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Abstract

This study evaluates the performance of Recur-001
rent Neural Network (RNN) and Transformer002
models in replicating cross-language structural003
priming, a key indicator of abstract grammati-004
cal representations in human language process-005
ing. Focusing on Chinese-English priming,006
which involves two typologically distinct lan-007
guages, we examine how these models handle008
the robust phenomenon of structural priming,009
where exposure to a particular sentence struc-010
ture increases the likelihood of selecting a sim-011
ilar structure subsequently. Additionally, we012
use large language models (LLMs) to measure013
the crosslingual structural priming effect. Our014
findings indicate that transformers outperform015
RNNs in generating primed sentence struc-016
tures, challenging the conventional belief that017
human sentence processing primarily involves018
recurrent and immediate processing, and sug-019
gesting a role for cue-based retrieval mecha-020
nisms. In general, this work contributes to our021
understanding of how computational models022
may reflect human cognitive processes in mul-023
tilingual contexts.024

1 Introduction025

Existing studies show that Recurrent Neural Net-026

works (RNN), particularly Gated Recurrent Unit027

models (GRU), have been pivotal in modeling028

human sentence processing (Frank et al., 2019).029

These models can explain phenomena like garden-030

path effects and structural priming. A garden-path031

effect occurs when a reader is led to interpret a sen-032

tence in a way that turns out to be incorrect, requir-033

ing reanalysis to understand the correct structure.034

Structural priming refers to the phenomenonwhere035

encountering a specific syntactic structure boosts036

the probability of generating or understanding sen-037

tences with a comparable structure (Pickering and038

Ferreira, 2008).039

Figure 1: Cross-language structure priming of human
participant: C denotes Chinese, E denotes English.

1.1 Cross-Linguistic Structural Priming 040

Prior experiments induce cross-linguistic struc- 041

tural priming by instructing bilingual participants 042

to use two languages: presenting primes in one lan- 043

guage and eliciting targets in another. These stud- 044

ies show that specific sentence structures in one 045

language influences the use of similar structures in 046

the other language (Hartsuiker et al., 2004). 047

Consider a case where a human participant reads 048

a passive Chinese (C) sentence and is then asked 049

to describe a separate picture in English (E) (see 050

Figure 1). Here, the passive sentence C influences 051

the structure of the target sentence E, leading the 052

participant to use passive voice in their description. 053

Computational modeling studies have shown 054

that RNNs exhibit structural priming effects akin 055

to those observed in human bilinguals (Frank, 056

2021). These models process sequential informa- 057

tion through recurrence, a feature thought to resem- 058

ble human cognitive processing. The emergence of 059

such priming effects in language models suggests 060

that they develop implicit syntactic representations 061

that resemble those employed by human language 062

systems (Linzen and Baroni, 2021). 063

However, the transformer model, which uses 064

self-attention mechanisms instead of recurrence, 065

challenges this notion. The transformer’s ability 066

to directly access past input information, regard- 067

less of temporal distance, offers a fundamentally 068

different approach from RNNs. The effectiveness 069



Figure 2: Example of Active, Passive, Propositional
Object (PO), and Double Object (DO). White high-
lighted sentence is original Chinese sentence, and yel-
low highlighted Sentence is word-to-word mapping be-
tween Chinese and English.

of transformers and recent large language mod-070

els (LLMs) in various NLP tasks makes us won-071

der if they can emulate RNNs in modeling cross-072

language structural priming.073

1.2 Prior Studies074

The current study is inspired by two prior stud-075

ies. Merkx and Frank (2021) compare transformer076

and RNN models’ ability to account for measures077

of monolingual (English) human reading effort.078

They show that transformers outperform RNNs079

in explaining self-paced reading times and neu-080

ral activity during reading English sentences, chal-081

lenging the widely held idea that human sentence082

processing relies on recurrent and immediate pro-083

cessing. However, the study is monolingual and084

English-centric. Frank (2021) investigates cross-085

language structural priming, finding that RNNs086

trained on English-Dutch sentences account for087

garden-path effects and are sensitive to structural088

priming, within and between languages.089

1.3 The Current Study090

Our study builds upon these two studies, com-091

paring RNNs and transformers for their ability to092

model cross-language structural priming. We use093

a different metric for structural priming. Frank094

(2021) trains models on comprehension, where a095

longer response time indicates greater difficulty096

in understanding the new sentence, indicating a097

weaker priming effect. In contrast, our models are098

trained for production—the structure of the gener-099

ated sentences is compared with that of the input100

sentence to assess the presence of a priming effect.101

There are Chinese equivalents to passive Many102

trees were planted by them. and active They103

Figure 3: Example of test phase and evaluation process.

planted many trees., as well as prepositional ob- 104

jects The cowboy gave the book to the sailor. and 105

double objects The cowboy gave the sailor the 106

book. as shown in Figure 2. In our study, the in- 107

put sentence is in Chinese and system output is an 108

English version of the sentence. BLEU scores are 109

calculated between the system output English sen- 110

tence and the English sentence that share structure 111

with the the Chinese input—the “correct answer” 112

as well as an “incorrect” answer. We then calcu- 113

late the difference between two BLEU scores, as 114

depicted in Figure 3. 115

Another novel aspect of our study is that the two 116

chosen languages are from distinct language fam- 117

ilies, challenging the models to develop abstract 118

representations for structurally different forms. 119

2 Data Preparation 120

We select and process a Chinese-English corpus 121

which contains 5.2 million Chinese-English paral- 122

lel sentence pairs (Xu, 2019).¹ 123

Weemploy aDataLoader ² to facilitate batch pro- 124

cessing, transforming text into token IDs suitable 125

for model interpretation. We then use the Helsinki- 126

NLP tokenizer (Tiedemann and Thottingal, 2020)³ 127

¹The source can be found at https://drive.google.com/
file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/
view?pli=1

²Our Dataloader is supported by PyTorch, referencing its
license located at https://github.com/pytorch/pytorch/
blob/main/LICENSE

³Helsinki-NLP is licensed under the MIT license.
For more details, see here: https://github.com/
Helsinki-NLP/Opus-MT/blob/master/LICENSE

https://drive.google.com/file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/view?pli=1
https://drive.google.com/file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/view?pli=1
https://drive.google.com/file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/view?pli=1
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/Helsinki-NLP/Opus-MT/blob/master/LICENSE
https://github.com/Helsinki-NLP/Opus-MT/blob/master/LICENSE


Figure 4: The overarching workflow of the study is illustrated as follows. PO refers to Propositional Object, DO
refers to Double Object, Ac refers to Active and Pa refers to Passive. During the training phase, we preprocess the
raw bilingual data through several steps to generate token pairs. In the experiment phase, we employ transformer
and RNN-based encoder-decoder architectures. In the testing phase, we evaluate the model’s performance using
four different sentence structures and assess the output with the BLEU metric.

to map Chinese to English, accommodating over a128

thousand models for diverse language pairs.129

The tokenizer, by default, processes text accord-130

ing to source language settings. To encode target131

language text, the context manager as a target to-132

kenizer must be used. Without this, the source133

language tokenizer would be applied incorrectly to134

the target text, leading to poor tokenization results,135

such as improperly splitting words unrecognized in136

the source language.137

In sequence-to-sequence models, setting138

padding tokens to -100 ensures they are ignored139

during loss calculations. This setup is crucial140

for effective model training, allowing for precise141

adjustment of model parameters based on the142

tokenized input and target sequences. Properly143

formatting the data through this preprocessing144

step facilitates optimal training outcomes.145

We also design a test dataset. Initially, 5 sen-146

tences for each of the 4 types of sentence structures147

(Active Voice, Passive Voice, Prepositional Ob-148

ject, and Double Object) are sampled from Cross-149

language Structural Priming Corpus (Michaelov150

et al., 2023). Then, we employ a LLM, ChatGPT151

3.5 (OpenAI, 2024), to augment the data. By pro-152

viding the following prompt as one shot learning,153

we expand each set to 30 sentences, resulting in a154

total of 120 sentences for our test dataset:155

156
Generate 30 sentences with the following struc-
ture: The cowboy gave the book to the sailor. Re-
place all the words while keeping the sentence
structure the same.

157

Correspondingly, in our test set, each Chinese sen- 158

tence is paired with a correct and an incorrect En- 159

glish sentence. 160

3 Language Models 161

We implement both a transformer model and an 162

RNN model to handle sequence-to-sequence tasks 163

using the encoder-decoder architecture. (See Ex- 164

periment of Figure 4) This architecture supports 165

the processing of both input sequences and output 166

sequences of varying lengths, which is crucial for 167

accommodating sentences with different structures 168

yet similar meanings. This section explores why 169

these language models can assist us identify struc- 170

tural priming. We train and test our RNN model 171

and transformer using AMD EPYC 75F3 8-Core 172

Processor and 1 NVIDIA A100 GPU. 173

3.1 Multi-head Attention in Transformer 174

In the transformer model, we use the self-attention 175

mechanism (AttModel) to capture sentence struc- 176

ture. This mechanism identifies dependencies 177

between different positions and adjusts the repre- 178

sentation of each word based on its relationship 179

with others, thus facilitating the learning of sen- 180

tence structure. Following Vaswani et al. (2017), 181

182

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (1) 183

where𝑄, 𝐾,𝑉 are obtained through linear transfor- 184

mations of an input sequence of text, each with its 185

own learnable weight matrix. In the encoder part 186



of model, 𝑄, 𝐾,𝑉 comes from the same source se-187

quence, while in the decoder part, 𝑄 comes from188

the target sequence, and 𝐾 and 𝑉 come from the189

output sequence of the encoder. Since the compu-190

tation of 𝑄, 𝐾 , and 𝑉 requires processing the en-191

tire input sentence, the model can simultaneously192

focus on all positions and capture the structure of193

the sentence.194

In the decoder part of the transformer model,195

the use of multiple attention heads allows for the196

capture of diverse levels of sentence features, lead-197

ing to a more comprehensive representation of sen-198

tence structure. Each attention head specializes in199

capturing specific semantic relationships, such as200

word dependencies and distance relationships.201

This approach enhances the model’s ability to202

comprehend the intricacies of sentence structure.203

The equation is as follows:204

MH(𝑄, 𝐾,𝑉) = Concat(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ) ·𝑊𝑂

(2)205

where 𝑊𝑂 is the weight matrix we need to train,206

and ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ, computed through equa-207

tion 1, represent the attention weights of each head208

(we choose to use 8 heads). Concat is the operation209

of joining tensors along their last dimension.210

We also focus on selecting the positional encod-211

ing method. While the common method involves212

using sine and cosine functions, we opt for learn-213

able positional embedding because we believe this214

approach offers more advantages for learning struc-215

tural priming because it helps our model better un-216

derstand and encode the relative positions of words217

within a sentence.218

In contrast to the fixed positional encoding,219

learnable positional embeddings assign different220

weights to different positions, emphasizing the rel-221

evant positional information that contributes to the222

priming effect. This enables the model to capture223

more intricate positional relationships and depen-224

dencies specific to the task of structural priming.225

3.2 GRU Encoder and GRU Decoder226

Some studies (Zhou et al., 2018) show that RNNs227

can preserve sentence structure and facilitate iden-228

tification of structural priming environment. Their229

sequential nature allows them to process input to-230

kens based on a contextual understanding of the231

entire sentence. As each token is processed, the232

RNN’s hidden state is updated, retaining informa-233

tion about preceding tokens and their contextual234

relevance. This sequential processing enables the235

model to capture word dependency relationships, 236

thereby preserving the structural integrity of the 237

sentence. Summarizing: 238

State(𝑑ℎ𝑖 , 𝑐𝑖), 𝑝 = 𝑓 (State(𝑑ℎ𝑖−1, 𝑐𝑖−1), 𝑚) (3) 239

where function 𝑓 refers to the hidden layer of the 240

RNN model, which is a neural network. It takes 241

the previous layer’s State i-1 and the output vector 242

from the previous time step𝑚 as input, and outputs 243

the next layer’s State i and prediction value 𝑝 until 244

it encounters the termination symbol. In this state, 245

𝑑ℎ signifies the hidden state of the RNN unit in de- 246

coder, tasked with capturing pertinent information 247

gleaned from the input sequence. In the initial de- 248

coder step, 𝑑ℎ embodies the final output state of the 249

encoder. In subsequent decoder steps, 𝑑ℎ denotes 250

the preceding RNN unit’s output. 251

To address the challenge of not being able to 252

retain the entire sentence structure, we introduce 253

the attention mechanism. This feature of the RNN 254

model enables it to focus more on the parts of the 255

input sequence that are most relevant to the cur- 256

rent output, thereby enhancing prediction accuracy. 257

Its potential for predicting structural patterns stems 258

from its capability to capture dependencies within 259

sequential data and to exploit these dependencies 260

for prediction. As shown in equation 3, 𝑐 denotes 261

the attention. The calculation of 𝑐 is as follows: 262

𝛼𝑖 = 𝑔(𝑒ℎ𝑖 , 𝑑ℎ0) (4) 263

As before, 𝑑ℎ0 denotes the final state of the en- 264

coder and 𝑒ℎ signifies the hidden state of the each 265

RNN unit in encoder. Function 𝑔 is used to calcu- 266

late the weight 𝑎𝑙 𝑝ℎ𝑎𝑖 of 𝑒ℎ𝑖 in the final state 𝑑ℎ0. 267

As a result, we obtain the attention 𝑐 by combining 268

all previous states: 269

𝑐𝑖 =
∑

(𝛼𝑖 ∗ 𝑑ℎ𝑖) (5) 270

calculated by summing the products of the weight 271

𝛼 and the state in decoder 𝑑ℎ. 272

Our study utilizes a variant of RNNs: the 273

Gated Recurrent Unit (GRU). The GRU encoder 274

and GRU decoder incorporate gating mechanisms, 275

which can effectively manage long-distance depen- 276

dencies and avoid the vanishing gradient problem. 277

Additionally, GRUs possess fewer parameters and 278

demonstrate higher computational efficiency. 279

Following Dey and Salem (2017), we define the 280

gate mechanism in two parts: 281

• Update Gate: 282

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 283



The update gate 𝑧𝑡 in the encoder controls the284

blending of the current input 𝑥𝑡 and the previous285

hidden state ℎ𝑡−1. The update gate 𝑧𝑡 in the de-286

coder regulates the interaction between the current287

input and the previous decoder state. This allows288

the model to selectively incorporate relevant infor-289

mation from the input when generating the output.290

• Reset Gate:291

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 +𝑈𝑟 ℎ𝑡−1 + 𝑏𝑟 )292

The reset gate 𝑟𝑡 in the encoder regulates the in-293

teraction between the current input 𝑥𝑡 and the pre-294

vious hidden state ℎ𝑡−1. The reset gate 𝑟𝑡 in the de-295

coder governs how the current input interacts with296

the previous decoder state. This allows the model297

to selectively forget certain parts of the input infor-298

mation captured by the encoder, enabling the de-299

coder to generate outputs that are less influenced300

by outdated information from the input sequence.301

4 Experimental Setup302

To assess the effectiveness of ourmodel in Chinese-
English, we adopt the standard bilingual evaluation
understudy (BLEU) metric (Papineni et al., 2002),
which ranges from 0 to 1, indicating the similarity
of predicted text against target text:

BLEU = BP · exp

(
𝑁∑
𝑛=1

𝑤𝑛 log 𝑝𝑛

)
Here, 𝑁 is the maximum n-gram order (typically303

4), 𝑤𝑛 is the weight assigned to each n-gram pre-304

cision score, (
∑𝑁

𝑛=1 𝑤𝑛 = 1) 𝑝𝑛 is the precision305

score for n-grams of order 𝑛, and BP is the brevity306

penalty which penalizes shorter results.307

After generating predicted outcomes and assem-308

bling a test set, we analyze the relationship be-309

tween predictions and four types of reference sen-310

tences: (1) correct mappings with the same struc-311

ture; (2) semantically similar but structurally differ-312

ent sentences; (3) semantically different but struc-313

turally identical sentences; and (4) sentences that314

differ both semantically and structurally.315

We categorize the comparisons into two distinct316

groups based on semantic similarity. In the first317

category, encompassing sentences with identical318

meanings, we hypothesize that effective structural319

priming would result in higher BLEU scores be-320

tween the predicted sentences and the reference321

sentences, with the same structure compared to322

those with different structures. This comparison323

Figure 5: BLEU Score for standard structural priming.
Comparison of ground truth datasets for testing and cal-
ibration.

aims to establish whether the model exhibits a pref- 324

erence for reproducing structures that are syntacti- 325

cally aligned with the ground truths when the se- 326

mantic content is constant. 327

The second category, which involves sentences 328

that differ in meaning, is particularly crucial for 329

demonstrating structural priming, as it eliminates 330

the influence of semantic similarity. If sentences 331

with identical structures receive higher BLEU 332

scores compared to those with different structures, 333

it would strongly suggest that the model’s predic- 334

tions are influenced by the structural aspects of the 335

input, regardless of semantic changes. 336

Through this methodology, we seek to rigor- 337

ously test for structural priming outputs, offering 338

insights into how the models process and replicate 339

structural properties of language. 340

5 Results and Analyses 341

We present the performance of the GRU-based 342

RNN and standard transformer model (Vaswani 343

et al., 2017) and then demonstrate their crosslin- 344

gual structural priming effect in Chinese-English 345

bilingual scenarios. We also present our insights 346

regarding the performance of open-source large 347

language models on the same dataset accordingly. 348

5.1 Structural Priming Performance 349

Our comparative analysis reveals that, although 350

bothmodels achieve competitive BLEU scores, the 351

transformer model shows a slight edge in handling 352

complex sentence structures. Figure 5 shows that, 353

when the training dataset is sufficiently large, both 354

models attain high predicted BLEU scores for stan- 355

dard structured sentence segments. 356



Figure 6: BLEU Score for wrong priming. Comparison
between predictions for cross-language priming via av-
erage BLEU Score.

Figure 7: BLEU Score for correct priming. Compar-
ison between predictions for opposite cross-language
priming via average BLEU Score.

5.2 Crosslingual Structural Priming Effect357

Through our examination of crosslingual structural358

priming, we observe a noteworthy pattern: both359

models facilitate the use of target-language syntac-360

tic structures influenced by the source language.361

However, the transformer model displays a more362

pronounced priming effect, indicating a potential363

edge in mimicking human-like syntactic adapta-364

tion in bilingual contexts.365

Figure 6 and Figure 7 show the BLEU scores366

for machine-generated predictions with correct or367

opposite priming test sets. From these we gain in-368

sights into model performance. Specifically, we369

evaluate the similarity levels between the model370

predictions and the correct priming test sets (e.g.,371

Active-Active, DO-DO) as well as the opposite372

priming test sets (e.g., Active-Passive, PO-DO).373

Higher BLEU scores against the correct priming374

test sets indicate that the model predictions align375

more closely with the appropriate structural prim-376

ing, whereas higher scores against the opposite 377

priming test sets suggest deviations from the ex- 378

pected priming behavior. 379

The results reveal that when evaluated against 380

the correct priming test sets, the transformer model 381

exhibits similar levels to GRU (see Figure 6), with 382

slight improvements observed as the n-gram size 383

increases. Conversely, in comparison to oppo- 384

site priming, GRU generally outperforms the trans- 385

former (see Figure 7). Given that this compari- 386

son involves what is termed as “incorrect” priming, 387

GRU aligns more closely with the opposite prim- 388

ing test set. Since transformer shows a larger gap 389

between BLEU score (correct) and BLEU score 390

(wrong), We infer that the transformer adheres 391

more closely to the appropriate structural priming. 392

In a previous study, Michaelov et al. (2023) ex- 393

amine the presence of structural priming by com- 394

paring the proportion of target sentences produced 395

after different types of priming statements. Simi- 396

larly, for each experimental item in our study, we 397

prime the language model with a specific sentence 398

and calculate the normalized probabilities for the 399

two target sentences. These normalized probabili- 400

ties are computed as follows: 401

First, calculate the raw probability of each target 402

sentence given the priming sentence: 403

𝑃(DO Target|DO Prime) 404

𝑃(PO Target|PO Prime) 405

𝑃(DO Target|PO Prime) 406

𝑃(PO Target|DO Prime) 407

408And the same method for: 409

𝑃(Active Target|Active Prime) 410

𝑃(Passive Target|Passive Prime) 411

𝑃(Active Target|Passive Prime) 412

𝑃(Passive Target|Active Prime) 413

414These probabilities are then normalized to cal- 415

culate the conditional probability of the target sen- 416

tence if the model output is one of the two target 417

sentences. Taking DO | PO as example: 418

𝑃𝑁 (Target |Prime) =
𝑃 (Target |Prime)

𝑃 (DO Target |Prime) + 𝑃 (PO Target |Prime) 419

Since the sum of the normalized probabilities of 420

the two target sentences is 1, we only need to con- 421

sider the probability of one target type and com- 422

pare between different priming types. The reason 423

is that the probability of another target type can 424

be derived from this, i.e. 𝑃𝑁 (Target|Prime) = 425

1 − 𝑃𝑁 (Target|Prime). By considering only one 426



Figure 8: Priming Effect per Chunk: Proportion of cor-
rect cross-language priming chunks in the machine pre-
diction results.

goal type, we can directly compare the priming ef-427

fects of the two priming types on that goal type,428

which is the main focus of analysis in structural429

priming research. The quantitative comparative430

findings depicted in Figure 8 derived from the sen-431

tence chunk dimension reveal that the transformer432

model generally outperforms GRU. Through a hor-433

izontal examination of priming structural types, it434

is evident that machine predictions exhibit superior435

performance with respect to active/passive struc-436

tures compared to those of PO/DO.437

The trained transformer model is only exposed438

to the Chinese-English dataset. Prior research439

(Michaelov et al., 2023) has shown that LLMs can440

mimic human language structural priming effects441

in various scenarios, both in within-language and442

in crosslingual experiments. However, there is443

a lack of evidence regarding the effectiveness of444

such multilingual language models in demonstrat-445

ing Chinese-English structural priming effects. To446

address this, we adopt XGLM model proposed by447

Lin et al. (2022) ⁴ and evaluate their performance448

using the normalized score defined above, on the449

same set of tasks designed for RNN and transform-450

ers. Among the four categories in our study, we451

find this language model family exhibits greater452

sensitivity in demonstrating structural priming ef-453

fects in passive and prepositional tasks (see Fig-454

ure 9), with the effect being more noticeable in the455

former case.456

⁴XGLM is developed by Facebook Research and is avail-
able under the MIT license. For more details, see the li-
cense at https://github.com/facebookresearch/fairseq/
blob/main/examples/xglm/README.md

6 Discussion 457

This study evaluates cross-language structural 458

priming effects in RNN and transformer models 459

in the context of Chinese-English. We find evi- 460

dence for abstract crosslingual grammatical repre- 461

sentations in these models, which operate similarly 462

to those found in prior research. 463

6.1 Conclusions 464

Our results show that BLEU scores decrease as the 465

length of n-grams increases, a trend that is con- 466

sistent with existing findings in sentence-similarity 467

evaluation (He et al., 2022). Longer n-grams such 468

as bigrams and trigrams, capture more specific lin- 469

guistic contexts, making exact matches less likely 470

unless the target sentence is very precise. More- 471

over, any minor errors in word choice or sequence 472

can disrupt the alignment of these longer n-grams. 473

Importantly, our results indicate that transformer 474

models outperform RNNs in modeling Chinese- 475

English structural priming, a finding that is intrigu- 476

ing given prior research. Traditionally, RNNs have 477

been effective in modeling human sentence pro- 478

cessing, capable of explaining phenomena such as 479

garden-path effects and structural priming through 480

their sequential processing capabilities, which are 481

thought to mirror aspects of human cognitive pro- 482

cessing (Frank, 2021). 483

This superiority of transformers raises questions 484

about the efficacy of RNNs as human sentence pro- 485

cessing models, especially if they are surpassed 486

by a model considered less cognitively plausible. 487

However, it is possible to interpret the results as 488

supportive of the cognitive plausibility of trans- 489

formers, particularly due the attention mechanism. 490

While the concept of unlimited working mem- 491

ory in transformers is viewed as implausible, some 492

researchers argue that actual human working mem- 493

ory capacity is much smaller than traditionally 494

estimated—limited to only two or three items. 495

They suggest that language processing involves 496

rapid, direct-access retrieval of items from mem- 497

ory (Lewis et al., 2006), a process compatible with 498

the attention mechanism in transformers. This 499

mechanism assigns weights to previous inputs 500

based on their relevance to the current input, which 501

aligns with cue-based retrieval theories, indicating 502

that memory retrieval is influenced by the similar- 503

ity of current cues to stored information (Parker 504

and Shvartsman, 2018). 505

https://github.com/facebookresearch/fairseq/blob/main/examples/xglm/README.md
https://github.com/facebookresearch/fairseq/blob/main/examples/xglm/README.md
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Figure 9: Crosslingual structural priming effect for large language model, XGLM (Lin et al., 2021), in the context
of Chinese-English with various sentence types. Top: Normalized probability of true target verus false target
prediction based on the next word logit value. Bottom: summary of each comparison shown in the same raw above.
From left to right: XGLMwith parameters of 564M, 1.7B, 2.9B, 4.5B on active, passive, prepositional, and Double
tasks.

6.2 Future Directions506

A promising future direction involves developing507

a model capable of generating sentences based on508

new semantic concepts and thematic roles before509

and after priming. Although this endeavor presents510

challenges, it holds the potential to mitigate the lex-511

ical boost effect (see Limitations).512

Shifting our focus from production to compre-513

hension could also be fruitful. By measuring the514

surprisal levels in models, we can gain insights515

into how structural priming influences model com-516

prehension, as suggested in recent studies (Merkx517

and Frank, 2021). Surprisal, in information theory518

and psycholinguistics, quantifies the unexpected-519

ness of a word in a given linguistic context. Lower520

suprisal values indicate greater probability, i.e.,521

consistently lower surprisal levels at structurally522

complex points in sentences that follow a priming523

example would suggest effective preparation by the524

priming process. This method offers a way to ex-525

plore how structural priming impacts language pro-526

cessing in models, without the confounding effects527

of repeated vocabulary.528

Additionally, there is evidence suggesting an in-529

verse relationship between the frequency of linguis-530

tic constructions and the magnitude of priming ef-531

fects observedwith those constructions (Jaeger and532

Snider, 2013; Kaschak et al., 2011). For exam-533

ple, the double object (DO) construction is more534

common in American English than the preposi-535

tional object (PO) construction (Bock and Grif-536

fin, 2000). Studies have shown that the less fre-537

quent PO construction exhibits stronger priming538

effects compared to the more frequent DO con-539

struction (Kaschak et al., 2011). This aligns with540

theories of implicit learning in structural priming,541

where more frequently encountered structures are542

less “surprising” to the language system and thus543

generate weaker priming effects.544

To delve further into this, training models on 545

corpora consisting of American versus British En- 546

glish, which differ in their construction frequen- 547

cies, could reveal whether a similar inverse fre- 548

quency effect is observed in computational mod- 549

els. This approach would help illuminate the de- 550

pendency of structural priming on construction fre- 551

quency, potentially providing deeper insights into 552

how implicit learning processes are modeled com- 553

putationally. 554

Limitations 555

A limitation of the current study is that Chinese- 556

English priming effect of the models is not com- 557

pared with human data. We equate the models’ 558

ability to replicate cross-language primingwith the 559

structural “correctness” of their outputs, yet em- 560

pirical studies indicate that even humans do not 561

achieve full priming rate (Hsieh, 2017). There- 562

fore, it is conceivable that if the models’ outputs 563

are compared directly to human data, RNNs might 564

more closely resemble human performance. This 565

limitation highlights an area for future research, 566

which could involve direct comparisons to human 567

priming data to better assess the models’ fidelity to 568

human language processing. 569

A further limitation is that our models are not ca- 570

pable of generating sentences based on novel word 571

concepts and thematic roles, such as the picture 572

naming task in Figure 1. Consequently, some crit- 573

ics may argue that what our models essentially do 574

is translate from Chinese to English without gener- 575

ating new semantic content, as the semantic infor- 576

mation remains consistent from the priming sen- 577

tence to the output sentence. 578

Despite these critiques, we maintain that the cur- 579

rent study design still validly assesses the priming 580

effect. This is because the models must choose 581

which sentence structure to use from among vari- 582



ous structures that share the same semantic content,583

a choice influenced by the priming effect.584

Nevertheless, we acknowledge that our design585

is susceptible to the “lexical boost” effect, where586

the structural priming effect is intensified when the587

same lexical head is repeated in both the prime and588

target sentences (Pickering and Branigan, 1998).589

For instance, if the target sentence is “Alice gave590

Bob a book,” the priming effect is more pro-591

nounced if the prime sentence was “Carl gave Da-592

nis a letter” rather than “Alice showed Bob a book.”593

Given that the semantic content remains constant594

across the prime and output sentences in our study,595

the observed priming effect is artificially strength-596

ened compared to what might be observed in a pure597

priming task.598

Another aspect worth discussing is the signifi-599

cance of using LLMs to simulate human language600

processing efforts. As highlighted in the introduc-601

tion, the ultimate goal is to deepen our understand-602

ing of how the human brain functions, assuming603

that models which appear more human-like exter-604

nally might also mirror human cognitive processes605

internally. However, one might question the va-606

lidity of using LLMs for this purpose. Given that607

these models often function as “black boxes,” their608

internal operations remain largely opaque. Despite609

their impressive computational abilities, the lack of610

transparency means that even if they outperform611

more interpretable models, they do not necessarily612

enhance our understanding of brain function.613

Previous studies argue that crosslingual struc-614

tural priming might be affected by the asymme-615

try of training sources in certain language pairs616

(Michaelov et al., 2023). By measuring the prob-617

ability shifts for source and target sentences, we618

find such multilingual auto-regressive transformer619

languagemodels display evidence of abstract struc-620

tural priming effect, although their performance621

varies across different scenarios.622

Ethical Statement623

The current study adheres to the ethical standards624

set forth in the ACL Code of Ethics. The training625

dataset used in this research is open, publicly avail-626

able, and does not include demographic or identity627

characteristics (Xu, 2019).628

Potential risks may arise from the fact that trans-629

lations in the training data (a Chinese-English par-630

allel sentence pair dataset) may not always be per-631

fectly equivalent. Some words may carry cultural632

nuances that differ between Chinese and English. 633

For example, the terms “和尚” (heshang) and “尼 634

姑” (nígū), translated as “monk” and “nun,” have 635

specific cultural connotations in Chinese that differ 636

from the perception of a “monk” in Western con- 637

texts, which is typically associated with Christian 638

monasticism. These roles in Chinese Buddhism 639

embody cultural and social aspects not fully cap- 640

tured by the Western terms, potentially leading to 641

a loss of cultural meaning in translation. 642

Furthermore, while ChatGPT has been used to 643

expand the test dataset, the authors have manually 644

verified the output to ensure it remains unbiased. 645

The potential risk of misuse of the computa- 646

tional model is low, as the encoders and decoders 647

are designed to perform straightforward translation 648

tasks and do not have the capability to self-generate 649

harmful content. 650

References 651

Kathryn Bock and Zenzi M. Griffin. 2000. The 652
persistence of structural priming: Transient 653
activation or implicit learning? Journal of Experi- 654
mental Psychology: General, 129(2):177–192. 655

Rahul Dey and Fathi M Salem. 2017. Gate-variants 656
of gated recurrent unit (gru) neural networks. In 657
2017 IEEE 60th international midwest symposium 658
on circuits and systems (MWSCAS), pages 1597– 659
1600. IEEE. 660

Stefan Frank. 2021. Cross-language structural priming 661
in recurrent neural network languagemodels. In Pro- 662
ceedings of the Annual Meeting of the Cognitive Sci- 663
ence Society, volume 43. 664

Stefan L Frank, PadraicMonaghan, andChara Tsoukala. 665
2019. Neural network models of language acqui- 666
sition and processing. In Human language: From 667
genes and brain to behavior, pages 277–293. MIT 668
Press. 669

Robert J. Hartsuiker, Martin J. Pickering, and Eline 670
Veltkamp. 2004. Is Syntax Separate or Shared 671
Between Languages?: Cross-Linguistic Syntactic 672
Priming in Spanish-English Bilinguals. Psycholog- 673
ical Science, 15(6):409–414. 674

Jia-Wei He, Wen-Jun Jiang, Guo-Bang Chen, Yu-Quan 675
Le, and Xiao-Fei Ding. 2022. Enhancing N-Gram 676
Based Metrics with Semantics for Better Evaluation 677
of Abstractive Text Summarization. Journal of Com- 678
puter Science and Technology, 37(5):1118–1133. 679

Yufen Hsieh. 2017. Structural priming during sentence 680
comprehension in Chinese–English bilinguals. Ap- 681
plied Psycholinguistics, 38(3):657–678. 682

https://doi.org/10.1037/0096-3445.129.2.177
https://doi.org/10.1037/0096-3445.129.2.177
https://doi.org/10.1037/0096-3445.129.2.177
https://doi.org/10.1037/0096-3445.129.2.177
https://doi.org/10.1037/0096-3445.129.2.177
https://doi.org/10.1111/j.0956-7976.2004.00693.x
https://doi.org/10.1111/j.0956-7976.2004.00693.x
https://doi.org/10.1111/j.0956-7976.2004.00693.x
https://doi.org/10.1111/j.0956-7976.2004.00693.x
https://doi.org/10.1111/j.0956-7976.2004.00693.x
https://doi.org/10.1007/s11390-022-2125-6
https://doi.org/10.1007/s11390-022-2125-6
https://doi.org/10.1007/s11390-022-2125-6
https://doi.org/10.1007/s11390-022-2125-6
https://doi.org/10.1007/s11390-022-2125-6
https://doi.org/10.1017/S0142716416000382
https://doi.org/10.1017/S0142716416000382
https://doi.org/10.1017/S0142716416000382


T. Florian Jaeger and Neal E. Snider. 2013. Alignment683
as a consequence of expectation adaptation:684
Syntactic priming is affected by the prime’s685
prediction error given both prior and recent686
experience. Cognition, 127(1):57–83.687

Michael P. Kaschak, Timothy J. Kutta, and John L.688
Jones. 2011. Structural priming as implicit689
learning: Cumulative priming effects and individual690
differences. Psychonomic Bulletin & Review,691
18(6):1133–1139.692

Richard L. Lewis, Shravan Vasishth, and Julie A.693
Van Dyke. 2006. Computational principles of694
working memory in sentence comprehension.695
Trends in Cognitive Sciences, 10(10):447–454.696

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu697
Wang, Shuohui Chen, Daniel Simig, Myle Ott,698
Naman Goyal, Shruti Bhosale, Jingfei Du, Ra-699
makanth Pasunuru, Sam Shleifer, Punit Singh Koura,700
Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke701
Zettlemoyer, Zornitsa Kozareva, Mona T. Diab,702
Veselin Stoyanov, and Xian Li. 2021. Few-shot703
learning with multilingual language models. CoRR,704
abs/2112.10668.705

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu706
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-707
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth708
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav709
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-710
moyer, Zornitsa Kozareva, Mona Diab, Veselin Stoy-711
anov, and Xian Li. 2022. Few-shot Learning with712
Multilingual Generative Language Models. Pro-713
ceedings of the 2022 Conference on Empirical Meth-714
ods in Natural Language Processing, pages 9019–715
9052.716

Tal Linzen andMarcoBaroni. 2021. Syntactic structure717
from deep learning. Annual Review of Linguistics,718
7:195–212.719

Danny Merkx and Stefan L. Frank. 2021. Human720
Sentence Processing: Recurrence or Attention? In721
Proceedings of the Workshop on Cognitive Modeling722
and Computational Linguistics, pages 12–22, Online.723
Association for Computational Linguistics.724

James A. Michaelov, Catherine Arnett, Tyler A.725
Chang, and Benjamin K. Bergen. 2023. Structural726
Priming Demonstrates Abstract Grammatical727
Representations in Multilingual Language Models.728
arXiv preprint arXiv:2311.09194. Publisher:729
[object Object] Version Number: 1.730

OpenAI. 2024. Gpt-3.5 turbo documentation. Ac-731
cessed: 2024-06-10.732

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-733
Jing Zhu. 2002. Bleu: a method for automatic734
evaluation of machine translation. In Proceedings of735
the 40th annual meeting on association for compu-736
tational linguistics, pages 311–318. Association for737
Computational Linguistics.738

Dan Parker and Michael Shvartsman. 2018. The cue- 739
based retrieval theory. Language Processing and 740
Disorders, page 121. 741

Martin J. Pickering and Holly P. Branigan. 1998. The 742
Representation of Verbs: Evidence from Syntactic 743
Priming in Language Production. Journal of Mem- 744
ory and Language, 39(4):633–651. 745

Martin J Pickering and Victor S Ferreira. 2008. Struc- 746
tural priming: a critical review. Psychological bul- 747
letin, 134(3):427. 748

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS- 749
MT —Building open translation services for the 750
World. In Proceedings of the 22nd Annual Confer- 751
enec of the European Association for Machine Trans- 752
lation (EAMT), Lisbon, Portugal. 753

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 754
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 755
Kaiser, and Illia Polosukhin. 2017. Attention is all 756
you need. Advances in neural information process- 757
ing systems, 30. 758

Bright Xu. 2019. Nlp chinese corpus: Large scale 759
chinese corpus for nlp. 760

Yi Zhou, Junying Zhou, Lu Liu, Jiangtao Feng, 761
Haoyuan Peng, and Xiaoqing Zheng. 2018. Rnn- 762
based sequence-preserved attention for dependency 763
parsing. In Proceedings of the AAAI Conference on 764
Artificial Intelligence, volume 32. 765

https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.1016/j.cognition.2012.10.013
https://doi.org/10.3758/s13423-011-0157-y
https://doi.org/10.3758/s13423-011-0157-y
https://doi.org/10.3758/s13423-011-0157-y
https://doi.org/10.3758/s13423-011-0157-y
https://doi.org/10.3758/s13423-011-0157-y
https://doi.org/10.1016/j.tics.2006.08.007
https://doi.org/10.1016/j.tics.2006.08.007
https://doi.org/10.1016/j.tics.2006.08.007
http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2112.10668
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.48550/ARXIV.2311.09194
https://doi.org/10.48550/ARXIV.2311.09194
https://doi.org/10.48550/ARXIV.2311.09194
https://doi.org/10.48550/ARXIV.2311.09194
https://doi.org/10.48550/ARXIV.2311.09194
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1006/jmla.1998.2592
https://doi.org/10.1006/jmla.1998.2592
https://doi.org/10.1006/jmla.1998.2592
https://doi.org/10.1006/jmla.1998.2592
https://doi.org/10.1006/jmla.1998.2592
https://doi.org/10.5281/zenodo.3402023
https://doi.org/10.5281/zenodo.3402023
https://doi.org/10.5281/zenodo.3402023

