
Knowledge-Based Systems 260 (2023) 110150

[
a
d
e
l
‘
c
c
i
c
n
g

[
e

z
m

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A disentangled linguistic graphmodel for explainable aspect-based
sentiment analysis
Xiaoyong Mei a, Yougen Zhou a, Chenjing Zhu a, Mengting Wu a, Ming Li a,∗, Shirui Pan b

a Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
b School of Information and Communication Technology, Griffith University, QLD 4222, Australia

a r t i c l e i n f o

Article history:
Received 16 June 2022
Received in revised form 2 November 2022
Accepted 22 November 2022
Available online 25 November 2022

Keywords:
Aspect-based sentiment analysis (ABSA)
Explainability
Disentangled graph representation learning

a b s t r a c t

Aspect-based sentiment analysis (ABSA) aims to use interactions between aspect terms and their
contexts to predict sentiment polarity for given aspects in sentences. Current mainstream approaches
use deep neural networks (DNNs) combined with additional linguistic information to improve per-
formance. DNN-based methods, however, lack explanation and transparency to support predictions,
and no existing model completely solves the trade-off between explainability and performance. In
contrast, most previous studies explain the relationship between input and output by attribution;
however, this approach is insufficient to mine hidden semantics from abstract features. To overcome
the aforementioned limitations, we propose a disentangled linguistic graph model (DLGM) to enhance
transparency and performance by guiding the signal flow. First, we propose a disentangled linguistic
representation learning module that extracts a specific linguistic property via neurons to help capture
finer feature representations. To further boost explainability, we propose a supervised disentangling
module, in which labeled linguistic data help reduce information redundancy. Finally, a cross-linguistic
routing mechanism is introduced into the signal propagation of linguistic chunks to overcome the
defect of distilling information in an intralinguistic property. Quantitative and qualitative experiments
verify the effectiveness and superiority of the proposed DLGM in sentiment polarity classification and
explainability.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, aspect-based sentiment analysis (ABSA)
1,2] has emerged as a significant focus in affective computing
nd sentiment analysis [3] regarding the ability of ABSA to pre-
ict the sentiment polarity of specific aspects in sentences. For
xample, a review about restaurants contains the statement ‘‘I
ike the food here, but the service is dreadful’’.. The aspect term
‘food’’ has a positive sentiment polarity according to ‘‘like’’; in
ontrast, the sentiment polarity of ‘‘service’’ is negative, as indi-
ated by ‘‘dreadful’’. The key idea behind ABSA is to model the
nformation about interactions between aspect terms and their
orresponding contexts. Along this line, a variety of deep neural
etwork (DNN)-based methods have been proposed to learn a
ood representation with additional linguistic information.
DNNs, especially graph neural network (GNN) approaches

4–8], have performed very well in ABSA; however, they lack
xplanation and transparency to support predictions. Intuitively,
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detailing a reason for a prediction helps gain trust from users. To
develop a human-interpretable approach to ABSA, Yadav et al. [9]
proposed an explainable method based on a Tsetlin Machine to
illustrate what drove the model to learn the corresponding con-
text information for aspects. However, the model’s performance
still fell short of the performance of existing DNN-based ABSA
models. Certain classic models, such as decision trees, are par-
ticularly easy to understand. However, these models do not offer
optimal performance in terms of sentiment polarity prediction.
Therefore, no existing model truly excels at both performance and
explainability.

In addition, classification performance metrics, such as classifi-
cation accuracy, are not sufficient to precisely reflect the capabil-
ities of the model. For example, when different aspects express
the same sentiment polarity, classification may be affected by
other aspects or the entire sentence. As shown in Fig. 1, the
model based on different regions can give the same prediction.
Intuitively, the fusion of the multiple linguistic features can grad-
ually mark the most helpful aspect terms and opinion words
for sentiment polarity classification. We observe that the aspect-
opinion pair tends to consist of a noun and an adjective, and
the dependency types can help match the aspect-opinion pair.

The distances can also boost the relevance of two words. To this
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Fig. 1. An example to illustrate that the activation regions between distance, parts of speech, and syntax in ABSA make the same sentiment polarity predictions,
and all agree with sentiment labels. The aspect term is highlighted in red, and the words with high weights are underlined.
end, we propose an explainable ABSA task that can be easily
understood and can explain the linguistic features the model has
learned from the sentence to infer the sentiment result of the tar-
get aspect; achieving such a task requires a certain transparency
of the model.

More importantly, we argue that existing explainable models
for ABSA are inadequate for associating abstract semantic fea-
tures with linguistic properties. Additionally, as shown in Fig. 1,
the available explainable methods can infer a direct connection
between the underlined words and sentiment polarity by attri-
bution [10]; however, the hidden relation is not sufficient to
mine out which linguistic feature is the most important. The
key reason for this is that attribution-based models calculate the
contribution of each word to the prediction according to the orig-
inal word embedding vector, which ignores the fundamental fact
that neural vector representations often contain much linguistic
information. Disregarding this fact, the explanation is coarse and
fails to reflect the impact of linguistic features on predictions.

To address the aforementioned issues, we propose a unified
model to classify sentiment polarities and provide better ex-
plainability. We first formulate the explainable ABSA as an index
generation task, which could enable sentiment polarity predic-
tion by class index generation and generating textual or visual
explanations by using sequence index generation. Specifically,
we transform the raw text into a graph and introduce an ego
node representing the aspect term, for which the proposed model
can perform the index generation and leverage the powerful
modeling capabilities of the GNN to achieve high performance.
Simultaneously, we introduce a linguistic disentangling module
in the GNN to provide explanations for the model by investigating
the individual dimensions in the original word embedding vector
as input signals to linguistic property neurons. Our goal is to en-
courage neurons to learn different linguistic information through
the loss function. After the linguistic signals are extracted, a
routing mechanism is employed to direct the information flow
between the collections of chunks containing specific linguistic
information for prediction.

In summary, our core research contributions are as follows:

1. A novel model (termed DLGM), which facilitates the mul-
tilinguistic properties in word embeddings for enhanc-

ing finer feature representation and provides graph-based

2

model transparency, is proposed for explainable aspect-
based sentiment analysis (ABSA).

2. An improved disentangling module under a supervised
learning task is developed; labeled linguistic data help re-
duce information redundancy over various linguistic prop-
erties through independence regulation.

3. We develop a cross-linguistic routing mechanism in GNN,
to overcome the exchange barriers among different linguis-
tic information flows and to some extent offer explainable
ABAS results from the perspective of linguistic properties.

The remainder of this article is organized as follows. Section 2
revisits prior works on ABSA and the background of explainabil-
ity. Section 3 describes the details of our methods. Section 4 dis-
cusses the experimental results and analyzes the ablation studies.
Finally, Section 5 presents the conclusion.

2. Related works

In this section, we primarily revisit prior works on ABSA;
these works can be generally classified into two types: ABSA
without linguistic information and ABSA with linguistic infor-
mation. Additionally, we briefly review the existing works on
explainability.

2.1. ABSA without linguistic information

Most works along this line aim to extract features from input
sentences, often by splitting input sentences into aspect terms
and their contexts. For example, Vo and Zhang [11] proposed
extracting features from each section by using word2vec embed-
dings and combining the features for prediction by using pooling
mechanisms. Pham and Le [12] initialized multiple convolutional
neural networks (CNNs) to obtain diverse vector representations
and concatenate all outputs to generate a comprehensive repre-
sentation for classification. Tang et al. [13] proposed exploiting
the interaction between aspects and context words to integrate
features by using a long short-term memory (LSTM) network. To
automatically mine relations between aspect terms and their con-
texts, Ma et al. [14] introduced attention mechanisms to model
the relations between aspect terms and their context. Tay et al.

[15] used a deep memory network for feature encoding and
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ttention mechanisms to capture the importance of each context
ord for classification. Song et al. [16] used BERT as a word
mbedding module with attention mechanisms to extract the
spect-context interaction. Various neural network methods that
o not rely on linguistic information have realized automatic
eature encoding and achieved decent classification performance.

.2. ABSA with linguistic information

To further improve the performance, researchers have at-
empted to introduce additional linguistic information into neu-
al network models in ABSA. Li et al. [17] considered posi-
ion information and proposed a hierarchical network based on
osition-aware attention to learn aspect-specific oriented repre-
entations. Phan and Ogunbona [18] proposed a part-of-speech
POS)-aware self-attention mechanism to model POS embed-
ings for subsequent prediction. Furthermore, recent research
as shown that syntactic information is useful for prediction in
BSA. Dong et al. [19] achieved information propagation from
ext words to aspect terms by transforming the primitive depen-
ency tree into a binary tree and applying an adaptive recurrent
eural network (AdaRNN). Tian et al. [20] used key–value mem-
ry networks to encode the dependency label on arcs in the
ependency tree to improve prediction accuracy. Recently, using
raph neural networks (GNNs) to encode syntactic structures has
chieved significant performance. Wang et al. [4] and Zheng et al.
21] attempted to reconstruct the original dependency tree into
n aspect-oriented dependency tree. He et al. [22] and Zhang et al.
23] integrated the tree-based distance between words into an
ttention mechanism. Bai et al. [7] extended RGAT to separately
ncode dependency labels and aspect contextual information and
hen fused them for classification. In this work, our method
ontinues to adopt a GNN as the feature encoder similar to the
bove models; however, a cross-linguistic routing mechanism is
ntroduced to propagate distinct linguistic information on the
raph and generate the explanation of ABSA with the help of the
raph structure.

.3. Explainable NLP

Driven by the need for transparency, deep learning explain-
bility has been an important direction in the NLP commu-
ity [24,25]. Current explainability methods are categorized into
ost hoc explainability and intrinsic explainability [26], which dif-
er according to whether the generated explanations require post-
rocessing after the model makes a prediction, or whether they
rise as a part of the model. Post hoc explainability aims to pro-
ide explanations after the predictions are made for an existing
odel. A well-known example is LIME [25], which approximates
odel decisions by using a surrogate model applied following

he predictors operation to produce explanations. A recent de-
elopment in this line is GEF [27], which proposes a unified
ramework to explain a generic encoder–predictor architecture.
nother group of post hoc methods are gradient-related [28–31];
hese methods calculate the gradient of the output by using an
nput feature to identify the important features.

In contrast, intrinsic explainability approaches require the
onstruction of self-explanatory models by using information
mitted by the model to generate explanations along with the
redictions. Decision trees [32] and rule-based models [33,34] are
epresentative examples of intrinsic explainability models, while
eature saliency approaches (such as attention mechanisms) out-
erform these classic models [35]. However, the explanations
rovided by attention weights are not always reliable [36–40],
nd the meaning of the weight distribution cannot be further
3

inferred. A reliable explanation can be achieved by adding ex-
plainability constraints in model learning or by using an ensemble
of neuron symbolic AI tools [41] to accurately represent the
true reasoning behind the model prediction. Our work falls into
this category by inducing labeled linguistic information in model
learning to disentangle representations. Unlike previous works,
we attempt to enhance model explainability by exploiting the
given linguistic information in original word embeddings.

3. Methodology

For our proposed method, we first formalize the explainable
ABSA under a unified framework to generate explanations and
classify sentiment polarities classification. Then, we detail our
proposed disentangled linguistic graph model (DLGM), which
consists of three components to distangle linguistic graphs. The
overall framework of the proposed DLGM is illustrated in Fig. 2.

3.1. Task formulation

For the explainable ABSA, there are two types of subtasks,
namely, explanation generation and sentiment polarity classifica-
tion, whose targets can be represented as sequence indices and
class indices, respectively. Therefore, we can formulate these two
types of subtasks in a unified framework. Each instance in the
conventional ABSA consists of two components: an aspect and
the corresponding sentence. Formally, we denote them as T =

{wi, wi+1, . . . , wi+m−1} and S={w1, w2, . . . , wi, . . . , wm, . . . , wn},
wherem and n are the lengths of T and S, respectively. For a given
instance, we transform the raw text into a graph G = (V, E),
where V denotes all words presented in the sentence and E
contains all edges between nodes. In general, a graph includes
an adjacency matrix A ∈ Rn×n and a node feature matrix X ∈

Rn×c , where c denotes the dimension of the feature vector. The
adjacency matrix satisfies Aij = 1 if there is an edge between a
pair of nodes, and the node feature matrix is obtained by a pre-
trained language model, where each row contains much linguistic
information. The purpose of explainable ABSA is to disentangle
the input features X into chunks; map each chunk with the
specific linguistic property (such as POS); and then introduce a
linguistic information routing into a GNN to refine the linguistic
representations, forming the final representation sequence H for
classification. Simultaneously, a weighted adjacency matrix is
obtained to generate explanations about prediction.

3.2. Overview of DLGM

The architecture of DLGM is depicted in Fig. 2. The model,
consists of three components: aspect-oriented graph construc-
tion (AOGC), linguistic graph disentangling (LGD), and sentiment
polarity prediction (SPP). The AOGC module is designed to pre-
process the input raw sentence into the graph and simultaneously
obtain the initial node feature matrix. The LGD module includes
two parts: a mechanism for linguistic property neuron extraction
(LPNE) and a mechanism for linguistic masking representation
learning (LMRL). The LPNE mechanism is a linguistic-based en-
coder to disentangle the node features into multiple linguis-
tic properties to learn finer linguistic-aware embeddings in the
graph, and the LMRL mechanism is a graph convolutional layer
with linguistic routing that is designed to encode the interactions
between aspects and contexts to learn the fused disentangled
linguistic embeddings for the aspect term. The SPP predicts the
sentiment polarity according to the learned aspect embeddings.
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Fig. 2. Overall framework of DLGM. In the AOGC module, the given sentence is processed into an aspect-oriented bipartite graph with linguistic tags and an initial
node feature matrix. In the LGD module, including linguistic property neuron extraction and linguistic masked representation learning, the node feature matrix is
disentangled into specific linguistic chunks with the help of linguistic tags, and new representation learning is performed under the guidance of a linguistic routing
mechanism. The final representation of the aspect is fused from linguistic features for prediction, and the information flow based on a graph is presented for
explanation.
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3.3. Aspect-oriented graph construction

Approaches applying GNNs to ABSA have shown that an
aspect-oriented graph is more conducive to information transfer,
allowing the aspect to update its representation by extracting
useful information from the neighbors. More specifically, the
connections between aspect and context nodes provide an avail-
able channel for guiding the propagation of information flow.
Nevertheless, the focus of a dependency tree containing rich
linguistic information is usually not an aspect term, as shown
in Fig. 3; the dependency tree can also be regarded as a graph
to help better encode the input sentence. For our explainable
ABSA, a unified graph structure is required to integrate linguistic
information from dependency trees and guide information flow
based on the original aspect-oriented graph structure. Hence,
we propose an aspect-oriented bipartite graph, termed AOBG,
consisting of a new node representing the aspect term and the
node in the raw sentence.

For each sample, we first introduce an ego node and link each
node in the sentence to the ego node, for which there are edges
between any nodes in S and the aspect node. Then, we employ
the syntactic parsing tool to reveal its syntax rules and POS tags,
where rij is the syntax relation from node i to j and pi represents
the POS of node i. To obtain linguistic labels, we traverse the
generated dependency tree to record the shortest path from each
node to the aspect term and put the nodes and edges in the
shortest path into path, for which the number of passing nodes
represents distance features, the typed syntactic dependencies
corresponding to the edges contained in the path are denoted as
syntactic features, and the original POS tags are retained as POS
features. Moreover, we set the tree-based distance as distance
tags, where the tree-based distance represents the length of the
shortest path between aspect-context pairs. To avoid information
confusion between different aspect terms, we construct a unique
graph for each aspect contained in the sentence. Fig. 4 shows
an example of an AOBG.1 In contrast to existing approaches that
provide aspect-oriented structures [4,22,42,43], our approach not
only provides a unified bipartite graph structure to aggregate use-
ful information from sentences through the directed connections
with the ego nodes but also merges more linguistic information
to facilitate disentangling the representations of each node in the
sentence.

1 If node i is the aspect itself, we set the syntactic label as self, and the
distance is 0; if the distance is longer than 4, the syntactic label is set to outer,
and the distance is −1.
 x

4

To obtain the node feature matrix with rich linguistic features,
we use the pretrained language model based on Transformer [44]
to generate word embedding representations as initial node fea-
tures, including BERT and RoBERTa [45]. The input of the language
model is ‘‘[CLS] + sentence + [SEP]", where ‘‘[CLS]" and ‘‘[SEP]"
are two predefined special tokens, ‘‘[CLS]" is used to mark the
beginning of the first sentence, while ‘‘[SEP]" is the separator
appended to the end of the input sentence. Then, the same-
length embedding representations are generated as the input
sequence of the model. To obtain the same representations as [7],
we adjust the input sequence as ‘‘[CLS] + sentence + [SEP] +

spect + [SEP]" to separate the aspect nodes from the sentence,
hile ‘‘[CLS] + sentence + [SEP]" represents only the sentence.
fter processing, the original word embedding xi that fuses more
inguistic information is obtained; this result has been verified in
revious work [46,47].

.4. Linguistic graph disentangling

Applying GNNs in ABSA has shown that the aspect node up-
ates its representation by uniformly extracting salient
nformation from the neighbors. Intuitively, the aspect node ex-
hanges information between aspect terms and their correspond-
ng opinion words according to linguistic rules that can filter
ut irrelevant information to significantly improve classification
erformance. Hence, we develop a disentangled linguistic graph
etwork to leverage the hidden linguistic relations among words,
hich are already implicit in word embedding representations.
e encode each dimension of the initialized embedding as input

ignals of individual neurons to extract specific linguistic property
epresentation for the node, considering that different neurons
re sensitive to different linguistic properties. Then, a linguistic
outing mechanism is introduced into embedding propagation to
uide the signal flow of the linguistic chunks.

.4.1. Extracting linguistic property neurons
The LPNE encoder differs from the methods that operate di-

ectly on the original word embedding to calculate the con-
ribution of each word toward the prediction. Inspired by the
motional recurrent unit [48], we encode the single dimension
f embeddings into neurons and assign the neurons into chunks
ccording to specific linguistic properties. The word embedding
f each node can be set as:
i = {xi1, xi2, . . . , xij, . . . , xic} (1)
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Fig. 3. An ordinary dependency tree obtained by the dependency parsing tool.
Fig. 4. An aspect-oriented bipartite graph constructed from an ordinary dependency tree. The ego node is the center of the graph and represents the aspect term
abeled in the sentence. All edges are directed from context nodes to the ego node. The tags in the edges denote the syntactic relations in the shortest path between
he aspect-context pairs in the dependency tree. The different colors on the nodes represent distinct POS tags.
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here xi ∈ Rc represents the intrinsic embedding feature of node
i, and xij is the jth signal input to the neuron.

We use a linear model to extract the signals in xi due to its
explainability; the model can directly query the learned weights
to measure the importance of each input signal. More formally,
such extraction is represented as:

hi,k = σ (Wkxi + bi,k) (2)

where k ∈ {POS,DIS, SYN} represent the linguistic properties of
POS, distance, and syntactic dependency, respectively. hi,k repre-
sents the output of neurons associated with linguistic property k.
To ensure the individual linguistic property neurons are compat-
ible, we adjust the output of neurons to the same dimensional
size, hi,k ∈ R

c
3 . Wk and bi,k denote the parameter of weights and

ias, respectively. σ is a nonlinear activation function to filter the
ignal of neurons.
We need to minimize the differences between each neuron

nd encourage the signal to represent the corresponding linguis-
ic property to reduce information redundancy. Consequently, we
se a supervised task with labeled data to constrain the extracted
ignals correlated with the labeled linguistic property. The sig-
oid cross-entropy loss is embraced in the learning process of

inguistic property neurons:

E = −
1
n

n∑
i=1

K∑
k=1

(Pi,k log P̂i,k + (1 − Pi,k) log(1 − P̂i,k)) (3)

P̂i,k =
1

1 + exp(−hi,k)
(4)

where LE is the loss of extracting the linguistic features from
the original embedding, K is the number of specific linguistic
properties we predefined, Pi,k defines the ground-truth tag. Label
Pi,k = 1 if the linguistic property k appears in the ith node;
therwise label Pi,k = 0. P̂i,k is the predicted probability for
inguistic property k in the ith node.

After the extraction, we need to make the learned linguistic
ignals independent by minimizing their similarity. Although the
oss functions LE ensure that the neurons select input signals that
re sensitive to specific linguistic properties, it is still important to
aximize the variability constraint between the output represen-

ations of linguistic property neurons, since research on explain-
bility shows that the similarity between different features is too
igh to facilitate explainable analysis by using information flow.
5

Hence, we utilize a simple and efficient loss function, such as the
conicity similarity calculation method [49,50], as a regularization
term. More formally, the compatibility regularization is calculated
as follows:

LI =
1
K

K∑
k=1

cosine(hi,k,
1
K

K∑
k=1

hi,k) (5)

here LI is the loss of the difference of linguistic features. A low
alue of conicity implies that there is little alignment between
he learned linguistic embedding to the mean of all linguistic
ectors. In this way, the LI could lead to a larger difference in
he extracted signals of neurons, thereby enhancing the linguistic
roperty of the disentangled representation.

.4.2. Linguistic masking representation learning
The representation of each node is chunked into specific lin-

uistic property representations. We aim to provide individual
hannels to guide the signal flow and distill valuable information
rom the nodes of a sentence to the aspect. To this end, rather
han just using the original interaction, we introduce a linguistic
outing mechanism into embedding propagation by masking ir-
elevant neuron signals to capture the linguistic property-aware
elation, as shown in Fig. 5.

Specifically, we first estimate the difference score of each
nteraction (i, t) between nodes within a single linguistic property
hannel as the mask matrix for updating node representations.
he value of t is fixed since the aspect node is unique in each
OBG. Hence, for a given linguistic property k, the relevant score
f each node is given as follows:

i,k =
exp((hi,k)⊤ · ht,k)∑n
i=1 exp((hi,k)⊤ · ht,k)

∀k ∈ {1, . . . , K } (6)

where ht,k is the representation of the aspect nodes kth linguistic
property. It is assumed that each linguistic property has an equal
probability among nodes when the initial model is learning. Thus,
such a score matrix Q ∈ Rn×K can be regarded as the adjacency
matrix of individual nodes in intralinguistic property channels.

Moreover, the influence of linguistic properties on sentiment
polarity is not always identical. For example, in the dependency
tree, adjectives that are closer to aspect terms are more likely
to be opinion words for sentiment polarity classification than
for just considering POSs; consequently, all linguistic signals cap-
tured by the neurons must be considered. Hence, cross-linguistic
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Fig. 5. Illustration of the linguistic routing mechanism.
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roperty information routing is proposed to identify the most sig-
ificant linguistic property. The training and analysis of the cross-
inguistic routing module reveals the commonality and specificity
f linguistic representations. Essentially, the module calculates
he cross-linguistic importance score of each node as follows:

i,k =
exp((hi,k)⊤ · ht,k)∑K

k′=1 exp((hi,k)⊤ · ht,k′ )
∀k ∈ {1, . . . , K } (7)

It can thus be determined which linguistic property is more
mportant for sentiment analysis. Similarly, the obtained normal-
zed score matrix C ∈ Rn×K can be regarded as a cross-linguistic
raph.
After the intralinguistic property routing and cross-linguistic

roperty routing mechanism, the linguistic information learned
rom each node is aggregated to determine the linguistic repre-
entation for each aspect. The operation is as follows:

intra
t,k =

∑
i∈Nt

qi,khi,k (8)

hcross
t,k =

∑
i∈Nt

ci,khi,k (9)

ht,k = hintra
t,k + hcross

t,k + µ (10)

where hintra
t,k and hcross

t,k represent the intralinguistic representa-
tion and the cross-linguistic representation, respectively; µ is
the learnable bias vector; h̃t,k is a temporary embedding of the
aspect; and Nt is the set of context nodes pointing to aspect node
t .

Nodes affected by the same linguistic properties tend to have
similar signals. To further enhance the nodes’ relationship among
the aspect and its opinion node, we fed h̃t,k back into Eqs. (6) and
(7) to update h̃t,k. We iterate U times to adjust the representation
of the aspect more precisely; the aspect’s representation can be
formulated as follow:

h(l)
t,k = h(l−1)

t,k + h̃U
t,k (11)

where h(l)
t,k is the hidden state of the lth embedding propagation

layer. We do not need to further stack aggregation layers for re-
fining the aspect embedding, as it is directly connected with other
nodes in the AOBG. h(l) can be seen as the final representation of
t,k

6

the linguistic property. The representation of aspect ht is obtained
to perform on all linguistic properties as follows:

ht = (ht,1, ht,2, . . . , ht,K ) (12)

Consequently, the fine-grained aspect representations con-
sider linguistic properties, such as POS, distance, and syntactic
dependency features.

Explainability: When propagating such information, the
model comprehensively aggregates linguistic features from each
node to obtain a new aspect representation. The intralinguistic
score matrix and the cross-linguistic score matrix reflect the
contribution of various linguistic properties to sentiment polar-
ity prediction, and can generate textual or visual explanations.
More importantly, the explanation for the model prediction can
be given more intuitively after the visualization of the graph
structure, which will be presented in the next section.

3.5. Sentiment polarity prediction

After these operations, we generate the final aggregated fea-
ture representation of the aspect node ht , which takes residual
connection with the original embedding representation x. The
probability distribution of sentiment polarity P(t) is calculated
by using a softmax normalization with the output of a fully
connected layer fed as input:

P(t) = softmax(W · ht + b) (13)

where W and b are the learnable weights and bias parameter,
respectively.

The cross-entropy loss is employed as the objective function
for sentiment polarity classification:

LC = −

∑
(S,T )∈D

∑
t∈T

log P(t) (14)

here LC is the loss of sentiment polarity prediction, D represents
ll training samples consisting of sentence and aspect word pairs,
nd T denotes all aspects presented in sentence S. In the training
hase, we need to optimize our model by combining explainabil-
ty loss and classification loss. Hence, the overall objective is to
inimize the integrated loss:

= α · L + β · (L + L ) (15)
C E I
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Table 1
Details of the four datasets.
Dataset Positive Neutral Negative

Train Dev Test Train Dev Test Train Dev Test

Laptop 976 337 337 455 167 167 851 128 128
Restaurant 2165 727 727 637 196 196 807 196 196
Twitter 1507 172 172 3016 336 336 1528 169 169
MAMS 3380 400 400 5042 607 607 2764 329 329
where α is the weight used to control the classification loss
and β indicates the weight of explainability regularization, which
onsists of LE and LI . We discuss the effect of the loss function
n our experiments; see Section 4.5.2.

. Experiments

We provide details of the comprehensive experiments evalu-
ting the classification performance and explainability of DLGM.
or the classification performance, we compare our model to the
aselines on four widely used and publicly available datasets. For
xplainability, we provide the quantitative and qualitative results
n two benchmarks. In addition, we discuss our analysis to verify
he effectiveness of DLGM.

.1. Experimental setup

.1.1. Dataset
We apply our proposed DLGM to four benchmark datasets,

amely, Laptop, Restaurant, Twitter and MAMS, for sentiment
olarity prediction. To ensure data consistency, we perform the
ame data preprocessing and delete the samples labeled ‘‘con-
lict’’ in the Laptop and Restaurant datasets; therefore, we finally
onsider three sentiment polarities contained in each dataset:
positive, neutral, negative}. The number of samples in each cat-
gory is shown in Table 1.

.1.2. Evaluation metrics
We adopt the general evaluation metrics: accuracy and the

acroaveraged F1, which have been widely used to compare
BSA classification performance. To evaluate ABSA explanations,
lthough there are no factual annotations to assess the generated
xplanations, a feasible scheme we suggest is to calculate the
ccuracy of the formed explanations by using the aspect term and
ts opinion words in sentences as the ground truth explanation
abel, which is annotated in other ABSA subtasks.

.1.3. Implementation and training parameters
Our DLGM consists of a neuron extraction module and a lin-

uistic routing mechanism. For the neuron extraction module, a
eep biaffine parser [51] is used to generate POS tags and depen-
ency trees. We use the pretrained RoBERTa to generate original
ord embedding representations of words, whose dimension is
68. The number of neuron categories K (representing POS, dis-
ance and syntax) is set to 3. We set the signal output dimension
f each neuron to 256. For the linguistic routing mechanism, the
teration times are set as U = 3. We implement our model
y using PyTorch and the Adam [52] optimizer with an initial
earning rate of 10−5, and the batch size is 64. The classification
oss coefficients (α) and explainability regularization coefficients
β) are searched in {0, 0.1, 0.5, 1, 1.5, 2}. Before starting each
poch, we randomly shuffle the training samples. The early stop-
ing strategy is also utilized in the training time. Experiments are
erformed on an NVIDIA GeForce RTX 2080Ti GPU.
7

4.2. Baselines

We compare the classification performance of our proposed
DLGM with that of the following SOTA baselines.

• TD-LSTM [13] develops two target-aware LSTM networks to
encode target information for feature extraction.

• IAN [14] integrates an LSTM network and an attention
mechanism to enable the target and context to interactively
influence the generation of respective representations.

• TNet [53] transforms the word representations into target-
specific embeddings and extracts salient features by using a
CNN.

• MGAN [54] improves the attention mechanism at the word
level to capture fine-grained features between aspects and
contexts by using a coarse-grained attention mechanism.

• AOA [55] jointly models the interactions between aspects
and contexts by exploiting an attentionoverattention neural
network.

• AEN/AEN-BERT [16] employs an attention-based encoder to
capture the interaction between the context and target and
applies a fine-tuned BERT pretrained model.

• CapsNet/CapsNet-BERT [56] constructs a capsule
network [57] to capture the interactions between contexts
and aspects; CapsNet-BERT uses BERT to generate the vector
representations of sentences and aspects before being fed
into the capsule network layer for classification.

• BERT-PT [58] explores a posttraining strategy on pretrained
BERT model for aspect-based sentiment classification in the
form of reading comprehension tasks.

• BERT-SPC [16] extends the input sequence of BERT and uses
pooled embedding for classification.

• AdaRNN [19] learns word-to-target sentiment by using mul-
tiple RNN synthesis functions over dependency trees.

• PhraseRNN [59] extends AdaRNN by considering both the
sentence dependency tree and constituent tree and adding
a phrase module.

• SynAttn [22] proposes an object representation to capture
the semantics of opinion objects and incorporate syntac-
tic information into the attention mechanism to improve
performance.

• CDT and ASGCN, CDT [60] combines a dependency tree and
a GCN to enhance the sentence feature embedding output by
a Bi-LSTM and achieve aspect-level sentiment classification,
while ASGCN [43] adds an attention mechanism to better
strengthen the final representation.

• PWCN [23] integrates the tree-based distance between
words into an attention mechanism for prediction.

• HAPN [17] uses a hierarchical attention network based on
position information to learn aspect-specific oriented rep-
resentations.

• TD-GAT/TD-GAT-BERT [61] captures syntactic structure in-
formation by using a GAT and uses a multilayer atten-
tion network to obtain information. In addition, the LSTM
unit is added to explicitly capture the cross-layer aspect
information.



X. Mei, Y. Zhou, C. Zhu et al. Knowledge-Based Systems 260 (2023) 110150

.

a

4

t
t

4

D
T

t
t
i
R
t
A
B

Table 2
Performance comparison results of various models on four benchmark datasets. Our DLGM achieves competitive classification performance against different baselines
Category Model Restaurant Laptop Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

W/o a linguistic property

TD-LSTM 75.63 * 68.13 * * * * *
IAN 78.60 * 72.10 * * * 76.60 *
TNet 80.69 71.27 76.54 71.75 74.97 73.60 * *
MGAN 81.25 71.94 75.39 72.47 72.54 70.81 77.26 *
AOA 81.20 * 74.50 * * * 66.72 *
AEN 80.98 72.14 73.51 69.04 72.83 69.81 79.78 *
CapsNet 80.79 * * * * * * *
BERT-PT 84.95 76.96 78.07 75.08 * * * *
BERT-SPC 84.46 76.98 78.99 75.03 73.55 72.14 82.82 81.90
AEN-BERT 83.12 73.76 79.93 76.31 74.71 73.13 * *
CapsNet-Bert 85.93 * * * * * 83.39 *

w a linguistic property

AdaRNN * * * * 66.3 65.9 * *
PhraseRNN 66.20 59.32 * * * * * *
SynAttn 80.45 71.26 72.57 69.13 * * * *
ASGCN 80.77 72.02 76.12 72.12 * * * *
PWCN 80.96 72.21 75.55 71.05 72.15 70.40 * *
HAPN 82.23 * 77.27 * * * * *
CDT 82.30 74.02 77.19 72.99 74.66 73.66 80.70 79.79
TD-GAT 81.20 * 74.00 * * * * *
TD-GAT-BERT 83.00 * 80.10 * * * * *
R-GAT 83.30 76.08 77.42 73.76 75.57 73.82 * *
RGAT 83.55 75.99 78.02 74.00 75.36 74.15 81.57 80.87
BERT-ASC 84.46 76.98 76.25 72.68 * * * *
R-GAT-BERT 86.60 81.83 78.21 74.07 76.15 74.88 * *
RGAT-BERT 86.68 80.92 82.34 78.20 76.28 75.25 84.52 83.74
BERT-LARGE+A-KVMN 86.88 80.92 80.41 77.38 76.59 74.91 * *

Ours

BERT+MLP 85.35 78.38 78.36 74.16 75.92 74.41 82.22 80.29
BERT+DLGM 87.35 81.88 82.61 79.24 74.96 73.37 84.59 83.26
RoBERTa+MLP 87.37 80.96 83.78 80.73 77.17 76.20 84.51 82.44
RoBERTa+DLGM 88.61 83.58 84.38 81.96 75.52 74.58 84.77 84.25

The best performances are bold-typed. * indicates that the results are not provided in the original paper. The underlined results indicate that the proposed model
outperforms the baselines.
• R-GAT/R-GAT-BERT [4] attempts to reconstruct an aspect-
oriented dependency tree and proposes a relational atten-
tion mechanism to achieve sentiment classification.

• BERT-ASC [18] proposes a self-attention mechanism based
on POSs to process POS embeddings for subsequent predic-
tion.

• BERT-LARGE-AKVMN [20] uses key–value memory
networks (KVMN) to encode the dependency label on arcs
in the dependency tree to improve the prediction accuracy.

• RGAT/RGAT-BERT [7] proposes a relational graph attention
network that integrates dependency type features into the
attention mechanism, enriching the final representations.

All comparison baselines either follow the original papers or
re optimized by the same source datasets for a fair comparison.

.3. Performance comparison

We first compare the classification performance of DLGM with
hat of other methods and then investigate how to exploit mul-
iple linguistic properties for further performance enhancement.

.3.1. Overall performance
The overall performance comparison results of our proposed

LGM and baseline models on four datasets are presented in
able 2.
First, of all the comparisons, the DNN methods with pre-

rained language models generally outperform those without pre-
rained language models, thereby verifying the advantages of fus-
ng pretrained language models for better analysis. In particular,
oBERTa with an MLP layer outperforms BERT-MLP; therefore,
he embeddings generated by RoBERTa are more friendly to the
BSA task, and RoBERTa learns better linguistic information than
ERT [62]. Moreover, systems that introduce a linguistic property
8

on BERT outperform BERT-MLP, as that linguistic property can
provide fine-grained information for the ABSA.

Second, the GNN-based methods outperform all the deep
learning-based baselines, thereby showing the effectiveness of
the GNN in better feature extraction for textual data. Further-
more, the recent SOTA method RGAT integrating typed syntac-
tic dependencies outperforms all other baselines, implying the
advantage of extracting linguistic features by using the GNN.
However, RGAT-BERT presents a large gap with BERT-DLGM on
three datasets, thereby illustrating that encoding linguistic inter-
action uniformly is not enough to reveal the fine-grained relation
between opinion words and their corresponding aspect, as the
linguistic influence under different embeddings would be deeply
entangled in the information propagation.

Overall, with the help of RoBERTa, our proposed DLGM
achieves SOTA or near SOTA performance in all the comparisons
on Laptop, Restaurant, Twitter, and MAMS with accuracies of
84.38%, 88.61%, 75.52%, and 84.77%, respectively. Similarly, DLGM
achieves the best macro-F1 (81.96%, 83.58%, and 84.25%) on Lap-
top, Restaurant, and MAMS, respectively. Two performance ad-
vantages of DLGM in ABSA are summarized as follows: (1) DLGM
explicitly disentangles the original word embeddings to capture
multiple linguistic information for enriching aspect embedding
learning. (2) DLGM recognizes the salient linguistic information
applicable to aspect sentiment analysis to better infer the aspect
with its corresponding opinion words. However, our model fails
to achieve excellent performance on the Twitter dataset. We
speculate there may be a discrepancy between the samples in the
Twitter dataset and those in other datasets because the samples
from Twitter are more colloquial.

4.3.2. Performance comparison with different linguistic properties
We investigate how to further improve performance by disen-

tangling multiple linguistic properties. Therefore, we implement
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Table 3
Comparison results of DLGM according to different linguistic properties. ‘‘Decrease’’ indicates the relative performance gap between
the corresponding variants and the proposed DLGM. DLGM-Embedding indicates that the linguistic features are obtained directly
from the parser tool. The Attn-Based Model represents the dominant attention-based method in attribution-based explainability
methods.
Model Classification Explainability

Laptop Restaurant Laptop Restaurant

Accuracy Decrease Accuracy Decrease Macro-F1 Decrease Macro-F1 Decrease

DLGM 84.38 – 88.61 – 81.96 – 88.19 –
DLGM-Embedding 83.81 −0.57 87.53 −1.08 79.72 −2.24 85.79 −2.40
DLGM-no linguistic 83.28 −1.10 86.58 −2.03 75.52 −6.44 84.27 −3.92
DLGM-POS only 82.29 −2.09 86.95 −1.66 75.55 −6.41 85.10 −3.09
DLGM-DIS only 81.07 −3.31 87.38 −1.23 75.82 −6.14 85.08 −3.11
DLGM-SYN only 83.33 −1.05 87.28 −1.33 76.69 −5.27 85.85 −2.34
DLGM-POS&DIS 82.65 −1.73 87.28 −1.33 79.91 −2.05 86.21 −1.98
DLGM-POS&SYN 83.89 −0.49 87.39 −1.22 79.89 −2.07 86.61 −1.58
DLGM-DIS&SYN 83.48 −0.90 87.89 −0.72 80.23 −1.73 86.94 −1.25
Attn-Based Model – – – – 75.43 −6.49 84.44 −3.75
several models with different linguistic properties to compare the
performance of different linguistic components. The comparison
result is presented in Table 3, which comprises the experimental
results for Laptop and Restaurant.

We observe that for all the models, incorporating three lin-
uistic properties leads to better performance on the four
atasets. The model based on three linguistic features outper-
orms DLGM without a linguistic property by approximately 1.6%
n average in accuracy. This finding verifies the effectiveness
nd advantage of multiple linguistic information in this com-
etitive comparison. The performance comparison between the
ifferent methods to obtain linguistic features indicates that the
eural network extraction method is more effective than directly
mbedding linguistic properties.
In Table 3, models using a single linguistic property show

ome performance differences on two datasets. The results ob-
ained on Laptop show that models with additional separate
inguistic information, except syntactic dependency, cannot im-
rove or even degrade performance; however, disentangling sin-
le linguistic information enhances the performance of DLGM-
o-linguistic on Restaurant. The classification performance of our
odel further improves when more linguistic features are in-

roduced. This result differs from the observation in Bai et al.
7] possibly because our model not only distills the information
f nodes but also calculates the signal flow between different
inguistic properties, thereby providing more explicit linguistic
nformation to establish a more stable connection between aspect
erms and opinion words.

.4. Explainability of DLGM

.4.1. Quantitative evaluation
In the explainable ABSA task, we use opinion words as the ra-

ionale for aspect sentiment classification. Based on the previous
OWE task, the target word is the same as the aspect term, and
he opinion words are given as the basis for classification. For
xample, in the text ‘‘Even though it has good seafood, the prices
re too high’’., when the given target is ‘‘seafood’’, TOWE needs
o output ‘‘good’’ as the opinion word and ‘‘high’’ as the opinion
ord for ‘‘prices’’. An example of restaurant is shown in Fig. 6.
We use the opinion and target words as the ground truth

abels for explanations in Laptop and Restaurant and then use
hese words to calculate the explanation accuracy of our ex-
lainable method. The explainability of DLGM is not evaluated
n Twitter and MAMS, as they do not provide any description
f the opinion words. Specifically, we formalize the explanation
roblem as a binary classification task, treat the edges in the
round truth as explanation labels, and regard the importance

eights given by explainable methods as prediction scores. Better

9

explainable methods can assign higher scores to edges, resulting
in higher explanation accuracy. Hence, we report the quantitative
metric that captures desirable aspects of explanations: the F1-
score. Table 3 reports the results based on different linguistic
property information.

First, we compare the DLGM-no linguistic model (which uses
word embeddings directly without linguistic features) and the
Attn-based model (which considers word embeddings without
disentangled graph neural networks, and which is the dominant
method used in attribution-based explainability methods). The
word embeddings are obtained by the pretrained language model
for sentences, which are common frameworks used in the previ-
ous explainable ABSA models. The explainability scores of the two
models are very close.

Second, we compare the DLGM-POSonly, DLGM-DISonly, and
DLGM-SYNonly models, which consider a single linguistic prop-
erty (POS, distance, or syntax, respectively) between contextual
and aspect words. The feature representations of the linguistic
property are extracted from the word embeddings of sentences
by a neural network with a supervised task. Except for those of
the DLGM-SYNonly, the explainability metrics of the three models
are not significantly improved compared to the explainability
metrics of the attribution method. From the fidelity perspective,
syntactic information is the salient feature identified through ex-
planations; this finding is consistent with our intuition presented
in the introduction.

Finally, we combine more types of linguistic properties to
generate explanations. In general, three types of models based
on the dual linguistic feature can be composed, with each model
yielding certain improvements over single piece of information.
Furthermore, by combining the three pieces of linguistic infor-
mation, the explainability score of our DLGM is further improved
compared to that of the attribution-based method. The improved
metric demonstrates the benefit of using more linguistic features
to generate explanations at the level of linguistic properties and
our method has more explainability than other methods used in
ABSA.

Compared to ABSA classification, explainability performance
results in a more significant gap between various methods. The
evaluation metric of TOWE is designed to evaluate whether the
model captures the opinion expression for aspect sentiment clas-
sification, while ABSA accuracy is designed to evaluate whether
the model can classify correctly. We recommend using both
TOWE and ABSA accuracy metrics rather than a single metric to
evaluate explainable ABSA more precisely.

4.4.2. Qualitative evaluation
The qualitative evaluation of the explainability of DLGM is also

presented, for which we visualize the learned linguistic property-
aware graphs for each sentence in conjunction with the linguistic
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i

Fig. 6. Tagging schema for the ground-truth explanation label, where B is for begin, I is for inside, E is for end, S is for single and O is for outside. In this example,
there are only {B, O, S} since the aspect word is a single word.
Fig. 7. A qualitative evaluation result for explaining sentiment polarity prediction from Restaurant. The top part includes two subgraphs. Fig. 7(a) and 7(b) show
an instance and its corresponding AOBG. Three subgraphs shown in Fig. 7(c), 7(d) and 7(e) show the information flow in linguistic property-aware graphs during
forward propagation. Fig. 7(f), 7(g) and 7(h) show the final decision of DLGM, DLGM without linguistic features and the ground-truth explanation label. Thicker edges
between pairs of aspect-context nodes have higher weight. Green, blue, and purple denote POS, distance and syntactic dependency features, respectively.
information. Specifically, we randomly select review data and
then visualize the contribution of each node and the flow of
linguistic property information on edges by using the learned
linguistic property-aware graph. Fig. 7 shows an example of the
explanation provided by DLGM. Fig. 7(a) and 7(b) show an input
instance and its corresponding transformed graph, respectively.
Fig. 7(f) and 7(g) show the reason for the decision in DLGM and
the ground truth labels of the samples in terms of sentiment
classification. Fig. 7(c), 7(d), and 7(e) show how much relevant
linguistic property information is fused in each graph from the
vectors of neighbors during forward propagation. The information
with thicker edges has higher weights.

According to the visualization of the classification reason in
Fig. 7, the decision is based mainly on the fusion of representa-
tions of ‘‘the’’, ‘‘staff’’, and ‘‘horrible’’. The representations of these
nodes are accumulated in the aspect nodes through graph convo-
lution operations. Unlike in the original representation, the con-
tribution of each node begins to differ, and the representations
are consistent with the ground truth ‘‘staff’’ and ‘‘horrible’’ labeled
n the dataset. This is also consistent with human classification
10
in reality. As shown in Fig. 7(g), unlike ABSA, the attribute-based
model makes predictions based mainly on most of the words
in a sentence. Although the weight of each word differs, this
weight does not reflect a certain meaning but only reflects that
the model associates sentiment information with aspect terms
without considering opinion words.

Interestingly, POS, distance, and syntactic dependency all suc-
cessfully help DLGM to capture opinion and aspect words in the
forward propagation by giving different weights. From the per-
spective of weight distribution, the weight given by the distance
accords more with the standard. For the labels ‘‘horrible’’ and
‘‘staff’’, POS gives the largest weight to ‘‘staff’’ and the smallest
weight to ‘‘horrible’’. In the distance property-aware graph, ‘‘staff’’
also receives the largest weight, but a greater weight is given
to ‘‘horrible’’ compared with the wight given by POS. In the
syntactic-aware graph, the ‘‘horrible’’ node receives the greatest
weight, while ‘‘staff’’ receives the next greatest weight. In accor-
dance with our original intention, the three graphs pay attention
to different information.
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Fig. 8. Detailed recording of each training loss and test accuracy of the DLGM during the training epochs.
Fig. 9. Effects of varying regularization weights, namely, α ∈ { 0.1, 0.5, 1, 1.5, 2 } and β ∈ { 0.1, 0.5, 1, 1.5, 2 }, on the overall accuracy results of ABSA classification
n the validation set.
e

4

4

p
b
f
o
p
t
i
a
o

w
f
p
l
c
r
(

.5. Model component analysis

Next, we conduct experiments to further investigate how dif-
erent modules of our DLGM help improve performance and
xplainability.

.5.1. Training loss and test accuracy
We present the training loss and test accuracy of DLGM on

he four benchmark datasets to reflect the learning details during
he training time. The variation in our loss function while training
he model decreases smoothly over the training epochs, as shown
n Fig. 8(a). In particular, the loss of classification has a larger
eduction than the others. We record the test accuracy curve
f DLGM on each dataset, as shown in Fig. 8(b). The curve on
aptop, Restaurant, and MAMS increase stably during training,
ut the test accuracy curve on Twitter converges quickly possibly
ecause the sentences in Laptop, Restaurant, and MAMS are more
onsistent with the format of computational linguistics, while
he sentences on Twitter are more similar to spoken language
ithout fixed linguistic rules. Hence, our model did not perform
atisfactorily on Twitter.

.5.2. Effects of loss weights
Since we are using elastic loss regularization, we need to tune

lassification loss coefficient (α) and explainability regularization
oefficient (β). The loss regularization controls the final perfor-
ance of the model directly: an increase in the value of α further
nhances performance, whereas higher values of β encourage the
inguistic property extraction of correlated neurons. Our aim is
11
to find a balance between performance and explainability while
maintaining the original accuracy of the classifier without any
regularization (β = 0). Fig. 9 presents the results of a grid search
over various regularization values on the ABSA task. The accuracy
difference is minimal for α values greater than 1. We also set the
value of β to 1, and both α and β use the same value for all the
xperiments above.

.6. Ablation study

.6.1. Effects of neuron extraction
Linguistic property neuron extraction discovers the linguistic

roperty of latent embeddings to learn explainable word em-
eddings in the network. The impact of this component on per-
ormance and explainability is closely related to the number
f linguistic properties, and we associate these latent linguistic
roperties with a definite meaning to ensure the explainability of
he model. The impact on model performance and explainability
s presented in Table 3, which shows that classification accuracy
nd explainability improve as the number of linguistic properties
n which DLGM relies increases.
Explainability means ensuring that the model is consistent

ith our preset. Therefore, we randomly select some samples
rom Restaurant and Laptop to illustrate the results of linguistic
roperty-aware extraction. We present the activations of
inguistic-aware neurons in Fig. 10, which shows how neurons
an focus on specific linguistic properties. The POS-aware neu-
on activates with a high positive value for four types of POSs
noun, adjective, verb, adverb). The DIS-aware neuron assigns more
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Fig. 10. Impact of neurons on sentiment polarity predictions and explainability, including visual explanations (word activation maps) and textual explanations (opinion
ord ranking), according to various linguistic properties. The annotations of the classifications and explanations are also shown.
Fig. 11. Decrement in accuracy and explainability performance (compared with the performance of the stable DLGM) on Laptop and Restaurant because different
missing linguistic tags.
weight to the words closer to the aspect term (including the
aspect term). As the result of the SYN-aware neuron shows, the
neuron pays more attention to the two syntactic dependencies of
nsubj and advamod. From another perspective, Fig. 10 indicates
that our model can learn what we expect the model to do.

Although our results are focused mainly on linguistic proper-
ties, the methodology is general for any property where super-
vision can be created by labeling the data. We pick the top-4
linguistic property tags with the highest frequency and discuss
their impact on model performance and explainability. Fig. 11(a)
and 11(b) demonstrate how the results of our DLGM vary in
terms of independently removing different linguistic property
labels on the two benchmarks. In particular, the decrement in
classification and explanation accuracy for DLGM is the high-
est when the following linguistic property tags are missing: (1)
POS tags, including NN , JJ , VB, and RB; (2) DIS tags, including
: hop, self , 2: hop, 3: hop; and (3) SYN tags, including nsubj,
mod, advmod, and dobj. The decrement in classification and

explanation performance in when these linguistic property tags
are missing indicates that these tags carry salient information to
filter aspect-opinion pairs for sentiment polarity prediction. This
finding is acceptable, as the NN , self , and nsubj tags all provide
information for the aspect words. Similarly, JJ , 1: hop, and amod
are related to the sentiment modifiers corresponding to the target
12
words. Therefore, finding aspect words and their corresponding
opinion words explains how the model makes a prediction.

4.6.2. Effects of independence modeling
As described in Eq. (12), the conicity similarity is an indepen-

dence regularization to constrain the level of similarity between
neurons. We apply the t-SNE algorithm [63] to demonstrate the
role of the independence encoder by visualizing the difference
between embeddings learned by our model. As shown in Fig. 12,
we pick 64 sentences from each dataset to map the 768-dim orig-
inal word embedding and the 256-dim linguistic property rep-
resentations into the two-dimensional feature space. The figure
shows that the distributions of linguistic property representations
learned by our model and the original embedding exhibit distinct
structures. This finding proves that using conicity similarity as an
independence regularization can better help signal extraction by
reducing the semantic similarity among different neurons. How-
ever, there are still several connections between the distributions
of the individual embeddings, thus explaining the insignificant
drop in the independent loss shown in Fig. 8. We suppose that the
input signals of neurons from the original word embeddings are
determined by the context of sentences, thus ensuring that each
embedding has a semantic relationship in the feature space. In
the future, we will further disentangle the linguistic embeddings
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Fig. 12. Visualization of original word embedding and linguistic property embedding on Laptop. We select 64 sentences from the test dataset and visualize the
mbedding of each word by t-NSE. Overall, these linguistic embeddings show a different distribution from that of the original embedding in the feature space.
Table 4
Effects of the linguistic routing mechanism. Ablation study for ABSA classification on four datasets. The top-1 accuracy and macro-F1 scores
are reported.
Embedding methods Laptop Restaurant Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

DLGM: ht,k = hintra
t,k + hcross

t,k + µ 84.38 81.96 88.61 83.58 75.52 74.58 84.77 84.25
DLGM-1: ht,k = hintra

t,k + hcross
t,k 84.03 81.23 87.96 81.36 75.22 74.61 83.88 81.95

DLGM-2: ht,k = hintra
t,k 82.45 78.21 87.19 80.68 74.32 73.46 82.83 81.91

DLGM-3: ht,k = hcross
t,k 82.78 79.10 86.87 79.98 73.54 72.18 82.93 82.74
Fig. 13. Visualization of linguistic property information flow in the individual channels for two samples on the datasets.
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nside the pretrained model with the help of other independence
onstraints to obtain more independent embeddings.

.6.3. Effects of linguistic routing
DLGM employs the intralinguistic information routing and

ross-linguistic information routing mechanism to guide the in-
ormation flow during information propagation. To further an-
lyze the effects of this linguistic routing, we compare DLGM
ith its three variants, which are fused ht,k = hintra

t,k + hcross
t,k +

in different ways: (1) DLGM-1 combines hintra
t,k and hcross

t,k into
inguistic embeddings; (2) DLGM-2 performs hintra

t,k on linguistic
mbeddings; and (3) DLGM-3: performs hcross

t,k on linguistic em-
eddings. As presented in Table 4, our stable DLGM outperforms
ll variants, indicating that our proposed linguistic calculation
ethod is of great significance for improving performance. Com-
ared with DLGM-1, introducing a learnable bias vector µ for
inguistic information filtering between word embeddings can
romote the reproducibility and robustness of our model.
Furthermore, we provide two examples to illustrate the ben-

fits of the proposed linguistic routing mechanism. More specif-
cally, we randomly pick sentences from Restaurant and Laptop
nd then visualize the sentences’ linguistic property channels
nformation flow in Fig. 13. As the figure shows, each linguistic
hannel has a separate weight distribution and the influence of
ach linguistic property across channels is summarized; from this
nformation, we can distill useful linguistic information from the
riginal embedding representation for sentiment analysis.
 s

13
. Conclusion

In this article, we jointly model POS, distance, and syntac-
ic dependency by using a disentangled linguistic graph model
DLGM) in a supervised manner for a new task named explainable
BSA. By using the proposed aspect-oriented bipartite graph, we
an simulate the information transfer process within the model
n a unified graph structure. Moreover, we adopt independent
egulation loss to minimize the information redundancy between
eurons to ensure a faithful explanation. Finally, a linguistic in-
ormation routing mechanism is introduced into the GNN to
vercome the drawbacks of intralinguistic information propaga-
ion for classification. The experimental results show that DLGM
erforms respectably while having good explainability.
However, several limitations still need to be addressed. For

xample, the experimental evaluated metrics for explainability
ere not proposed for explanatory models. In the future, we
eed more reasonable and robust metrics to evaluate model
erformance. Another improved direction is how to make the loss
unction of explainability drop significantly between different
inguistic neurons, where we try to replace the conicity similarity
ith other statistical measures. In addition, linguistic rule-based
xplainability is unsuitable for corpora with ambiguous linguistic
ules. We will attempt to use neurosymbolic AI for explainable
entiment analysis in follow-up work.
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