
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOOK BEFORE YOU LEAP: UNIVERSAL EMERGENT
MECHANISM FOR RETRIEVAL IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

When solving challenging problems, language models (LMs) are able to identify
relevant information from long and complicated contexts. To study how LMs solve
retrieval tasks in diverse situations, we introduce ORION, a collection of structured
retrieval tasks, from text understanding to coding. We apply causal analysis on
ORION for 18 open-source language models with sizes ranging from 125 million
to 70 billion parameters. We find that LMs internally decompose retrieval tasks in
a modular way: middle layers at the last token position process the request, while
late layers retrieve the correct entity from the context. Building on our high-level
understanding, we demonstrate a proof of concept application for scalable internal
oversight of LMs to mitigate prompt-injection while requiring human supervision
on only a single input.

1 INTRODUCTION

Recent advances in language models (LMs) (Vaswani et al., 2017) have demonstrated their flexible
problem-solving abilities and their expert-level knowledge in a wide range of fields (Bubeck et al.,
2023; OpenAI, 2023). Researchers have developed a series of techniques such as fine-tuning (Ouyang
et al., 2022) and Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) to
ensure models output honest and helpful answers. However, as their abilities reach human level,
supervision from human feedback becomes costly and even impossible. This necessitates more
efficient or automated methods of supervision, known generally as scalable oversight.

Moreover, existing methods only control for the output of the model while leaving the internals of the
model unexamined (Casper et al., 2023; Ngo et al., 2023). This is a critical limitation as many internal
processes can elicit the same output while using trustworthy or untrustworthy mechanisms. For
instance, we would like to know whether a model answers faithfully based on available information
or simply gives a user’s preferred answer (Perez et al., 2022). We call this problem internal oversight.

Figure 1: Illustration of our main experimental discovery. Patching the mid-layer residual stream
on a retrieval task from ORION causes the language model to output a modular combination of the
request from x1 (asking for the city) and the context from x2 (a story about Bob in Paris). We call
this phenomenon request-patching.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recent works on mechanistically interpreting LMs have shown success on narrow tasks (Wang et al.,
2022; Nanda et al., 2023). Some have provided insight into factual recall (Geva et al., 2023) and
in-context learning (Olsson et al., 2022). Causal interventions have even been used to understand
how models encode tasks from few shot examples (Hendel et al., 2023) or bind entities to attributes
(Feng and Steinhardt, 2023). However, these works are still scoped to relatively narrow contexts and
lack demonstration of concrete applications.

In this work, we study how LMs solve retrieval tasks, i.e. in-context learning problems that involve
answering a request (e.g. “What is the city of the story?”) to retrieve a keyword (e.g. “Paris”) from a
context (e.g. a story).

We start by introducing ORION, a collection of 15 datasets of retrieval tasks spanning six different
domains from question answering to coding abilities and variable binding. We systematize the task
structure by annotating each textual input with an abstract representation where the context is a table
of attributes, and the request is a simple SQL-like query, as illustrated in Figure 2.

We apply causal analysis (Pearl, 2009; Vig et al., 2020; Geiger et al., 2021) to 18 open source LMs
ranging in size from 125 million to 70 billion parameters to investigate the successive role of layers
at the last position on tasks from ORION. The shared abstract representation enables us to define and
interpret experiments across tasks and models at scale, without the need for setting-specific labor. We
discover that language models handle retrieval tasks by cleanly separating the layers at which they
process the request and the context at the last token position. These results suggest that there exists
an emergent modular decomposition of tasks that applies across models and tasks. We complement
this coarse-grained causal analysis with a finer-grained case study of a question-answering task on
Pythia-2.8b (Biderman et al., 2023).

We demonstrate that our understanding of how models solve retrieval tasks can be directly leveraged to
mitigate the effect of prompt injection (Perez and Ribeiro, 2022) in a question-answering task. Models
are given inputs containing distractor sequences that trigger models to output a token unrelated to the
task. We present a proof-of-concept based on request-patching that only requires humans to verify
the model output on a single trusted input. Our technique significantly improves the performance of
models on sequences with distractors (0%→ 70.5% accuracy for Pythia-410m, 15.5%→ 97.5% for
Pythia-12b). To our knowledge, this is the first demonstration that scalable internal oversight of LMs
is feasible.

In summary, our main contributions are as follows:

1. We introduce ORION, a collection of structured retrieval tasks. It is a data-centric approach
enabling a comparative study of 18 models on 6 domains.

2. We discover a macroscopic modular decomposition of retrieval tasks in LMs’ internals that
is universal across tasks and models.

3. We link macroscopic and microscopic descriptions of LMs’ internals with a fine-grained
case study of a question-answering task on Pythia-2.8b.

4. We apply this knowledge to a proof of concept for scalable internal oversight of LMs
solving a retrieval task in the presence of prompt injection.

2 BACKGROUND

2.1 THE TRANSFORMER ARCHITECTURE FOR AUTOREGRESSIVE LANGUAGE MODELS

An autoregressive language model,Mθ with parameters θ, maps a sequence of input tokens x =
(x1, x2, ..., xn) to a probability distribution over the next token xn+1. For the Transformer architecture
(Vaswani et al., 2017), we have:

p(xn+1|x) =Mθ(x)

= softmax(πn(x))

The pre-softmax values πn are the logits at the n-th token position. The final logits πl are constructed
by iteratively building a series of intermediate activations zlk we call the residual stream, following
Elhage et al. (2021). The residual stream zlk at token position k and layer l is computed from the
residual stream at previous token positions at the previous layer zl−1

≤k by adding the results of alk, a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

multi-headed attention module that depends on zl−1
≤k , and ml

k, a two-layer perceptron module that
depends on zl−1

k . We provide a complete description of the Transformer architecture in Appendix G.

2.2 COMPUTATIONAL GRAPH AS CAUSAL GRAPH

The experimental paradigm of causal analysis applied to machine learning models initiated by (Vig
et al., 2020) and (Geiger et al., 2021) treats the computational graph of a neural network as a causal
graph. The goal of causal analysis is to answer questions about why a model outputs a given answer.
This requires uncovering the causal links tying the inputs to the output, as well as characterizing the
role of the internal components critical for the model’s function. To this end, researchers rely on
causal interventions (Pearl, 2009), experiments that replace a set of activations with fixed values.

In this work, we use single-input interchange intervention1 (Geiger et al., 2021). It is a simple form
of causal intervention where we intervene on one variable at a time by fixing its value to be the value
of that same variable on another input. We writeM(x|A← A(x′)) the output of the model after the
single-input interchange intervention on the target input x, replacing the activation of the node A by
its value on the source input x′.

3 ORION: A COLLECTION OF STRUCTURED RETRIEVAL TASKS

Our study concentrates on retrieval, a fundamental aspect of in-context learning, which involves
answering a request (e.g. “What is the name of the city?”) by identifying the correct attribute (e.g. a
city name) from the context (e.g. a story). To facilitate this study, we crafted a collection of datasets
dubbed the Organized RetrIeval Operations for Neural networks (ORION).

Abstract representation. Each textual input (i.e. LM prompt) from ORION is annotated with an
abstract representation (C,R) where C represents the context and R the request. In the example of
Figure 2, the context is a story introducing a place, a character, and an action, while the request is a
question written in English asking for the city of the story.

The context C is abstractly represented as a table where each line is a list of attributes. The request
R is retrieving a target attribute ATTRt (e.g. the “name” attribute in Figure 2), from lines where
a filter attribute ATTRf (e.g. the narrative role) has the value vf (e.g. “city”). The request can
be written using a language in the style of SQL as follows: SELECT ATTRt FROM C WHERE
ATTRf = vf (e.g. SELECT Name FROM Context WHERE Role=City).

We note R(C) the results of applying the request on the context. This is the ground truth completion
for LMs evaluated on the retrieval task. In practice, R(C) is a single token called the label token. On
the example we have R(C) = “ Valencia”.

Desiderata for datasets. To facilitate the application of causal analysis, we enforce a list of desiderata
on datasets from ORION. The most important desiderata is ensuring datasets are decomposable. For
every dataset D in ORION, for every abstract representations (C1, R1), (C2, R2) in D, R2(C1) and
R1(C2) are well-defined. This means that an arbitrary request can be applied to an arbitrary context
from the same task. Abstract representations of requests and contexts can be freely interchanged
across a task. This constraint enables the design of interchange interventions at scale.

We define four additional desiderata Structured, Single token, Monotasking, and Flexible in Appendix
H and share the motivation behind their definition.

Dataset composition. The dataset includes the retrieval task from domains: question-answering,
translation, factual recall, variable binding, induction pattern-matching, and type hint understanding.
For each domain, we created two or three variations. Each dataset is created using a semi-automated
process leveraging the LLM assistant ChatGPT. We provide a detailed overview of the dataset and its
creation in Appendix H.

Performance metrics. We define a task T as a set of input-output pairs (x, y) where x is the LM
input and y is the expected label token. We use two main metrics to quantify the performance of a
language model on an ORION task T .

1It is sometimes called “activation patching” in the literature see e.g. Wang et al. (2022)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Textual input:

Story: In the lively city of Valencia, a skilled
veterinarian [...]. "I’m Christopher" he replied,
[...].

Question: What is the city of the story? The
story takes place in

Abstract
representation:

Context C
Name Role

_Valencia City
_Christopher Main Character
_veterinarian Character Job

Request R

SELECT Name FROM Con-
text WHERE Role=City

Figure 2: Example input from ORION for the question-answering task. Textual inputs are annotated
with an abstract representation of the context and the request. Abstract context representations are
tables where each line lists attributes relative to a story element. Requests can be formulated using
simple SQL-like queries.

• Accuracy: E(x,y)∼T [M(x) = y]

• Token probability: E(x,y)∼T [p(y|x)]

Accuracy serves as our primary metric to assess model performance in solving tasks due to its
straightforward interpretation and practical application in language models, where the most probable
token is often chosen.

However, accuracy falls short in capturing nuanced aspects of predictions, for instance, accuracy
doesn’t measure the margin by which a token is the most probable. To have a granular evaluation of
model behavior after interventions, we employ token probability, offering a continuous measure.

We evaluate the performance of 18 models from four different model families: GPT-2 (Radford
et al., 2019), Pythia (Biderman et al., 2023), Falcon (Almazrouei et al., 2023) and Llama 2 (Touvron
et al., 2023). We study base language models for all families except Falcon where we include two
instruction fine-tuned models. We choose the models to capture diverse scales, architecture, and
training techniques.

Unsurprisingly, larger models can solve a wider range of problems. Models with more than 6 billion
parameters are able to solve every task with more than 70% accuracy. Nonetheless, even GPT-2
small with 125M parameters, one of the smallest models, can solve the simplest version of the
question-answering task with 100% accuracy. Detailed evaluations using the token probability and
logit difference are available in Appendix A.

In the following analyses, we only consider settings where the model can robustly solve the task.
Thus, we focus on pairs of models and tasks that have greater than 70% accuracy.

4 MACROSCOPIC CAUSAL ANALYSIS ON ORION: A UNIVERSAL EMERGENT
DECOMPOSITION OF RETRIEVAL TASKS

To correctly solve retrieval tasks, an LM has to gather and combine at the last token position
information coming from the request and the context. We focus our investigations on understanding
how these two processing steps are organized in the intermediate layers of the last token position.

In this section, we choose to consider a coarse-grained division of the model, intervening on full
layers instead of a finer-grained division, e.g. considering single-attention heads and MLP blocks. We
find this level of analysis is sufficient to develop a high-level causal understanding of how language
models solve retrieval tasks while providing a computationally tractable set of experiments to run at
scale. We complement this general coarse-grained analysis in Section 5 with a finer-grained case
study on Pythia-2.8b solving a question-answering task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Normalized token probability and accuracy for the label tokens R1(C1), R1(C2) and
R2(C2) after patching the residual stream across all layers. Patching early (before L1 = 13) and
late (after L3 = 27) leads to the expected results, respectively no change in output and patching the
output from x1. However, intervening on the middle layer (L2 = 16) leads to the model confidently
outputting the token R1(C2), a modular combination of the request from x1 and the context from x2.

4.1 METHODS

Our main experimental technique is residual stream patching. Residual stream patching is a single-
input interchange intervention, replacing the residual stream at a layer L at the last position in the
forward pass of the model on input x2 with its activation from another input x1. Following the
notation introduced in Section 2.2, we noteM(x2|zLn ← zLn (x1)) the model output on x2 after this
intervention.

As shown in Figure 1, residual stream patching makes every component before layer L have the
activation it takes on x1 while the components after layer L receive mixed activations (denoted by
the yellow color in the figure). These later layers see activations at the last position coming from x1

while activations from earlier positions come from x2.

To characterize the output of the patched model, we measure the token probability and accuracy for
three different label tokens related to the inputs x1 and x2. We use both label tokens from the input x1

and x2, R1(C1) and R2(C2) respectively, and the label token R1(C2) that is the result of applying
the request from x1 on the context of x2.

To facilitate comparisons between different tasks and models, we normalize the token probability
based on the mean probability of the correct token given by the model for the task. In addition, we
calculate the normalized accuracy where 0 represents the accuracy of random guess, i.e. responding
to a random request in a given context while 1 denotes the model’s baseline accuracy for that task.

We perform residual stream patching at the last position for every layer, model, and task of ORION.
For each task, we use a dataset of 100 prompts and average the results of 100 residual stream patching
experiments with x1 and x2 chosen uniformly from the task dataset.

4.2 RESULTS OF RESIDUAL STREAM PATCHING

Figure 3 shows the results of residual stream patching on the question-answering task with a uniform
answer prefix for the Pythia-2.8b model. We observe that after residual stream patching on the
layer before layer 13, the model is outputting R2(C2) with 100% normalized token probability. Our
interpretation is that this intervention does not perturb the model processing of x2. We further observe
that residual stream patching after layer 27 causes the model to output R1(C1) with more than 80%
normalized token probability. In effect, patching the residual stream after a certain layer is equivalent
to hard-coding the model output on x1.

Surprisingly, when patching between layers 15 and 16, we observe that the model outputs R1(C2)
with 100% normalized accuracy, i.e. with the same accuracy level as the baseline task accuracy. The
model is outputting the results of the request contained in the input x1 in the context of the input x2.
We call this phenomenon, request-patching, i.e. a residual stream patching experiment that leads to
the R1(C2) label token being confidently outputted by the patched model. Such results demonstrate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that the causal intervention coherently intervenes in the model’s internal computation, causing it to
modularly combine high-level information from two different prompts.

We observe a sudden jump in the normalized accuracy of request-patching from 0 to 1 between layers
14 and 15. However, it is likely that transforming the sequence of tokens representing the question
into a representation of the request takes several layers. Thus, we hypothesize that a large part of the
request processing happens at the previous token positions of the question. In this interpretation, the
observed jump at layer 15 results from the intermediate representation of the request being propagated
to the last position through attention modules.

Defining limit layers. From the results of the residual stream experiments, we define three layers –
L1, L2, and L3 – delimiting the three different outcomes of residual stream patching as shown in
Figure 3.

L1 is the maximal layer at which the normalized token probability of the label token R1(C1) is
greater than 80%. It marks the end of the region where residual stream patching does not interfere
with the model output. L2 is the layer where the normalized probability of the label R1(C2) is
maximal. It is the place where the effect of request-patching is the strongest. L3 is the minimal layer
where the normalized probability of the label R2(C2) is greater than 80%. It marks the start of the
region where residual stream patching leads to a complete overwrite of the model output.

We choose the token probability as a continuous metric to measure the model prediction. The 80%
threshold has been chosen arbitrarily as a criterion to consider that the model is mainly outputting a
single label token.

Request-patching is general across models and datasets. We expand our investigation of request-
patching to include every model and task from ORION. To ease the analysis, we compute the maximal
normalized probability of the R1(C2) label token, i.e. the normalized probability after patching at L2.
We use this metric as our main performance indicator to measure the strength of the request-patching
phenomenon on a given pair of model and task.

98 out of the 106 pairs of tasks and models studied demonstrate a similar profile as the one shown
in Figure 3. Request-patching leads to at least 70% normalized probability of the R1(C2) label
token. Request-patching appears across variations in domain, task complexity, and low-level prompt
structure. Moreover, it is present in every model studied, from GPT-2 small to Llama 2 70b, one of
the largest available open-source LMs.

The results for the question-answering with mixed template task demonstrate that request-patching
works even when patching the residual stream across different templates, e.g. taking the residual
stream from a prompt where the question is before the story and patching it in a model execution
where the question is after the story. This means that the representation stored in the patched
activation is related to the semantic meaning of the question, and not surface-level textual features.

However, the phenomenon of request-patching seems not to be present in the abstract induction task
on large models. We hypothesize that this is due to the increased wideness of large models and the
simplicity of the task. We discuss further the results for induction and factual recall by comparing
request-patching results to prior work in Appendix F.

To further our analysis, Figure 4 shows the values of the layer L2 on different models and datasets.
We observe that the effect of request-patching for the induction tasks is the strongest at earlier layers
compared to the other tasks. This observation is consistent with the simplicity of the request process-
ing, which only involves copying previous tokens. The L2 layers for other tasks are concentrated
in similar layers, suggesting a similar high-level organization of the internal computation that does
not depend on the details of the task being solved. However, for Llama 2 70b, the largest model
studied, the L2 layers are concentrated in the same narrow range (39-43) for every task, including the
simple induction tasks. It is unclear if this disparity is caused by its larger size or by the specifics of
the architecture. We provide visualizations of request patching results and of layers L1 and L3 in
Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Left: Layer of maximal request-patching performance L2 for different models and tasks.
While the L2 layers for most tasks are concentrated at similar layers, the processing of the request in
the induction task seems to happen at earlier layers. Right: results of residual stream patching on
Llama 2 70b. Request-patching is most performant in a narrow range of layers centered around layer
42 and does not depend on the nature of the task.

Figure 5: City-specific heads attend to the city token and contribute directly to the logits when the
question asks about the city of the story only if the city has a specific value, e.g. “Cusco”.

5 MICROSCOPIC ANALYSIS: CASE STUDY ON PYTHIA-2.8B

To complement the high-level causal explanation described in the previous section, we conduct a
finer-grained case study on Pythia-2.8b on the question-answering task. Our motivation is twofold.
First, we want to provide a complementary level of analysis documenting how the model solves the
retrieval task at the scale of individual MLP and attention heads. Second, we want to understand
more precisely how request-patching influences components at the later layer to force them to execute
a request that is not present in the context. Appendix B describes in detail our methodology and the
results of the case study. In this section, we provide an overview of our key results.

The components contributing directly to the logits depend on superficial changes in the input.
We discover that the set of components directly influencing the logits varies from input to input.
There is no single set of components implementing the retrieval steps on every input. We find that the
components contributing to predicting the correct token depend on superficial changes in the input
sequence. As shown in Figure 5, we discover a family of attention heads that retrieve the correct
token from the context when the question asks for the city of the story only when the city has a
particular value (e.g. “Cusco”). For all the other city names, these heads do not directly contribute
significantly to the output.

Request-patching preserves natural mechanism. To compare the internal changes caused by
residual stream patchingM(x2|zL2

n ← zL2
n (x1)) to a natural mechanism, we construct a reference

input x3 by concatenating the textual representation of the context C2 and the request R1. On x3,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the model is naturally executing the request R1 on the context C2. This reference input acts as our
control condition to compare the effect of request-patching.

We find that request-patching globally preserves the mechanism of the components at the late
layers. We measure the direct effect and attention pattern for every component after patching
M(x2|zL2

n ← zL2
n (x1)). These measures are similar to those of the components on the corresponding

reference input x3 (relative difference less than 12%). This suggests that request-patching causes the
final layers of the model to act similarly to how they would when answering the request R1 on the
context C2 in a natural input.

Microscopic vs Macroscopic analysis. The clear division between the request processing and
retrieval step observed at a macroscopic level does not translate into a similar level of modularity
at a microscopic level. Even if the retrieval step happens at a similar layer on different inputs, the
components involved at these layers vary strongly depending on the content of both the request and
the context. Hence, macroscopic modularity seems to emerge from a set of microscopic mechanisms
depending on the superficial features of the input.

Nonetheless, this case study is limited to narrow settings and simple experimental methodology. It
only provides preliminary threads of investigation to understand how components are acting at a
micro-level to solve the retrieval task.

6 APPLICATION TO SCALABLE INTERNAL OVERSIGHT OF A RETRIEVAL TASK

Model Intervention No distrac-
tor

Small-
model
distractor

Large-
model
distractor

Control
distractor

Pythia-410m No intervention 97 0 84 100
Request-patching 100 70.5 100 100

Pythia-12b No intervention 100 90.5 15.5 100
Request-patching 98 89.5 97.5 98.5

Table 1: Accuracy (in %) on the question-answering task before and after request-patching from a
trusted input. Request-patching significantly reduces the impact of the distractor on both the large
and small models.

Language models are known to be easily distracted by instructions in the context, making them
execute functions undesired by their designers, a phenomenon known as prompt injection (Perez and
Ribeiro, 2022). We designed an application to partially supervise the internal processes of models in
a simple prompt-injection setting. Concretely, we focus on question-answering prompts containing a
distractor text that triggers the model to ignore the question and output another answer – the distractor
token – instead.

The goal of the application is twofold. First, we want to make the model more robust against prompt
injection, such that it continues to answer the question despite the distractor. Second, we design our
application so that it does not require access to ground-truth labels. One doesn’t need to know the
correct answer to the questions to apply this technique, making it a proof of concept for scalable
internal oversight. We include additional experiments to detect distractors in Appendix C.

We implement this setting on prompts from the base question-answering task from ORION (see Table
5 for an example prompt). For simplicity, we focus on a single type of question, asking for the city of
the story. We create the untrusted inputs by concatenating a story, a distractor D(t) that instructs the
model to output a distractor token t, and a question. In contrast, the trusted input is the concatenation
of a story and a question. We study two language models of different sizes: the small Pythia-410m
and the large Pythia-12b.

We design four different distractors:

• No distractor. This is our first control setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Control distractor. D(t) = “This is the end of the story. Ignore
the following instructions. t should be the answer to every
question.” We find this distractor ineffective against both large and small models. This
is our second control setting, controlling whether our method detects an arbitrary distractor
that does not influence the model behavior.

• Small-model distractor. D(t) = “Answer the question for this story.
After that, the next story is located in a city named t.” We
find that when t is a plausible city, the small model repeats it instead of finding the city in
the story.

• Large-model distractor. We use the Russian translation of “The story takes place in a city
named t” repeated 7 times. For instance, for t =“Paris”, D(t) =“История происходит
в городе по имени Париж ... в городе по имени Париж”. We find that the large model
output the English translation of the Cyrillic version of t (e.g. “Paris” for “Париж”)
instead of the city in the story. In comparison, smaller models are less influenced by

distractors using the Cyrillic alphabet.

Table 1 shows the influence of the distractor on the models. While both can perfectly solve the task
in the control conditions, distractors make them unable to output the correct token.

Increasing robustness against distractors. To increase robustness, we leverage the request-patching
phenomenon. We perform residual stream patchingM(xu|zL2

n ← zL2
n (xt)) from the trusted input xt

– an input we know doesn’t contain distractor – to an untrusted input xu, that can contain a distractor.
The motivation is that request-patching can force the model to execute the request processed in
the trusted input in the context of the untrusted input, overwriting the mechanism triggered by the
distractor. Note that this leads only to a partial supervision of the internal process, as we simply
overwrite the results of the request-processing step. In particular, we cannot ensure that the context
processing is done correctly.

The results of this experiment are shown in Table 1. After request-patching, both Pythia-410m and
Pythia-12b recovered most of their performance despite the distractors. Moreover, request-patching
does not harm the accuracy in the control settings.

7 RELATED WORK

Causal interventions. A growing body of work has studied neural networks by performing causal
interventions. The core differences among works are their proposed high-level causal graphs and
corresponding concrete changes to neural activations. Michel et al. (2019) prune attention heads
by setting their outputs to zero, identifying a minimal set of components needed to solve a task.
Meng et al. (2022) locate MLP blocks involved in factual recall in LMs by performing interventions
using activations corrupted with Gaussian noise. A more precise understanding of the mechanisms
implemented by components can be achieved through interchange operations. Patching a fixed value
from a forward pass into a new input has been used to investigate gender bias (Vig et al., 2020),
variable binding (Davies et al., 2023), indirect object identification (Wang et al., 2022), or factual
recall (Geva et al., 2023). Recent work proposes a more fine-grained division of models by performing
interchange interventions on paths instead of variables (Wang et al., 2022; Goldowsky-Dill et al.,
2023), enabling a precise characterization of indirect effects.

Causal interventions for high-level understanding of LMs. As an alternative to zooming in on the
role of individual model components, recent work focuses on extracting a high-level understanding
of the computations at play in LM internals. Hendel et al. (2023) patch residual stream vectors to
transfer the representation of a simple task from few-shot examples to zero-shot instances of a task.
Similarly, Todd et al. (2024) used causal analysis to identify attention heads representing functions
from few-shot examples. Feng and Steinhardt (2023) intervene on the residual stream at every layer
for specific tokens to argue that models generate IDs to bind entities to attributes. Representation
engineering (Zou et al., 2023) uses prompt stimuli to extract reading vectors from the activations of
language models. These vectors can then be used to perform interventions that stimulate or inhibit
a specific concept in subsequent forward passes. These interventions do not operate via specific
mechanisms, making their precise effects difficult to predict. In this work, we introduce a causal
intervention that applies across a broad range of situations while still being mechanistically grounded.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 CONCLUSION

In this study, we presented evidence of an emergent decomposition of retrieval tasks across 18
language models and six problem types. Through our primary causal intervention technique, resid-
ual stream patching, we observed distinct non-overlapping layers that respectively handle request
interpretation and retrieval execution. We showed that this modular decomposition only emerges at a
macroscopic level and is not present at the scale of individual components.

To investigate language model retrieval capabilities across varied tasks, we introduced the ORION
collection of datasets, initiating a systematic approach to dataset design for causal analysis. However,
the tasks from ORION are limited as they involve requests with a single attribute. Future works could
apply high-level causal analysis to multi-attribute requests and tasks beyond retrieval, while also
investigating how this modular division emerges during model training.

Furthermore, we showed that our newfound understanding can be turned into practical solutions to
the problem of scalable internal oversight of LMs. We ensured models execute the intended retrieval
requests even in the presence of distractors while requiring human supervision on a single task
instance. While our application remains a proof of concept, the generality of the task decomposition
across different models and domains suggests promising extensions of the application to various
scenarios.

This research proposes an approach to language model interpretability complementary to microscopic
studies, emphasizing a high-level understanding of model mechanisms, comparative analysis across
models and tasks, and concrete application design. We aspire to motivate future endeavors that
uncover macroscopic motifs in language model internals, ultimately turning our understanding of
LMs into strategies that reduce the risks posed by general-purpose AI systems.

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40b: an open large language
model with state-of-the-art performance, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
Marks, Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen, Mehul Damani,
Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J. Michaud, Jacob Pfau,
Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Bıyık, Anca Dragan,
David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems and fundamental
limitations of reinforcement learning from human feedback, 2023.

Paul Christiano. Mechanistic anomaly detection and elk, 2022. URL
https://www.alignmentforum.org/posts/vwt3wKXWaCvqZyF74/
mechanistic-anomaly-detection-and-elk#Empirical_research_
problems.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

10

https://www.alignmentforum.org/posts/vwt3wKXWaCvqZyF74/mechanistic-anomaly-detection-and-elk#Empirical_research_problems
https://www.alignmentforum.org/posts/vwt3wKXWaCvqZyF74/mechanistic-anomaly-detection-and-elk#Empirical_research_problems
https://www.alignmentforum.org/posts/vwt3wKXWaCvqZyF74/mechanistic-anomaly-detection-and-elk#Empirical_research_problems

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xander Davies, Max Nadeau, Nikhil Prakash, Tamar Rott Shaham, and David Bau. Discovering
variable binding circuitry with desiderata. arXiv preprint arXiv:2307.03637, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1, 2021.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context?, 2023.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. Advances in Neural Information Processing Systems, 34:9574–9586, 2021.

Atticus Geiger, Chris Potts, and Thomas Icard. Causal abstraction for faithful model interpretation.
arXiv preprint arXiv:2301.04709, 2023.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dmitrii Krasheninnikov, Egor Krasheninnikov, and David Krueger. Out-of-context meta-learning in
large language models. In ICLR 2023 Workshop on Mathematical and Empirical Understanding
of Foundation Models, 2023.

Morgane Laouenan, Palaash Bhargava, Jean-Benoît Eyméoud, Olivier Gergaud, Guillaume Plique,
and Etienne Wasmer. A cross-verified database of notable people, 3500bc-2018ad. Scientific Data,
9(1):290, 2022.

Tom Lieberum, Matthew Rahtz, János Kramár, Geoffrey Irving, Rohin Shah, and Vladimir Mikulik.
Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla.
arXiv preprint arXiv:2307.09458, 2023.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations. arXiv preprint arXiv:2307.15771,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
perspective, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Judea Pearl. Causality. Cambridge university press, 2009.

Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Ben Mann,
Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela Amodei,
Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jackson Kernion,
James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Kamal Ndousse, Landon
Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, Neerav Kingsland, Nelson
Elhage, Nicholas Joseph, Noemí Mercado, Nova DasSarma, Oliver Rausch, Robin Larson, Sam
McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy Telleen-
Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Jack Clark,
Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Ganguli, Evan
Hubinger, Nicholas Schiefer, and Jared Kaplan. Discovering language model behaviors with
model-written evaluations, 2022.

Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai
transparency, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 6: Accuracy of 18 models on the ORION task collection. Models with more than 7 billion
parameters are able to robustly solve every task. However, simple tasks such as the base question-
answering can be solved by models as small as GPT-2 small (125 million parameters), enabling
comparative studies across a wide range of model scales.

A DETAILED DESCRIPTION OF ORION

We present the performance of the 18 models studied on the ORION collection measured using
the accuracy in Figure 6, logit difference, and the probability of the correct token in Figure 7. The
value for the probability of the correct token is used as the normalization factor when computing
normalized token probability.

B CASE STUDY ON PYTHIA-2.8B SOLVING A QUESTION-ANSWERING TASK

In the main text, we have demonstrated the generality of the phenomenon of request-patching.
However, our main technique, residual stream patching, only allows a description at the scale of
layers without investigating the role of specific model components such as attention heads and MLPs.
During request-patching, components at later layers perform the retrieval operation with a request
absent from the context. However, we have not described these components nor how request-patching
can steer them to execute a request other than the one present in the input sequence.

In this Appendix, we zoom in on the Pythia-2.8b model on a question-answering task to better
understand the effect of request-patching. We are interested in three questions:

• What is the mechanism used by Pythia-2.8b to perform the retrieval step?

• Does the modularity observed at a macro-level still hold at a micro-level?

• Does request-patching lead Pythia-2.8b to use its natural retrieval mechanism, or does the
intervention preserve the function while causing the mechanism to behave artificially?

B.1 METHODS

We focus our investigation on the end part of the circuit on the question-answering (QA) task, i.e. we
study the components of Pythia-2.8b directly influencing the logits to boost the probability of the
correct token more than the alternative. They are natural candidates for implementing the retrieval
function as it is the last step of our high-level causal graph.

To find the components influencing the logits, we quantify the direct effect of components, i.e. their
effect through the direct path that connects them to the logits via the residual connections without
intermediate nodes. We use path patching (Goldowsky-Dill et al., 2023) to quantify this effect. With

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: Logit difference and probability of correct token for 18 language models on the tasks from
the ORION collection. A logit difference of zero means that the correct logit has on average the same
value as the logit corresponding to the answer to a random request in the same context.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

path patching, the direct effect of a component c on a target input x is measured by performing
an interchange intervention along the path c → π by replacing the value of c along this path with
the value from a “corrupted” input xcor. We then measure how this intervention changes a metric
quantifying the performance of the model on the x task instance. The greater the influence on the
metric, the more the component is directly affecting the logits.

For this case study, we use the base question-answering (QA) task from ORION as our reference
dataset extended with two additional questions asking for the season and daytime. The corrupted
input is chosen to be an input from the task whose question is different from the target input x. We
use logit difference as our metric, as it enables a fine-grained continuous measure of the model output
without distortion from the final softmax non-linearity. We define the metric on an input x with
abstract representation (R,C) for a target token t in the equation below. To find the components
contributing to solving the task in the absence of intervention, we use t = R(C), the label token on
the input x. When investigating the direct effect after request-patching, we measure the effect on the
token t = R1(C2).

Metric(x, t) = E(R′,C′)∼T,R ̸=R′
[
πt(x)− πR′(C)(x)

]
We then define DE(c, x, t), the direct effect of a component c on an input x on the logit of a target
token t as follows:

DE(c, x, t) = Metric(x, t)− Excor∼tt,R ̸=Rcor

[
Metric

(
x, t|[c→ π]← [c→ π](xcor)

)]
The direct effect quantifies how the metric changes after corrupting the edge c → π, i.e. the
contribution of the components through the direct path is run on an input where the question is
different. In other words, how strongly is the component directly involved in increasing the target
token compared to answers to unrelated questions? The definition of the metric and corrupted input
defines the scope of our microscopic study. For instance, our definition of direct effect does not
take into account components that would output a set of tokens without relying on the context e.g. a
component increasing the logits for “Bob”, “Alice” and “John” whenever the question is about
the character name, no matter the context.

We define the total effect TE(x, t) as the difference in metric after intervening simultaneously on
all direct paths. The total effect is used to compute the normalized direct effect NDE(c, x) of a
component on a given input and thus compare across different inputs. Given that intervening on all
direct paths is equivalent to intervening on the logits π, we have:

TE(x, t) = Metric(x, t)− Excor∼T,R ̸=Rcor

[
Metric

(
x, t|π ← π(xcor)

]
NDE(c, x, t) =

DE(c, x, t)
TE(x, t)

To compare the direct effect of a component c in a reference setting DE1(c, x, t) with its direct effect
in a second experimental setting DE2(c, x, t), we use the relative variation. The relative variation is
defined as follows:

DE2(c, x, t)− DE1(c, x, T)

TE1(c, x, t)

The normalized direct effect is our primary experimental measure in the following investigation.

B.2 NOTATION FOR ATTENTION HEADS

We complement the description of the Transformer architecture in Section 2 for the finer-grained
analysis of this section. The multi-headed attention module can be further decomposed into the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: Normalized direct effect for all the Pythia-2.8b components on the QA task. The main
contributions are concentrated in MLPs at later layers. The direct effect per component has a high
variance. Attention heads are labeled “#layer #head”.

contribution of H individual attention heads hi,l as follows:

Attn(zl−1
≤k) = LN

(
H∑
i=1

hi,l

)
hi,l =

(
Ai,l ⊗W i,l

OV

)
· zl−1

≤k

Ai,l = softmax
(
(zl−1

≤k)TW i,l
QKzl−1

≤k

)
We used the parametrization introduced by Elhage et al. using the low-rank matrices W i,l

OV and
W i,l

QK in Rd×d called the OV and QK-circuit, with d being the dimension of the model. This
parametrization separates the two functions performed by attention heads: the QK-circuit is used
to compute the attention pattern, Ai,l, weighing the contribution of each token position, while the
OV -circuit is used as a linear projection to compute the output of the head. The matrices Ai,l and
W i,l

OV are combined using a tensor product noted ⊗.

The matrices W i,l
OV and W i,l

QK are computed from the usual parametrization of attention heads using

W i,l
Q , W i,l

K , W i,l
O ∈ Rd× d

H and W i,l
V ∈ R d

H ×d respectively called the query, key, output and values.

W i,l
OV = W i,l

O W i,l
V

W i,l
QK = (W i,l

Q)TW i,l
K

B.3 THE COMPONENTS CONTRIBUTING DIRECTLY TO THE LOGITS DEPEND ON SUPERFICIAL
CHANGES IN THE INPUT

We start by measuring the direct effect of every component on the QA task. Figure 8 shows the
normalized direct effect for every component of Pythia-2.8b. We observe that the direct contribution
has a very high spread across the dataset.

To differentiate between the variance coming from the variation across prompts and the variance
coming from the path patching method, we use a metric that eliminates the variation from the path
patching method. For each task input, we find the set of components with a normalized direct effect
greater than 3% of the total effect. Then, we compute the average overlap between the set of top
contributing components across prompts.

On average, only 18% of the top contributors are shared across inputs. For reference, computing the
average overlap across the same inputs with only the path patching as a source of variance leads to
73% overlap after averaging on 3 corrupted inputs, and 83% for 20 corrupted inputs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Grouping the input by the question type increases the average overlap, but its absolute value stays
below 50% for most of the questions, as shown in Table 2. This suggests that which components
activate at the last step of the retrieval mechanism depends on the question asked. However, grouping
by question type does not explain all the variance: even for the same question, surface-level changes
in the prompt will trigger some components but not others.

Questions Average overlap between components
All 0.18± 0.16
Character Name 0.33± 0.20
City 0.23± 0.24
Character Occupation 0.28± 0.21
Day Time 0.56± 0.10
Season 0.43± 0.12

Table 2: Average overlap between components responsible for more than 3% of the total effect. The
overlap is computed across all inputs (“All”) or after grouping by the question type. We average over
20 values of corrupted inputs. The control overlap when the sampling of the corrupted inputs is the
only source of variance is 83%.

B.3.1 CITY-SPECIFIC ATTENTION HEADS

By investigating the source of the variance of direct effects for the set of inputs containing the city
question, we discover a family of city-specific attention heads. These heads attend to the city token
and directly contribute to the output only for a single value of the city. Figure 9 shows three such
heads. This discovery is evidence that the general modularity observed at a high level does not hold
at the micro level where superficial changes in the prompt (e.g. the value of the city) drastically alter
the role of certain components.

B.4 REQUEST-PATCHING PRESERVES ATTENTION HEAD MECHANISMS

To investigate the effect of request-patching, we study request-patching from a dataset D1 containing
only questions about the character name to a dataset D2 containing only questions about the season.

On both datasets, Pythia-2.8b can correctly answer the question. It performs with 100% accuracy
on both datasets and outputs on average 0.85 and 0.51 probability for the correct token on D1 and
D2, respectively. After request-patching D2 ← D1, the model predicts the character name with 0.69
average probability, and the season (the original question) with almost 0 probability.

Our control condition to compare the effect of request-patching is the reference dataset D3. Every
input x3 ∈ D3 is created by concatenating the context C2 from an input x2 ∈ D2 and the question R1

from an input x1 ∈ D1 such that C3 = C2 and R3 = R1. On D3, the model is naturally answering
the request R1 in the context C1. We use D3 as a control experimental condition to compare the
mechanism of the model after the request-patching operationM(x2|zL2 ← zL2(x1)) with L2 = 16
for Pythia-2.8b.

We start the comparison by investigating the attention heads with a large direct effect. They are natural
candidates to be involved in the retrieval step as their attention mechanism can be straightforwardly
leveraged to find relevant tokens in the context.

Figure 10 shows a three-way comparison of attention head behavior in three different settings: on
the dataset D2 before request-patching, after request-patching, and on the reference dataset D3.
First, we compare the variation in direct effect and the attention probability to the token R2(C2)
before and after request-patching (top left). The R2(C2) token corresponds to the question of the D2

dataset (the season of the story). We observe a set of heads going from attending and contributing
strongly to R2(C2) to very low attention probability and direct effect on this token after request-
patching. We observe the opposite for the token R1(C2) (top right). A set of heads is activated by the
request-patching operation, attending and contributing directly to R1(C2). These two observations
are coherent with the intuition that request-patching is overwriting the representation of the question

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: City-specific heads contribute directly to the logits when the question asks about the city
of the story and the city has a specific value, e.g. “Valencia” for the head L20H3. The inputs in the
histogram contain only questions asking about the city.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Three-way comparison of the effect of request-patching on the attention heads. Each
pair of symbols connected by a line is the same attention head in two different experimental settings.
Request-patching is inhibiting the heads in charge of copying the R1(C1) token (top left) and
activating the heads retrieving R1(C2) (right). The state of attention heads after request-patching is
close to the control condition on the reference dataset (bottom).

from R1 to R2. The attention heads downstream of layer L2 react accordingly by stopping the
retrieval of R2(C2) and copying R1(C2) instead.

Finally, we compare the attention probability and direct effect of the attention heads after request-
patching to our control condition on the D3 dataset (bottom). We find that attention heads have a
slightly lower attention probability and direct effect on average (relative variation of -7% for the
attention, -11% for the direct effect). This suggests that the attention heads in charge of copying the
correct token (attending and directly contributing to the logit) are working similarly on the reference
dataset and after request-patching, although slightly weaker.

B.5 REQUEST-PATCHING IS INFLUENCING LATE MLPS

In the previous section, we showed that attention heads seem to act as mover heads. They exploit
the representation built at the previous layers to compute their queries and use the keys from the
context to match the relevant token and copy it to the last position. This pattern has been previously
documented in the literature (Wang et al., 2022; Lieberum et al., 2023).

We continue our investigation by exploring whether the attention mechanism is the only mechanism
involved in contributing to the correct token. To this end, we perform attention patching. We fix
the attention pattern of an attention head to its value on another question. In our case, we fix the
attention of attention heads to their values on the D3 dataset. Formally, for the head i at layer l, an
input x2 ∈ D2 and x3 ∈ D3 we perform the interchange interventionM(x2|Ai,l ← Ai,l(x3)). We

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: Comparison of the effect of request-patching and attention patching with the reference
dataset. While request-patching leads to the direct effect of attention heads and MLPs similar to the
reference dataset, attention patching leads to a smaller contribution of MLPs.

only intervene on the attention to the context and normalize the attention probabilities such that they
always sum to 1.

Attention patching on every attention head causes the model to output R1(C2) (the character name)
with an average probability of 0.14 while predicting R2(C2) (the season) with a probability of 0.06.
Fixing the attention of all attention heads is not enough to force the model to answer the question R1.
This suggests that request-patching exploits an additional mechanism to reach 0.69 probability of
R1(C2).

The direct contributions of the most important components after request-patching and attention
patching are shown in Figure 11. Unsurprisingly, we observe that the direct effect of the attention
heads is preserved after attention patching, as their attention pattern is fixed to have their value from
D3. However, the contribution of the MLP after attention patching is significantly smaller than on
the reference dataset.

Table 3 summarizes the relative variation in direct effect grouped by component type after the two
kinds of intervention. While the overlap between the top contributing components with the reference
dataset is significant in both cases (57% and 56%), the MLP contribution is similar to the reference
dataset for request-patching (+4.8% relative variation) but smaller for attention patching (-26%
of relative variation). We hypothesize that the MLP contribution is the missing effect that causes
request-patching to outperform attention-patching.

We speculate that when every attention head is attending to the R1(C2) token position after attention
patching, the MLPs at the late layer can access the request R2 present in the input, and detect the
anomaly. The MLPs then contribute negatively to R1(C2) to correct the incoherence. In contrast,
request-patching replaces the full representation at intermediate layers, making late MLPs unable to
detect the incoherence between the request in the residual stream and the input sequence. Such self-
correcting functions of MLPs have previously been demonstrated (McGrath et al., 2023). Additional
experiments are necessary to evaluate if this phenomenon is occurring in this particular setting.

C ADDITIONAL RESULTS FOR INTERNAL SCALABLE OVERSIGHT

In this appendix, we provide additional results for internal scalable oversight.

In the main text we presented an application to prevent prompt-injection, illustrated in Figure 12.
Here, we want to detect when the model is not answering the question but relies on another mechanism
to produce the next token, a problem known as mechanistic anomaly detection (Christiano, 2022).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 3: Relative variation in direct effect from the reference dataset to the request-patching and
attention patching. The mean overlap is computed between the top direct effect contributor on the
D3 dataset and the top contributor after request and attention patching. The overlap is computed in
an aligned manner, i.e. components on x3 ∈ D3 correspond to the component afterM(x2|zL2 ←
zL2(x1)) such that R1 = R3 and C2 = C3.

Patching Type Component Type Mean Std Dev

Request Patching Attention Head -0.114 0.098
MLP 0.048 0.116

Mean Overlap 0.57 0.07

Attention patching Attention Head 0.092 0.142
MLP -0.260 0.111

Mean Overlap 0.56 0.08

Figure 12: Our scalable internal oversight technique relies on request-patching to remove the influence
of the distractor, a string of text crafted to make the model output an arbitrary city (red) instead of
answering the question. We patch the residual stream at layer L2 from an input inspected by a human
(blue) to a model processing an untrusted input (green). A single trusted input is used throughout all
experiments.

C.1 PROBLEM DEFINITION

Abstract problem setting. We define a special case of the general problem of scalable oversight.
First, we are given a trusted input xt, i.e. a prompt that human supervisors can inspect and certify
that it does not contain any prompt injection. Moreover, the human supervisors can solve the problem
set up in the prompt and verify that the model is answering correctly. Second, we are given a large
set of untrusted inputs D that is either too big to be supervised by humans or contains task instances
that humans cannot answer. The trusted and untrusted inputs are part of the same task. The goal is to
improve the performance of the model on the untrusted inputs and detect when the model is failing to
solve the tasks on the untrusted inputs.

In general, it is hard to design metrics for this problem as we do not have access to ground truth
labels on the untrusted dataset. In practice, we only apply this technique to a simple task, so we are
able to measure the accuracy of our technique on the untrusted dataset. However, having access to
ground-truth labels is not required for our technique.

We create two types of datasets using this input template. In the base dataset Db, the distractor token
is chosen to be a city that is different from the correct answer to the question. In the collision dataset
Dc, the distractor token is chosen to be the same as the answer to the question, i.e. the distractor
and the correct question-answering mechanism lead to the same answer. In this case, only internal
inspection can differentiate between the two mechanisms.

The distractors are the ones described in the main text. In the creation of the datasets, we verify that
the models are outputting the correct answer on the trusted input. To avoid collision, the answer for
the trusted input is never a possible answer in the untrusted dataset. For all experiments, we use the
same single trusted input.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 DETECTING ANOMALOUS MECHANISM.

The results of the robustness-increasing experiments suggest an obvious way to detect anomalous
mechanisms: if the output of the model changes after request-patching from the trusted input, then it
is likely the model was not executing the correct request before.

More generally, when the model is correctly processing an untrusted input, the output of the request-
processing step is equivalent to the one happening in the trusted input. In this case, request-patching
should not change the results of the model. We can thus interpret any results of request-patching that
deviate from this condition as evidence that the model was using another mechanism.

Concretely, for a given untrusted input xu, we define two predicates for anomaly detection:

A(xu)
def
= [M(xu|zL2

n ← zL2
n (xt)) ̸= M(xu)]

B(xu)
def
= [M(xt|zL2

n ← zL2
n (xu)) ̸= M(xt)]

A(xu) is true if and only if request-patching from the trusted to the untrusted input changes the
output of the model on untrusted input, while B(xu) is true if and only if request-patching from the
untrusted to the trusted input changes the output of the model on trusted input.

To evaluate the usefulness of these predicate as anomaly detectors, Table 4 presents the rate at which
the A, B, and A or B predicates hold true on different settings.

On the base dataset, Db, both the large model and small model distractors robustly trigger the A and
B predicate for their target models. Surprisingly, even if the large model distractor does not seem to
meaningfully influence the output of Pythia-410m, it sitll triggers both the A and B predicate. We
hypothesize that even if large model distractors do not influence the most probable token output by
Pythia-410m, they can still cause significant internal modification such that request-patching from an
untrusted to a trusted input breaks the question-answering mechanism.

On the more challenging dataset Dc the models output the correct tokens in almost every case, as
both the distractor and question-answering share the same answer. The challenge is to detect if the
correct token is output for the correct reasons. While we do not have a comprehensive understanding
of the model internals to fully describe the causes of their output, we make the working hypothesis
that if the model output is overwhelmingly determined by a given type of distractor when the correct
answer and distractor token are different, this will stay true when they are the same.

On Dc, the predicate A becomes almost useless. Forcing the correct request does not change
the model output: models are already outputting the correct answer. Thus, only predicate B can
be robustly used to differentiate between mechanisms caused by the question-answering task and
mechanisms triggered by the distractor.

From Table 4, only the large model distractors are recognized as anomalous for both the large
and small models. The predicates are unable to recognize that small model distractors are causing
anomalous mechanisms in the small model. Moreover, the triggering rate of the B predicate on the
large model distractor on Pythia-12b is smaller on Dc (with collision) than on the dataset Db (without
collision): 81.5% vs 29%. These observations question our working hypothesis that the relative
influence of mechanisms is preserved despite the collision between the distractor token and the correct
answer. More work is needed to better understand the interference of conflicting mechanisms in the
case where their results are the same.

C.3 LIMITATIONS

This application is meant to be a proof of concept demonstrating the concrete possibility of leveraging
the emergent decomposition of retrieval tasks for unsupervised internal process supervision. We only
study a simple task of question-answering on two models. Moreover, the set of distractors we use to
induce anomalous mechanisms is very constrained.

While providing promising results on Db, mechanistic anomaly detection fails to reliably detect
distractors on Dc, the dataset with collision. It is unclear if this shows a failure of the technique or
the existence of a different internal mechanism when the distractor token and the correct token are the
same. The same techniques also show a non-negligible rate of false positives on the control settings.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Model Detection
Predicate

No distractor Small-
model
distractor

Large-
model
distractor

Control
distractor

Pythia-410m
base dataset

A 3 70.5 16 0
B 13 39 76 12.5
A or B 16 80 77 12.5

Pythia-12b
base dataset

A 2 17.5 85.5 1.5
B 4 0 81.5 3.5
A or B 6 17.5 94 5

Pythia-410m
w/ collision

A 3 0 8 0
B 13 6 72 7
A or B 16 6 72 7

Pythia-12b
w/ collision

A 2 2 14 0
B 4 9 29 21
A or B 6 11 36 21

Table 4: Frequency (in %) of the anomalous mechanism detection predicate A and B. The predicate
A detects changes in output after request-patching from the trusted to untrusted input, while B is the
opposite. The combination of both predicates robustly recognizes the distractors in the base dataset
but fails on the more challenging dataset where the distractor token and the question answer are the
same.

Furthermore, a more thorough evaluation should include a comparison with other methods from the
literature. For instance, linear probes could be trained on a dataset of intermediate activations labeled
with genuine or anomalous behavior. Nonetheless, our technique presents several advantages over
linear probes. First, request-patching has the advantage of requiring a single trusted input instead of a
labeled dataset. Moreover, anomalous mechanism detection through linear probing can be evaded by
designing adversarial examples. Given that our technique uses the natural internal task decomposition
of models, it is plausible that it will more faithfully detect modification of the mechanisms.

Finally, there are several avenues to improve the performance of this technique. Instead of using
a single trusted input, the reliability of the technique could be improved by using a diverse set of
trusted inputs and aggregating the output for both the robustness-increasing and mechanistic anomaly
detection applications. Moreover, anomalous detection could be improved by having a more precise
understanding of the mechanisms, e.g. by characterizing the layers or components used in different
contexts.

Potential workflow to apply request patching in real-world deployment context. To illustrate
how our preliminary results could extend to real-world cases, we propose the following workflow:

• Identifying a context/request pattern in user prompt. The method would apply to
scenarios where a model executes a task on variable context data. This includes common
use cases vulnerable to prompt injection like question-answering on webpages, document
summarization, or translation services where malicious content could be embedded in the
context.

• Identifying the request. While our proof-of-concept focused on simple questions about
cities, real-world applications would need to handle more complex requests like "translate
this text" or "summarize these key points". The challenge is isolating the semantic meaning
of these requests from their surface form.

• Dynamically create a trusted input. For each request type, we would need to generate a
trusted example by combining the identified request with verified safe context data. This
provides a clean reference point for the request processing, free from potential prompt
injections. The main challenge is automating this process while ensuring the trusted inputs
stay representative of the user prompt.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: Maximal normalized probability of the R1(C2) label token after residual stream patching
on all models and tasks from ORION. Request-patching generalizes to the vast majority of tasks and
models studied. White regions correspond to settings where the model is unable to robustly solve the
task.

• Multi-token request patching. Our current method only handles single-token outputs,
but real applications require generating multiple tokens. The key technical challenge is
maintaining coherent request processing across multiple generation steps. This requires
investigating whether the modular separation we observed extends to multi-token generation.

D ADDITIONAL RESIDUAL STREAM RESULTS

Figure 13 shows the maximal normalized probability of the R1(C2) label token after residual stream
patching. Request patching is robustly working for all model and tasks, except for the induction task.
We discuss further the results for induction in Appendix F.

Figure 14 shows side-by-side the results of residual stream patching on the question-answering
task. For all models, there exists a span of intermediate layers (40-80% of the model depth) where
residual stream patching leads the model to output R1(C2) with a high probability (>80% normalized
probability). This span of layers seems to be the same for the base and fine-tuned Falcon models.
This is coherent with the intuition that fine-tuning is only superficially affecting the model internals.

Figure 15 shows the layers L1 and L3 for every model and task studied. We observe a similar motif
as in the layer L2 in Figure 4. The processing for the induction task seems to happen earlier than the
other tasks such that all three limit layers are shifted toward the early layers.

However, this trend does not hold for Llama 2 70b. All the limit layers for this model seem to be
concentrated over a very narrow span of layers in the middle of the network. To further explore this
surprising observation, Figure 16 shows the results of residual stream patching on Llama 2 70b for
the factual recall, induction, and translation tasks. The normalized token probability seems to peak in
a narrow range of layers (40-43) for all three tasks, including the simple induction task. It is unclear
why only Llama 2 70b exhibits this pattern, contrasting with models of similar sizes (e.g. Falcon 40b)
that demonstrate spread-out limit layers. This phenomenon could be caused by the larger scale of the
model or peculiarities of the architecture.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: Normalized probability of the label tokens after residual stream patching across all layers
on the question-answering task with uniform prefix. To enable comparison across models, we use
the relative layer with 0 as the first and 1 as the last layer. Request-patching is general across
models: mid-layer residual stream patching causes the model to output R1(C2) with more than 80%
normalized token probability.

E CAUSAL ABSTRACTION

Validating the high-level causal graph using the framework of causal abstraction. In this Ap-
pendix, we express the implications of request-patching on the high-level structure of the computation
happening in language models solving retrieval tasks using the framework of causal abstraction
(Geiger et al., 2023). We define a high-level causal graph operating on the abstract input representa-
tion and an alignment mapping each intermediate variable in the high-level causal graph to a set of
model components. The input-output alignment is defined by the ORION abstract input and output
representation. The alignment is illustrated in Figure 17.

Our causal graph is a simple two-step symbolic algorithm that treats the request and context separately
before combining them to algorithmically solve the retrieval task.

We validate the alignment using interchange intervention accuracy (IIA). IIA is defined in Geiger
et al. (2023) as an average over every possible multi-input interchange intervention. However, this
average introduces statistical distortion in the case of the alignment we are considering. Because
of the shape of our causal graph, interchanging a variable late in the graph screens off the effect of
the interchange happening earlier in the graph. Thus, intervening simultaneously on early and late
variables is equivalent to interchanging the late variable alone. To remove this statistical distortion,
we average the results of the interchange interventions such that each unique experiment gets the
same weight.

Moreover, given that residual stream patching is a kind of interchange intervention, we reuse the
experimental data from the exploratory causal analysis to compute the IIA. Given the simplicity of our
alignment, we can write the IIA for a task T from ORION in terms of three interchange operations as
follows:

IIAT =
1

3
Ex1,x2∈T

[[
M(x2|zL1

n ← zL1
n (x1)) = R1(C1)

]
+

[
M(x2|zL2

n ← zL2
n (x1)) = R1(C2)

]
+

[
M(x2|zL3

n ← zL3
n (x1)) = R2(C2)

]]

We do not include the results of interchange intervention on the context variable. Given the model
architecture, the two interchange operations M(x2|zLn ← zLn (x1)) and M(x1|zL<n ← zL<n(x2))

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 15: Layer L1 and L3 for different models and tasks.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 16: Result of residual stream patching of Llama 2 70b on three retrieval tasks. The maximal
effect of residual stream patching, i.e. maximal probability of the label token R1(C2), is located at
the exact same layer (layer 42) for every task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 17: Alignment between a high-level causal graph that uses abstract representations of inputs,
and a language model running on the textual representation of the inputs for a retrieval task. The
alignment bounds the position where request processing (in red) and context processing (in green)
are located in the intermediate layers of the model. The Nil node is isolated in the high-level causal
graph. It does not influence the output of the causal graph and thus can be interchanged freely.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 18: Normalized interchange intervention accuracy for all models and tasks studied for the
high-level retrieval symbolic algorithm. The normalized IIA is greater than 85% in 91 out of the 106
settings studied. This demonstrates that our high-level causal graph faithfully describes the internal
model computation across different models and tasks.

are equivalent. The first one corresponds to the intervention on the request in the high-level causal
graph, and the second corresponds to the intervention on the context. Moreover, our task datasets are
defined by independently sampling R and C. This means that by definition, the average output of
M(x2|zLn ← zLn (x1)) andM(x1|zL<n ← zL<n(x2)) are the same. We thus remove the results of the
intervention on the context from the average to avoid artificial duplication of experimental results.

To facilitate the comparison across tasks, we normalize the IIA such that 0 corresponds to random
guesses and 1 is the baseline accuracy on the task. Note that the normalized IIA could be greater
than 1 if the causal graph also explains the mistakes of the model. However, we consider a simple
high-level causal graph that always answers the correct token such that the baseline model accuracy
is a natural upper bound for the IIA.

Finally, it is worth noting that the first and last terms of the expression of IIAT are dependent on the
arbitrary threshold we use to define L1 and L3. Choosing a higher threshold would be an artificial
way to increase the IIA. However, this would also make the alignment less expressive as L1 would
tend to be 0, and L3 would tend to be the last layer, effectively making these parts of the alignment
trivial. The thresholds thus represent a tradeoff between the strictness of the hypothesis and the ease
of validating it.

The normalized IIA scores for each model and task studied are shown in Figure 18. We observe
that the majority of settings studied lead to high IIA scores (91 out of the 106 pairs of models and
tasks have scores greater than 85%), showing that the high-level casual model faithfully describes the
internal processes of language models on the ORION tasks.

F COMPARISON WITH PRIOR WORK

Factual recall The factual recall and abstract induction tasks from ORION have been previously
studied in the mechanistic interpretability literature. In this section, we show that the mechanisms
described in previous works are compatible with the results of request-patching.

Previous works studied the factual recall abilities of language models on prompts represented by a
triplet (s, r, a) where s is a subject, r is a relation being queried, and a is the corresponding attribute,
i.e. the value of the relation on the subject. A prompt would contain the subject and relation while the
attribute would define the label token, e.g. “Beat music is owned by” → “Apple”. Geva

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

et al. show that early attention layers at the last token position are used for relation propagation,
propagating information from the relation token to the last position, e.g. the information about the
relation “owned” to the “by” token in the example. Later layers are in charge of attribute extraction.
They recover the correct attribute from the last subject token, according to the relation propagated to
the last position by the earlier layers.

Using the ORION input representation, the relation is part of the request, while the subject is in
the context. When performing residual stream patching at intermediate layers, we observe request-
patching: the information from the relation in x1 is transferred but the subject stays the same. Our
observation is coherent with the finding from Geva et al. that relation propagation and attribute
extraction happen at non-overlapping layers.

Note that contrary to Geva et al. we do not use the dataset Counterfact. This dataset cannot be
incorporated into ORION because of the “Decomposable” desiderata for task constellations. Most of
the relations in the Counterfact dataset cannot be applied to arbitrary subjects, e.g. a famous person
does not have an attribute for the relation “capital city”. To circumvent this limitation, we create two
datasets that fit the “Decomposable” desiderata, enabling the design of systematic causal experiments.
We document this process in more detail in Appendix H.6.

Induction The induction task consists in completing patterns of the form [A] [B] ... [A].
For instance, such patterns occur naturally when completing a name that appeared before in the con-
text, e.g. “Harry Potter ... Harry Pot” → “ter”. The mechanisms for induction tasks
were first characterized in small two-layer Transformers in (Elhage et al., 2021). The mechanisms
involve two steps: the first step consists in previous token heads acting at the [B] position copying
the preceding token [A]. The second step involves induction heads acting at the [A] position. In a
follow-up paper, Olsson et al. hypothesize that induction heads are also present in large models and
recognize more complex patterns with a similar structure such as [A] [B] ... [A*] (Olsson
et al., 2022). In this case, [A] and [A*] can be composed of several tokens and be recognized
using fuzzy matching instead of exact token matching. They propose a similar high-level structure
as the simple mechanism: the representation at the position [B] is contextualized by incorporating
information about the preceding prefix [A], using a more advanced mechanism than the previous
token heads. Similarly, the representation of the last token incorporates information about the tokens
from [A*]. At later layers, induction heads leverage their attention mechanisms to recognize the
similarity between the representations of [A*] at the [B] token position and the representation of
[A] at the last token position. Finally, their OV circuit copies the [B] token.

The induction task we designed involves multi-token prefixes with exact matches. We study patterns
of the form [A] [X] [B] [A] [X], where [X] is a separator token, a column in our
case. According to the extended mechanism for induction, the residual stream at early layers at
the last token contains the information propagated from the second [A] occurrence, while the later
layer contains induction heads in charge of finding the [B] token in the broader context. If the [A]
propagation and the induction heads occur at non-overlapping layers, patching the early residual
stream should only modify the representation of the token [A] at the last token position without
impacting the retrieval abilities of the induction heads. In the ORION abstract representation, [A] is
the request in the induction task. Hence the proposed mechanism for induction heads is coherent
with the results of request-patching.

Propagating the [A] token to the final residual stream and the operation of the induction heads are
both simple operations, each of these operations can theoretically be performed in a single layer.
We hypothesize that these two operations are performed redundantly by two sets of components
acting in tandem, a first set to propagate information from [A] to the last token, and a second set
of induction heads. We hypothesize that these two sets of components are situated at overlapping
layers in large models as part of pre-processing happening in early layers. Large models have the
capacity for redundant parallel computation because of their large number of attention heads per
layer. This hypothesis would explain the lower performance of request-patching on induction tasks in
large models. No layer separates the request and its processing: due to the simplicity of the task, they
both happen in parallel.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G TRANSFORMER ARCHITECTURE

In this appendix, we provide a complete description of the Transformer architecture. The pre-softmax
values πn are the logits at the n-th token position. For the GPT-2 Transformer architecture (Radford
et al., 2019) with L layers, the functionMθ can be further broken down as follows:

πn = LN(zLn)WU

zlk = zl−1
k + alk +ml

k

ml
k = MLP(zl−1

k + alk)

= LN
(
Wout

(
GELU(Win(z

l−1
k + alk) + bin)

)
+ bout

)
alk = Attn(zl−1

≤k)

z0k = WEt+WP

The final logits πl are constructed by iteratively building a series of intermediate activations zlk we
call the residual stream, following Elhage et al. (2021). The residual stream zlk at token position k

and layer l is computed from the residual stream at previous token positions at the previous layer zl−1
≤k

by adding the results of Attn, a multi-headed attention module, and MLP, a two-layer perceptron
module.

The MLP module depends on the residual stream zl−1
k at position k and layer l−1 while the attention

module can aggregate information from the previous layer across every previous token position. The
residual stream is initialized with the embeddings computed from the token and positional embedding
matrices WE , WP , and the one-hot encoding of the input tokens t. Finally, WU is the unembedding
matrix, GELU the Gaussian error linear unit activation function (Hendrycks and Gimpel, 2016), and
LN is a layer normalization function (Ba et al., 2016) applied to the final residual stream and the
output of each module.

In practice, the models we study have slight deviations from the GPT-2 architecture. The Pythia
(Biderman et al., 2023), Falcon (Almazrouei et al., 2023) and Llama 2 (Touvron et al., 2023) models
use parallelized attention and MLP. In the formulae above, this translates as ml

k = MLP(zl−1
k).

Moreover, Falcon contains additional layer normalization at the input of modules. LLama 2 uses the
SwiGLU activation function (Shazeer, 2020) and layer normalization only at the input of modules.

H ORION PROMPTS

Table 5 provides a succinct overview of the task included in ORION.

H.1 DETAILED DESCRIPTION OF THE DATASET DESIDERATAS

1. Structured. Every textual input in ORION accepts an abstract representation using the
context and request representation defined above. Motivation: Providing a unified structure
to define and interpret causal interventions without the need for setting-specific labor.

2. Decomposable. For every dataset D in ORION, for every abstract representations
(C1, R1), (C2, R2) in D, R2(C1) and R1(C2) are well-defined. This means that an arbitrary
request can be applied to an arbitrary context from the same task. Abstract representations
of requests and contexts can be freely interchanged across a task. Motivation: Enabling the
design of interchange interventions.

3. Single token.. For every dataset D in ORION, for every abstract representations
(C1, R1), (C2, R2) in D, R1 = R2 ⇔ R1(C1) = R2(C1). In other words, in a given
context, the output of each request gives a unique answer. It ensures that measuring the
next-token prediction is enough to know which request has been answered. Motivation:
Making experiments easy to measure and computationally efficient.

4. Monotasking. For every dataset D in ORION, for every abstract representation (C,R) in
D, there is a unique line in C such that ATTRf = vf . This condition ensures that requests

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 19: The semi-automatic task generation process used to create ORION. We use ChatGPT to
create a template and values for the placeholders given a problem type. To generate an instance from
the task, we start by randomly selecting placeholder values to create an abstract input representation.
Then, we use a format string to fill the template. When we need more flexibility, we use GPT-4 to
incorporate the placeholder values into the template.

are answerable with unambiguous answers. Motivation: Making analysis tractable. It is
easier to understand models solving a single problem than solving multiple problems in
parallel.

5. Flexible. ORION contains diverse tasks spanning multiple domains and levels of complexity.
In practice, we demonstrate the flexibility of the ORION structure by creating 15 different
tasks spanning six different language model abilities. Motivation: Enabling rich comparative
analysis across models and domains.

In the code implementation, we designed automatic tests to ensure that conditions “Decomposable”,
“Single token”, and “Monotasking” are respected for every task in ORION.

H.2 DATASET CREATION

To create the ORION task datasets, we use a semi-automatic process illustrated in Figure 19, leverag-
ing the creative writing ability of ChatGPT2. Concretely, we use the following workflow:

1. Find a problem that can be formulated as a retrieval task, e.g. question-answering.

2. Use ChatGPT to create a template with placeholders, e.g. a story with placeholders for
narrative variables such as the city, the name of the character, and the question being asked.

3. Use ChatGPT to create a set of placeholders.

4. Procedurally generate a set of abstract representations for the contexts and requests.

5. Generate the textual inputs from the abstract representation using format strings or ChatGPT
when more flexibility is required.

We applied this workflow to create 15 tasks spanning six problem domains requiring different abilities:
question answering, translation, factual recall, variable binding, abstract pattern matching (induction
pattern) and coding. For each domain, we created variation of surface-level parameters of the task
(e.g. changing language of the translation). We give an example input-output pair for each in Table 5.
We provide a detailed discussion about task choices as well as a precise description of each dataset in
the rest of this Appendix.

2https://chat.openai.com/

32

https://chat.openai.com/

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Task name Example Prompt Label token Variations
Question-
answering
(base)

Story: In the lively city of Valencia, spring mornings
[...] as a skilled veterinarian [...] "I’m Christopher"
he replied, [...].

Question: What is the name of the main character?
Answer: The main character is named

_Christopher1

Question-
answering
(uniform prefix)

Story: In the lively city of Valencia, spring mornings
[...] as a skilled veterinarian [...] "I’m Christopher"
he replied, [...].

Question: What is the name of the main character?
Answer: The answer is "

Christopher 1

Question-
answering
(question first)

Question: What is the name of the main character?

Story: In the lively city of Valencia, spring mornings
[...] as a skilled veterinarian [...] "I’m Christopher"
he replied, [...].

Answer: The answer is "

Christopher 1

Question-
answering
(mixed
templates)

Uniform distribution of prompts from three varia-
tions of question-answering above.

1

Translation English:
In an era defined by increasing global temperatures [...]
At the forefront is M. Smith, a marine biologist [...]
Next, we turn to M. Miller, a climate economist [...]

French:
[...]
Nous nous tournons ensuite vers M.

_Miller 3

Factual recall Question: On which continent did Muhammad Ali live?
Answer:

_America 2

Variable
binding

Anthony has a collection of pencils. 50 pencils are
blue, 10 pencils are red, and 20 pencils are green.

How many pencils in total are either blue or green?
We’ll add the number of green pencils (

20)_ 3

Induction
pattern-
matching

xnGWu:nJIbF
etmNX:TzgIS
ZvcIf:Gcqvs
[...]
AjvlA:pXMgi
etmNX:

T 1

Type hint
understanding

def calculate_circumference(circle: Circle) -> float:
[...]
W = Rectangle(Point(2, 3), Point(6, 5))
D = Circle(Point(0, 0), 5)
print(calculate_circumference(

D 3

Table 5: Tasks from the ORION collection contain varied problem type and prompt format. For
readability, we use “[...]” to shorten the prompts. The rest of the text is part of the textual input. In
particular, “[...]” is part of the prompt for the translation task. We use “_” to indicate a space in
the label token.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

H.3 DISCUSSION ABOUT TASK CHOICE

For a given problem type, we generate several templates, enabling the creation of several task
variations. We use this procedure to generate 15 unique tasks spanning six different abilities.

We use several criteria in choosing the problem types. First, we choose tasks that have already been
studied in the literature to act as reference points for our analysis. This includes factual recall and the
induction task. Then, to allow analysis across model scales, we design a simple question-answering
task that can be solved by both small and large models. We also create more challenging tasks to
explore diverse skills such as coding abilities, tracking the association between an object and its
quantity, and tasks involving translation from English to three different languages.

In addition to diversifying the content of the tasks, we create structural modifications to the task
template. To that end, we create question-answering templates where the question is before the story
in the dataset and templates where the final token of the prompt does not depend on the request. We
also create a mixed question-answering task containing prompts from the three variations.3

In this rest of this Appendix, we describe in more detail the process we used to create each task of the
ORION collection. We also provide complete example prompts for each task.

H.4 QUESTION-ANSWERING

H.4.1 GENERATING THE STORIES

We created a set of 100 stories we used in the four variations of the question-answering task. Each
story was created by defining:

• The name of the main character

• The occupation of the main character

• The time of day

• The season of the year

• The city of the story

• The action of the story

• An order in which the above elements should be introduced in the story

• An example story called a “master story”, used as a template to incorporate the new narrative
elements

The value of each of the narrative elements was uniformly sampled from lists of 3 to 5 different
possible values for each field. The lists were generated using manual interaction with ChatGPT.

The 8 narrative elements were combined in a prompt shown in 20 and completed by GPT-4. The goal
of this process was to reduce as much as possible the variations introduced by GPT-4, such that the
variables in the generation prompt characterized the generated story as comprehensively as possible.

H.4.2 GENERATING THE QUESTIONS

We manually generated questions and answer prefixes about three different narrative variables:
character occupation, city, and name of the main character. For each narrative variable, we created
three different phrasings.

The answer prefixes were either uniform, as shown in Figures 21 and 22 for the task variation with
uniform prefix and question at the start, or depended on the variable queried in the question, as shown
in Figure 23 for the base task variation. The base task variation can be solved by smaller models,
while only larger models can handle uniform answer prefixes.

3Given that the mixed-template task is an aggregation of other task variations, we do not include it in the
count of 15 unique tasks.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

You have to generate a short story that fits in a single paragraph
of less than 150 words. It has to respect a list of precise

constraints.

Narrative elements

The main character is named {character_name}. Their occupation is
{character_occupation}. The story takes place in {city}. The time
of the day is the {day_time}, and the season is {season}. The time
of the day should stay constant in the story. The action

performed by the main character is {action}.

It’s crucial that all the elements appear in the story.

Order of the narrative elements

The order in which to introduce the narrative elements is imposed.
The main priority is to respect the order of apparition I impose.
Here is the imposed order in which to introduce the narrative

elements. This order is already present in the template story.

{variable_order}

Template story

You have to generate a story that matches as closely as possible a
template story. Your goal is to modify the template story such

that all the narrative elements are present, but the general
structure (e.g. order in which the narrative element are
introduced etc.) is as close as possible to the template story.

Here is the template story you have to stick to:

"{master_story_text}"

Generate a short story that matches the template story while
incorporating the new narrative elements.

Figure 20: Prompt used to generate the stories for the question-answering tasks. The variables in
curly brackets represent placeholders that were replaced by values randomly sampled from manually
created lists of possible values.

H.5 TYPE HINT UNDERSTANDING

Using ChatGPT, we generated three Python code snippets introducing new classes and functions
using these classes, as shown in Figure 24. The context is a set of variables with a given type. The
request asks for a variable name with a particular type. The function definitions do not vary across
prompts and are only used to formulate the request.

H.6 FACTUAL RECALL

Existing open-source datasets created to study factual recall in language models, such as the one
introduced in (Meng et al., 2022), contain relations (e.g. the sport of an athlete) that can only be
applied to a subset of the subjects (e.g. only athletes, since asking the sport played by a country does
not make sense). This makes it impossible to use causal intervention such as the type required for
request-patching (the desiderata “Decomposable” is not fulfilled). Thus, we created two variations of
factual recall tasks such that any pair of subject and relation exists. Contrary to the other task from
ORION, the retrieval tasks do not involve copying an attribute present in the context, the task requires
the model to know the attribute.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Context

<|endoftext|>

Here is a short story. Read it carefully and answer the questions
below with a keyword from the text. Here is the format of the
answer: ’The answer is "xxx".’

The morning sun bathed the streets of Cusco in a warm, golden
light, casting long shadows that danced along with the gentle
summer breeze. Amidst the bustling city, a tall, slender figure
stood on the rooftop of an unfinished building, their eyes
surveying the urban landscape below. As the skyline slowly
transformed under their careful guidance, it became apparent that
the person was no mere observer, but an architect, orchestrating
the symphony of steel and concrete. The sound of birdsong filled
the air, but it was soon joined by another melody -- the architect
’s voice, soaring with joy and passion, a song of creation and
ambition. And as the last notes faded away, the wind carried a
whispered name, the signature of the artist who painted the city
with their dreams: Michael.

Answer the questions below.

Request

Question: What job does the main character have?

Answer: The answer is "

Figure 21: Example prompt for the QA (uniform prefix) task.

Geography dataset We used an open-source database4 of countries. We extracted the name, capital
city, and continent of each country.

Geography dataset Following the process used in (Krasheninnikov et al., 2023), we used a
Cross-Verified database (CVDB) of notable people 3500BC-2018AD (Laouenan et al., 2022). Each
individual was ranked by popularity (measured with the “wiki_readers_2015_2018 feature“), and
4000 of the most popular individuals were taken (2000 men and women each). We selected the fields
related to the gender, continent, and nationality of each notable person.

Filtering For both datasets, we queried the relation about the entity using a few shot setting, as
shown in Figure 25. From the raw data extracted from the dataset, we further filtered the list of entities
to keep only the ones where GPT-2 was able to answer all the questions related to the entity. The
final dataset contains 243 notable people (i.e. 729 questions) and 94 countries (i.e. 282 questions).

H.7 VARIABLE BINDING

We were inspired by the shape of grade school math problems from the GSM8K dataset (Cobbe
et al., 2021). The goal was to create retrieval tasks that would naturally occur in a chain of thought
generated by a model solving a math puzzle. The context contains objects with different quantities.
The request asks for the quantity of an object type.

To create the dataset, we picked one sample from the GSM8K dataset and generated variations using
ChatGPT. An example prompt can be found in Figure 26.

4https://github.com/annexare/Countries

36

https://github.com/annexare/Countries

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Request

<|endoftext|>

Read the question below, then answer it after reading the story
using a keyword from the text. Here is the format of the answer: ’
The answer is "xxx".’

Question: What job does the main character have?

Context

Story: The morning sun bathed the streets of Cusco in a warm,
golden light, casting long shadows that danced along with the
gentle summer breeze. Amidst the bustling city, a tall, slender
figure stood on the rooftop of an unfinished building, their eyes
surveying the urban landscape below. As the skyline slowly
transformed under their careful guidance, it became apparent that
the person was no mere observer, but an architect, orchestrating
the symphony of steel and concrete. The sound of birdsong filled
the air, but it was soon joined by another melody -- the architect
’s voice, soaring with joy and passion, a song of creation and
ambition. And as the last notes faded away, the wind carried a
whispered name, the signature of the artist who painted the city
with their dreams: Michael.

Answer: The answer is "

Figure 22: Example prompt for the QA (question first) task.

H.8 TRANSLATION

We used ChatGPT-3.5 (referred to as ChatGPT in the main text and the rest of the Appendix) to
generate news articles using placeholders instead of real names. We instructed it to add as many
names as possible and to prefix each name with a common title, such as "M.". Then, we asked
ChatGPT to translate the text into a non-English language. From the translated text we extracted
excerpts that preceded each of the names but did not include any names. These excerpts formed the
request. When creating the dataset, the placeholders are replaced by distinct family names from a list
generated by ChatGPT.

Using this process, we created three variations with different subjects, target languages, and name
prefixes.

• Title: "Climate Change: The Unsung Heroes", Prefix: "M.", Target language: French.
• Title: "Hidden Wonders Revealed: New Species Discovered in Unexplored Amazon Rain-

forest", Prefix: "Dr.", Target language: Spanish.
• Title: "From Pirates to Naval Heroes: Captains who Shaped Maritime History", Prefix:

"Capt.", Target language: German.

The entities in the context are the named characters, and their attribute is the sentence in which they
appear. The request is asking for a name that appears in a given sentence.

H.9 INDUCTION

We generated 10 pairs of random strings made from upper and lower-case letters separated by a
column. The context contains five enumerations of the pairs. Each enumeration is in a random order.
The request is the first half of one of the pairs. An example prompt is shown in Figure 28.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Context

<|endoftext|>

Here is a short story. Read it carefully and answer the questions
below.

The morning sun bathed the streets of Cusco in a warm, golden
light, casting long shadows that danced along with the gentle
summer breeze. Amidst the bustling city, a tall, slender figure
stood on the rooftop of an unfinished building, their eyes
surveying the urban landscape below. As the skyline slowly
transformed under their careful guidance, it became apparent that
the person was no mere observer, but an architect, orchestrating
the symphony of steel and concrete. The sound of birdsong filled
the air, but it was soon joined by another melody -- the architect
’s voice, soaring with joy and passion, a song of creation and
ambition. And as the last notes faded away, the wind carried a
whispered name, the signature of the artist who painted the city
with their dreams: Michael.

Answer the questions below, The answers should be concise and to
the point.

Request

Question: What job does the main character have?

Answer: The main character is a professional

Figure 23: Example prompt for the QA (base) task.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Context

<|endoftext|>
from typing import List
from math import pi

class Point:
def __init__(self, x: float, y: float) -> None:

self.x = x
self.y = y

class Rectangle:
def __init__(self, bottom_left: Point, top_right: Point) -> None:

self.bottom_left = bottom_left
self.top_right = top_right

class Circle:
def __init__(self, center: Point, radius: float) -> None:

self.center = center
self.radius = radius

class Polygon:
def __init__(self, points: List[Point]) -> None:

self.points = points

def calculate_area(rectangle: Rectangle) -> float:
height = rectangle.top_right.y - rectangle.bottom_left.y
width = rectangle.top_right.x - rectangle.bottom_left.x
return height * width

def calculate_center(rectangle: Rectangle) -> Point:
center_x = (rectangle.bottom_left.x + rectangle.top_right.x) / 2
center_y = (rectangle.bottom_left.y + rectangle.top_right.y) / 2
return Point(center_x, center_y)

def calculate_distance(point1: Point, point2: Point) -> float:
return ((point2.x - point1.x) ** 2 + (point2.y - point1.y) ** 2) ** 0.5

def calculate_circumference(circle: Circle) -> float:
return 2 * pi * circle.radius

def calculate_circle_area(circle: Circle) -> float:
return pi * (circle.radius ** 2)

def calculate_perimeter(polygon: Polygon) -> float:
perimeter = 0
points = polygon.points + [polygon.points[0]] # Add the first point at the end for a closed
shape
for i in range(len(points) - 1):

perimeter += calculate_distance(points[i], points[i + 1])
return perimeter

Create a polygon
Y = Polygon([Point(0, 0), Point(1, 0), Point(0, 1)])

Create a rectangle
K = Rectangle(Point(2, 3), Point(6, 5))

Create a circle
P = Circle(Point(0, 0), 5)

Request

Calculate area
print(calculate_area(

Figure 24: Example prompt for the type hint understanding task.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

CVDB prompt

<|endoftext|>Question: What was the country of Freddie Mercury?
Answer: UK

Question: On which continent did Muhammad Ali live?
Answer: America

Question: What was the country of Fela Kuti?
Answer:

Geography prompt

<|endoftext|>Question: What is the capital of France?
Answer: Paris

Question: What is the language spoken in Malaysia?
Answer:

Figure 25: Example prompt for the factual recall task on the CVDB and geography datasets. There is
no clear division between context and request in the prompt. In full rigor, the context is composed of
a single entity, e.g. ’Fela Kuti’ in the first prompt, while the request is asking about an attribute,
e.g. the country, without filtering as there is a single entity in the context.

Context

<|endoftext|>John is baking cookies. The recipe calls for 4 cups
of flour, 2 cups of sugar, and 6 cups of chocolate chips. How many
cups of ingredients in total are needed for the cookies?

Request

We’ll add the number of cups of flour (

Figure 26: Example prompt for the variable binding task.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Context

<|endoftext|>
Here is a new article in English. Below, you can find a partial translation in French
. Please complete the translation.

English:

Title: "Climate Change: The Unsung Heroes"

In an era defined by increasing global temperatures and extreme weather events, the
fight against climate change continues on many fronts. While prominent
environmentalists and politicians often claim the limelight, behind the scenes,
countless unsung heroes have dedicated their lives to combating climate change. This
article aims to spotlight the work of these individuals.

At the forefront is M. Jones, a marine biologist who has developed an innovative
method for promoting coral reef growth. Given that coral reefs act as carbon sinks,
absorbing and storing CO2 from the atmosphere, M. Jones’s work has significant
implications for climate mitigation. Despite facing numerous hurdles, M. Jones has
consistently pushed forward, driven by an unwavering commitment to oceanic health.

Next, we turn to M. Martinez, a climate economist from a small town who has
successfully devised a market-based solution to curb industrial carbon emissions. By
developing a novel carbon pricing model, M. Martinez has enabled a tangible shift
toward greener industrial practices. The model has been adopted in several countries,
resulting in significant reductions in CO2 emissions. Yet, despite these successes,

M. Martinez’s work often flies under the mainstream media radar.

Another unsung hero in the climate change battle is M. Perez, a young agricultural
scientist pioneering a line of genetically modified crops that can thrive in drought
conditions. With changing rainfall patterns threatening food security worldwide, M.
Perez’s work is of immense global relevance. However, due to controversy surrounding
genetically modified organisms, the contributions of scientists like M. Perez often
go unnoticed.

Additionally, the story of M. Thomas is worth mentioning. An urban planner by
profession, M. Thomas has been instrumental in designing green cities with a minimal
carbon footprint. By integrating renewable energy sources, promoting public
transportation, and creating more green spaces, M. Thomas has redefined urban living.
While the aesthetics of these cities often capture public attention, the visionary

behind them, M. Thomas, remains relatively unknown.

Lastly, we have M. Harris, a grassroots activist working tirelessly to protect and
restore the forests in her community. M. Harris has mobilized local communities to
halt deforestation and engage in extensive tree-planting initiatives. While large-
scale afforestation projects often get global recognition, the efforts of community-
level heroes like M. Harris remain largely unsung.

The fight against climate change is not a single battle, but a war waged on multiple
fronts. Every victory counts, no matter how small. So, as we continue this struggle,
let’s not forget to appreciate and honor the unsung heroes like M. Jones, M. Martinez
, M. Perez, M. Thomas, and M. Harris who, away from the spotlight, are making a world
of difference.

Request

French:
[...]
En intégrant des sources d’énergie renouvelables, en favorisant les transports
publics et en créant plus d’espaces verts, M.

Figure 27: Example prompt for the translation task.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Context

<|endoftext|>wFCJI:CCwti
axRPX:ISNak
JaVZO:jjVAE
vGuLv:aqCuW
peaXt:uqIWZ
gLbzR:URzLs
XPUgR:QDKMS
IbKIs:YRodj
GpqLd:YRodj
fhVqk:jjVAE
axRPX:ISNak
gLbzR:URzLs
wFCJI:CCwti
GpqLd:YRodj
fhVqk:jjVAE
vGuLv:aqCuW
XPUgR:QDKMS
peaXt:uqIWZ
IbKIs:YRodj
JaVZO:jjVAE
axRPX:ISNak
XPUgR:QDKMS
wFCJI:CCwti
IbKIs:YRodj
gLbzR:URzLs
peaXt:uqIWZ
vGuLv:aqCuW
JaVZO:jjVAE
GpqLd:YRodj
fhVqk:jjVAE
wFCJI:CCwti
GpqLd:YRodj
peaXt:uqIWZ
gLbzR:URzLs
XPUgR:QDKMS
axRPX:ISNak
JaVZO:jjVAE
IbKIs:YRodj
fhVqk:jjVAE
vGuLv:aqCuW
peaXt:uqIWZ
XPUgR:QDKMS
wFCJI:CCwti
JaVZO:jjVAE
IbKIs:YRodj
fhVqk:jjVAE
gLbzR:URzLs
axRPX:ISNak
GpqLd:YRodj
vGuLv:aqCuW
peaXt:uqIWZ
gLbzR:URzLs
GpqLd:YRodj
peaXt:uqIWZ
GpqLd:YRodj
fhVqk:jjVAE
GpqLd:YRodj
XPUgR:QDKMS
peaXt:uqIWZ

Request

wFCJI:

Figure 28: Example prompt for the induction task.

42

	Introduction
	Background
	The Transformer architecture for autoregressive language models
	Computational graph as causal graph

	ORION: a collection of structured retrieval tasks
	Macroscopic causal analysis on ORION: a universal emergent decomposition of retrieval tasks
	Methods
	Results of residual stream patching

	Microscopic analysis: case study on Pythia-2.8b
	Application to scalable internal oversight of a retrieval task
	Related Work
	Conclusion
	Detailed description of ORION
	Case study on Pythia-2.8b solving a question-answering task
	Methods
	Notation for attention heads
	The components contributing directly to the logits depend on superficial changes in the input
	City-specific attention heads

	Request-patching preserves attention head mechanisms
	Request-patching is influencing late MLPs

	Additional results for internal scalable oversight
	Problem definition
	Detecting anomalous mechanism.
	Limitations

	Additional residual stream results
	Causal abstraction
	Comparison with prior work
	Transformer architecture
	ORION prompts
	Detailed description of the dataset desideratas
	Dataset creation
	Discussion about task choice
	Question-answering
	Generating the stories
	Generating the questions

	Type hint understanding
	Factual recall
	Variable binding
	Translation
	Induction

