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Abstract

This study evaluates the performance of Recur-
rent Neural Network (RNN) and Transformer
models in replicating cross-language structural
priming, a key indicator of abstract grammati-
cal representations in human language process-
ing. Focusing on Chinese-English priming,
which involves two typologically distinct lan-
guages, we examine how these models handle
the robust phenomenon of structural priming,
where exposure to a particular sentence struc-
ture increases the likelihood of selecting a sim-
ilar structure subsequently. Additionally, we
use large language models (LLMs) to measure
the crosslingual structural priming effect. Our
findings indicate that transformers outperform
RNNs in generating primed sentence struc-
tures, challenging the conventional belief that
human sentence processing primarily involves
recurrent and immediate processing, and sug-
gesting a role for cue-based retrieval mecha-
nisms. In general, this work contributes to our
understanding of how computational models
may reflect human cognitive processes in mul-
tilingual contexts.

1 Introduction

Existing studies show that Recurrent Neural Net-
works (RNN), particularly Gated Recurrent Unit
models (GRU), have been pivotal in modeling
human sentence processing (Frank et al., 2019).
These models can explain phenomena like garden-
path effects and structural priming. A garden-path
effect occurs when a reader is led to interpret a sen-
tence in a way that turns out to be incorrect, requir-
ing reanalysis to understand the correct structure.
Structural priming refers to the phenomenon where
encountering a specific syntactic structure boosts
the probability of generating or understanding sen-
tences with a comparable structure (Pickering and
Ferreira, 2008).

Task Description: Participant sees picture of a book being read to a girl by a grandma,
asked to describe it in English.
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. L Translation: The book was read to the girl by the grandma ]

Structure: Passive Voice
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Figure 1: Cross-language structure priming of human

\ girl by the grandma.
participant: C denotes Chinese, E denotes English.
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1.1 Cross-Linguistic Structural Priming

Prior experiments induce cross-linguistic struc-
tural priming by instructing bilingual participants
to use two languages: presenting primes in one lan-
guage and eliciting targets in another. These stud-
ies show that specific sentence structures in one
language influences the use of similar structures in
the other language (Hartsuiker et al., 2004).

Consider a case where a human participant reads
a passive Chinese (C) sentence and is then asked
to describe a separate picture in English (E) (see
Figure 1). Here, the passive sentence C influences
the structure of the target sentence E, leading the
participant to use passive voice in their description.

Computational modeling studies have shown
that RNNs exhibit structural priming effects akin
to those observed in human bilinguals (Frank,
2021). These models process sequential informa-
tion through recurrence, a feature thought to resem-
ble human cognitive processing. The emergence of
such priming effects in language models suggests
that they develop implicit syntactic representations
that resemble those employed by human language
systems (Linzen and Baroni, 2021).

However, the transformer model, which uses
self-attention mechanisms instead of recurrence,
challenges this notion. The transformer’s ability
to directly access past input information, regard-
less of temporal distance, offers a fundamentally
different approach from RNNs. The effectiveness
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The cowboy gave the book to the sailor.
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The cowboy gave the sailor the book.

Figure 2: Example of Active, Passive, Propositional
Object (PO), and Double Object (DO). White high-
lighted sentence is original Chinese sentence, and yel-
low highlighted Sentence is word-to-word mapping be-
tween Chinese and English.

of transformers and recent large language mod-
els (LLMs) in various NLP tasks makes us won-
der if they can emulate RNNs in modeling cross-
language structural priming.

1.2 Prior Studies

The current study is inspired by two prior stud-
ies. Merkx and Frank (2021) compare transformer
and RNN models’ ability to account for measures
of monolingual (English) human reading effort.
They show that transformers outperform RNNs
in explaining self-paced reading times and neu-
ral activity during reading English sentences, chal-
lenging the widely held idea that human sentence
processing relies on recurrent and immediate pro-
cessing. However, the study is monolingual and
English-centric. Frank (2021) investigates cross-
language structural priming, finding that RNNs
trained on English-Dutch sentences account for
garden-path effects and are sensitive to structural
priming, within and between languages.

1.3 The Current Study

Our study builds upon these two studies, com-
paring RNNs and transformers for their ability to
model cross-language structural priming. We use
a different metric for structural priming. Frank
(2021) trains models on comprehension, where a
longer response time indicates greater difficulty
in understanding the new sentence, indicating a
weaker priming effect. In contrast, our models are
trained for production—the structure of the gener-
ated sentences is compared with that of the input
sentence to assess the presence of a priming effect.

There are Chinese equivalents to passive Many
trees were planted by them. and active They
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Correct Answer (with priming effect): The

| cowboy gave the book to the sailor.
Incorrect Answer (without priming effect):
The cowboy gave the sailor the book.
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BLEU b/w System output and
Correct answer : 0.816

BLEU b/w System output and
Incorrect answer : 0.540

Calculate difference
between two scores

0.272

Figure 3: Example of test phase and evaluation process.

planted many trees., as well as prepositional ob-
jects The cowboy gave the book to the sailor. and
double objects The cowboy gave the sailor the
book. as shown in Figure 2. In our study, the in-
put sentence is in Chinese and system output is an
English version of the sentence. BLEU scores are
calculated between the system output English sen-
tence and the English sentence that share structure
with the the Chinese input—the “correct answer”
as well as an “incorrect” answer. We then calcu-
late the difference between two BLEU scores, as
depicted in Figure 3.

Another novel aspect of our study is that the two
chosen languages are from distinct language fam-
ilies, challenging the models to develop abstract
representations for structurally different forms.

2 Data Preparation

We select and process a Chinese-English corpus
which contains 5.2 million Chinese-English paral-
lel sentence pairs (Xu, 2019).1

We employ a DatalLoader 2 to facilitate batch pro-
cessing, transforming text into token IDs suitable
for model interpretation. We then use the Helsinki-
NLP tokenizer (Tiedemann and Thottingal, 2020)3

IThe source can be found at https://drive.google.com/
file/d/1EX8eE5Y WBxCaohBO8Fh4e2j3b9C2bTVQ/
view?pli=1

20ur Dataloader is supported by PyTorch, referencing its
license located at https://github.com/pytorch/pytorch/
blob/main/LICENSE

3Helsinki-NLP is licensed under the MIT license.
For more details, see here:  https://github.com/
Helsinki-NLP/Opus-MT/blob/master/LICENSE
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https://drive.google.com/file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/view?pli=1
https://drive.google.com/file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/view?pli=1
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/Helsinki-NLP/Opus-MT/blob/master/LICENSE
https://github.com/Helsinki-NLP/Opus-MT/blob/master/LICENSE

vy the police gave
ERRETRL-TT  the warrior a hat
l GRU Encoder-Decoder M

Chinese

English

Preprocessing

GRU

Preprocessing ‘

Encoder [

GRU
Decoder

v

Active Passive

[ Helsinki NLP ] [

Context
Manager

Evaluation

Metric: BLEU

|

police 0
gave 1

— Encoder

= | Il
a

PO-PO/PO-DO DO-PO/D0O-DO ]

)
)

[ Ac-Ac/Ac-Pa Pa-Ac/Pa-Pa ]

0
2 1
Bt 2

warrior 2

Figure 4: The overarching workflow of the study is illustrated as follows. PO refers to Propositional Object, DO
refers to Double Object, Ac refers to Active and Pa refers to Passive. During the training phase, we preprocess the
raw bilingual data through several steps to generate token pairs. In the experiment phase, we employ transformer
and RNN-based encoder-decoder architectures. In the testing phase, we evaluate the model’s performance using
four different sentence structures and assess the output with the BLEU metric.

to map Chinese to English, accommodating over a
thousand models for diverse language pairs.

The tokenizer, by default, processes text accord-
ing to source language settings. To encode target
language text, the context manager as a target to-
kenizer must be used. Without this, the source
language tokenizer would be applied incorrectly to
the target text, leading to poor tokenization results,
such as improperly splitting words unrecognized in
the source language.

In sequence-to-sequence models, setting
padding tokens to -100 ensures they are ignored
during loss calculations. This setup is crucial
for effective model training, allowing for precise
adjustment of model parameters based on the
tokenized input and target sequences. Properly
formatting the data through this preprocessing
step facilitates optimal training outcomes.

We also design a test dataset. Initially, 5 sen-
tences for each of the 4 types of sentence structures
(Active Voice, Passive Voice, Prepositional Ob-
ject, and Double Object) are sampled from Cross-
language Structural Priming Corpus (Michaelov
et al., 2023). Then, we employ a LLM, ChatGPT
3.5 (OpenAl, 2024), to augment the data. By pro-
viding the following prompt as one shot learning,
we expand each set to 30 sentences, resulting in a
total of 120 sentences for our test dataset:

Generate 30 sentences with the following struc-
ture: The cowboy gave the book to the sailor. Re-
place all the words while keeping the sentence
structure the same.

Correspondingly, in our test set, each Chinese sen-
tence is paired with a correct and an incorrect En-
glish sentence.

3 Language Models

We implement both a transformer model and an
RNN model to handle sequence-to-sequence tasks
using the encoder-decoder architecture. (See Ex-
periment of Figure 4) This architecture supports
the processing of both input sequences and output
sequences of varying lengths, which is crucial for
accommodating sentences with different structures
yet similar meanings. This section explores why
these language models can assist us identify struc-
tural priming. We train and test our RNN model
and transformer using AMD EPYC 75F3 8-Core
Processor and 1 NVIDIA A100 GPU.

3.1 Multi-head Attention in Transformer

In the transformer model, we use the self-attention
mechanism (AttModel) to capture sentence struc-
ture. This mechanism identifies dependencies
between different positions and adjusts the repre-
sentation of each word based on its relationship
with others, thus facilitating the learning of sen-
tence structure. Following Vaswani et al. (2017),

T

K

Attention(Q, K, V) = softmax (Q
Vdi
where Q, K,V are obtained through linear transfor-
mations of an input sequence of text, each with its
own learnable weight matrix. In the encoder part
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of model, O, K,V comes from the same source se-
quence, while in the decoder part, Q comes from
the target sequence, and K and V come from the
output sequence of the encoder. Since the compu-
tation of Q, K, and V requires processing the en-
tire input sentence, the model can simultaneously
focus on all positions and capture the structure of
the sentence.

In the decoder part of the transformer model,
the use of multiple attention heads allows for the
capture of diverse levels of sentence features, lead-
ing to a more comprehensive representation of sen-
tence structure. Each attention head specializes in
capturing specific semantic relationships, such as
word dependencies and distance relationships.

This approach enhances the model’s ability to
comprehend the intricacies of sentence structure.
The equation is as follows:

MH(Q, K, V) = Concat(head,, . .., heady) - W°

2
where WO is the weight matrix we need to train,
and head, ..., heady, computed through equa-
tion 1, represent the attention weights of each head
(we choose to use 8 heads). Concat is the operation
of joining tensors along their last dimension.

We also focus on selecting the positional encod-
ing method. While the common method involves
using sine and cosine functions, we opt for learn-
able positional embedding because we believe this
approach offers more advantages for learning struc-
tural priming because it helps our model better un-
derstand and encode the relative positions of words
within a sentence.

In contrast to the fixed positional encoding,
learnable positional embeddings assign different
weights to different positions, emphasizing the rel-
evant positional information that contributes to the
priming effect. This enables the model to capture
more intricate positional relationships and depen-
dencies specific to the task of structural priming.

3.2 GRU Encoder and GRU Decoder

Some studies (Zhou et al., 2018) show that RNNs
can preserve sentence structure and facilitate iden-
tification of structural priming environment. Their
sequential nature allows them to process input to-
kens based on a contextual understanding of the
entire sentence. As each token is processed, the
RNN’s hidden state is updated, retaining informa-
tion about preceding tokens and their contextual
relevance. This sequential processing enables the

model to capture word dependency relationships,
thereby preserving the structural integrity of the
sentence. Summarizing:

State(dh;, c;), p = f(State(dh;_1,ci-1),m) (3)

where function f refers to the hidden layer of the
RNN model, which is a neural network. It takes
the previous layer’s State i-1 and the output vector
from the previous time step m as input, and outputs
the next layer’s State i and prediction value p until
it encounters the termination symbol. In this state,
dh signifies the hidden state of the RNN unit in de-
coder, tasked with capturing pertinent information
gleaned from the input sequence. In the initial de-
coder step, dh embodies the final output state of the
encoder. In subsequent decoder steps, dh denotes
the preceding RNN unit’s output.

To address the challenge of not being able to
retain the entire sentence structure, we introduce
the attention mechanism. This feature of the RNN
model enables it to focus more on the parts of the
input sequence that are most relevant to the cur-
rent output, thereby enhancing prediction accuracy.
Its potential for predicting structural patterns stems
from its capability to capture dependencies within
sequential data and to exploit these dependencies
for prediction. As shown in equation 3, ¢ denotes
the attention. The calculation of c is as follows:

a; = g(ehi, dho) “

As before, dhg denotes the final state of the en-
coder and eh signifies the hidden state of the each
RNN unit in encoder. Function g is used to calcu-
late the weight alpha; of eh; in the final state dhy.
As aresult, we obtain the attention ¢ by combining
all previous states:

¢i= ) (aixdh) 5)

calculated by summing the products of the weight
« and the state in decoder dh.

Our study utilizes a variant of RNNs: the
Gated Recurrent Unit (GRU). The GRU encoder
and GRU decoder incorporate gating mechanisms,
which can effectively manage long-distance depen-
dencies and avoid the vanishing gradient problem.
Additionally, GRUs possess fewer parameters and
demonstrate higher computational efficiency.

Following Dey and Salem (2017), we define the
gate mechanism in two parts:

» Update Gate:
it = O'(szt + Uzht—l + bZ)



The update gate z; in the encoder controls the
blending of the current input x; and the previous
hidden state h,_;. The update gate z, in the de-
coder regulates the interaction between the current
input and the previous decoder state. This allows
the model to selectively incorporate relevant infor-
mation from the input when generating the output.

¢ Reset Gate:
re=0cWex, +Urhi—1 +b,)

The reset gate r; in the encoder regulates the in-
teraction between the current input x, and the pre-
vious hidden state /,_;. The reset gate r; in the de-
coder governs how the current input interacts with
the previous decoder state. This allows the model
to selectively forget certain parts of the input infor-
mation captured by the encoder, enabling the de-
coder to generate outputs that are less influenced
by outdated information from the input sequence.

4 Experimental Setup

To assess the effectiveness of our model in Chinese-
English, we adopt the standard bilingual evaluation
understudy (BLEU) metric (Papineni et al., 2002),
which ranges from O to 1, indicating the similarity
of predicted text against target text:

N
BLEU = BP - exp ( wy log Pn)

n=1

Here, N is the maximum n-gram order (typically
4), wy, is the weight assigned to each n-gram pre-
cision score, (ZnN:1 w, = 1) p, is the precision
score for n-grams of order n, and BP is the brevity
penalty which penalizes shorter results.

After generating predicted outcomes and assem-
bling a test set, we analyze the relationship be-
tween predictions and four types of reference sen-
tences: (1) correct mappings with the same struc-
ture; (2) semantically similar but structurally differ-
ent sentences; (3) semantically different but struc-
turally identical sentences; and (4) sentences that
differ both semantically and structurally.

We categorize the comparisons into two distinct
groups based on semantic similarity. In the first
category, encompassing sentences with identical
meanings, we hypothesize that effective structural
priming would result in higher BLEU scores be-
tween the predicted sentences and the reference
sentences, with the same structure compared to
those with different structures. This comparison
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Figure 5: BLEU Score for standard structural priming.
Comparison of ground truth datasets for testing and cal-
ibration.

aims to establish whether the model exhibits a pref-
erence for reproducing structures that are syntacti-
cally aligned with the ground truths when the se-
mantic content is constant.

The second category, which involves sentences
that differ in meaning, is particularly crucial for
demonstrating structural priming, as it eliminates
the influence of semantic similarity. If sentences
with identical structures receive higher BLEU
scores compared to those with different structures,
it would strongly suggest that the model’s predic-
tions are influenced by the structural aspects of the
input, regardless of semantic changes.

Through this methodology, we seek to rigor-
ously test for structural priming outputs, offering
insights into how the models process and replicate
structural properties of language.

5 Results and Analyses

We present the performance of the GRU-based
RNN and standard transformer model (Vaswani
et al., 2017) and then demonstrate their crosslin-
gual structural priming effect in Chinese-English
bilingual scenarios. We also present our insights
regarding the performance of open-source large
language models on the same dataset accordingly.

5.1 Structural Priming Performance

Our comparative analysis reveals that, although
both models achieve competitive BLEU scores, the
transformer model shows a slight edge in handling
complex sentence structures. Figure 5 shows that,
when the training dataset is sufficiently large, both
models attain high predicted BLEU scores for stan-
dard structured sentence segments.
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Figure 7: BLEU Score for correct priming. Compar-
ison between predictions for opposite cross-language
priming via average BLEU Score.

5.2 Crosslingual Structural Priming Effect

Through our examination of crosslingual structural
priming, we observe a noteworthy pattern: both
models facilitate the use of target-language syntac-
tic structures influenced by the source language.
However, the transformer model displays a more
pronounced priming effect, indicating a potential
edge in mimicking human-like syntactic adapta-
tion in bilingual contexts.

Figure 6 and Figure 7 show the BLEU scores
for machine-generated predictions with correct or
opposite priming test sets. From these we gain in-
sights into model performance. Specifically, we
evaluate the similarity levels between the model
predictions and the correct priming test sets (e.g.,
Active-Active, DO-DO) as well as the opposite
priming test sets (e.g., Active-Passive, PO-DO).
Higher BLEU scores against the correct priming
test sets indicate that the model predictions align
more closely with the appropriate structural prim-

ing, whereas higher scores against the opposite
priming test sets suggest deviations from the ex-
pected priming behavior.

The results reveal that when evaluated against
the correct priming test sets, the transformer model
exhibits similar levels to GRU (see Figure 6), with
slight improvements observed as the n-gram size
increases. Conversely, in comparison to oppo-
site priming, GRU generally outperforms the trans-
former (see Figure 7). Given that this compari-
son involves what is termed as “incorrect” priming,
GRU aligns more closely with the opposite prim-
ing test set. Since transformer shows a larger gap
between BLEU score (correct) and BLEU score
(wrong), We infer that the transformer adheres
more closely to the appropriate structural priming.

In a previous study, Michaelov et al. (2023) ex-
amine the presence of structural priming by com-
paring the proportion of target sentences produced
after different types of priming statements. Simi-
larly, for each experimental item in our study, we
prime the language model with a specific sentence
and calculate the normalized probabilities for the
two target sentences. These normalized probabili-
ties are computed as follows:

First, calculate the raw probability of each target
sentence given the priming sentence:

P(DO Target|DO Prime)
P(PO Target|PO Prime)
P(DO Target|PO Prime)
P(PO Target|DO Prime)

And the same method for:

P(Active Target|Active Prime)
P(Passive Target|Passive Prime)
P(Active Target|Passive Prime)
P(Passive Target|Active Prime)

These probabilities are then normalized to cal-
culate the conditional probability of the target sen-
tence if the model output is one of the two target
sentences. Taking DO | PO as example:

P (Target|Prime)
P (DO Target|Prime) + P (PO Target|Prime)

Py (Target|Prime) =

Since the sum of the normalized probabilities of
the two target sentences is 1, we only need to con-
sider the probability of one target type and com-
pare between different priming types. The reason
is that the probability of another target type can
be derived from this, i.e. Py (Target|Prime) =
1 — Py (Target|Prime). By considering only one
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rect cross-language priming chunks in the machine pre-
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goal type, we can directly compare the priming ef-
fects of the two priming types on that goal type,
which is the main focus of analysis in structural
priming research. The quantitative comparative
findings depicted in Figure 8 derived from the sen-
tence chunk dimension reveal that the transformer
model generally outperforms GRU. Through a hor-
izontal examination of priming structural types, it
is evident that machine predictions exhibit superior
performance with respect to active/passive struc-
tures compared to those of PO/DO.

The trained transformer model is only exposed
to the Chinese-English dataset. Prior research
(Michaelov et al., 2023) has shown that LLMs can
mimic human language structural priming effects
in various scenarios, both in within-language and
in crosslingual experiments. However, there is
a lack of evidence regarding the effectiveness of
such multilingual language models in demonstrat-
ing Chinese-English structural priming effects. To
address this, we adopt XGLM model proposed by
Lin et al. (2022) # and evaluate their performance
using the normalized score defined above, on the
same set of tasks designed for RNN and transform-
ers. Among the four categories in our study, we
find this language model family exhibits greater
sensitivity in demonstrating structural priming ef-
fects in passive and prepositional tasks (see Fig-
ure 9), with the effect being more noticeable in the
former case.

4XGLM is developed by Facebook Research and is avail-
able under the MIT license. For more details, see the li-
cense at https://github.com/facebookresearch/fairseq/
blob/main/examples/xglm/README.md

6 Discussion

This study evaluates cross-language structural
priming effects in RNN and transformer models
in the context of Chinese-English. We find evi-
dence for abstract crosslingual grammatical repre-
sentations in these models, which operate similarly
to those found in prior research.

6.1 Conclusions

Our results show that BLEU scores decrease as the
length of n-grams increases, a trend that is con-
sistent with existing findings in sentence-similarity
evaluation (He et al., 2022). Longer n-grams such
as bigrams and trigrams, capture more specific lin-
guistic contexts, making exact matches less likely
unless the target sentence is very precise. More-
over, any minor errors in word choice or sequence
can disrupt the alignment of these longer n-grams.

Importantly, our results indicate that transformer
models outperform RNNs in modeling Chinese-
English structural priming, a finding that is intrigu-
ing given prior research. Traditionally, RNNs have
been effective in modeling human sentence pro-
cessing, capable of explaining phenomena such as
garden-path effects and structural priming through
their sequential processing capabilities, which are
thought to mirror aspects of human cognitive pro-
cessing (Frank, 2021).

This superiority of transformers raises questions
about the efficacy of RNNs as human sentence pro-
cessing models, especially if they are surpassed
by a model considered less cognitively plausible.
However, it is possible to interpret the results as
supportive of the cognitive plausibility of trans-
formers, particularly due the attention mechanism.

While the concept of unlimited working mem-
ory in transformers is viewed as implausible, some
researchers argue that actual human working mem-
ory capacity is much smaller than traditionally
estimated—limited to only two or three items.
They suggest that language processing involves
rapid, direct-access retrieval of items from mem-
ory (Lewis et al., 2006), a process compatible with
the attention mechanism in transformers. This
mechanism assigns weights to previous inputs
based on their relevance to the current input, which
aligns with cue-based retrieval theories, indicating
that memory retrieval is influenced by the similar-
ity of current cues to stored information (Parker
and Shvartsman, 2018).
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6.2 Future Directions

A promising future direction involves developing
a model capable of generating sentences based on
new semantic concepts and thematic roles before
and after priming. Although this endeavor presents
challenges, it holds the potential to mitigate the lex-
ical boost effect (see Limitations).

Shifting our focus from production to compre-
hension could also be fruitful. By measuring the
surprisal levels in models, we can gain insights
into how structural priming influences model com-
prehension, as suggested in recent studies (Merkx
and Frank, 2021). Surprisal, in information theory
and psycholinguistics, quantifies the unexpected-
ness of a word in a given linguistic context. Lower
suprisal values indicate greater probability, i.e.,
consistently lower surprisal levels at structurally
complex points in sentences that follow a priming
example would suggest effective preparation by the
priming process. This method offers a way to ex-
plore how structural priming impacts language pro-
cessing in models, without the confounding effects
of repeated vocabulary.

Additionally, there is evidence suggesting an in-
verse relationship between the frequency of linguis-
tic constructions and the magnitude of priming ef-
fects observed with those constructions (Jaeger and
Snider, 2013; Kaschak et al., 2011). For exam-
ple, the double object (DO) construction is more
common in American English than the preposi-
tional object (PO) construction (Bock and Grif-
fin, 2000). Studies have shown that the less fre-
quent PO construction exhibits stronger priming
effects compared to the more frequent DO con-
struction (Kaschak et al., 2011). This aligns with
theories of implicit learning in structural priming,
where more frequently encountered structures are
less “surprising” to the language system and thus
generate weaker priming effects.

To delve further into this, training models on
corpora consisting of American versus British En-
glish, which differ in their construction frequen-
cies, could reveal whether a similar inverse fre-
quency effect is observed in computational mod-
els. This approach would help illuminate the de-
pendency of structural priming on construction fre-
quency, potentially providing deeper insights into
how implicit learning processes are modeled com-
putationally.

Limitations

A limitation of the current study is that Chinese-
English priming effect of the models is not com-
pared with human data. We equate the models’
ability to replicate cross-language priming with the
structural “correctness” of their outputs, yet em-
pirical studies indicate that even humans do not
achieve full priming rate (Hsieh, 2017). There-
fore, it is conceivable that if the models’ outputs
are compared directly to human data, RNNs might
more closely resemble human performance. This
limitation highlights an area for future research,
which could involve direct comparisons to human
priming data to better assess the models’ fidelity to
human language processing.

A further limitation is that our models are not ca-
pable of generating sentences based on novel word
concepts and thematic roles, such as the picture
naming task in Figure 1. Consequently, some crit-
ics may argue that what our models essentially do
is translate from Chinese to English without gener-
ating new semantic content, as the semantic infor-
mation remains consistent from the priming sen-
tence to the output sentence.

Despite these critiques, we maintain that the cur-
rent study design still validly assesses the priming
effect. This is because the models must choose
which sentence structure to use from among vari-



ous structures that share the same semantic content,
a choice influenced by the priming effect.

Nevertheless, we acknowledge that our design
is susceptible to the “lexical boost” effect, where
the structural priming effect is intensified when the
same lexical head is repeated in both the prime and
target sentences (Pickering and Branigan, 1998).
For instance, if the target sentence is “Alice gave
Bob a book,” the priming effect is more pro-
nounced if the prime sentence was “Carl gave Da-
nis a letter” rather than “Alice showed Bob a book.”
Given that the semantic content remains constant
across the prime and output sentences in our study,
the observed priming effect is artificially strength-
ened compared to what might be observed in a pure
priming task.

Another aspect worth discussing is the signifi-
cance of using LLMs to simulate human language
processing efforts. As highlighted in the introduc-
tion, the ultimate goal is to deepen our understand-
ing of how the human brain functions, assuming
that models which appear more human-like exter-
nally might also mirror human cognitive processes
internally. However, one might question the va-
lidity of using LLMs for this purpose. Given that
these models often function as “black boxes,” their
internal operations remain largely opaque. Despite
their impressive computational abilities, the lack of
transparency means that even if they outperform
more interpretable models, they do not necessarily
enhance our understanding of brain function.

Previous studies argue that crosslingual struc-
tural priming might be affected by the asymme-
try of training sources in certain language pairs
(Michaelov et al., 2023). By measuring the prob-
ability shifts for source and target sentences, we
find such multilingual auto-regressive transformer
language models display evidence of abstract struc-
tural priming effect, although their performance
varies across different scenarios.

Ethical Statement

The current study adheres to the ethical standards
set forth in the ACL Code of Ethics. The training
dataset used in this research is open, publicly avail-
able, and does not include demographic or identity
characteristics (Xu, 2019).

Potential risks may arise from the fact that trans-
lations in the training data (a Chinese-English par-
allel sentence pair dataset) may not always be per-
fectly equivalent. Some words may carry cultural

nuances that differ between Chinese and English.
For example, the terms “F[&” (heshang) and “f&
&> (nigil), translated as “monk” and “nun,” have
specific cultural connotations in Chinese that differ
from the perception of a “monk™ in Western con-
texts, which is typically associated with Christian
monasticism. These roles in Chinese Buddhism
embody cultural and social aspects not fully cap-
tured by the Western terms, potentially leading to
a loss of cultural meaning in translation.

Furthermore, while ChatGPT has been used to
expand the test dataset, the authors have manually
verified the output to ensure it remains unbiased.

The potential risk of misuse of the computa-
tional model is low, as the encoders and decoders
are designed to perform straightforward translation
tasks and do not have the capability to self-generate
harmful content.
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