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Abstract
Model stealing aims at inferring a victim model’s
functionality at a fraction of the original train-
ing cost. While the goal is clear, in practice the
model’s architecture, weight dimension, and orig-
inal training data can not be determined exactly,
leading to mutual uncertainty during stealing. In
this work, we explicitly tackle this uncertainty by
generating multiple possible networks and com-
bining their predictions to improve the quality of
the stolen model. For this, we compare five popu-
lar uncertainty quantification models in a model
stealing task. Surprisingly, our results indicate
that the considered models only lead to marginal
improvements in terms of label agreement (i.e.,
fidelity) to the stolen model. To find the cause
of this, we inspect the diversity of the model’s
prediction by looking at the prediction variance as
a function of training iterations. We realize that
during training, the models tend to have similar
predictions, indicating that the network diversity
we wanted to leverage using uncertainty quantifi-
cation models is not (high) enough for improve-
ments on the model stealing task.

1. Introduction
Machine Learning as a Service (MLaaS) enables an easy
and cost-effective way to develop machine learning services.
However, it also increases the risk of model stealing for
attackers who can exploit barrier-free invocations, such as
APIs (Cinà et al., 2023). For this, model stealing aims at
inferring the model functionalities from a black-box model
at a fraction of the original training costs (Jagielski et al.,
2020) while having access only to the outputs of the black-
box model. Therefore, the attacker trains a surrogate model
on a queried dataset. Previous studies assumed either full or
partial knowledge about the network architecture (Orekondy
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et al., 2019; Kariyappa et al., 2021), which is often already
indicative for the network functionalities, or attempted to re-
verse engineer it through probing (Oh et al., 2019). However,
in practice, the architecture cannot be precisely determined,
leading to mutual model uncertainty.

In this work, we hypothesize that the attacker can explic-
itly tackle this uncertainty by simultaneously considering
multiple networks from the model space, which is naturally
done in Bayesian model averaging. Therefore, we evalu-
ate five different uncertainty quantification models, which
sample from a (learned) parameter distribution during in-
ference, as the surrogate model to reinterpret each sample
from the parameter distribution as one possible target net-
work: Bayesian Neural Networks (Blundell et al., 2015),
Monte Carlo Dropout (Gal & Ghahramani, 2016), Concrete
Dropout (Gal et al., 2017) and the straight-forward but more
costly approach of deep and heterogeneous ensembles (Lak-
shminarayanan et al., 2017; Lukovnikov et al., 2021). To
test our hypotheses, we compare the model-stealing per-
formance of the uncertainty quantification models with a
single deterministic model. In all approaches, we consider
different-sized target models trained for image classification
tasks on CIFAR10 (Krizhevsky, 2009) and SVHN (Netzer
et al., 2011).

Our experiments show that uncertainty quantification mod-
els only lead to insignificant improvements over a single-
model baseline, implying that the Bayesian model average
does not lead to improvements in mimicking the functional-
ities of the target model. To gain a deeper understanding of
this, we analyzed the variance of the model predictions as a
function of training iterations. This shows that during train-
ing, the models converge to similar predictions, indicating a
limited function variability on the test data.

In summary, we make the following key contributions:

• We present the first evaluation of uncertainty quantifi-
cation models used in the context of model stealing
and evaluate them in terms of fidelity.

• We further discuss their limitations by analyzing fi-
delity in relation to the model’s output variance.
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2. Background
All uncertainty quantification methods in this paper their
final network predictions based on the following approxi-
mation

f(y|x) ≈ 1

M

M∑
i=1

f(y|x, θi) with θi ∼ q(θ) , (1)

where x and y are the input and corresponding label, and
θi are parameters of the model drawn M times from an
underlying distribution. In the following, we briefly explain
the differences of q(θ) for each network type.

Bayesian Neural Networks. Bayesian neural networks
(BNNs) are often referred to as a principal way to quantify
uncertainty. One specific characteristic of those networks
is the derivation of a posterior distribution q(θ) over model
parameters. In this setting, eq. (1) could be interpreted as
the Monte Carlo approximation of the posterior predictive
distribution.

Monte Carlo Dropout. Monte Carlo (MC) Dropout is
an (approximate) Bayesian method where neurons are ran-
domly dropped with a fixed dropout probability during train-
ing as well as during inference. These pattern of deactivated
neurons are named dropout masks. In this setting q(θ) could
be interpreted as the distribution over these dropout masks.

Concrete Dropout. Contrary to MC dropout, the dropout
probability in concrete dropout (CD) is learned through a
continuous relaxation of the discrete dropout mask. The
interpretation of q(θ) stays nevertheless identical.

Deep Ensembles. In Deep Ensembles (DEs) multiple net-
works with the same network architecture but different ini-
tial weight values are trained. When trained with weight
decay, these can be seen as samples from a posterior q(θ).

Heterogeneous Ensembles. Going one step further, Het-
erogeneous Ensembles (HEs) combine different network
architectures with different properties to an ensemble en-
abling a broader exploration of the function space.

3. Stealing with Uncertainty
Quantification Models

Adversary Goal.

The attacker’s goal is to create a surrogate model f̂ that maxi-
mizes the prediction agreement, referred to as fidelity (Jagiel-
ski et al., 2019), given by

1

|Dtest|
∑

xi∈Dtest

1{f̂(xi) = f(xi)} , (2)

with a target model f for a test set Dtest, where 1{·} is an
indicator function.

Table 1. Number of parameters for the target models and their
accuracies in % for CIFAR10 and SVHN.

Name Parameters CIFAR10 Accuracy SVHN Accuracy

Small 196,352 83.6 88.5
Medium 2,040,352 88.2 92.0

Large 63,582,218 93.7 95.6

We assume that the adversary has knowledge of the seman-
tics of the black-box oracle; that is, they know the target
model’s input representation and the corresponding task.
Furthermore, we also assume the attacker has access to
public task-relevant pretrained models or datasets. The
adversary has no knowledge of the inner workings of the tar-
get model. This includes the architecture, hyperparameters,
training procedure, and training dataset. Given an image
x ∈ X, the adversary receives a target label y ∈ {0, . . . , k},
where k is the number of classes. Furthermore, we assume
that the attacker can send unlimited queries to the target and
retrieve the corresponding labels (Jagielski et al., 2020).

Experimental Setup. All experiments are conducted on
the CIFAR10 and SVHN datasets while using four NVIDIA
GeForce RTX 2080 Ti. We use the first half of the respective
test set to evaluate the target models. Fidelity calculations
of the surrogate models are conducted on the second half.

Target models. We consider three different target models
of varying sizes. A small and a medium-sized model were
trained from scratch. As a large model, we fine-tuned a
pretrained ResNet152-V2. The training is conducted on half
of the training datasets, respectively. We use the categorical
cross-entropy loss and the Adam optimizer with an initial
learning rate of 1e − 5. The number of parameters and
accuracies are reported in Table 1.

Surrogate models. For training all surrogate models, the
adversary generates a surrogate dataset by querying the
target model with the second half of each training dataset.
We used pretrained architectures and finetuned them for 30
epochs for all models except for the BNN where we used
50 epochs because of slower training convergence. We use
the following surrogate models:

Baseline. A ResNet152V2 (Res) and an InceptionV3
(Inc) architecture with an added feed-forward classification
head.

MC Dropout (MCD). As an extension of the baseline
model, where we added two dropout layers each with a
dropout rate of 50% before the last two layers in the feed-
forward head.

Concrete Dropout (CD). Modifies the baseline
model by replacing all layers of the feed-forward head with
concrete dropout layers of the same width.
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Bayesian Neural Network (BNN). The baseline
models architecture is altered by replacing all layers of the
feed-forward head by probabilistic reparameterization lay-
ers and trained via BayesByBackprob (Kingma & Welling,
2014).

Deep Ensemble (DE). Consists out of six baseline
models each with a randomly initialized classification head.

Heterogeneous Ensemble (HE). Combines six
different pre-trained model architectures: ResNet50,
ResNet152V2, VGG16, VGG19, InceptionV3, and
DenseNet169.

For inference, 50 forward passes for the dropout and
Bayesian models are used.

Fidelity results. From the fidelity of the different surrogate
methods and architectures in Table 2, it can be seen that
a ResNet152V2 surrogate architecture leads to improved
fidelity for the large target model. This indicates that a
higher degree of similarity between the target and surrogate
architecture positively impacts the effectiveness of model
stealing. Conversely, other architectures only marginally
influence fidelity. We further note that the BNN does not
increase the fidelity for any target model in comparison to
the baseline model. Similarly, MC dropout produces only
minor improvements for stealing the medium target model
using CIFAR10. Improvements over the baseline for model
stealing with CD can be seen for several combinations of
target size and model architectures for both datasets. How-
ever, an ensemble of models consistently improves fidelity,
while specifically HEs consistently reach the highest fidelity
for CIFAR10.

Vanishing prediction variance. Our initial experiments
raise the question of why uncertainty quantification models
only slightly improve the performance of model stealing at-
tacks. We hypothesize, that the induced network variability
through sampling does not lead to very diverse networks,
such that they are not able to eliminate potential failure
cases. To test this, we show in Figure 1 the prediction vari-
ance calculated on the test set generated by the small target
model over the course of the training epochs for all architec-
tures. A lower variance in the different output predictions
stems from the same/similar predictions of all subnetworks,
which indicates a weak model exploration of subnetworks
on these datapoints. We observe that the prediction variance
for MC dropout and the BNN first increases, probably due to
an initial warm-up phase with small weights. In the further
course, the variance decreases to less than 0.002. This level
is also not surpassed by CD. Furthermore, we observe that
the prediction variance of our DE increases during training.
This could be traced back to findings from Fort et al. (Fort
et al., 2019), where the authors show that “deep ensemble
tend to explore multiple modes in function space”, whereas

BNNs often focus on a single mode, leading to less vari-
ability. Compared to the others, only the HE has a notably
different prediction variance. Note, that the HE uses dif-
ferent model architectures and different pre-training, while
only the feed-forward heads in the Bayesian, dropout, and
deep ensembles models induce variability. Consequently,
heterogeneous models in an ensemble preserve higher pre-
diction variance, indicating higher function space diversity
which could be the cause for their improved fidelity.

This diminishing variance over the course of training leads
us to test the practical implications of the amount of forward
passes during the prediction of the Bayesian and dropout
models. Hence, we reduced the amount of forward passes to
six, the same number of sub-models we used in the ensem-
bles. We observe that indeed, the amount of forward passes
has little to no impact on the final fidelity of the surrogate
models.
Furthermore, we assess the training cost of uncertainty quan-
tification models and compare it with respect to the training
cost of a standard model. Our results show that all methods
result in much higher training and prediction times due to
the significant changes to the training and inference proce-
dure. This means using uncertainty quantification models
results in a significant time overhead compared to standard
models.

4. Related Work
Our work combines concepts from uncertainty quantifica-
tion with model stealing attacks. In this section, we examine
related work and approaches.

Uncertainty Quantification Models Advances in uncer-
tainty quantification find there application in many different
fields, like object detection (Harakeh et al., 2019; Le et al.,
2018), autonomous driving (Michelmore et al., 2019), or
medical analysis (Dahal et al., 2020; Araújo et al., 2020). A
mathematical sound way of doing uncertainty quantification
is with Bayesian neural networks (Neal, 1995; MacKay,
1992), which were already introduced three decades ago.
Central to these is the derivation of a posterior distribution
which is computationally challenging. Hence, many works
were dedicated to make these more scalable via approxima-
tions and taking advance of the increase of computational
power (Welling & Teh, 2011; Louizos & Welling, 2016;
Blundell et al., 2015; Maddox et al., 2019). Despite these
advances, deriving a ”good” approximate posterior distri-
bution is still difficult and therefore several other works
explore other ways of uncertainty quantification (Lakshmi-
narayanan et al., 2017; Liu et al., 2020; Van Amersfoort
et al., 2020). In contrast to prior work, we use uncertainty
quantification models which naturally create an ensemble
of models in a model stealing setting. Therefore we try
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Table 2. Fidelity of the surrogate models in % for different network architectures and sizes. Bold numbers highlight the maximum fidelity.
(a) CIFAR10

Target Baseline MCD CD BNN DE HE
Res Inc Res Inc Res Inc Res Inc Res Inc -

Small 85.18 85.14 85.10 84.82 85.48 84.80 84.88 83.24 85.88 85.50 86.96
Medium 88.91 89.38 89.86 89.62 89.72 89.52 88.48 86.00 90.04 90.06 90.49

Large 93.72 92.44 93.24 92.18 93.20 92.52 90.72 87.84 93.94 93.04 94.09

(b) SVHN

Target Baseline MCD CD BNN DE HE
Res Inc Res Inc Res Inc Res Inc Res Inc -

Small 91.06 90.89 90.65 90.17 91.33 90.89 91.15 90.88 92.45 91.78 92.55
Medium 92.93 92.59 92.61 92.40 93.24 92.29 92.87 92.11 93.68 93.52 94.08

Large 95.74 94.38 95.07 94.42 95.85 94.48 95.06 94.16 96.52 95.65 95.84

(a) CIFAR10 and ResNet152V2 (b) SVHN and InceptionV3

Figure 1. Variance of the predictions generated by the subnetworks for each method plotted over the course of training. We show the
variances for two combinations of dataset and surrogate architecture.

to leverage the network flexibility of different approaches
without using those network for their original purpose.

Model stealing attacks Model-stealing attacks against
DNNs have been exploited in prior works for stealing archi-
tecture (Oh et al., 2018), parameters (Tramèr et al., 2016;
Yu et al., 2020; Rakin et al., 2022), hyperparameters (Wang
& Gong, 2018), information on training data (Shokri et al.,
2017), and decision boundaries (Papernot et al., 2016) of the
target models. Jagielski et al. (Jagielski et al., 2019) have
been the first to develop model stealing attacks in terms of
fidelity. Expressly, they assume the attacker can only query
the target model and look at its output softmax layer to con-
struct a surrogate model which maximizes the percentage
of matching predictions with respect to the target classifier

on any input. Conversely to prior works, we investigate the
effectiveness of fidelity-based model stealing attacks when
the attacker exploits uncertainty quantification models as
surrogates. We investigate if this gained flexibility in the
parameter distribution offered by these models is beneficial
for stealing the model more efficiently.

5. Conclusion
The availability of MLaaS and the high costs of train-
ing ML models demonstrate model stealing as a consid-
erable security threat. In practice, however, the archi-
tecture of a black-box model and the characteristics of
the weights cannot be determined precisely, introducing
an inherent uncertainty for a successful extraction. In
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this work, we explicitly tackle this uncertainty when stag-
ing a model-stealing attack by using models for uncer-
tainty quantification, which allow the attacker to simultane-
ously probe multiple network configurations. Our findings
demonstrate that, in general, this approach only leads to
marginal improvements. Furthermore, we have shown that
it is difficult to maintain a high model variability for in-
creasing training epochs. Lastly, we observe that combining
different architectures into an ensemble can slightly im-
prove upon the baseline, even if the latter uses the same
architecture as the victim model.
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Araújo, T., Aresta, G., Mendonça, L., Penas, S., Maia, C.,
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Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. Stealing machine learning models via prediction
apis. In Holz, T. and Savage, S. (eds.), 25th USENIX
Security Symposium, USENIX Security 16, pp. 601–618.
USENIX Association, 2016.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Wang, B. and Gong, N. Z. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security
and Privacy, SP, pp. 36–52. IEEE Computer Society,
2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on International Conference on
Machine Learning, ICML’11, pp. 681–688, Madison, WI,
USA, 2011. Omnipress. ISBN 9781450306195.

Yu, H., Yang, K., Zhang, T., Tsai, Y.-Y., Ho, T.-Y., and Jin,
Y. Cloudleak: Large-scale deep learning models stealing
through adversarial examples. In NDSS, 2020.

https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://arxiv.org/abs/1909.09884
https://arxiv.org/abs/1909.09884
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1602.02697

