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Abstract

Algorithmic pricing on online e-commerce platforms raises the concern of tacit
collusion, where reinforcement learning algorithms learn to set collusive prices
in a decentralized manner and through nothing more than profit feedback. This
raises the question as to whether collusive pricing can be prevented through the
design of suitable "buy boxes," i.e., through the design of the rules that govern
the elements of e-commerce sites that promote particular products and prices to
consumers. In this paper, we demonstrate that reinforcement learning (RL) can also
be used by platforms to learn buy box rules that are effective in preventing collusion
by RL sellers. For this, we adopt the methodology of Stackelberg POMDPs, and
demonstrate success in learning robust rules that continue to provide high consumer
welfare together with sellers employing different behavior models or having out-of-
distribution costs for goods.

1 Introduction

The last decade has witnessed a dramatic shift of trading from retailers to online e-commerce platforms
such as Amazon and Alibaba. In these platforms, sellers are increasingly using algorithms to set prices.
Algorithmic pricing can be beneficial for market efficiency, enabling sellers to quickly react to market
changes and also in enabling price competition. At the same time, the U.S. Federal Trade Commission
(FTC) |U.S. Federal Trade Commission (2018) and European Commission (The Organisation for
Economic Co-operation and Development, 2017) have raised concerns that algorithmic pricing may
facilitate collusive behaviors. (Calvano et al.|(2020a) support these concerns through a study of pricing
agents in a simulated platform economy, and show that commonly used reinforcement-learning
(RL) algorithms learn to initiate and sustain collusive behaviorsm Assad et al.| (2020) also provide
empirical support for algorithmic collusion in a study of Germany’s retail gas stations, showing an
association between algorithmic pricing and an increase in price markups. As highlighted by |(Calvano
et al. (2020b), these kinds of collusive behaviors are unlikely to be a violation of antitrust law, as they
are learned responses to profit signals and not the result of explicit agreements.

One can try to prevent algorithmic collusion by introducing suitable rules by which platforms can
choose which sellers to promote to buyers, thus promoting competition. Could Amazon’s "buy box

“These authors contributed equally to this work.
"More precisely, |Calvano et al.|(2020a) showed that RL algorithms learn to quote supra-competitive prices
and punish deviations from collusive agreements via lower prices.
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algorithm," for example, play this role in the future, in determining for a given consumer search
which products and prices to highlight to a consumer? Responding to this, |Johnson et al. (2021)
design hand-crafted rules that succeed in hindering collusion between RL algorithms. At the same
time, their rules introduce the undesirable effect of limiting consumers to a single seller, and there
remains potential for more effective interventions.

In this paper, we demonstrate for the first time how RL can also be used defensively by a platform
to automatically design rules that promote consumer welfare and prevent collusive pricing. This is
a problem of multi-agent learning, with the interaction between the platform and sellers modeled
as a Stackelberg game (Fudenberg and Tirole| |1991). The leader is the platform designer and sets
the platform rules and the sellers respond, using RL to set prices given these rules. We introduce the
class of threshold platform rules, and formally show that this class contains rules that approximately
maximize consumer surplus in a unique subgame perfect equilibrium (Mas-Colell et al.,{1995| chapter
9). At the same time, this class of threshold rules is fragile to unexpected deviations by sellers, for
example caused by cost perturbations. The role of RL on the part of the platform is to learn rules
with similar performance that are also more robust.

To solve the Stackelberg problem, we make use of the Stackelberg partially observable Markov
decision process (POMDP) framework (Brero et al.,|2022), which defines an episode structure of a
POMDP such that the RL algorithm representing the leader will learn to optimize its reward (here,
consumer surplus) given that its rules cause re-equilibration on the part of the followers (here, the
sellers who use Q-learning algorithms to set prices). The Stackelberg POMDP framework is well
formed as long as the re-equilibration behavior of the sellers can be modeled through Markovian
dynamics, as is the case with Q-learning.

We show successful results in learning effective platform policies that outperform handcrafted
rules (Johnson et al., [2021). This demonstrates how the Stackelberg POMDP framework can be
successfully applied in settings where followers play repeated games, and their strategies are also
policies trained via reinforcement learning algorithms. We then show how our threshold platform
rules allow us to obtain a similar learning performance when training the platform policy "in the
wild," i.e., without accessing the sellers’ private information. With this, we demonstrate how the
Stackelberg POMDP framework can be applied in more general learning scenarios than the offline
learning ones for which it was originally designed. Finally, we show how the platform rules learned
via our Stackelberg POMDP framework continue to be effective when market conditions change, for
example as the result of a change to the cost structure of sellers.

Further related work. [Zheng et al.|(2022); Tang (2017); Shen et al.| (2020); Brero et al.| (2021)
make use of RL to optimize different economic systems (including matching markets, internet
advertising, tax policies, and auctions) under strategic agents’ responses. Unlike our work, these
methods do not leverage the designer’s commitment power or the Stackelberg structure of the induced
game. Brero et al. (2022) introduce and study the Stackelberg POMDP framework for matrix games
and simple auctions using regret minimization for followers Abada and Lambin (2022) study
collusion by RL pricing in markets for electric power, and use machine learning by a regulator agent
for the mitigation of collusion, albeit without a Stackelberg framing. The broader research program
on differentiable economics uses representation learning for optimal economic design (Duetting
et al., 2019;|Shen et al.} [2019; Kuo et al.|, [2020; [Tacchetti et al.,|2019; Rahme et al., 2021a; [Curry.
et al., 2022; Rahme et al.l 2021b; |Curry et al., 2020 |Peri et al., 2021)); this work avoids the need for
Stackelberg design by emphasizing the use of direct, incentive-compatible mechanisms. Also related
is empirical mechanism design (Areyan Viqueira et al.,|2019; | Vorobeychik et al., [2006; |Brinkman
and Wellman| [2017), which applies empirical game theory to search for the equilibria of mechanisms
with a set of candidate strategies (Wellman, [2006; Kiekintveld and Wellman, 2008; Jordan et al.,
2010); see also|Biinz et al.| (2018)) for the design of iterative auctions.

The only other method we know for Stackelberg learning in stochastic games with provably guarantees
solves for a single follower (Mishra et al.,|2020); see also Mguni et al.|(2019);|Cheng et al. (2017);|Shi et al.
(2020) and[Shu and Tian| (2019), and |[Tharakunnel and Bhattacharyya (2007) for a partial convergence result for
a static game with two followers. For other convergence results for single-follower, static, and often zero-sum
games see |Li et al. (2019); |Sengupta and Kambhampati| (2020); | Xu et al.| (2021); [Fiez et al. (2020); Jin et al.
(2020). For multi-follower static games, |Wang et al.|(2022) make use of a differentiable relaxation of follower
best-response behavior together with a subroutine to solve an optimization problem for follower behavior.



2 Preliminaries

Seller Competition Model. There is a set of sellers N' = {1,...,n}, each of whom sells a
differentiated product on an economic platform. Each seller has the same marginal cost ¢ > 0 for
producing one unit of its product. Sellers interact with each other repeatedly over time in setting
prices and selling goods. At each time period, ¢ = 0, 1, .. ., each seller 7 observes all past prices, and
sets a price p;+ > 0. We let p; = (p1,¢, - - -, Pn,t) denote a generic price profile quoted at time ¢. The
platform sets the rules of a buy box that governs, in each period ¢, which set Ay C N of sellers are
available. Consumers can only buy from these sellers and others forfeit sales. There is also an outside
option, indexed by 0, which provides each consumer with a fallback choice with zero utility.

Following Johnson et al. (2021), competition between sellers for consumer demand is modeled
through the standard logit model of consumer choice. For this, seller i has quality index o; > 0,
this providing horizontal differentiation across products, and the outside good has quality index
ap > 0. In the logit model, each consumer samples (g, (3, ...y, independently from a type I extreme
value distribution with scale parameter p > 0, for each product and the outside option, with utility
a; +C; —p4 ¢ for product 7, and cp + (o for the outside option. Considering a unit mass of consumers in
period ¢, seller ¢ € N, receives fractional demand D; (py; V) = exp((cvi—pi )/ 1)/ A (pe; Ni), where
AP Ne) =3 en, exp((aj —pjie) /1) +exp(ao/p), and any seller i ¢ N has zero demand. Scale
parameter i, > 0 serves to control the extent of horizontal differentiation, with no differentiation and
perfect substitutes obtained as p — 0. The total consumer surplus is U (py; Ni) = - log[A(pe; Np)],
and is maximized with minimum prices and all sellers displayed (so consumers have a full choice of
products). Seller i’s profit p; in period ¢t is p;(pe; Ny) = (piy — ¢) - Di(pe; Nb), Le., its per-unit profit
multiplied by demand.

Reinforcement learning by sellers. In a single-agent Markov decision process (MDP), an agent
faces a sequential decision problem under uncertainty. At each step ¢, the agent observes a state
variable s; € S and chooses an action a; € A. Upon action a; in state s;, the agent obtains
reward 7 (s, at), and the environment moves to state s;41 according to q(sty1|st,a:). We let
7 = (80,00, -, ST, ar) denote a state-action trajectory determined by executing policy policy
m : S — A, and ¢,(7) denote the probability of trajectory 7. The optimal policy 7* solves

€ argmax, E; g (7) [ZtT:o 8'r(s¢, at)], where § € [0, 1] is the discount factor and time-horizon
T can be finite or infinite. In a partially-observable MDP (POMDP), the policy m cannot access
state s; but only observation o; sampled from ¢(o¢|s:). A multi-agent MDP (Boutilier, [1996) for
n agents has states .S common to all agents and a set of actions A; for each agent 7. When each
agent ¢ picks action a; ; in state s;, the environment moves to state s;11 according to a distribution
q(St+1]8t, @1 ¢, -, an ) and agent 4 obtains a reward 7;(s;, a;) that depends on the joint action. We
follow |Calvano et al.|(2020a) and Johnson et al.|(2021) and adopt decentralized Q-learning by sellers
as a positive theory for sellers in regard to their behavior in setting prices on an e-commerce platform
(see Appendix [A). Although Q-learners may not converge, we also confirm these earlier studies in
showing convergence in our simulations (defined over a particular time horizon as detailed by|{Johnson
et al.|(2021)).

3 The Platform Stackelberg Problem

To formalize the problem facing the platform designer in mitigating collusive behavior by sellers, we
model the interaction between the platform, which sets the rules of the buy box, and the sellers as a
Stackelberg game. The platform designer is the leader, and fixes the platform rules. The sellers are
the followers, and play an infinitely repeated game according to these rules. As discussed above, and
following (Calvano et al. (2020a) and Johnson et al.|(2021), we model the sellers’ behavior through
decentralized Q-learning. As a result, the problem facing the platform is a behavioral Stackelberg
problem, in that the followers are modeled as Q-learners (and need not, necessarily, be playing an
equilibrium of the induced game).

The sellers. In this model, we fix the states that comprise the MDP of a seller to include the prices
set by all sellers in the last period, i.e., sy = p;—1. We initialize sy to be a randomly selected price
profile. The action of a seller is modeled as one of m equally-spaced points in the interval ranging
from just below the sellers’ cost ¢ to just above the monopoly price p™. At each step ¢ > 0, each



seller i selects a price p; ; and is rewarded by its per-period profit p;(p:; N;), which depends on
bt = (p1,f,, e ,pn,t) and the choice of which sellers N; are displayed by the platform.

The platform. To formalize the platform’s problem, let c* = (o7, .., 07;) denote a strategy profile
selected by Q-learning on the part of sellers, in response to the platform rule, and in the long run, after
a suitably large number of steps. We leave implicit here the dependence of seller strategy profile on
the platform’s policy. The platform must decide in each period which sellers to display to consumers.
For this, we denote the platform rule as policy 7, and we adopt for the state of the platform policy the
prices quoted by sellers in step ¢, p;, so that the platform’s policy uses these prices to select a set of
agents to display, with A} selected according to 7(p; ). Let p; = o*(s;) denote a price profile chosen
under seller strategies o, i.e., in response to the platform rules, and at some large enough time step
t*, and let 7* = (pj., P}, 1, ..) denote a trajectory of prices forward from ¢* (the dependence on the
platform’s policy is left implicit in this notation). We denote the distribution of these trajectories as
¢=(7*). The Stackelberg problem facing the platform is to find a platform policy 7 that maximizes
consumer surplus given the effect of this policy on the induced strategy profile of sellers.

Definition 1 (Behavioral Stackelberg Problem) The optimal platform policy solves 7™ €
argmax,. CS(m), where CS(m) is the expected sum consumer surplus when sellers follow strategy o*
forward from period t*, i.e.,

CS(TF) = E‘r*rvq,r(-r*)

> U(pf;ﬂ(pi))] , (1)

t=t*

where T is a suitably chosen horizo and q(7*) denotes the distribution over Q-learning induced
seller pricing trajectories in response to platform policy .

4 Learning Optimal Platform Rules

In this section, we solve the platform’s problem, in responding to Q-learning sellers, through the
Stackelberg POMDP framework (Brero et al., [2022). This creates a suitably defined POMDP in
which the optimal policy solves the behavioral Stackelberg problem (Definition T).

Definition 2 (Stackelberg POMDP for platform rules) 7he Stackelberg POMDP for platform
rules is a finite-horizon POMDP, where each episode has the following two phases:

e An equilibrium phase, consisting of n. > 1 steps. In this phase, each state s; includes the step
counter t, the sellers’ current Q-matrices, and the prices p; quoted by the agents. Observations
consists of the prices quoted by the sellers (0; = p¢) and policy actions determine the set of agents
displayed (in their more general version, a; = Ny). State transitions are determined by Q-learning,
where each seller i updates its Q-matrix after being rewarded by p;(ps; Ni). The policy has zero
reward in every time step (1(s¢,ar) = 0, for t < ne).

e A reward phase, consisting of n,, > 1 steps, each with the same actions, states, and observations as
the equilibrium steps. The reward phase differs in two ways. First, the Q-matrices of the sellers are
not updated, and second, the platform policy now receives a non-zero reward, and this is set in each
step to be equal to the consumer surplus in that step (7(sy, as) = U(py; Ny), for t > ne).

This Stackelberg POMDP formulation is an adaptation of that provided by Brero et al.| (2022]), who
used it to learn leader strategies in matrix games and allocation mechanisms. Following Brero et al.
(2022), we show the Stackelberg POMDP formulation is well-founded by showing that an optimal
policy will also solve the Behavioral Stackelberg design problem of Definition |1} Specifically, when
the number of reward steps n,- is large enough and when n, > t*, the optimal policy, denoted 7, ,
for the Stackelberg POMDP with n, equilibrium and n, reward steps maximizes the objective in
Equation (T)).

Proposition 1 The optimal Stackelberg POMDP policy }, _,, , for an equilibrium phase withne > 1

steps and a reward phase with n,. > 1 steps, maximizes CS(7), for seller behavior induced after n.
steps when n,. = T*.

3Note that we can use a finite time horizon as trajectories 7* consists of price cycles due to our sellers’
behavior model.



The proposition follows from the construction of the Stackelberg POMDP, especially the fact the our
policy is only rewarded under the response behavior reached after n. steps, in line with the definition
of CS () (see Appendix [Bfor the full proof argument).

Brero et al.| (2022) use the Stackelberg POMDP framework in an "offline" environment, i.e., in
a simulation that assumes access, at design time, to followers’ internal information. This allows
them to solve their POMDP using the paradigm of centralized training and decentralized execution
(Lowe et al.,2017). The leader policy is trained via an actor-critic deep RL algorithm, and the critic
network (which estimates the sum of rewards until the end of the episode) accesses the full state
during training. Only the actor network, which represents the policy, is restricted to the partial-state
information.

Here, we also study the use of the Stackelberg POMDP framework to train useful leader policies
"in the wild," where the learning algorithm of the platform can only access the kind of information
that an economic platform would have based on observations of sellers. As we will empirically
demonstrate, we can successfully operate without access to sellers’ private information in regard to
Q-matrices and exploration rate without affecting learning performanceE]

Threshold platform rules. In our experiments, we consider the class of threshold platform rules.
These rules use the current prices set by sellers to set a price threshold above which a seller will not
be displayed, with the same threshold set for all sellers.

Definition 3 (Threshold Platform Rule) A threshold platform rule sets a threshold T(p;) > 0, for
each price profile py, such that Ny = {i € {1,..,n} : p; s < 7(p¢)}, i.e., any seller whose price is no
greater than the threshold is displayed to consumers.

This class of threshold rules has a corresponding optimality result: there is a threshold rule that
makes the market competitive, with all sellers displayed and consumer surplus maximized in a
subgame perfect Nash equilibrium (SPE) of the induced continuous pricing game. Even though the
pricing behaviors that arise from Q-learning need not converge to SPEs, we use these equilibria as a
theoretical support for our platform intervention choice, as previously done by Johnson et al. (2021).
We have the following result:

Proposition 2 For any € > 0, there exists a threshold platform rule w such that CS(w) > CS(7*) —
>, 6'e under a subgame perfect Nash equilibrium (SPE) of the infinitely-repeated continuous pricing
game induced by platform rule .

This proposition follows from a platform rule with a limiting threshold that is arbitrarily close to the
sellers’ cost ¢ (see Appendix [C|for the proof). Under this rule, sellers are displayed only if their price
is minimal. At the same time, this particular threshold rule is fragile, and would lead to market failure
if seller costs vary in unexpected ways. By letting the threshold 7 also vary with the price profile p,,
as is allowed by the family of threshold platform rules, we seek to learn milder interventions that still
mitigate collusion but remain robust to variations in the costs faced by sellers in the marketplace.

5 Experimental Results

In this section, we evaluate our learning approach via three main experiments. We first consider
performance in terms of consumer surplus, benchmarking our RL interventions against the ones
introduced by Johnson et al.|(2021). We demonstrate the ability to learn optimal leader strategies in
the Stackelberg game with the followers across all the seeds we tested, significantly outperforming
existing interventions. We then train platform rules without access to the sellers’ private information
("in the wild"), and show that this is not crucial for our learning performances. We conclude by
testing the robustness of our interventions, adding price perturbations during training and evaluating
the effect on the robustness of our learned platform rules in environments where sellers have different
costs from those assumed during training.

*We notice this is also in line with the recent findings in |Fujimoto et al.| (2022) highlighting how the Bellman
error minimization (for which we require environments to be Markovian) may not be a good proxy of the
accuracy of the value function.



Experimental set-up. As in|Calvano et al. (2020a) and Johnson et al.|(2021), we consider settings
with two pricing agents with cost ¢ = 1, quality indexes a; = a2 = 2, and o9 = 0, and we set
parameter . = 0.25 to control horizontal differentiation. The seller Q-learning algorithms are also
trained using discount factor § = 0.95, exploration rate £; = e ~%* with 3 = le — 5, and learning rate
a = 0.15. We also include results for variations of this default setting in Appendix D] A particular
concern is that if the exploration rate is still high during the reward phase of the Stackelberg POMDP
episode, our policy may be rewarded based on random prices. To address this problem, one could
extend the Stackelberg POMDP equilibrium phase to reach a minimal €, or isolate stages when
price profiles are more stable to audit rewards. To satisfy our computational constraints, we pause
exploration during the reward phase of the Stackelberg POMDP. As in Johnson et al. (2021), these
prices range from 0.95 (just below the sellers’ cost) to 2.1 (which is above the monopoly price under
no intervention). Earlier work provided sellers with a choice of fifteen different prices (over a similar
range). We need a smaller grid in order to satisfy our computational constraints; earlier work studied
the effect of different, hand-designed platform rules, and did not also use RL for the automated design
of suitable platform rules. We also follow the choices of earlier work, and study an economy with
two sellers (again, for reasons of computational resources). This coarsened price grid allows us to
train a platform policy through Stackelberg POMDP for 50 million steps in 18 hours using a single
core on a Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz machine.

Learning algorithm. To train the platform policy, we start from the A2C algorithm provided by
Stable Baselines3 (Raffin et al., 2021, MIT License). Given that our policy is only rewarded at
the end of a Stackelberg POMDP episode, we configure A2C so that neural network parameters
are only updated after this reward phase. In this way, we guarantee that policies inducing desired
followers’ equilibria are properly rewarded. Furthermore, to reduce variance in sellers’ responses
due to non-deterministic policy behavior, we maintain an observation-action map throughout each
episode. When a new observation is encountered during the episode, the policy chooses an action
following the default training behavior and stores this new observation-action pair in the map. We
will show the importance of this variation via an ablation study that is presented in Appendix [El In
this section, we assume that sellers restart the Q-learning process by re-initializing exploration rates
every time the platform rules change (i.e., at the beginning of every Stackelberg POMDP episode). In
Appendix [F, we also show how the training approach is robust to different sellers” behaviors, where
the sellers restart the learning rate asynchronously, and not necessarily at the beginning of episodes.

5.1 Platform Learning Performance

In this section, we evaluate the performance of our learned platform policies. For this, we train our
policies for 50 million steps in total. We set up the Stackelberg POMDP environment using 50k
equilibrium steps and 30 reward steps In these initial experiments, we train our policies using the
centralized training-decentralized execution paradigm as used for this Stackelberg learning problem
by [Brero et al.| (2022), giving the critic network access to the sellers’ learning information (i.e.,
Q-tables and exploration rates). We relax this below in studying the robustness of the computational
framework to online training ("in the wild"). We consider the following interventions on behalf of the
platform designer:

o No intervention: Sellers are always displayed, no matter the price they quote. To derive this baseline,
we run our Q learning dynamics until convergence (as described in Johnson et al. (2021)) for each
seed and then average the surplus at final strategies.

e PDP: We test price-directed prominence, a platform intervention introduced by |Johnson et al.
(2021). Here, the platform only displays the seller who quotes the lower price (breaking ties at
random), thus enhancing competition. As for no intervention, we compute the performance of PDP
by averaging consumer surplus after Q-learning dynamics converge.

e DPDP: Dynamic price-directed prominence is another intervention introduced by Johnson et al.
(2021), which also conditions the choice of the (unique) displayed seller on past prices. Under this
intervention, quoting prices equal to cost is a subgame perfect equilibrium of the induced game (under
suitable discount factors). As for the previous baselines, we compute the performance of DPDP by
averaging consumer surplus after Q-learning dynamics converge.

>See Appendix for a discussion around parameter selection.
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Figure 1: Learning performance of No State RL and State-based RL compared with different
baselines. The results are averaged over 50 runs and shaded regions show 95% conf. intervals. The
No-Stackelberg interventions are displayed on the left, the Stackelberg ones are on the right.

e No State RL: Here we use the Stackelberg POMDP methodology to train a platform policy that
does not use prices p; to determine the threshold at which to admit each seller to the buy box (thus,
"no state")ﬁ Here, Q-learning is restarted whenever a Stackelberg POMDP episode begins.

oNo Stackelberg No State RL: A variation on "No State RL" that does not use the Stackelberg POMDP
methodology. Rather, the platform and sellers each follow decentralized learning, and the platform
receives a consumer surplus reward at every step. Q-learning is restarted after the same number of
steps that are used in a Stackelberg POMDP episode.

o State-based RL: Here we use the Stackelberg POMDP methodology to train a platform policy that
sets a threshold at which to admit each seller as a function of the price profile quoted by the sellers
(thus, "state-based"). This is the full class of threshold platform rules. Here, Q-learning is restarted
whenever a Stackelberg POMDP episodes begins.

o No Stackelberg State-based RL: A variation on "State-based RL" that does not use the Stackelberg
POMDP methodology. Rather, the platform and sellers each follow decentralized learning, and the
platform receives a consumer surplus reward at every step. Q-learning is restarted after the same
number of steps that are used in a Stackelberg POMDP episode.

Figure [ shows the consumer surplus that is realized under these different interventions. First, we
confirm the results of Johnson et al.| (2021), and see consumer surplus improvements from both
PDP and DPDP compared to No intervention, with DPDP outperforming PDP. At the same time,
the no Stackelberg baselines are not able to outperform DPDP, confirming the benefits of using
learning methodologies that exploit the leader-follower structure of our game. Indeed, our RL
interventions based on the Stackelberg framework dramatically improve consumer surplus, driving it
to (approximately, in the state-based scenario) its maximal level. In our setting, this optimal level for
surplus is approximately 0.94. This is confirmed by the fact that, for both No State and State-based
RL, all sellers are displayed and they invariably quote minimum prices at the end of training. This is
the optimal (i.e., surplus maximizing) seller behavior, confirming the effectiveness of the Stackelberg-
based learning methodology in finding an optimal leader strategy given the Q-learning behavior of
sellers. It is easier for No State RL to reach the optimal performance since its class of policies is
much smaller than the class considered by State-based RL. However, as we will see in Section@
the state-based policy is more flexible and is robust to the case that the cost basis changes for sellers
while No State RL is not.

SThis class of policies already includes the optimal policy described in the proof of Proposition
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Figure 2: Offline learning (left) vs. online, "learning in the wild" (right) performance. The results are
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5.2 Learning in the Wild

We now test the performance of the Stackelberg POMDP learning methodology when it has no access
to sellers’ private information during training. This can potentially create learning instabilities given
that actor-critic training such as A2C generally require that the environment accessed by their critic
networks is Markovian (Grondman et al., 2012). Despite this, we find success in this test of "in
the wild" learning. The results are displayed in Figure [2 and show, despite relaxing this Markov
assumption, that the A2C algorithm is able to learn optimal policies for both policy classes (No State
and State-based). We conjecture that the reason behind this good performance is related to the class
of threshold platform policies. Given a threshold policy, it is possible to predict the overall episode
reward based only on the action taken by the policy (the threshold) and ignoring the part of the state
that is internal to the sellers (i.e., the Q-matrix and exploration rate).

In Appendix [G, we also demonstrate successful experimental results when we replace the use of
consumer surplus (1) for reward with a reward that corresponds to the number of agents displayed
and the sum of the negated prices offered by sellers. This shows robustness to a possible knowledge
gap in knowing the specific functional form of consumer surplus.

5.3 Robustness of Learned Platform Rules

As observed in our previous experiments, the Stackelberg-based RL algorithm is effective in learning
interventions that maximize consumer surplus for a given economic setting. However, as they are
tailored to the economic setting at hand, these interventions can perform poorly when facing settings
that are different from those during training. To learn more robust platform rules, we also train
with a modified version of the Stackelberg POMDP: at each reward step, with some random-price
probability, sellers quote prices sampled uniformly at random from the price grid. In this way,
the platform is rewarded during training for performance that remains robust to prices that are not
produced by the Q-learning equilibrium dynamics (given seller costs at training).

We evaluate the effect of adding this perturbation-based robustness to the training procedure in
settings with different seller costs: in addition to the default ¢ = 1.0, we also test with cost ¢ = 1.38
(between the second and the third price in the grid of prices between 0.95 and 2.1) and cost ¢ = 1.67
(between the third and the fourth price in the price grid).

As we see in Figure 3] (right), this training approach (and in particular with probability 0.4 of random-
price perturbation) succeeds in making the state-based policy much more robust in the face of sellers
who experience a different cost environment at test time. The robust, state-based policy displays
sellers with higher prices (due to their higher costs), while continuing to significantly mitigate
collusion when seller costs are as they were during training. This is also confirmed by the policy
visualizations in Figure [3|(left), which show how the buy box learned for State-based RL tends to be
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Figure 3: Left: Policy visualization, with number of displayed agents given price selection, averaged
over 50 seeds (white—avg. num. sellers displayed 2, black—avg. num. sellers displayed 0). A: No State
RL with no price perturbation during training. B: No State RL with 40% random price perturbation
(rpp) during training. C: State-based RL with no price perturbation during training. D: State-based
RL with 40% random price perturbation during training. Right: Robustness test, with buy box policy
trained without price perturbation and with price perturbation with prob. 0.4, averaged over 50 runs.

much more open under this modified training regime. In contrast, the policy learned by No State RL
performs very poorly when tested at costs that differ from those assumed during training, and even
under this modified training regime. There is no single threshold that provides a good compromise
between performance at cost 1 and handling price perturbations.

6 Conclusion

This work has demonstrated that rules that are effective in preventing collusion by sellers can be
learned through a framework that correctly solves the two-level, Stackelberg problem (making use of
the platform’s commitment power). Specifically, we have introduced the class of threshold policies
that contain policies that optimize consumer surplus and a learning methodology that is effective in
learning optimal leader policies in this class. The interventions we learned are shown to substantially
outperform the hand-designed interventions introduced in prior work when the cost environment at
test time is as anticipated during training. We also showed how our learned platform interventions
can be made more robust when settings are dynamic, with varying seller cost structures, by adopting
a suitably-modified training methodology. This also highlights the importance of the state-based
platform rule relative to a no-state rule.

Interesting future directions include testing our approach in more complex settings, e.g., when sellers’
costs vary between training episodes. In this case, optimal policy actions are based on the prices
quoted during the sellers’ equilibration phase, as these prices may provide useful information about
the current underlying costs (intuitively, the quoted prices will be higher under higher costs). In
this scenario, it may be necessary to represent our platform policies via recurrent neural networks,
keeping a memory of past prices. Finally, we believe that this approach can also be effective in other
applications, e.g., to design and understand effective interventions for the electricity markets studied
by |Abada and Lambin (2022)), a setting where the successful use of RL as a defensive response by a
platform is not yet established.
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