E

)
, (20)

where Nθ denotes the physics-informed neural network (PINN) parameterized by θ, andE represents the target
PDE operator. The negative sign ensures that lower residual error corresponds to a higher accuracy score.

(iii) Model complexity. Complexity reflects the resource demand of the model. We quantify it by the
number of trainable parameters (or equivalently the computational cost in FLOPs), normalized with respect to
the maximum within the search space:

mcomp =
#Params(Nθ)

max#Params
, (21)

where #Params(Nθ) is the parameter count of the candidate PINN and max#Params is the maximum
parameter count among all models considered. A lower value of mcomp indicates a more compact architecture.
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(iv) Robustness. We quantify robustness by combining two complementary indicators. The first indicator,
loss smoothness, measures the stability of the training trajectory. Intuitively, when the loss fluctuates strongly
across iterations, the optimization process is less reliable. We capture this by computing the normalized varia-
tion of the loss:

msmooth = 1− Std(∆Lt)

Mean(Lt)
, ∆Lt = Lt − Lt−1, (22)

where Lt denotes the training loss at iteration t, and ∆Lt is the difference between consecutive iterations. A
higher value of msmooth indicates a smoother and more stable training curve.

The second indicator, gradient health, evaluates whether the gradient magnitude remains within a reasonable
range, avoiding both vanishing and exploding gradients. Specifically,

mgrad =

1, ϵ ≤ ∥∇θL∥
d

≤ κ,

0, otherwise,
(23)

where ∇θL is the gradient of the loss with respect to the parameters, d is the number of parameters, and
ϵ, κ > 0 are user-defined thresholds specifying the acceptable lower and upper bounds of the normalized
gradient magnitude.

Finally, we define the robustness score as a convex combination of the two indicators:

mrob = αmsmooth + (1− α)mgrad, (24)

where α ∈ [0, 1] is a weighting factor that balances the contributions of loss smoothness and gradient health.
This formulation ensures that robustness reflects both stable optimization dynamics and well-conditioned gra-
dients.

The overall validation score is defined as a weighted combination of the four normalized metrics:

S(C) = w1 m̂conv + w2 m̂acc + w3 m̂comp + w4 m̂rob, (25)

where w1, w2, w3, w4 ≥ 0 are user-specified weights that control the relative importance of convergence
efficiency, predictive accuracy, model complexity, and robustness, respectively. By tuning the weights, one
can emphasize different aspects of model quality depending on the application.

3 EXTENDED RESULTS

3.1 MSE AND SUCCESS RATE ACROSS PDE BENCHMARKS

For completeness, we report the full experimental results across all 14 PDE benchmarks. Table 1 presents the
mean squared error (MSE) together with standard deviations, complementing the aggregated results in the main
text. Table 2 provides per-PDE success rates (%) averaged over 10 runs, offering a more fine-grained view of
performance across different equations and dimensions.

Table 1: Comparative performance (MSE) of Lang-PINN and baseline approaches on 14 different
PDEs. Results are averaged over 10 runs.

PDEs RandomAgent BayesianAgent PINNsAgent PINNacle SCoT Self-Debug Ours
1D

Burgers 6.63E-02 (±1.10E-01) 8.70E-02 (±6.51E-03) 1.10E-04 (±7.76E-05) 7.90E-05 1.40E+01 (±1.06E+00) 1.26E+01 (±9.54E-01) 6.48E-05 (±9.00E-05)

Wave-C 1.50E-01 (±1.46E-01) 1.78E-01 (±3.84E-02) 3.74E-02 (±4.32E-02) 3.01E-03 1.28E+00 (±6.21E-02) 1.18E+00 (±5.72E-02) 2.25E-03 (±1.80E-04)

KS 1.09E+00 (±3.58E-02) 1.10E+00 (±2.55E-03) 1.09E+00 (±3.20E-02) 1.04E+00 3.33E+00 (±7.80E-02) 2.93E+00 (±6.86E-02) 1.62E-03 (±1.35E-04)

2D
Burgers-C 2.48E-01 (±4.04E-03) 2.42E-01 (±8.96E-03) 2.93E-01 (±2.43E-02) 1.09E-01 4.54E-01 (±5.57E-02) 4.09E-02 (±5.01E-03) 2.88E-03 (±2.25E-04)

Wave-CG 2.87E-02 (±4.98E-04) 2.11E-02 (±1.12E-02) 4.59E-02 (±1.68E-02) 2.99E-02 2.00E+00 (±1.62E-01) 1.90E+00 (±1.54E-01) 2.52E-03 (±1.62E-04)

Heat-CG 3.96E-01 (±3.22E-01) 1.17E-01 (±3.24E-02) 9.06E-02 (±2.69E-01) 8.53E-04 4.38E+00 (±3.48E-01) 3.81E-02 (±3.03E-03) 1.35E-03 (±9.00E-05)

NS-C 4.02E-03 (±5.93E-03) 5.12E-03 (±1.33E-03) 1.40E-05 (±1.12E-05) 2.33E-05 5.67E-01 (±6.28E-02) 5.27E-01 (±5.84E-02) 4.05E-05 (±4.50E-05)

GS 4.28E-03 (±2.23E-05) 4.03E-03 (±4.47E-04) 3.37E+08 (±1.01E+09) 4.32E-03 3.76E+00 (±5.27E-02) 3.35E+00 (±4.69E-02) 1.89E-03 (±1.44E-04)

Heat-MS 1.84E-02 (±1.18E-02) 7.48E-03 (±3.81E-03) 1.06E-04 (±1.86E-04) 5.27E-05 7.10E-02 (±3.05E-03) 6.04E-03 (±2.59E-04) 2.27E-05 (±7.20E-05)

Heat-VC 3.57E-02 (±8.72E-03) 3.93E-02 (±2.17E-03) 1.43E-02 (±1.77E-02) 1.76E-03 4.46E+00 (±1.05E+00) 4.01E-02 (±9.45E-03) 1.62E-03 (±1.08E-04)

Poisson-MA 5.87E+00 (±1.17E+00) 5.82E+00 (±2.30E+00) 3.16E+00 (±9.92E-01) 1.83E+00 1.24E+04 (±5.71E+03) 1.07E+04 (±4.91E+03) 2.25E-03 (±1.35E-04)

3D
Poisson-CG 3.82E-02 (±2.15E-02) 2.55E-02 (±5.65E-03) 3.35E-02 (±2.18E-02) 9.51E-04 4.17E-02±3.77e-03 9.51E-03±1.35e-03 1.35E-03 (±9.00E-05)

ND
Poisson-ND 1.30E-04 (±2.78E-04) 4.72E-05 (±2.76E-06) 4.77E-04 (±3.21E-05) 2.09E-06 9.93E+00 (±6.51E-03) 9.43E+00 (±6.18E-03) 842.00E-06 (±5.17E-07)

Heat-ND 2.58E-00 (±9.87E-02) 1.18E-04 (±8.92E-06) 8.57E-04 (±1.31E-06) 8.52E+00 3.74E+00 (±3.29E-01) 3.40E-03 (±2.99E-04) 4.72E-04(±6.30E-05)

These results serve as a detailed supplement to the main comparisons: our method consistently achieves the
lowest average errors with significantly reduced variance, and obtains higher success rates across nearly all
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PDEs. In particular, Lang-PINN improves code executability and training stability even for challenging high-
dimensional and chaotic cases, reinforcing the conclusions drawn in the main paper.

Table 2: Success rate (%) of Lang-PINN and baseline approaches on 14 different PDEs. Results
are averaged over 10 runs.

PDEs RandomAgent PINNsAgent PINNacle SCoT Self-Debug Ours
1D

Burgers 29.7% 36.2% 38.9% 58.6% 59.7% 84.3%

Wave-C 28.5% 34.8% 37.2% 57.2% 58.3% 80.7%

KS 27.9% 33.5% 35.9% 55.1% 56.4% 82.5%

2D
Burgers-C 26.1% 33.4% 36.2% 56.3% 58.0% 81.1%

Wave-CG 25.4% 31.2% 34.0% 54.9% 56.1% 77.4%

Heat-CG 25.1% 32.6% 35.1% 55.7% 57.0% 81.6%

NS-C 26.3% 34.1% 36.8% 57.1% 58.9% 83.3%

GS 24.9% 30.7% 33.2% 53.8% 55.0% 78.8%

Heat-MS 26.8% 35.0% 37.6% 58.4% 59.6% 82.7%

Heat-VC 25.6% 32.0% 34.5% 55.2% 56.8% 80.5%

Poisson-MA 23.7% 29.8% 32.7% 52.7% 54.1% 79.2%

3D
Poisson-CG 22.9% 30.4% 33.5% 53.2% 54.8% 77.9%

ND
Poisson-ND 21.7% 28.9% 31.7% 51.5% 53.1% 73.3%

Heat-ND 20.9% 29.6% 32.4% 52.1% 53.7% 75.5%

3.2 EFFECTIVENESS OF SEMANTIC–SYMBOLIC PDE VERIFICATION

To assess the effectiveness of the proposed semantic–symbolic verification, we perform an evaluation on a held-
out collection of PDE tasks. For each task, the LLM generates multiple candidate PDEs. These candidates
are grouped into five quality categories based on symbolic correctness (operators, coefficients, and BC/IC
structure). For every generated PDE, we compute its semantic consistency score by comparing the model’s
natural-language explanation of the equation with the original task description, ensuring that all governing
components are aligned.

To measure how well this score reflects actual PDE quality, each candidate PDE is passed through the remaining
agents and used to train a PINN, from which we obtain the final mean-squared error. The results in Table 3
show a clear trend: PDEs with higher semantic consistency yield lower PINN error (equivalently, larger
− log10MSE). Across all five quality groups, the semantic score exhibits a strong monotonic relationship with
downstream accuracy, with a Pearson correlation of r = 0.88. These results indicate that semantic–symbolic
validation provides a reliable, data-supported proxy for identifying missing constraints and assessing PDE
correctness before PINN training.

3.3 EFFECTIVENESS OF SEMANTIC–SYMBOLIC PDE VERIFICATION

To assess whether our semantic–symbolic verification reliably reflects PDE quality, we generate multiple PDE
candidates for several benchmark tasks and group them into five perturbation classes: C1 (perfect PDE), C2
(notation-level variation), C3 (coefficient error), C4 (missing or incorrect terms), and C5 (structural error or
hallucination). For each candidate, we compute the semantic-consistency score and then train a PINN using
that PDE to obtain the final − log10!MSE.

Table 3 shows a clear monotonic trend across all four PDEs: as the perturbation becomes more severe, the
semantic score decreases and the resulting PINN error increases. Across the entire evaluation set, the semantic
score exhibits a strong negative correlation with the final training error (Pearson correlation r = 0.88). These
results confirm that the semantic–symbolic metric provides a reliable, data-supported proxy for detecting miss-
ing or incorrect constraints prior to PINN training.
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Table 3: Semantic consistency score and PDE MSE loss across five quality levels of LLM-generated
PDEs. Categories C1–C5 correspond respectively to: exactly correct PDEs, notation-only varia-
tions, coefficient errors, missing/incorrect terms, and structural hallucinations.

PDE Category Semantic Consistency Score / –Log10 MSE
Burgers Heat-MS Wave-C KS

C1 (exactly correct) 1.00 / 4.1884 1.00 / 4.6445 1.00 / 2.6492 1.00 / 2.6055
C2 0.91 / 3.8915 0.89 / 4.3101 0.92 / 2.4302 0.86 / 2.2156
C3 0.71 / 0.6341 0.75 / 0.7478 0.69 / -0.5861 0.70 / -0.8446
C4 0.51 / -0.0546 0.59 / -0.5053 0.45 / -1.5269 0.53 / -1.1914
C5 0.28 / -0.6618 0.23 / -0.8240 0.14 / -2.1447 0.22 / -2.1026

Pearson correlation 0.88

3.4 SEMANTIC CONSISTENCY THRESHOLDING

To evaluate the reliability of the semantic-consistency metric, we adopt an LLM-as-a-judge procedure. For any
pair of textual task descriptions di and dj , the judge model is prompted with both descriptions and returns a
similarity score s ∈ [0, 1], where larger values indicate stronger semantic alignment.

For threshold calibration, we construct a benchmark containing 200 equivalent pairs and 200 non-equivalent
pairs. Each equivalent pair is formed by taking two independently re-expressed descriptions of the same under-
lying PDE from the Task2PDE dataset. Each non-equivalent pair is formed by taking two descriptions drawn
from two different PDEs from Task2PDE dataset.

The score distribution in Fig 1 shows a clear separation. Non-equivalent pairs concentrate below 0.70, while
equivalent pairs mostly lie above 0.75, with only a narrow overlap between the two. Based on this separation,
we adopt a conservative threshold of 0.80, which retains virtually all equivalent pairs while rejecting nearly all
non-equivalent ones. This threshold is used throughout Section 4 to validate LLM-generated PDE formulations.

Figure 1: Similarity score distribution of 200 equivalent vs. 200 non-equivalent pairs.

3.5 END-TO-END WALL-CLOCK TIME EVALUATION

We assess the end-to-end runtime of the full pipeline,measured from pipeline start to until runnable code is
produced. In our implementation, the LLM component is accessed through an API (e.g., DeepSeek-V3), and
all model computation runs on the provider’s backend. As device-level memory consumption of the LLM is
therefore not observable, we focus on wall-clock time, which captures the total latency introduced by both
LLM inference and subsequent refinement steps.

Each method is executed 10 times under a unified protocol, allowing up to 30 refinement cycles per run. Mea-
sured from pipeline start to until runnable code is produced. As shown in Table 4 Lang-PINN achieves a
21%–52% reduction in total PDE-solving time relative to all baselines, demonstrating that the proposed
multi-agent workflow improves overall efficiency while maintaining solution quality.
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Table 4: End-to-end wall-clock time, measured from pipeline start until runnable code is produced.
Method RandomAgent BayesianAgent PINNsAgent SCoT Self-Debug Lang-PINN
Avg. Time (s) 413.5 391.2 312.8 291.1 246.4 199.7

3.6 THE IMPACT OF THE LLM BACKBONE.

To evaluate how the backbone language model affects Lang-PINN, we run the complete multi-agent workflow
with three different LLMs: DeepSeek-V3, Qwen2, and LLaMA2-Chat. All experiments use identical decoding
settings and fixed prompt templates. Table 5 shows that although DeepSeek-V3 yields the lowest absolute
MSE, Lang-PINN with weaker backbones such as Qwen2 and LLaMA2-Chat still achieves lower error than all
baselines that rely on DeepSeek-V3. This indicates that the performance improvement primarily comes from
the multi-agent framework, including verification and fallback across the PDE, PINN, Code, and Feedback
Agents, rather than from the strength of any specific LLM. A stronger model further improves intermediate
reasoning, but the relative gain provided by Lang-PINN remains consistent across all LLM families, showing
that the framework generalizes well and is not dependent on a single proprietary backbone.

Table 5: Comparison of PINN MSE across different LLM backbones.

PDE Random Bayesian SCoT Self-Debug

Lang-
PINN

(DeepSeek-
V3)

Lang-
PINN

(Qwen2)

Lang-
PINN

(LLaMA2)
KS 1.09E+00 1.10E+00 3.33E+00 2.93E+00 1.62E-03 1.95E-03 2.71E-03
NS-C (2D) 4.02E-03 5.12E-03 5.67E-03 5.27E-01 4.05E-05 5.47E-05 6.88E-05
Poisson-MA 5.87E+00 5.82E+00 1.24E+00 1.07E+00 2.25E-03 2.83E-03 3.22E-03
GS (2D) 4.28E-03 4.03E-03 5.35E-03 5.35E-03 1.89E-03 2.42E-03 3.16E-03

4 TASK2PDE DATASET

To rigorously evaluate the ability of language models to map natural-language task descriptions into formal
PDE specifications, we construct the Task2PDE dataset. The dataset is derived from eight representative PDE
families selected from the PINNacle benchmark (7), spanning different spatial dimensions:

• 1D: Burgers’, Wave–C, Kuramoto–Sivashinsky (KS);

• 2D: Heat–MS, Poisson–MA, incompressible Navier–Stokes (NS–C);

• 3D: Poisson–CG;

• High-dimensional ND: Heat–ND.

For each PDE family, we construct 50 distinct task descriptions under four difficulty levels, yielding a total of
8×4×50 = 1600 samples. Each sample is paired with its ground-truth PDE formulation, including operators,
coefficients, boundary/initial conditions, and domain specification. This ensures that every natural-language
description corresponds uniquely to one PDE instance, enabling systematic evaluation of semantic-to-symbol
grounding.

4.1 LINGUISTIC COMPLEXITY LEVELS IN TASK2PDE

For each forward problem in Task2PDE, we construct four task descriptions that all refer to the same underlying
PDE, but differ in how realistically they reflect human-written text. These four levels are designed to mimic
how researchers actually describe PDE-based problems in practice, from clean paper-style statements to noisy,
ambiguous, and disorganized notes. In the examples below, we highlight in bold the phrases that introduce the
level-specific difficulty, and we render each level in a different color for clarity.

4.1.1 LEVEL 1: CLEAN AND EXPLICIT DESCRIPTION.

Level 1 corresponds to a concise and well-structured description, as one would expect in a paper or textbook.
The PDE, domain, and boundary/initial conditions are stated explicitly, with no irrelevant or ambiguous infor-
mation, so the mapping from text to PDE is essentially direct.
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Example of Level 1

We consider one-dimensional heat diffusion in a rod of length L = 1 with constant thermal conductiv-
ity κ = 0.01. The temperature u(x, t) satisfies

∂tu(x, t) = κ ∂xxu(x, t), x ∈ [0, 1], t > 0.

Boundary conditions are u(0, t) = 0 and u(1, t) = 1 for all t > 0, and the initial condition is
u(x, 0) = sin(πx).

In this case, a correct Task2PDE model should recover exactly the ground-truth PDE and its boundary and
initial conditions.

4.1.2 LEVEL 2: IRRELEVANT BUT REALISTIC SIDE INFORMATION.

Level 2 keeps the same PDE as Level 1, but mixes in realistically irrelevant details that researchers often include
in emails or lab notes, such as comments about the experimental environment or personal impressions. These
phrases should not affect the governing equation, yet they increase the risk that an LLM mistakes them for
physical conditions.

Example of Level 2

We are again simulating heat diffusion in a metal rod of length 1 with constant conductivity κ = 0.01
using the standard heat equation on [0, 1]. The lab was quite cold in the morning and the left end of
the setup felt a bit colder when I touched it, but this is just due to the room air and is not part of
the mathematical model. In the simulation, we still impose u(0, t) = 0 and u(1, t) = 1 for all t > 0,
and use u(x, 0) = sin(πx) as the initial condition.

The bolded sentences are natural in real experimental notes but do not belong to the PDE constraints. A robust
system should ignore these side comments and recover the same PDE and BC/IC as in Level 1; a less robust
system may, for example, turn the qualitative remark about “felt a bit colder” into a spurious time-dependent
boundary condition.

4.1.3 LEVEL 3: AMBIGUOUS WORDING AND UNDERSPECIFIED TERMINOLOGY.

Level 3 models the situation where the researcher assumes that the reader shares the experimental context, and
therefore uses shorthand or ambiguous phrases without fully specifying what they refer to. These expressions
are understandable to humans who know the setup, but they can blur the distinction between measurement noise
and true physical variation.

Example of Level 3

We revisit the same 1D heat conduction setup on [0, 1] with a homogeneous material. At the left end,
the temperature reading tends to drift over time because the sensor is not very stable, but in the
actual experiment the boundary itself is kept at a fixed 0◦C throughout the run. The right end is
maintained at 1◦C, and we use thermal conductivity κ = 0.01 with the same sine-shaped initial profile
as in our standard diffusion case.

Here, the phrase “the temperature reading tends to drift over time” refers to sensor drift rather than a time-
varying boundary condition, while the follow-up sentence clarifies that the boundary temperature is fixed. A
correct Task2PDE model should resolve this ambiguity and still output u(0, t) = 0 and u(1, t) = 1 as in
Level 1. A misinterpreting model may instead treat the drift as a genuine time-dependent boundary, leading to
an incorrect PDE–BC pairing.

4.1.4 LEVEL 4: DISORGANIZED, OUT-OF-ORDER DESCRIPTION.

Level 4 reflects free-form lab notebook or chat-style descriptions, where the researcher writes conditions in the
order they occur to mind rather than in a structured way. All information needed to reconstruct the same PDE
as in Level 1 is present, but it is scattered, partially repeated, and appears in a non-linear order, often mixing
preliminary and final settings.
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Example of Level 4

For this batch of runs we use the same basic heat diffusion setup as before on a rod from x = 0 to x = 1.
Initially we tried several values for the thermal conductivity, like κ = 0.005 and κ = 0.02, but
in the final configuration we fixed it at κ = 0.01. The initial temperature profile is the sine-shaped
one from our earlier tests. The right end is kept at temperature 1 during the whole experiment.
At the left end, even though the hardware was moved during calibration and the sensor readings
jumped a bit, the boundary itself was maintained at 0 for the entire run. The evolution of u(x, t)
is still governed by the standard heat equation.

The highlighted phrases illustrate typical disorganization: multiple candidate values of κ appear before the final
choice, and the left boundary condition is embedded in comments about hardware motion and sensor jumps.
Human readers can usually infer that the true settings are κ = 0.01, u(0, t) = 0, and u(1, t) = 1. An LLM that
fails to integrate these scattered cues may instead latch onto a preliminary κ or ignore the final clarification about
the boundary, thus producing an incorrect PDE or boundary conditions even though all necessary information
is present in the text.

5 PROMPT DESIGN DETAILS OF ALL AGENTS

In this section, we provide the detailed prompts of our all agents, including PDE Agent, PINN Agent, Code
Agent, and Feedback Agent.

5.1 PDE AGENT

The PDE Agent converts natural-language physical descriptions into multiple plausible governing PDE can-
didates, expressed in normalized residual form with structured metadata (variables, parameters, domains, and
IC/BC).

5.1.1 SYSTEM PROMPT

PDE Agent — System Prompt

You are the PDE Agent in a multi-agent PDE-to-PINN system.
Your task is to infer plausible governing PDEs from natural-language
descriptions of physical systems, without using any ground-truth

labels.

You must:
- parse the given physical description d;
- reason about the underlying operators, propagation mechanisms,
and boundary behavior;

- generate K independent reasoning trajectories {T1, ..., TK};
- in each trajectory, infer exactly ONE plausible PDE candidate Ei;
- write the PDE in normalized residual form F(u, x, t; theta) = 0;
- list variables, parameters, and the space-time domain;
- extract initial and boundary conditions when they are implied;
- provide a 24 sentence chain-of-thought explanation for each Ei;
- return all trajectories in a single JSON object with the schema:

{
"trajectories": [
{
"id": "Ti",
"reasoning": "<natural-language explanation>",
"residual_form": "<PDE residual = 0>",
"variables": "<state and coordinates>",
"parameters": "<physical parameters>",
"domain": "<space-time domain>",
"ic": "<initial condition>",
"bc": "<boundary condition(s)>"

},
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...
]

}

Follow the JSON schema exactly and do NOT output any text outside
JSON.

5.1.2 USER PROMPT

PDE Agent — User Prompt (1D Wave Example)

Given the following physical description d, generate K = 5
independent

reasoning trajectories T1T5. For each trajectory, infer one
plausible PDE

candidate in residual form F(u, x, t; theta) = 0, following the
required JSON

schema.

[Description d]
Consider a long, taut string fixed at both ends, positioned

horizontally in a
controlled laboratory environment. Initially, the string is

displaced from its
rest position according to a known spatial profile, and it may also

possess an
initial velocity distribution along its length. Throughout the

experiment, the
endpoints remain immobile, ensuring that disturbances can only

travel along the
string. The surrounding air resistance is assumed negligible, so

only the
inherent properties of the string influence the motion. As time

advances, the
displacement of each point along the string varies due to the

propagation and
reflection of waves, potentially creating complex oscillatory

patterns. What
mathematical equation should be formulated to describe how the

vertical
displacement of the string at any position changes as a function of

both time
and spatial coordinate, given the initial shape, initial velocity,

and fixed
boundary conditions?

Use this description d to construct 5 reasoning trajectories and
output the

final result strictly in JSON.

5.1.3 ASSISTANT OUTPUT

PDE Agent — Assistant Output (1D Wave)

(a) JSON reasoning trajectories:
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{
"trajectories": [
{
"id": "T1",
"reasoning": "The description is a textbook setup of a

long, taut string with small transverse displacements,
fixed at both ends, and negligible air resistance, so the
dominant physics is elastic wave propagation along one
spatial dimension. For such a uniform string, the balance
of transverse forces and inertia leads to the 1D linear
wave equation with a constant wave speed determined by
string tension and linear density. The fixed endpoints
impose zero displacement at both ends of the interval in
space. The initial shape and initial velocity translate
directly into initial conditions for u and its first time
derivative.",

"residual_form": "F(u,x,t;theta) = u_tt(x,t) - cˆ2
u_xx(x,t) = 0",

"variables": "u(x,t): vertical displacement of the
string; x: position along the string; t: time.",

"parameters": "theta = {c, L}, where c > 0 is the
constant wave speed (cˆ2 = T/ with tension T and linear
density ) and L is the string length.",

"domain": "0 < x < L, t > 0.",
"ic": "u(x,0) = f(x) (given initial shape), u_t(x,0) =

g(x) (given initial velocity profile).",
"bc": "u(0,t) = 0, u(L,t) = 0 for all t 0 (fixed

endpoints)."
},
{
"id": "T2",
"reasoning": "Instead of introducing the wave speed

explicitly, we can write the governing law directly from
Newtons second law for a small string element. The net
transverse force is given by the difference of tensions
at its ends, which in the continuous limit produces a
term proportional to the second spatial derivative of
displacement. Balancing this force with the inertial term
involving the linear mass density yields a wave equation
with tension and density as the primary parameters.",

"residual_form": "F(u,x,t;theta) = u_tt(x,t) - T
u_xx(x,t) = 0",

"variables": "u(x,t): vertical displacement; x:
coordinate along the string from 0 to L; t: time.",

"parameters": "theta = {T, , L}, where T > 0 is the
constant string tension and > 0 is the constant linear
mass density.",

"domain": "0 < x < L, t > 0.",
"ic": "u(x,0) = f(x), u_t(x,0) = g(x), where f and g

are the prescribed initial displacement and velocity
distributions.",

"bc": "u(0,t) = 0, u(L,t) = 0 for all t 0 (both ends
clamped and immobile)."
},
......
}

]
}

(b) Canonical PDE after consensus voting (XML form):
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<root>
<parsed_pde>u_tt - cˆ2*u_xx = 0</parsed_pde>
<variables>u = u(x,t); c = wave speed; x in [0,L]; t >=
0</variables>

<domain>x in [0,L], t >= 0</domain>
<initial_condition>
u(x,0) = u0(x); u_t(x,0) = v0(x)

</initial_condition>
<boundary_condition>
u(0,t) = 0; u(L,t) = 0 for all t >= 0

</boundary_condition>
</root>

5.2 PINN AGENT

The PINN Agent selects the most appropriate PINN architecture for a given PDE, using a combination of
physical reasoning, history reuse, knowledge-base capabilities, and feature–capability matching.

5.2.1 SYSTEM PROMPT

PINN Agent — System Prompt

You are the PINN Architecture Agent in a multi-agent PDE-to-PINN
system.

Your role is to determine the most suitable architecture for a
given PDE by

combining physical reasoning, history reuse (H), knowledge-base
capability

inference (K), and featurecapability matching.

Follow this reasoning workflow:
1. Parse the PDE-XML to identify operators, nonlinearity, IC/BC,

geometry,
periodicity, and multiscale characteristics.

2. Construct the PDE feature vector phi(E) = [f_per, f_geo, f_ms]
[0,1]ˆ3.

3. Query the history cache H:
- Compute semantic similarity between the current PDE and past
tasks.
- If a close match exists, reuse its architecture and
hyperparameters.

4. Query knowledge base K:
- Infer capability vectors psi(A) [0.1,0.9]ˆ3 for each candidate
architecture A {MLP, CNN, GNN, Transformer}.

- Ground these capabilities in Ks empirical performance and
known inductive
biases of these architecture families.

5. Perform featurecapability matching with weighted cosine
similarity:

S(A|E) = <W phi(E), psi(A)> /
(||W phi(E)|| * ||psi(A)||)

6. Output a JSON object containing history_match, pde_features,
candidate_architectures, capability_vectors, weights, scores,
selected, config, backup, and rationale.

Do NOT output text outside JSON.
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5.2.2 USER PROMPT

PINN Agent — User Prompt

Given the PDE-XML, history cache H, and knowledge base K, select
the optimal

architecture for the task.

Procedure:
1) History Reuse:

- Compare PDE structure + IC/BC + features with entries in H.
- If similar, directly reuse the stored architecture.

2) FeatureCapability Matching:
- Compute phi(E) [0,1]ˆ3 for periodicity, geometry complexity,
and
multiscale demand.

- Infer psi(A) for each architecture in:
["MLP", "CNN", "GNN", "Transformer"].

- Use weights W and compute S(A|E) for each candidate.
- Rank and select the best architecture.

Return JSON only:
{
"history_match": {...},
"pde_features": {...},
"candidate_architectures": [...],
"capability_vectors": {...},
"weights": {...},
"scores": {...},
"selected": "...",
"config": {...},
"backup": [...],
"rationale": "..."

}

# PDE-XML:
{pde_xml}

5.2.3 ASSISTANT OUTPUT

Assistant Output

Example JSON Output:
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{
"history_match": {
"matched": true,
"source_task_id": "wave_1d_fixed_ends",
"reason": "The PDE-XML describes a 1D linear wave
equation u_tt - cˆ2 u_xx = 0 on x in [0,L] with fixed-end
Dirichlet boundary conditions and prescribed initial
displacement and velocity, which closely matches a
previous wave-string task in H."

},

"pde_features": {
"f_per": 0.1,
"f_geo": 0.2,
"f_ms": 0.8

},

"candidate_architectures": [
"MLP", "CNN", "GNN", "Transformer"

],

"capability_vectors": {
"MLP": [0.2, 0.2, 0.5],
"CNN": [0.1, 0.6, 0.6],
"GNN": [0.1, 0.7, 0.4],
"Transformer": [0.3, 0.4, 0.9]

},

"weights": { "f_per": 0.2, "f_geo": 0.2, "f_ms": 0.6 },

"scores": {
"MLP": 0.74,
"CNN": 0.79,
"GNN": 0.68,
"Transformer": 0.91

},

"selected": "Transformer",

"config": {
"d_model": 32,
"nhead": 2,
"ffn_hidden": 512,
"activation": "gelu",
"sequence_encoding": "space-time tokens with sinusoidal
positional encodings"

}
}

5.3 CODE AGENT

The Code Agent takes the analysis XML and PINN architecture templates as input and fills modular code blocks
(net, loss, data, train, eval, main) to produce a runnable PINN implementation whose residual is symbolically
consistent with the governing PDE.
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5.3.1 SYSTEM PROMPT

Code Agent — System Prompt

You are the Code Agent in a multi-agent PDE-to-PINN system. Your
task is to

generate fully runnable PINN code blocks from templates and
PDE-XML, ensuring

that the PDE residual is symbolically equivalent to the governing
equation.

You must:
- Generate modular code blocks: [net, loss, data, train, eval,

main].
- Preserve all function/class names, signatures, and template

structures.
- Fill all placeholders {...} without deleting or renaming supplied

templates.
- Implement residual(u, x, t, ...) as a single algebraic expression

derived
from the PDE-XML using differentiable operators (du_dx, du_dt,
...).

- Ensure residual(...) is symbolically equivalent to the PDE
(operator level).

- Produce only the completed code blocksno commentary or Markdown
fences.

- Never output a full monolithic script; only fill the template
blocks.

- main() must only assemble: generate_data train evaluate.
- Set epochs = 10 unless otherwise specified.

Return ONLY the filled block template.

5.3.2 USER PROMPT

Code Agent — User Prompt

You are an expert in PINN code generation. Below is the analysis
XML (with IC/BC)

and the required network implementation.

RULES:
- Generate modular blocks: [net, loss, data, train, eval, main].
- Each block must be fully completed with {} placeholders filled.
- Strictly respect the interface contract implied by the templates:
* net: define class PINN(nn.Module) ......
* loss: define a PINN loss that takes model outputs and data
batches.

* data: generate_data() returns all tensors needed by train/eval.
* train: train(model, data, ...) runs the training loop and
returns the model.

* eval: evaluate(model, data, ...) returns metrics.
* main: no new arguments; only wires generate_data, train,
evaluate.

Do not change function/class names or argument lists in the
template.

- No extra explanation, no markdown fences.
- Do NOT generate a monolithic script; only fill the given block

template.
Do not redefine main or PINN outside the provided blocks.
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- All function/class names must be compatible with the given
network template.

- For main: do not redefine; only assign hyper-parameters and call
generate_data, train, evaluate in order.

- Set epochs = 10.
- Implement the PDE residual in a function residual(u, x, t, nu,

...)
that is directly derived from the PDE in the XML, using a single
algebraic

expression (with +, -, *, /, ** and derivatives). The residual
must be

symbolically equivalent to the PDE so that an external checker
can parse

residual(...) back into a symbolic form and verify consistency.

# PDE-XML:
{analysis_xml}

#Templates (MUST MATCH):
{net_template},{loss_template},{data_template},
{train_template},{eval_template},{main_template}

# Block template to fill:
{template}

5.3.3 ASSISTANT OUTPUT

Code Agent — Assistant Output

}
import numpy as np
import torch
import torch.nn as nn
# ... (imports, util, PINNsformer definition, etc.)

# ===================== net =====================
class WavePINNsformer(nn.Module):

"""
net block
"""
def __init__(self, d_out=1, d_hidden=512, d_model=32, N=1,
heads=2):

super().__init__()
self.model = PINNsformer(

d_out=d_out,
d_hidden=d_hidden,
d_model=d_model,
N=N,
heads=heads,

)

def forward(self, x, t):

return self.model(x, t)

def init_weights(m):
if isinstance(m, nn.Linear):

torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:

m.bias.data.fill_(0.01)
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# ===================== loss =====================
def compute_pde_loss(model, x_res, t_res):

"""
PDE residual block: u_tt - 4 u_xx = 0
"""
pred_res = model(x_res, t_res)

u_x = torch.autograd.grad(
pred_res, x_res,
grad_outputs=torch.ones_like(pred_res),
retain_graph=True, create_graph=True

)[0]
u_xx = torch.autograd.grad(

u_x, x_res,
grad_outputs=torch.ones_like(pred_res),
retain_graph=True, create_graph=True

)[0]

u_t = torch.autograd.grad(
pred_res, t_res,
grad_outputs=torch.ones_like(pred_res),
retain_graph=True, create_graph=True

)[0]
u_tt = torch.autograd.grad(

u_t, t_res,
grad_outputs=torch.ones_like(pred_res),
retain_graph=True, create_graph=True

)[0]

# PDE: u_tt - 4 u_xx = 0
loss_res = torch.mean((u_tt - 4 * u_xx) ** 2)
return loss_res, pred_res

def compute_bc_loss(model, x_upper, t_upper, x_lower, t_lower):
"""
Boundary conditions block:
u(0, t) = u(1, t) = 0

"""
pred_upper = model(x_upper, t_upper)
pred_lower = model(x_lower, t_lower)

loss_bc = torch.mean(pred_upper ** 2) + torch.mean(pred_lower
** 2)
return loss_bc, pred_upper, pred_lower

def compute_ic_loss(model, x_left, t_left, pi):
"""
Initial conditions block:
IC1: u(x, 0) = sin(pi x) + 0.5 sin(3 pi x)
IC2: u_t(x, 0) = 0

"""
pred_left = model(x_left, t_left)

# u_t(x, 0)
u_t_left = torch.autograd.grad(

pred_left, t_left,
grad_outputs=torch.ones_like(pred_left),
retain_graph=True, create_graph=True

)[0]
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# t = 0
u0_pred = pred_left[:, 0] # [N, 1] -> [N]
x0 = x_left[:, 0]

u0_true = torch.sin(pi * x0) + 0.5 * torch.sin(3 * pi * x0)
loss_ic_1 = torch.mean((u0_pred - u0_true) ** 2)
loss_ic_2 = torch.mean(u_t_left ** 2)

loss_ic = loss_ic_1 + loss_ic_2
return loss_ic, pred_left, u_t_left

def compute_total_loss(model, batch, pi, loss_track=None):
"""

L_total = L_res + L_bc + L_ic
"""
x_res, t_res = batch["x_res"], batch["t_res"]
x_left, t_left = batch["x_left"], batch["t_left"]
x_right, t_right = batch["x_right"], batch["t_right"]
x_upper, t_upper = batch["x_upper"], batch["t_upper"]
x_lower, t_lower = batch["x_lower"], batch["t_lower"]

loss_res, _ = compute_pde_loss(model, x_res, t_res)
loss_bc, _, _ = compute_bc_loss(model, x_upper, t_upper,
x_lower, t_lower)
loss_ic, _, _ = compute_ic_loss(model, x_left, t_left, pi)

total_loss = loss_res + loss_bc + loss_ic

if loss_track is not None:
loss_track.append([

loss_res.item(),
loss_ic.item(),
loss_bc.item()

])

return total_loss, loss_res, loss_ic, loss_bc

# ===================== data / train / eval / main
=====================

# - build_dataset(...)
# - train(...)
# - u_analytic(...), evaluate_and_plot(...)
# - main()

...

5.4 FEEDBACK AGENT

The Feedback Agent executes the code produced by the Code Agent, extracts runtime and numerical signals,
and decides whether the pipeline is valid, faulty, or requires refinement, routing structured instructions back to
the appropriate agent.
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5.4.1 SYSTEM PROMPT

Feedback Agent — System Prompt

You are the FEEDBACK AGENT in a modular PDE-to-PINN system.

Your responsibility is to:
- execute the code file produced by the Code Agent,
- extract runtime signals,
- evaluate the numerical behavior using standardized metrics,
- determine whether the pipeline is VALID, FAULTY, or REQUIRES

REFINEMENT,
- and route actionable instructions to the appropriate agent.

RUNTIME RESPONSIBILITIES

1. Execute the generated script inside a controlled sandbox.
2. Capture:

- stdout
- stderr (full traceback)
- return code
- runtime warnings

3. Detect failure conditions:
- SyntaxError / ImportError
- shape/type errors
- divergence: NaN/Inf in losses, exploding gradients
- runtime timeout
- missing outputs

METRIC EXTRACTION

If execution succeeds, normalize four metrics into [0,1]:
- m_conv : convergence efficiency (speed of loss reduction)
- m_acc : accuracy (PDE residual or RelL2)
- m_comp : model complexity (params/FLOPs inversely mapped)
- m_rob : robustness (gradient stability, smoothness)

Aggregate:
S(C) = w1*m_conv + w2*m_acc + w3*m_comp + w4*m_rob

ROUTING LOGIC

If status = FAIL:
- identify the faulty block {net, loss, data, train, eval,
main}
- return an instruction for Code Agent with:

block_name, error_summary, log_path

If status = SUCCESS but S(C) < threshold:
- return refinement request (hyperparameter retuning or
architecture reconsideration) for PINN Agent.

Output MUST be a JSON object.
NO additional text is allowed.
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5.4.2 USER PROMPT

Feedback Agent — User Prompt

Evaluate the generated PINN code.

Steps:
1) Save the received code into:

pinn_eval.py

2) Run with:
subprocess.check_output([...], timeout=120)

3) If execution FAILS:
- capture stderr (string)
- save full logs to logs/pinn_eval_*.log
- analyze traceback to localize the faulty block:

["net", "loss", "data", "train", "eval", "main"]
- return:
{
"status": "FAIL",
"metrics": null,
"score": null,
"error_block": "...",
"error_summary": "...",
"log_path": "...",
"action": "call CodeAgent with error_block, log_path,

error_summary"
}

4) If execution SUCCEEDS:
- extract metrics:
{
"m_conv": float,
"m_acc": float,
"m_comp": float,
"m_rob": float

}
- compute S(C)
- if S(C) >= threshold:

return {
"status": "SUCCESS",
"metrics": {...},
"score": S,
"action": "accept"

}
- else:

return {
"status": "SUCCESS",
"metrics": {...},
"score": S,
"action": "request PINNAgent refinement"

}

Output MUST be valid JSON.
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5.4.3 ASSISTANT OUTPUT

Feedback Agent — Assistant Output

{
"status": "SUCCESS",
"metrics": {
"m_conv": 0.87,
"m_acc": 0.82,
"m_comp": 0.91,
"m_rob": 0.88

},
"score": 0.87,
"error_block": null,
"error_summary": null,
"log_path": "logs/pinn_eval.log",
"action": "accept"

}
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