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Abstract

Diffusion models have achieved significant success, yet their application to time
series data, particularly with regard to efficient sampling, remains an active area
of research. We describe an operator-learning approach for conditioned time-
series diffusion models that gives efficient single-step generation by leverag-
ing insights from the frequency-domain characteristics of both the time-series
data and the diffusion process itself. The forward diffusion process induces a
structured, frequency-dependent smoothing of the data’s probability density func-
tion. However, this frequency smoothing is related (e.g., via likelihood function)
to easily accessible frequency components of time-series data. This suggests
that a module operating in the frequency space of the time-series can, poten-
tially, more effectively learn to reverse the frequency-dependent smoothing of
the data distribution induced by the diffusion process. We set up an operator
learning task, based on frequency-aware building blocks, which satisfies semi-
group properties, while exploiting the structure of time-series data. Evaluations
on multiple datasets show that our single-step generation proposal achieves fore-
casting/imputation results comparable (or superior) to many multi-step diffusion
schemes while significantly reducing inference costs. Our code is available at:
https://github.com/vsingh-group/SSOL-timeseries.

1 Introduction

Generative modeling [Song and Ermon, 2019, Ho et al., 2020] has benefited immensely from the
capabilities of modern diffusion models, which can capture complex data distributions across many
different domains: from image synthesis to high-fidelity audio generation [Kong et al., 2021, Chen
et al., 2021]. However, the application of these models to time-series data is still in its early stages
[Tashiro et al., 2021, Rasul et al., 2021, Li et al., 2022, Alcaraz and Strodthoff, 2023, Yuan and Qiao,
2024, Fan et al., 2024, Li et al., 2025, Ye et al., 2025], and poses unique challenges. One widely
acknowledged obstacle, which applies more generally to diffusion models, is the computational
burden of the iterative denoising process [Song et al., 2021a, Salimans and Ho, 2022, Lu et al., 2022].
We need sequential evaluations during both training and inference, which makes the process slow
and resource-intensive. A few of these issues are further compounded for time-series data with long
time horizons. While excellent progress is being made to mitigate these difficulties broadly [Salimans
and Ho, 2022, Lu et al., 2022], it is natural to ask whether the specific properties and the structure
of time-series data may allow simplifications to diffusion-based generative modeling that retain the
expressiveness/capacity of the models but can reduce the computational burden, especially for the
sampling phase.

We seek to approach the problem above by viewing the forward diffusion process as operators [Li et al.,
2021, Kovachki et al., 2023], where a suitably parameterized operator governs the evolution of data dis-
tributions across noise scales. This operator acts as a semigroup [Pazy, 1983, Henry, 1981], governing
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Figure 1: Dual view: forward diffusion smooths
out the frequency distribution (top). Simultane-
ously, individual time-series trajectories gain high-
frequency noise (bottom).

how the data degrades, as noise is progressively
introduced. We hypothesize that the character-
istics of time-series data make them well-suited
to benefit from this view. One observation is
that the diffusion operator performs smoothing
on the data’s probability density function, sys-
tematically attenuating different frequency com-
ponents at different rates, as shown in Fig. 1.
This frequency smoothing of the probability den-
sity is distinct from but related to modulation
of the frequency-space representations of the
time-series data, and follows a predictable pat-
tern. While frequency-dependent smoothing via
diffusion occurs broadly, its structure is simpler
to interpret and verify in time-series data, where
frequency components directly correspond to
temporal patterns, such as daily or weekly cycles. This suggests that a scheme to characterize and
leverage this behavior could potentially invert (or learn to invert) the diffusion process more efficiently.
This is the specific direction we explore here, checking if rapid generation is possible while preserving
the expressiveness that diffusion models are favored for.

Our overarching goal is to learn an approximation of the inverse of the diffusion operator, in a way
that we can use it to effectively and efficiently reverse the noise addition process. Unlike conventional
diffusion models that rely on iterative denoising, we seek to achieve this in a single step, reducing
the compute cost. This capability is due to a specialized (but obtained with a relatively small set of
adjustments) architecture that includes an operator trained to reconstruct and prioritize the distinct
frequency components of the time-series. By conditioning this operator on both the starting and target
noise levels, we can guide the model with a clear objective: to transform a noisy signal at a given
scale to a cleaner representation at another scale, effectively traversing the trajectory defined by the
diffusion semigroup. The training scheme enforces the composition property inherent to semigroups,
ensuring that the learned transformations are consistent across different noise scales.

The main contributions of this paper are: (a) We introduce a new construction for single-step
sampling in conditioned time-series diffusion models, by inverting the diffusion process. The archi-
tecture is based on operator learning principles and seeks to leverage the distinct roles of frequency
components during denoising in the case of time-series data. (b) We validate the effectiveness of
the idea on an extensive set of experiments where we match or exceed the performance of baselines
while significantly reducing computational overhead.

2 Preliminaries: diffusion models

A continuous-time diffusion model [Song et al., 2021b] defines a forward process that gradually
injects noise into data through a stochastic differential equation (SDE):

dx = f(τ)x dτ + g(τ) dwτ , (1)
where {x(τ)}Tτ=0 ⊂ Rd, x(τ) = (x0(τ), x1(τ), . . . , xd−1(τ))

⊤ denotes the univariate time-series
trajectory of length d indexed by continuous diffusion time (or noise scale) τ ∈ [0, T ], wτ is a
standard d-dimensional Wiener process, f(τ)x is a time-dependent linear drift in x, and g(τ) is a
time-dependent term to control the diffusion amplitude. This process transforms clean data x0 into
increasingly noisy samples x(τ). For notational simplicity, we write xτ = x(τ).

Forward process. The forward process progressively obscures information in the data distribution.
The marginal distribution pτ (x) of the noisy data xτ at noise scale τ can be expressed as a convolution
of the original data, say pdata(x) with a kernel. Specifically, the marginal distribution of the noised
data xτ evolves according to:

pσ(τ)(x) =
1

s(τ)d

[
pdata ∗ N

(
0, σ2(τ) I

)](
x

s(τ)

)
, (2)

where pdata denotes the empirical data distribution of the “clean” data x0, s(τ) = exp
(∫ τ

0
f(u) du

)
,

and σ2(τ) =
∫ τ

0
g(u)2

s(u)2 du are time-dependent scaling and variance functions respectively. The
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convolution with increasingly fatter Gaussian kernels controlled by σ2(τ) progressively suppresses
high-frequency details by smoothing them out. The marginal distribution of xτ depends on τ through
noise scale σ(τ), so we equivalently write pσ(τ)(x) = pτ (x). We denote σ(τ) by σ or τ whenever
its τ -dependence is clear from context.

Reverse process and loss. To reverse this information loss and generate samples from the original
data distribution, one often estimates the gradient∇x log pτ (x), which provides the local direction
of the steepest ascent toward regions of higher likelihood under pτ . This is often modeled via a
network that is trained to approximate the score function or equivalently to denoise the noisy data.
The specific parameterization of the network can vary, with different choices leading to different
reverse-time diffusion processes. One successful instance of this strategy, which we use in this work,
is the EDM model in Karras et al. [2022]. In this approach, one trains a neural network Hθ to predict
clean data from noisy samples xσ ∼ N (x, σ2I) using a skip-residual architecture:

Hθ(xσ, σ) = Cskip(σ)xσ + Cout(σ) [Bθ (Cin(σ)xσ, Cnoise(σ))] , (3)

where Bθ is the core network block (e.g., a U-net in images and wavenet in time-series) and Cskip,
Cout, Cin, and Cnoise are scaling coefficients that depend on the noise level at σ. For example, Cin

and Cout can perform scaling to ensure that the input and output have unit variance. The model is
trained by minimizing the weighted denoising objective:

L(θ) = Eσ,ϵ,x0

[
ω(σ)|Hθ(x0 + σϵ, σ)− x0|22

]
, (4)

with noise levels σ sampled from a log-normal distribution, where ω(·) is a signal-to-noise ratio
weight function [Karras et al., 2022], and ϵ is a sample from a standard normal distribution.

3 Forward diffusion for time-series data

Reversing a diffusion process is difficult, especially in a single step. So, we need to leverage all
available structural information about the data and the diffusion process itself. In particular, we will
exploit the semigroup property of forward diffusion, which gives a compositional structure in how
noise is added across time. Further, we want to use the distinct frequency-domain characteristics of
time-series data and its link to the smoothing induced by the forward diffusion. We begin by examining
how forward diffusion transforms the data distribution. This will yield some structural constraints
we can leverage. Next, we delve into the frequency-domain implications of this forward process,
demonstrating how the operator’s action leads to a structured, frequency-dependent attenuation of
information in the data’s probability distribution which emphasizes the difficulty of the problem.

3.1 Time-inhomogeneous Markov evolution

We now analyze how the diffusion SDE (1) evolves the distribution of data over time (since our data
is time-series, “time” is overloaded). By classical SDE theory [Øksendal, 2003], for each initial
condition x0, there is a unique strong solution xτ . Denoting the law (distribution) of xτ by pτ , we
know the evolution of pτ is governed by the forward Kolmogorov (Fokker–Planck) equation [Henry,
1981, Evans, 1998, Grafakos, 2014]:

∂pτ
∂τ

= L∗(τ) pτ , p|τ=0 := pdata, (5)

where the operator L∗(τ) captures both the drift and diffusion effects: L∗(τ) p = −∇ ·
[
f(τ)x p

]
+

1
2 g(τ)

2∆pτ , with ∆ denoting the Laplacian in Rd. We denote pdata simply by p0.

To capture how the density evolves from any time (noise scale) γ up to a later time τ , we can define a
time-inhomogeneous Markov semigroup. Under mild regularity assumptions of globally Lipschitz
drift (f(τ)x is linear in x) and uniformly nondegenerate diffusion coefficients (g(τ)2 bounded
away from 0), classical SDE theory [Øksendal, 2003] guarantees pathwise existence and uniqueness
of solutions to the forward diffusion process (1). Equivalently, the corresponding Fokker–Planck
equation (5) is well-posed under these same conditions, which ensures the induced semigroup
uniquely determines the transition distribution.

Definition 3.1 (Two-parameter Markov family in L1). For each 0 ≤ γ ≤ τ , define the operator
S∗
γ→τ : L1(Rd)→ L1(Rd) to be the unique linear operator that sends an initial density pγ at time
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γ to the solution pτ at time τ of the Fokker–Planck equation (5), i.e. pτ = S∗
γ→τ

(
pγ

)
. We call

{S∗
γ→τ}0≤γ≤τ the two-parameter Markov family generated by (5). The family satisfies the semigroup

composition law for any 0 ≤ ρ ≤ γ ≤ τ :

S∗
ρ→γ ◦ S∗

γ→τ = S∗
ρ→τ , S∗

τ→τ = Identity.

Moreover, each S∗
γ→τ is positivity- and mass-preserving.

Relevance. The semigroup property captures the Markov nature of the process – the evolution from
time ρ to τ can be decomposed into the evolution from ρ to γ followed by evolution from γ to τ .
This Markov perspective will be useful later (Sec. 4) when we attempt to invert the forward diffusion
with a reverse operator, where this property can offer constraints on estimating those primitives that
will compose to give us longer-range transitions. However, recovering the original distribution is
not simply applying the same semigroup in reverse, because diffusion is dissipative and thus not
inherently invertible. We can see this by evaluating how extensive the dissipation is in practice.

3.2 Forward diffusion: exponential damping

We now check that the dissipative process leads to exponential suppression of high-frequency details.
In essence, when the forward SDE spreads out and smooths the data distribution, it “dampens” or
attenuates fine-scale modes. This behavior becomes clear by examining the distribution’s Fourier
transform. We formalize this in Theorem 3.2 below.
Theorem 3.2 (Exponential decay and instant smoothing). Let p0 be an initial probability density
on Rd, and assume that pτ solves the forward Kolmogorov equation (5). Define the spatial Fourier
transform p̂τ (ξ) =

∫
Rd e

− i ξ·x pτ (x) dx, ξ ∈ Rd. Then, for each fixed ξ ̸= 0 and τ > 0, the
quantity p̂τ (ξ) is suppressed by a Gaussian factor in ∥ξ∥2:

p̂τ (ξ) = p̂0
(
s(τ) ξ

)
exp

(
− 1

2 ∥ξ∥
2 s(τ)2 σ2(τ)

)
, (6)

where s(τ) = exp
(∫ τ

0
f(u) du

)
and σ2(τ) =

∫ τ

0
g(u)2

s(u)2 du. Hence, each nonzero Fourier mode in

p̂τ (ξ) decays exponentially in ∥ξ∥ for fixed time τ ≥ 0 and in τ for fixed ∥ξ∥ ≠ 0, provided that
s(τ)2σ2(τ) grows in τ .
Example 3.1. Consider the simple SDE dx = bdwτ , b > 0, with solution xτ = x0 + bwτ . Its
distribution is normal with mean x0 and variance b2τ , so the PDF spreads out as τ grows, flattening
the peak and widening the tails.

This reflects the damping of high-frequency components (in terms of the data distribution). In
other words, while the overall density becomes progressively smoother and more diffuse (losing
high-frequency details), individual realizations exhibit increasingly large random fluctuations (for
time-series data, this means introduction of high frequency noise). It is worth emphasizing that the
smoothing of the PDF alongside increased noise in individual samples arises because we are looking
at the distribution of possible trajectories, not the trajectory of any single sample path. Recognizing
this dual behavior motivates a frequency-aware approach that exploits the information in the transform
space of the time-series data, where we can analyze and manipulate the frequency components of the
data itself. By understanding how the diffusion process affects the data distribution in the frequency
domain, we can design our model to selectively restore and reweight dominant frequencies, more
effectively reversing the smoothing effect on the PDF. This selective reweighting, if we can learn it,
can help restore essential features of the initial distribution.

As one would expect, we notice that the same exponential damping of high-frequency components
also manifests in other transform spaces, including wavelet spaces. In particular, we find that the
solution pτ (·) to equation (5) exhibits an instant smoothing property: as soon as τ > 0, pτ belongs to
every Sobolev space Hκ(Rd). This implies rapid decay of its coefficients in any standard multi-scale
representation (e.g., wavelets), and so for other types of data, our frequency informed/aware module
can be adjusted based on other transforms best suited for the data at hand.
Corollary 3.3 (Instant smoothing). With the assumptions in Thm 3.2, assume additionally that
pτ ∈ L2(Rd) for each τ ≥ 0. Then for every τ > 0 and for every real κ ≥ 0, we have pτ ∈ Hκ(Rd).

Equivalently, the wavelet coefficients bj,k(pτ ) at scale j position k satisfy
∑

j,k 2
2jκ

∣∣bj,k(pτ )∣∣2 <∞
for each κ ≥ 0. Hence pτ is infinitely differentiable at any τ > 0.
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Figure 2: Overview of our single-step inverse operator for conditioned time-series diffusion models.
A noisy input xσ(τ) is passed through a frequency-aware block to selectively restore high-frequency
components. A single-step operator ϕ then enforces the semigroup property to denoise across noise
levels in a single step. The bottom block illustrates the semigroup consistency training that enables
this single-step capability by enforcing ϕ(γ, τ, ·) ◦ ϕ(ρ, γ, ·) = ϕ(ρ, τ, ·).

Relevance. The above results show a clear picture of forward diffusion: (i) it forms a Markov
semigroup S∗

γ→τ that is not trivially invertible, and (ii) it exponentially suppresses high-frequency
details in both Fourier and wavelet (and other) domains. To recover such lost details, standard
diffusion models resort to many small reverse steps. We will seek to restore these details in one step
by exploiting information regarding the frequency domain of the time-series described above and the
composition property, in conjunction.

4 Single-step inverse operator

The discussion suggests that we need two ingredients: (i) a frequency-aware block that uses the
frequency-domain characterization of the time-series to restore the damped high-frequency compo-
nents (of the data distribution), and (ii) a semigroup-based reverse operator that is well-defined across
different time intervals. We begin by describing how the block selectively boosts suppressed modes
in § 4.2, then show how to embed it within a flow operator ϕ that approximates (S∗

γ→τ )
−1 from § 3.1.

4.1 Use case: time series completion

We will use a time-series completion task as an umbrella example to describe the components of our
construction. Let x ∈ RC×d be a multivariate time series with C channels over d discrete timesteps,
and let M ∈ {0, 1}C×d be a binary mask indicating observed versus unobserved entries. We then
write xobs = M⊙ x and xtarget = (1−M)⊙ x, where ⊙ denotes elementwise multiplication.
This formulation unifies various data completion tasks: forecasting arises when M masks future
timesteps, while imputation arises when M zeroes out scattered entries within x.

Our noisy sample xσ is generated by injecting noise at level σ, e.g., xσ = x+ σ ϵ with ϵ ∼ N (0, I).
Our goal is to learn an inverse mapping ϕ that approximately recovers x (or its unobserved portion)
from xσ in a single step when conditioned on the observations xobs. To achieve this, §4.2 describes
a Frequency-Aware Block that adaptively smoothes out unplausible frequency components and
reweights dominant components operating in the frequency domain of the data (time-series). Then,
in §4.3, we construct a single-step operator ϕ that enforces the semigroup properties of the diffusion
process, ensuring coherent reconstructions under varying noise levels.
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4.2 Design of frequency-aware block (FAB)

Let Ψθ(·) be a neural embedding function (a small stack of residual layers) for spectral coefficients de-
rived from a noisy input time series xτ . We first project the input onto a chosen spectral basis {χj} to
obtain coefficients

〈
xτ , χj

〉
. This spectral basis is chosen to align with the inherent frequency-domain

structure of time-series data. We use localized time-frequency transforms such as wavelet transform
in practice, as it works well at capturing time-localized patterns. A Fourier basis decomposes signals
into their constituent frequencies globally, while a wavelet basis provides localized time-frequency
representation. The specific choice will depend on the time series at hand, considering its dynamic or
piecewise-stationary frequency content (e.g., seasonal patterns, transient bursts). Thus, a localized
time-frequency transform allows our model to adaptively emphasize different frequency bands at
specific time points (here, time refers to timesteps in the time-series). A learnable modulation function
αθ(σ(τ)) (a MLP with positional embeddings) scales these coefficients based on the noise level σ(τ).
We define the block simply as:

Bθ

(
xτ , σ(τ)

)
=

∑
j

Ψθ

(
αθ

(
σ(τ)

)
·
〈
xτ , χj

〉)
χj . (7)

Recall that the forward diffusion process progressively attenuates/smooths the high frequency com-
ponents of the data’s PDF. This block provides a signal to counteract this effect by operating in the
frequency domain of the time-series data itself. The projection onto the spectral basis decomposes the
time-series into its constituent frequency components. The learnable modulation function adjusts the
amplitude of each data frequency component based on the noise level since the degree of smoothing
in the PDF depends on τ (and so, σ(τ)). At high noise levels, we must learn to use the higher data
frequencies, recognizing that this is related to the smoothing of the PDF. This block helps associate
how the attenuation pattern in the PDF space (due to diffusion) corresponds to the observed frequency
content in the noisy data. Next, in §4.3, we integrate FAB into our single-step operator to enable the
direct recovery of clean observed time series from noisy samples.

4.3 Design of inverse semigroup operators

We will now leverage the semigroup property. While conventional diffusion-based samplers approxi-
mate (S∗

γ→τ )
−1 via many small reverse steps, we describe a learnable inverse semigroup operator

ϕ that reconstructs these lost components in a single step. This approach directly maps a noisy
observation xσ(τ) at noise level σ(τ) to a cleaner sample xσ(γ) at a lower noise level σ(γ), where
γ < τ , guided by the frequency-domain information, while preserving the algebraic properties of the
forward semigroup.

Flow operator construction. To ensure consistency with the semigroup structure, our learnable flow
operator ϕ(γ, τ, ·) is a time-dependent convex combination:

ϕ(γ, τ,x) =
τ − γ
τ

Hθ(x) +
γ

τ
x, (8)

where Hθ(·) is a neural network that incorporates the FAB block Bθ in §4.2 internally via (3) and is
conditioned on the noise level σ(τ). The linear interpolation ensures that the identity ϕ(τ, τ,x) = x
holds (no denoising), maintaining consistency with the forward semigroup at zero step size (i.e.,
no noise added). Intuitively, Hθ(·) attempts to denoise based on the amount of denoising needed,
and leverages the FAB block to enable frequency-specific re-weighting and reconstruction of the
fine-scale features lost by the smoothing effect of S∗

γ→τ .

Two-stage training objective. We train ϕ through a two-stage process that enforces both endpoint
accuracy and global consistency with the semigroup property: (i) Boundary/Endpoint. We ensure that
mapping from noise level τ to 0 does recover the clean sample: ϕ(0, τ,xσ(τ)) = x0. This translates
to the denoising loss in (4), where we sample σ(τ) from a log-normal distribution and xσ(τ) =
x0 + σ(τ)ϵ. This objective aligns the single-step operator with standard diffusion model training
at the boundary γ = 0, preventing trivial solutions or model collapse. (ii) Semigroup composition
property. Next, we ensure ϕ approximates (S∗

γ→τ )
−1 globally by enforcing the composition property:

ϕ(ρ, γ, ϕ(γ, τ,x)) = ϕ(ρ, τ,x), ∀ 0 ≤ ρ ≤ γ ≤ τ (9)
This enforces semigroup coherence: two single-step moves from τ → γ and γ → ρ should match
a single move from τ → ρ. To facilitate training, we use a linear adaptive schedule N(·) that
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progressively refines the temporal discretization grid as training proceeds, allowing ϕ to learn
multi-step inversions. We begin with larger intervals between noise levels to encourage coarser
approximation initially, then refine toward smaller intervals; directly starting with small intervals
could trap the model in local minima by overtly focusing on fine-scale noise differences. Alg. 1 and
Alg. 2 in Appendix B show the complete training and sampling procedures.

5 Experiments

In this section, we present our experimental findings. Our evaluation protocol consists of two
stages: (i) assessing the quality of multivariate time series (MTS) completion on both forecasting and
imputation tasks with conditions on a variety of datasets, and (ii) conducting an ablation study to
analyze the effectiveness of our model components.

Table 1: Performance comparison of probabilistic diffusion models for conditioned time series
generation (forecasting). Deterministic point forecasting methods are included as reference baselines
to contextualize current forecasting capabilities. Bold values indicate best performance per dataset,
while underlined values represent second-best results. (↓).

Model Method ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Point
forecasting

NSformer ([2022]) 0.440 0.430 0.277 0.343 0.226 0.270 0.266 0.270 0.191 0.295 0.653 0.360
TimesNet ([2023]) 0.374 0.387 0.249 0.309 0.219 0.261 0.296 0.318 0.184 0.289 0.617 0.336
DLinear ([2023]) 0.380 0.389 0.284 0.362 0.237 0.296 0.320 0.398 0.196 0.285 0.598 0.370
PatchTST ([2023]) 0.370 0.390 0.251 0.312 0.223 0.258 0.259 0.321 0.205 0.307 0.463 0.311
SparseVQ ([2024]) 0.363 0.380 0.242 0.302 0.225 0.258 0.256 0.286 0.182 0.267 0.480 0.300
iTransformer ([2024]) 0.377 0.391 0.250 0.309 0.221 0.254 0.233 0.261 0.164 0.255 0.418 0.284

Probabilistic
forecasting

TimeGrad ([2021]) 1.716 1.057 1.385 0.732 0.885 0.551 1.211 1.004 0.645 0.723 0.932 0.807
CSDI ([2021]) 0.867 0.690 1.291 0.576 0.842 0.523 0.848 0.818 0.553 0.795 0.921 0.678
TimeDiff ([2023]) 0.796 0.577 0.284 0.342 0.277 0.331 1.169 0.936 0.730 0.690 1.465 0.851
DiffusionTS ([2024]) 1.030 0.744 2.372 1.232 0.563 0.574 0.749 0.740 1.072 0.856 1.473 0.815
TMDM ([2024]) 0.607 0.558 0.524 0.493 0.244 0.286 0.295 0.317 0.222 0.329 0.721 0.411
D3U ([2025]) 0.368 0.387 0.241 0.302 0.222 0.264 0.237 0.270 0.179 0.267 0.468 0.299
NsDiff ([2025]) 0.488 0.455 0.281 0.352 0.248 0.293 0.242 0.307 0.209 0.306 0.637 0.373
SSOL (Ours) 0.369 0.384 0.238 0.314 0.209 0.255 0.189 0.223 0.155 0.241 0.550 0.259

5.1 Setup: datasets and baselines

Baselines. We benchmark our method against two groups of baselines (a) diffusion-based probabilis-
tic models: NsDiff [Ye et al., 2025], D3U [Li et al., 2025], TMDM [Li et al., 2024], Diffusion-TS
[Yuan and Qiao, 2024], TimeDiff [Shen and Kwok, 2023], CSDI [Tashiro et al., 2021], TimeGrad
[Rasul et al., 2021], DiffWave [Kong et al., 2021]; (b) deterministic models: iTransformer [Liu
et al., 2024], PatchTST [Nie et al., 2023], DLinear [Zeng et al., 2023], TimesNet [Wu et al., 2023],
NSformer [Liu et al., 2022] SparseVQ [Zhao et al., 2024], Forecasting and imputation experiments
use task-specific subsets for appropriate comparisons. More information is provided in Appendix C.

Datasets. We evaluate our model on six widely used benchmarks: ETTh1, ETTm1 [Zhou et al., 2021],
Weather, Electricity, Traffic [Wu et al., 2021], and Solar-Energy [Lai et al., 2017]. For forecasting, we
mainly follow the experimental configurations in [Wu et al., 2023], including the same data processing
and splitting protocol. All experiments use a 192-step prediction horizon, adopting default lookbacks
for baselines that report at this horizon, or fixing lookback at 96 otherwise for fair comparison. For
imputation, we fix the window length to 48, following [Yuan and Qiao, 2024].

5.2 Evaluations on MTS completion tasks

Forecasting. Forecasting results from our experiments are summarized in Table 1, with detailed prob-
abilistic evaluation using the Continuous Ranked Probability Score (CRPS) provided in Table 2. Our
method demonstrates robust performance across these diverse benchmarks, matching or surpassing
diffusion-based probabilistic baselines. To give context for our method’s probabilistic performance,
we include comparisons with deterministic Transformer-based forecasting models (e.g., PatchTST,
iTransformer). Although deterministic forecasting is not our primary focus, our approach remains
competitive with these strong deterministic forecasters, frequently attaining top or near-top results.
Summary. Overall, these findings suggest that our single-step design can handle complex temporal
dependencies effectively in a 192-horizon prediction setting.
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Table 2: Performance evaluation of probabilistic forecasting models using CRPS and CRPSsum. Bold
values indicate best performance per dataset, while underlined values represent second-best results.

Model Dataset ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
Method CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

Probabilistic
Forecasting

TimeGrad (2021) 0.665 0.996 0.785 1.051 0.482 0.503 0.783 1.167 0.503 1.452 0.657 1.683
CSDI (2021) 0.773 0.852 0.625 0.782 0.508 0.465 0.649 0.681 0.465 0.823 0.612 1.275
TimeDiff (2023) 0.454 0.846 0.316 0.180 0.293 0.400 0.900 1.164 0.475 0.594 0.671 0.823
TMDM (2024) 0.429 0.633 0.380 0.226 0.226 0.292 0.375 0.267 0.446 0.137 0.552 0.179
D3U (2025) 0.285 0.749 0.243 0.141 0.207 0.283 0.186 0.266 0.202 0.160 0.232 0.186
NsDiff (2025) 0.350 1.614 0.256 1.315 0.244 1.873 0.300 27.64 0.290 29.65 0.378 119.4
SSOL (Ours) 0.376 0.553 0.184 0.131 0.348 0.384 0.211 0.195 0.224 0.116 0.268 0.176

Imputation. We follow the same geometric-mask strategy setup as in Zerveas et al. [2021], Yuan and
Qiao [2024], where each missing segment’s length is sampled from a geometric distribution, ensuring
that the data is masked in consecutive segments rather than at random individual points. This setup
aligns with real-world sensing scenarios, such as sensor failures or intermittent transmission losses,
where data typically drops out in bursts. We evaluate our approach on the ETTh1 and Energy datasets
under missing ratios ranging from 10% to 90%. In Figure 3, we observe that our proposed method
consistently achieves a lower MSE than all baselines throughout the entire range of missing ratios. In
Figure 5 in Appendix C, we show single-channel imputation examples.

How can single-step outperform diffusion-based baselines? Our algorithm is efficient yet powerful

Figure 3: Imputation results. MSE of different
imputation models under various missing ratios for
the ETTh1 (left) and Energy (right) datasets.

and only needs a single denoising step (NFE
= 1) while consistently matching or outperform-
ing multi-step (e.g., NFE = 20) diffusion-based
approaches on all tested datasets. Conventional
methods often rely on multi-step backward diffu-
sion, where even moderate time increments can
be ill-conditioned due to the exponential decay
of high-frequency modes in the forward process
(discussed in Thm 3.2). This necessitates many
small reverse steps and fine-tuning of step sizes
or noise schedules to mitigate error accumula-
tion. In contrast, we learn a global operator. Of
course, the composition property in (9) over all
noise intervals is essential: a direct jump from
one noise level to another must match the outcome of traversing any intermediate levels. This ensures
the operator remains well-defined for partial intervals and helps stable one-shot reconstruction of
fine-scale details, helped by the FAB block. Our model avoids the iterative error propagation and hy-
perparameter tuning (e.g., step sizes or scheduling) common in multi-step diffusion. Our end-to-end
training over the full noise range yields faster inference and lower forecasting errors.

5.3 Digging deeper into the operating profile of the model

Ablation study. We evaluate the impact of key components in our single-step conditioned generation
model through systematic ablation experiments on forecasting benchmarks. All experiments maintain
identical training configurations while selectively removing specific components: (i) Complete model:
Full framework with composition property and FAB; (ii) No composition property: Omits composition
training stage; (iii) No frequency-aware block: Uses standard residual block instead of FAB.

Observations. (a) Composition. The ablation results in Table 3 show that removing the composition
property consistently increases both MSE and MAE across all benchmarks. This is because the
composition property enforces the semigroup structure, ensuring stable transitions from high to low
noise levels, even with large step sizes. Otherwise, the model degenerates into a direct mapping from
high noise to clean data, and so cannot handle intermediate noise transitions effectively. (b) FAB
block: The frequency-aware block is equally useful for model performance. While forward diffusion
inherently suppresses high-frequency modes in the probability density function, our block’s sample-
level frequency adjustments enable the cumulative restoration of these modes at the distribution level.
The increased error rates observed when removing this block, as shown in Table 3, show that precise
per-sample frequency modulation is a meaningful signal.
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Table 3: (a) Ablation study: impact of composition property and frequency-aware block removal.
(b) Runtime gains due to single-step generation. (↓).

(a) Ablation study (Pred. Len = 96) (b) Runtime gains (ETTh1)
Models/Metric ETTh1 ETTm1 Weather Model Approach Steps Pred. Len = 96 Pred. Len = 192

MSE MAE MSE MAE MSE MAE MSE MAE CRPS CRPSsum MSE MAE CRPS CRPSsum

w/o Composition 0.402 0.433 0.362 0.394 0.190 0.268 NsDiff Original 20 0.543 0.496 0.371 1.539 0.603 0.525 0.394 1.638
[2025] + SSOL 1 (20×) 0.527 0.484 0.364 1.477 0.580 0.522 0.389 1.682

w/o FAB 0.406 0.424 0.336 0.366 0.178 0.221 D3U Original 20 0.415 0.426 0.317 0.699 0.471 0.463 0.340 0.799
[2025] + SSOL 1 (20×) 0.400 0.412 0.369 0.813 0.440 0.439 0.381 0.823

Complete Model 0.375 0.396 0.325 0.352 0.153 0.209 SSOL Reference 1 0.375 0.496 0.377 0.564 0.421 0.422 0.405 0.600

Efficiency. As shown in Table 3, we achieve strong efficiency gains by reducing the sampling steps to
only one (NFE = 1) – roughly 20× improvement. When applied to recent diffusion models NsDiff
and D3U, ours consistently improves prediction accuracy, reducing MSE and MAE in both 96 and
192-step forecasts while maintaining comparable CRPS metrics.

Runtime analysis. The additional runtime analysis table is shown in Appendix C.1. We provide
actual training and inference times measured on identical hardware to address efficiency claims
in Table 8. We used a computationally efficient variant of our method with reduced model size
and shallower residual layers, while preserving the core frequency-aware block and semigroup
composition training methodology. Our two-stage training exhibits comparable per-iteration times to
baseline methods, with Stage 1 (boundary denoising) and Stage 2 (semigroup constraints) adding
minimal overhead compared to standard single-stage training. Although we do not achieve a pure 20×
speedup in wall-clock time due to backbone architecture differences across methods, our approach
shows strong efficiency gains during inference. The key findings are: (a) inference speedup of 3.5×
faster than D3U and 25× faster than NsDiff, (b) memory efficiency with 35% less GPU usage than
D3U and 85% less than NsDiff, and (c) performance parity, where, despite far fewer denoising steps,
SSOL achieves comparable/better MSE/MAE. The efficiency gains come from our single-step design,
while the additional training time for semigroup consistency is negligible compared to the inference
savings.

Are single-step outputs based on actual denoising? In the single-step framework, one concern
is whether the model can collapse to a trivial solution simply by ignoring the injected noise and
behaving like a conventional regressor in the conditioning window. In that case, drawing multiple
noisy samples would not meaningfully change the model’s predictions, since each forward pass
would converge to the same deterministic output. To check this, we conducted an experiment in
which we varied the number of generated samples n (see panel 3 of Fig. 4). We observe that as n
increases, the median of these n samples consistently lowers MSE and MAE, indicating the model
does react to each injected noise draw, i.e., it is genuinely denoising from different noisy realizations.
If the model were ignoring noise, its outputs (and thus errors) would not improve with additional
samples, suggesting that it learns the conditional distribution over possible future trajectories.

Impact of shifted noise distribution. We also tested conditional forecast generation with a much
smaller σmax at inference time, which produces a narrower prior distribution, creating a mismatch
in the types of perturbations the model must denoise. The right panel of Figure 4 shows that the
distribution shift degrades performance, indicating that the single-step operator depends on access
to a broader range of noise levels during inference to capture the distribution’s variability. This
behavior is expected: our operator is trained to map from high noise levels, where forward diffusion
has sufficiently smoothed the data distribution (in Thm 3.2), but reducing σmax at inference violates
this assumption by starting from insufficiently noisy priors. The degradation confirms our model
performs diffusion-based generation and is not learning shortcuts that ignore the noise structure.

Does single-step denoising recover the high-frequency components in distribution? We can ask
if our model can recover the fine-grained, high-frequency details via the frequency-aware block. In
Fig. 4, the t-SNE plot (left) shows close proximity in the embedded space, suggesting that we can
cover the overall data manifold in the forecasting setting. Further, the power spectral density curves
in the second-left panel show that the generated distribution captures high-frequency components that
align closely with the real data, indicating that FAB can denoise the noise in individual observations
and re-injects the fine-scale details in the conditional distribution.
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Figure 4: Left: t-SNE manifold comparison and power spectral density recovery on ETTm1. Right:
Error analysis of conditioned generation on Electricity and ETTh1.

6 Related Work

Single-step denoising. Most diffusion models rely on multiple iterative denoising steps in the reverse
process [Song and Ermon, 2019, Ho et al., 2020], which can be expensive at inference time. Recent
research has therefore explored strategies for reducing the number of sampling steps. For instance,
Nichol and Dhariwal [2021] propose a strided sampling schedule to skip certain reverse-time intervals,
while Salimans and Ho [2022] proposes progressive distillation that halves the diffusion steps in each
iteration through a teacher-student paradigm. More recently, Song et al. [2023] learn a direct mapping
from any intermediate noisy point to the clean signal in a single step via consistency distillation.
Similar single-step approaches have been developed for image generation [Frans et al., 2025, Geng
et al., 2025], though these require domain-specific adaptations for time-series applications. Our work
leverages classical principles in Pazy [1983], Henry [1981] to define a single-step inverse operator.

Diffusion models for conditioned time series generation. Time-series forecasting has evolved
from classical statistical models such as ARIMA [Box and Jenkins, 1994] to advanced Transformer-
based approaches [Liu et al., 2024, Nie et al., 2023] and more recently, diffusion based approaches.
Proposals like Diffusion-TS [Yuan and Qiao, 2024], MG-TSD [Fan et al., 2024], TSDiff [Kollovieh
et al., 2023], SSSD [Alcaraz and Strodthoff, 2023], D3VAE [Li et al., 2022], TimeGrad [Rasul et al.,
2021], CSDI [Tashiro et al., 2021], and ImagenTime [Naiman et al., 2024] leverage diffusion-based
generative modeling in interesting ways for probabilistic forecasting/imputation. Some recent results
have run diffusion in the frequency domain: Crabbé et al. [2024] performs score matching on mirrored
Brownian motion (in Fourier basis) and improves sample fidelity, and FIDE [Galib et al., 2024]
inflates high-frequency coefficients and conditions on block maxima to preserve extreme events.
However, these approaches still rely on multi-step sampling, efficient single-step generation for
time-series diffusion models is largely unaddressed in these works.

7 Conclusions

We introduced a novel single-step operator learning approach for time-series diffusion models
that enables efficient conditioned generation while maintaining high-quality results. By using
insights from the frequency-domain characteristics of both time-series data and the diffusion process
itself, our model can effectively reverse the smoothing effects of forward diffusion in one step.
Extensive experiments across multiple datasets shows that our approach achieves comparable or
better performance than existing multi-step diffusion and deterministic methods, while reducing
computational costs quite drastically, which can make diffusion models more practical and efficient
for numerous time-series applications.
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A Attenuation of high-frequency modes

A key observation of forward diffusion processes is the attenuation of high-frequency modes. In the
non-degenerate linear drift diffusion setting (1), the associated Fokker–Planck operator (5) enforces
exponential damping of the Fourier transform of the density at large wavenumbers. In the following,
we provide detailed proofs of these properties (which are also stated in Sect. 3.2), then connect them
to smoothing in Sobolev and wavelet spaces.

Assumptions. Throughout this section, we fix measurable coefficient functions f, g : [0,∞)→ R
with g(τ) ≥ δ > 0 and work under the following hypotheses:

(A1) Initial data. The starting density satisfies p0 ∈ L1(Rd) ∩ L2(Rd).

(A2) Coefficient regularity. f, g ∈ L1
loc([0,∞)), ensuring that all integrals

∫ τ

0
f(u) du and∫ τ

0
g(u)2 du are finite for every τ > 0.

(A3) Existence of an L1∩L2 density. For each τ > 0, the Fokker-Planck in equation (5)

∂τpτ = 1
2 g(τ)

2∆pτ −∇·
[
f(τ)x pτ

]
, p |τ=0

= p0,

admits a solution pτ ∈ L1(Rd) ∩ L2(Rd) with sufficient decay at spatial infinity to justify
term-wise Fourier transforms and integration by parts.

A.1 Exponential damping in the Fourier domain

To analyze the high-frequency behavior, let us take the spatial Fourier transform of the probability
density pτ (x). Define

p̂τ (ξ) =

∫
Rd

e− i ξ·x pτ (x) dx, ξ ∈ Rd.

The following theorem shows that for each fixed ξ ̸= 0, these modes decay at an exponential rate
determined by the diffusion amplitude.
Theorem A.1 (Exponential decay of Fourier modes). Assume (A1)–(A3) hold. Put

s(τ) := exp
(
−
∫ τ

0

f(u) du
)
, σ(τ)2 :=

∫ τ

0

g(u)2 s(u)−2 du, τ ≥ 0,

which is also stated in (2). For every τ > 0 and every frequency ξ ∈ Rd the Fourier transform of the
solution to

∂τpτ (x) = 1
2 g(τ)

2 ∆pτ (x) − ∇ ·
[
f(τ)x pτ (x)

]
, p

∣∣
τ=0

= p0,

satisfies the identity

p̂τ (ξ) = p̂0
(
Ξ(0)

)
exp

(
− 1

2

∫ τ

0

g(γ)2
∥∥Ξ(γ)

∥∥2 dγ).
Consequently, ∣∣p̂τ (ξ)∣∣ ≤ ∣∣p̂0(Ξ(0)

)∣∣ exp(− 1
2

∫ τ

0

g(γ)2
∥∥Ξ(γ)

∥∥2 dγ).
Proof. Step 1: Fourier transform of the Fokker–Planck operator. Because pτ ∈ L1 ∩ L2 and enjoys
Gaussian upper bounds (see assumption (A3)), we apply the spatial Fourier transform and integrate
by parts. Writing p̂τ (ξ) = Fx[pτ ](ξ), we use the standard identities:

F [∆pτ ](ξ) = −∥ξ∥2 p̂τ (ξ), F
[
∇ · (x pτ )

]
(ξ) = −

〈
ξ, ∇ξ p̂τ (ξ)

〉
.

Transforming the Fokker–Planck equation therefore gives the first-order PDE

∂τ p̂τ (ξ) = − 1
2 g(τ)

2 ∥ξ∥2 p̂τ (ξ) + f(τ)
〈
ξ, ∇ξ p̂τ (ξ)

〉
,

to be solved in the (τ, ξ) variables. Or, equivalently

∂τ p̂τ (ξ) − f(τ)
〈
ξ, ∇ξp̂τ (ξ)

〉
= − 1

2 g(τ)
2 ∥ξ∥2 p̂τ (ξ).
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Step 2: Solve the equation via characteristic curves in ξ-space. Fix τ > 0 and ξ ∈ Rd. For γ ∈ [0, τ ]
define the backward characteristic Ξ(γ) by

dΞ

dγ
(γ) = − f(γ)Ξ(γ), Ξ

∣∣
γ=τ

= ξ.

Since f ∈ L1
loc([0,∞)) by Assumption (A2), the ODE is well posed and has the explicit solution

Ξ(γ) = exp
(
−
∫ τ

γ

f(u) du
)
ξ =

s(τ)

s(γ)
ξ, 0 ≤ γ ≤ τ,

where s(·) is the scaling factor defined in (2). Along this curve in ξ-space, using the chain rule and
the PDE obtained in Step 1 we compute:

d

dγ
p̂γ

(
Ξ(γ)

)
= − 1

2 g(γ)
2
∥∥Ξ(γ)

∥∥2 p̂γ(Ξ(γ)
)
.

This linear ODE integrates to

p̂γ
(
Ξ(γ)

)
= p̂0

(
Ξ(0)

)
exp

(
− 1

2

∫ γ

0

g(u)2
∥∥Ξ(u)

∥∥2 du), 0 ≤ γ ≤ τ.

Setting γ = τ in the equation obtained above, we have

p̂τ (ξ) = p̂0
(
Ξ(0)

)
exp

(
− 1

2

∫ τ

0

g(u)2
∥∥Ξ(u)

∥∥2 du).
Recall that Ξ(u) = s(τ)

s(u) ξ where s(τ) = exp
(
−
∫ τ

0
f(u) du

)
. Since s(0) = 1, we have

Ξ(0) = s(τ) ξ and p̂0
(
Ξ(0)

)
= p̂0

(
s(τ) ξ

)
.

For the integral in the exponent, we use ∥Ξ(u)∥2 =
(

s(τ)
s(u)

)2

∥ξ∥2 to obtain∫ τ

0

g(u)2 ∥Ξ(u)∥2 du = ∥ξ∥2s(τ)2
∫ τ

0

g(u)2

s(u)2
du.

Defining σ(τ)2 :=
∫ τ

0
g(u)2

s(u)2 du, this simplifies to∫ τ

0

g(u)2 ∥Ξ(u)∥2 du = ∥ξ∥2s(τ)2σ(τ)2.

Substituting these results into our expression for p̂τ (ξ) yields

p̂τ (ξ) = p̂0(s(τ)ξ) exp
(
−1

2
∥ξ∥2s(τ)2σ(τ)2

)
,

which matches the identity in Theorem A.1

Takeaway. The final expression

p̂τ (ξ) = p̂0
(
s(τ) ξ

)
exp

(
− 1

2 ∥ξ∥
2 s(τ)2 σ2(τ)

)
shows that for each fixed τ > 0, the Fourier transform of pτ inherits a Gaussian-type decay factor
in ∥ξ∥2. Provided g(·) does not vanish identically and s(·) remains finite and nonzero, the product
s(τ)2 σ2(τ) is strictly positive, thus giving an exponential decay in ∥ξ∥ for each t > 0. In other
words, no matter how f(·) and g(·) vary over time, the factor exp

(
− 1

2 ∥ξ∥
2 s(τ)2 σ(τ)2

)
suppresses

large-frequency modes of pτ in a Gaussian manner.

Moreover, we can view this suppression in two complementary ways: (a) Decay in frequency for
fixed τ . For any fixed τ > 0, as ∥ξ∥ → ∞, we have the factor exp

(
− 1

2 ∥ξ∥
2 s(τ)2 σ(τ)2

)
forcing

rapid (Gaussian) damping of high-frequency modes. This is the source of instant smoothing: one
can show pτ ∈ Hκ(Rd) for all κ ≥ 0. (b) Decay in time for fixed ξ ̸= 0. For any nonzero frequency
ξ, the same exponential factor shrinks p̂τ (ξ) to zero in τ , typically at an exponential rate, provided
s(τ)2σ2(τ) grows in τ . This illustrates how each individual mode is damped as time evolves.

These two types of decay reflect the main smoothing and mode-attenuating nature of forward diffusion
processes. (a) First, pτ becomes instantly smooth for any τ > 0: indeed, pτ ∈ Hκ(Rd) for all
κ ≥ 0, implying pτ is C∞ in the spatial variables. (b) Second, from an inverse perspective (e.g.
generative modeling), the loss of high-frequency content means that recovering p0 from pτ becomes
ill-conditioned as τ grows. Thus this exponential decay factor captures both the smoothing and the
mode-attenuating nature of forward diffusion processes.
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A.2 Instant smoothing in Sobolev and Wavelet spaces

In the previous subsection, we established that p̂τ (ξ) decays exponentially at large wavenumbers ∥ξ∥
(see Theorem A.1). Here, we show how this exponential decay in the Fourier domain leads directly
to the conclusion that pτ belongs to all Sobolev spaces Hκ(Rd) for each τ > 0. Then, by leveraging
the known equivalence between Sobolev norms and wavelet-coefficient decay, we confirm that pτ is
likewise instantly smooth with respect to any transform that localizes high-frequency (or fine-scale)
components, such as wavelets.

Corollary A.2 (Instant smoothing in Sobolev and Wavelet spaces). Let pτ solve the linear-drift
Fokker–Planck equation (5) and assume that pτ (·) remains in L2(Rd) for all τ ≥ 0 (see Assumption
(A3)). Then for each fixed τ > 0 and for every real κ ≥ 0, we have

pτ ∈ Hκ(Rd).

Equivalently, in a wavelet basis {ψj,k}, if bj,k(pτ ) denotes the wavelet coefficients of pτ , then∑
j∈Z

∑
k∈Zd

22jκ
∣∣bj,k(pτ )∣∣2 < ∞ for each κ ≥ 0.

Hence pτ is in all Sobolev space Hκ(Rd) for τ > 0, and is therefore infinitely differentiable.

Proof of Corollary A.2. Step 1: Exponential decay in the Fourier domain. By Theorem A.1, there
exist constants Cτ > 0, ατ > 0, and R0 > 0, depending on τ , such that∣∣p̂τ (ξ)∣∣ ≤ Cτ exp

(
−ατ ∥ξ∥2

)
for all ∥ξ∥ ≥ R0.

(If f(·) ≡ 0, this is immediately seen from the heat kernel’s Gaussian decay. If f(·) ̸= 0, one uses
the scaled-argument form of the solution in Theorem A.1.)

Step 2: Sobolev-norm boundedness. Recall that pτ ∈ Hκ(Rd) for all κ > 0 if and only if∫
Rd

(
1 + ∥ξ∥2

)κ ∣∣p̂τ (ξ)∣∣2 dξ < ∞. (∗)

(See, e.g., Grafakos [2014], Evans [1998] for this classical characterization.) We split the integral in
(∗) into two regions:

{∥ξ∥ ≤ R0} and {∥ξ∥ > R0}.

Since p̂τ ∈ L2(Rd) (by Assumption (A3), pτ ∈ L2(Rd) and Plancherel’s theorem), the portion over
{∥ξ∥ ≤ R0} is trivially finite. On {∥ξ∥ > R0}, we use the exponential bound:

(1 + ∥ξ∥2)κ
∣∣p̂τ (ξ)∣∣2 ≤ (1 + ∥ξ∥2)κ C2

τ exp
(
−2ατ ∥ξ∥2

)
.

As ∥ξ∥ → ∞, the polynomial factor (1 + ∥ξ∥2)κ is dominated by the superpolynomial decay of
exp(−2ατ ∥ξ∥2). Hence the integrand is integrable for all κ ≥ 0. Thus the integral in (∗) is finite,
yielding pτ ∈ Hκ(Rd). Since κ is arbitrary, pτ ∈ Hκ(Rd) for all κ ≥ 0.

Step 3: Equivalence with wavelet decay. Next, we recall (e.g. from Meyer [1993]) that a function’s
inclusion in Hκ(Rd) is equivalent to having sufficiently small wavelet coefficients at large scales:

∥pτ∥2Hκ(Rd) ∼
∑
j∈Z

∑
k∈Zd

22jκ
∣∣bj,k(pτ )∣∣2,

where bj,k(pτ ) denotes the wavelet coefficient of f at scale j and position k. Since exponential
decay of p̂τ (ξ) at large ∥ξ∥ implies fast convergence of pτ ’s expansions in localized bases (such as
wavelets), one sees directly that pτ ’s wavelet coefficients decay sufficiently rapidly for it to lie in all
Hκ for κ > 0. Equivalently, from the purely wavelet viewpoint, each increase in κ imposes an extra
factor of 22jκ on the sum, yet exponential decay in frequency/scale ensures convergence for every κ.

In conclusion, pτ lies in all Hκ(Rd) and thus is C∞(Rd) for each τ > 0.
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Remark A.3 (Implications for generative models). From the perspective of generative modeling,
Theorem A.1 and Corollary A.2 formalize the idea that “noise injection” destroys high-frequency
information about the initial distribution p0. The exponential shrinkage of p̂τ (ξ) at large ∥ξ∥
makes recovery of p0 from pτ ill-conditioned as τ increases. Hence effective methods may require
learned priors or neural architectures that reconstruct the lost high-frequency details in a stable
way. From a practical standpoint, the generative reverse process must reconstruct precisely those
exponentially damped (high) frequencies, which explains in part why carefully designed neural
network architectures and training procedures are needed.
Remark A.4 (Conditions for smoothing properties). Consider the forward SDE defined in equation (1).
(a) C∞-smoothness. When the diffusion coefficient is strictly non-degenerate, i.e., g(τ) > 0 for
all τ > 0, Theorem A.1 establishes that p̂τ (ξ) = O(e−cτ∥ξ∥2

). Consequently, pτ ∈ Hκ(Rd) for
every κ ≥ 0 and exhibits C∞-smoothness with respect to x. The strict positivity condition on g(τ)
is necessary; in cases where g ≡ 0 (purely deterministic flow) or where g is rank-deficient and
Hörmander’s bracket condition is not satisfied, pτ may reduce to a Dirac distribution without any
smoothing effect. (b) Real analyticity. If, furthermore, the coefficients satisfy uniform parabolicity
on each compact time interval,

0 < inf
0≤γ≤σ

g(γ) ≤ sup
0≤γ≤σ

g(γ) <∞, sup
0≤γ≤σ

|f(γ)| <∞ (∀σ > 0),

then we can strengthen the regularity conclusion to real-analyticity of pτ in the spatial variables
for all τ > 0. (c) Practical implication. Many score-based diffusion models (e.g., EDMKarras
et al. [2022]) specifically choose a full-rank Brownian motion with g both bounded and bounded
away from zero. Consequently, both the C∞-smoothness property and the analytic regularity are
automatically satisfied in practical implementations.

B Algorithm

In the following, we collect the implementation details that turn the approach in Secs.4–4.3 into a
step-by-step algorithm. The algorithm 1 details the two-stage optimization that equips the inverse
operator ϕ with the boundary condition and the semigroup constraint that connects all intermediate
noise levels. The algorithm 2 illustrates how, once trained, the same operator can be used to generate
(or complete) time series in a single jump from the highest noise level σmax to the data manifold at
σ = 0.

C Experiments

Datasets. We evaluate our model on two main tasks: forecasting and imputation. For forecasting,
we utilize five benchmark time series datasets: Electricity Transformer Temperature (ETT) Zhou
et al. [2021], which contains electricity transformer measurements at hourly (ETTh) and 15-minute
(ETTm) intervals; Weather Wu et al. [2021], comprising 21 meteorological parameters collected
at 10-minute intervals; Solar-Energy Lai et al. [2017], which records power generation data from
multiple solar plants at 10-minute intervals throughout 2006; Electricity Wu et al. [2021], tracking
consumption patterns across 321 clients; and Traffic Wu et al. [2021], which monitors hourly road
occupancy rates through 862 sensors in San Francisco from 2015 to 2016. For the imputation task,
we use a subset of these forecasting datasets along with Energy Candanedo [2017], which captures
energy consumption at 10-minute intervals over approximately 4.5 months, collected via a ZigBee
wireless sensor network in Belgium.

Experimental setup. Our experimental configurations follow the protocols established in Wu
et al. [2023], including identical data processing and splitting methods. Details for each dataset are
provided in Table 4. Aligned with fair comparison settings outlined in Liu et al. [2024], Li et al.
[2025], we fix the lookback window length to 96 time steps for most datasets and baselines, with the
prediction horizon set to 192 time steps. For baselines that are reported under similar settings and
have published results for 192-step prediction, such as NsDiffYe et al. [2025], we adopt their default
configurations, regardless of whether they utilize longer lookback windows (which potentially provide
more historical context for forecasting or conditioned generation). For imputation tasks, we fix the
window length to 48 time steps, following the protocol in Yuan and Qiao [2024]. For probabilistic
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Algorithm 1 Two-stage training of the single–step inverse operator ϕ

Input: dataset D of clean sequences x0; mini-batch size N ; log–normal noise prior pln(σ); weight-
ing function ω(σ) (Eq. 4); learning rates η1, η2; EMA rate βema; adaptive linear grid scheduler
N(·) = identity(·); noise scheduler in second stage σn|N(k) = (σ

1/υ
max +

n
N(k)−1 (σ

1/υ
min −σ

1/υ
max ))υ

with σmax = 80, σmin = 0.002, and υ = 7
1 Initialize: random parameters θ (shared by Hθ in Eq. (3) and ϕ in Eq. (8)); θ̄ ← θ

Stage 1: boundary denoising (Eq. (4))
2 while not converged do
3 Sample {x(i)

0 }Ni=1 ∼ D
4 Sample {σ(i)}Ni=1 ∼ pln(σ) and {ϵ(i)}Ni=1 ∼ N (0, I)
5 for i = 1 to N do
6 x

(i)
σ ← x

(i)
0 + σ(i)ϵ(i)

7 x̂
(i)
0 ← Hθ

(
x
(i)
σ , σ(i)

)
8 end for

9 Ldenoise ←
1

N

N∑
i=1

ω(σ(i))
∥∥x̂(i)

0 − x
(i)
0

∥∥2
2

10 θ ← θ − η1∇θLdenoise
11 end while

Stage 2: semigroup consistency (Eq. (9))
12 while not converged do
13 Increment global step k
14 Sample {x(i)

0 }Ni=1 ∼ D
15 Choose n ∼ Unif{1, . . . , N(k)}; set τ ← σn, γ ← σn−1, ρ← 0
16 Sample {ϵ(i)}Ni=1 ∼ N (0, I)
17 for i = 1 to N do
18 x

(i)
τ ← x

(i)
0 + τ ϵ(i)

19 x
(i)
direct ← ϕθ(ρ, τ,x

(i)
τ )

20 x
(i)
comp ← ϕθ

(
ρ, γ, ϕθ̄(γ, τ,x

(i)
τ )

)
21 end for

22 Lcmp ←
1

N

N∑
i=1

∥∥x(i)
direct − x(i)

comp

∥∥2
2

23 θ ← θ − η2∇θLcmp

24 θ̄ ← βemaθ̄ + (1− βema)θ
25 end while
Return: θ̄ ▷ final EMA parameters

Algorithm 2 Single–step sampling with inverse operator ϕ

Input: number of samples Ñ ; trained EMA parameters θ̄; maximum noise level σmax; observations
xobs, mask M

Return: completed sequences {x̂(i)
0 }Ñi=1

1 for i = 1 to Ñ do ▷ independent draws
2 draw ϵ(i) ∼ N (0, I)

3 x
(i)
σ ← σmax ϵ

(i) ▷ initialise at highest noise
4 if observations are given then ▷ completion case
5 x

(i)
σ ← (1−M)⊙ x

(i)
σ + M⊙ xobs

6 end if
7 x̂

(i)
0 ← ϕθ̄

(
0, σmax,x

(i)
σ

)
▷ single jump σmax→0

8 end for
return {x̂(i)

0 }Ñi=1

completion tasks (including both forecasting and imputation), we sample 100 trajectories per instance
and use the median trajectory as our point estimator.
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Table 4: Dataset characteristics for forecasting and imputation tasks. Dim. denotes the number of
variates (channels); Size specifies the sample counts in the training, validation, and test splits; Freq.
indicates the data sampling interval.

Task Dataset Dim. Pred. length/Missing ratio Size Freq. Domain

Forecasting

ETTh1 7 192 (8545, 2881, 2881) 1 hr Temperature
ETTm1 7 192 (34465, 11521, 11521) 15 min Temperature
ETTm2 7 192 (34465, 11521, 11521) 15 min Temperature
Weather 21 192 (36792, 5271, 10540) 10 min Weather

Electricity 321 192 (18317, 2633, 5261) 1 hr Electricity
Solar-Energy 137 192 (36601, 5161, 10417) 10 min Electricity

Traffic 862 192 (12185, 1757, 3509) 1 hr Transportation

Imputation

ETTh1 7 {10,25,50,75,90}% (8545, 2881, 2881) 1 hr Temperature
ETTm1 7 {10,25,50,75,90}% (34465, 11521, 11521) 15 min Temperature
Weather 21 {10,25,50,75,90}% (36792, 5271, 10540) 10 min Weather
Energy 28 {10,25,50,75,90}% (13797, 1972, 3942) 10 min Sensor network

Baselines. For the time series forecasting task (conditioned generation with masks identifying
the lookback and prediction horizon), we conducted comprehensive comparisons with both point
forecasting models and probabilistic models. The point forecasting models include NSformer Liu et al.
[2022], TimesNet Wu et al. [2023], DLinear Zeng et al. [2023], PatchTST Nie et al. [2023], SparseVQ
Zhao et al. [2024], and iTransformer Liu et al. [2024]. The probabilistic models include TimeGrad
Rasul et al. [2021], CSDI Tashiro et al. [2021], TimeDiff Shen and Kwok [2023], DiffusionTS Yuan
and Qiao [2024], TMDM Li et al. [2024], D3U Li et al. [2025], and NsDiff Ye et al. [2025]. For
models that explicitly addressed this forecasting task under mostly identical settings, specifically
D3U Li et al. [2025] and NsDiff Ye et al. [2025], we directly referenced their published results to
ensure accuracy and consistency in our comparisons. For baselines that did not originally report
results under our exact experimental conditions, we either reproduced their outcomes using official
code repositories where available, or referenced reproduction results reported by D3U and NsDiff to
maintain comparability and fairness across all evaluations.

Implementation details. All experiments were conducted using PyTorch Paszke et al. [2019] on
a single NVIDIA A100 40GB GPU. We trained our model using a two-stage approach with the
Adam optimizer Kingma and Ba [2015]. In the first stage, we trained the model using the EDM-type
loss Karras et al. [2022] defined in Eq. 4. The second stage focused on optimizing the composition
property loss, as shown in Algorithm 1. Summary of the experimental configurations for all datasets
is listed in Table 5.

Table 5: Hyperparameter settings used for training and evaluating the diffusion models.

Dataset Epochs Batch Size Learning Rate Layers Wavelet Levels Wavelet Type Sampled Trajectories Aggregation
ETTm1 50 32 0.001 4 3 db1 100 median
ETTm2 50 32 0.001 4 1 db1 100 median
Solar-Energy 50 8 0.001 4 3 db8 100 median
Electricity 50 8 0.001 4 3 db1 100 median
Weather 50 32 0.001 4 3 db1 100 median
Traffic 50 16 0.001 1 1 db1 100 median
Energy 50 32 0.001 4 3 db1 100 median

Probabilistic metrics. For evaluating probabilistic predictions, we employ the Continuous Ranked
Probability Score (CRPS) [Matheson and Winkler, 1976, Tashiro et al., 2021], which measures
compatibility between an estimated distribution and observations. CRPS is defined as:

CRPS(P−1,x) =

∫ 1

0

2Λu(P−1(u),x)du (10)

where Λu(q,x) = (u− 1x<q)(x− q) is the quantile loss function, P−1 is the inverse CDF of the
predicted distribution, and x is the observed value. In practice, we approximate this integral using dis-
cretized quantile levels with 0.05 intervals and generate 100 samples to estimate the distribution. For
multivariate time series, we also evaluate CRPS-sum, which assesses the joint predictive performance
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by calculating CRPS for the distribution of the sum across all channels:

CRPS-sum =

∑
t CRPS(P−1,

∑
c xc,t)∑

c,t |xc,t|
(11)

where c indexes channels and t indexes position in timesteps. Both metrics are normalized by the sum
of absolute observed values to ensure fair comparison across datasets, with lower values indicating
better model performance.

C.1 Additional experiments in probabilistic forecasting

Probabilistic metrics. While our main evaluation (Table 1) employed deterministic metrics
(MSE/MAE), we further assess probabilistic forecasting performance. Table 2 presents both CRPS
and CRPSsum metrics, evaluating distributional accuracy at individual channel and aggregate levels,
respectively.

Analysis of Table 2 reveals that SSOL achieves state-of-the-art CRPSsum performance on four of six
datasets, demonstrating superior accuracy in aggregated channel forecasting. This advantage stems
directly from our channel permutation invariance design. While D3U excels in per-channel CRPS,
SSOL maintains competitive performance, ranking first on ETTm2 and second on several datasets.
This performance pattern illustrates the trade-off between optimizing for individual channels versus
aggregated behavior, confirming the effectiveness of our approach for multi-channel forecasting tasks.

Statistical robustness. We report the statistical significance of our model’s performance by com-
puting the standard deviation across 5 different consecutive random seeds during the sampling stage,
while keeping the trained model fixed. As shown in Table 6, the standard deviations are consistently
small (on the order of 10−4 or 10−5), demonstrating that our results are robust to the stochasticity
in the sampling process. This stability is expected since we use the median of 100 trajectories per
instance as our point estimator, which provides statistical robustness.

Table 6: Mean±SD of each metric for prediction lengths 192 and 96 on ETTh1, computed over 5
random seeds during the sampling stage using the same trained model.

Pred. Len RMSE MSE MAE CRPS CRPSsum

192 0.649± 1.19× 10−4 0.421± 1.54× 10−4 0.422± 9.88× 10−5 0.405± 6.76× 10−5 0.600± 2.82× 10−4

96 0.612± 1.43× 10−4 0.375± 1.76× 10−4 0.396± 1.17× 10−4 0.377± 9.72× 10−5 0.564± 2.05× 10−4

Table 7: Comparison of imputation performance with Diffusion-TS Yuan and Qiao [2024]. Metrics
reported: MSE (×10−3) and MAE (×10−2). Diffusion-TS and SSOL (ours) results are based on
100 samples using the median as point estimator, while SSOL-S uses a single trajectory sample as
estimator. (↓)

ETTh1 Energy Weather ETTm1
10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

Diffusion-TS MSE 2.20 2.62 3.13 3.65 3.68 19.6 20.9 22.6 23.9 23.9 6.82 4.61 3.58 3.20 3.24 0.74 0.89 1.13 1.42 1.43
MAE 3.11 3.35 3.71 4.06 4.07 10.0 10.2 10.4 10.8 10.8 1.64 1.37 1.25 1.22 1.23 2.71 2.99 3.36 3.76 3.79

SSOL MSE 1.83 1.31 1.67 2.14 2.14 4.41 4.74 4.09 5.75 5.65 1.34 1.29 1.23 1.28 1.34 0.44 0.50 0.62 0.77 0.81
MAE 2.56 2.40 2.68 3.05 3.03 2.81 2.90 2.52 3.07 2.85 0.90 0.87 0.78 0.79 0.83 1.45 1.49 1.61 1.78 1.89

SSOL-S MSE 2.92 2.08 2.70 3.51 3.51 7.83 8.84 7.69 10.9 10.8 2.20 2.07 2.30 2.12 2.15 0.65 0.86 1.07 1.39 1.56
MAE 3.31 3.08 3.51 3.99 3.97 3.43 3.74 3.15 3.99 3.72 1.21 1.16 1.14 1.09 1.14 1.79 1.99 2.17 2.44 2.64

Runtime analysis. We provide actual training and inference times measured on identical hardware
to address efficiency claims in Table 8. We used a computationally efficient variant of our method
with reduced model size and shallower residual layers, while preserving the core frequency-aware
block and semigroup composition training methodology. Our two-stage training exhibits comparable
per-iteration times to baseline methods, with Stage 1 (boundary denoising) and Stage 2 (semigroup
constraints) adding minimal overhead compared to standard single-stage training. Although we do
not achieve a pure 20× speedup in wall-clock time due to backbone architecture differences across
methods, our approach shows strong efficiency gains during inference.
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Table 8: Runtime analysis and computational efficiency comparison of SSOL, D3U, and NsDiff
models on ETTh1 dataset for prediction lengths 336 and 720.

Forecasting Performance Computational Efficiency Resources

Model Pred. Len MSE MAE CRPS CRPSsum Train Inference NFEs GPU Mem
↓ ↓ ↓ ↓ (s/iter) (min/batch) (MiB)

SSOL 336 0.491 0.477 0.458 0.639 0.025 0.022 1 364
720 0.539 0.535 0.508 0.672 0.032 0.044 1 646

D3U 336 0.512 0.478 0.351 0.922 0.025 0.078 20 582
720 0.533 0.505 0.371 1.458 0.030 0.164 20 884

NsDiff 336 0.728 0.583 0.431 1.083 0.105 0.544 20 2560
720 0.704 0.613 0.440 2.086 0.179 0.608 20 5380

The key findings are: (a) inference speedup of 3.5× faster than D3U and 25× faster than NsD-
iff, (b) memory efficiency with 35% less GPU usage than D3U and 85% less than NsDiff, and
(c) performance parity, where, despite far fewer denoising steps, SSOL achieves comparable/better
MSE/MAE. The efficiency gains come from our single-step design, while the additional training time
for semigroup consistency is negligible compared to the inference savings.

Longer horizons. we conducted additional experiments on longer prediction horizons (336 and
720 steps) using the ETTh1 dataset, as shown in Table 8. The results demonstrate that our method
maintains competitive performance at extended horizons: SSOL achieves comparable or better deter-
ministic predictions with consistently better joint distribution modeling (CRPS-SUM improvements
of 31% at 336 steps and 54% at 720 steps compared with D3U).

Fourier versus wavelets. We compared Fourier and wavelet transforms as the spectral basis in
our frequency-aware block using ETTh1 with prediction length of 96. Wavelet transforms with db1
basis achieved better performance (MSE: 0.375, MAE: 0.396) compared to Fourier transforms (MSE:
0.391, MAE: 0.412). This difference aligns with expectations: Fourier analysis assumes global
stationarity, while wavelets provide localized time-frequency analysis better suited for non-stationary
time-series patterns.

C.2 Additional experiments in imputation

Experiment results. We provide additional details on the time series imputation experiments shown
in Figure 3. Our empirical evaluation demonstrates that the proposed SSOL method significantly
outperforms existing time series imputation approaches, including the state-of-the-art Diffusion-
TS model Yuan and Qiao [2024], across four evaluated datasets and missing ratios. As shown
in Table 7, SSOL consistently achieves lower error metrics, with MSE reductions of 16-50% on
ETTh1, 76-82% on Energy, 59-80% on Weather, and 40-44% on ETTm1 compared to Diffusion-TS.
Both Diffusion-TS and our primary SSOL method use the median from the multiple trajectories as
estimator, which is standard pipeline in time-series diffusion models. To further validate our approach,
we also evaluate SSOL-S, a variant of our method that uses a single trajectory sample as the estimator
rather than aggregating multiple samples. While SSOL-S primarily serves as a reference point, it
remains competitive with or outperforms Diffusion-TS on several datasets, particularly on ETTm1
and Weather.

Showcase of the imputation task. The figure 5 demonstrates that our imputation method maintains
high accuracy across varying missing data ratios (10% to 90%), the median imputation (red lines)
almost accurately reconstructs long, continuous missing segments (regions with blue dots) by retaining
the shape of the ground-truth curve (solid blue line) and staying within the 90% confidence interval
(shaded red area) for most channels. This pattern suggests that our model effectively learns the
temporal dependencies, such as periodic or seasonal trends, in each dataset and uses them to bridge
prolonged gaps. The confidence bands expand around regions of sharp ground-truth fluctuations,
indicating the model captures higher uncertainty in those transitions and reflects it in broader intervals.
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The shaded areas represent credible intervals (5th-95th percentiles across 100 generated samples)
that show the range of plausible imputed values given the observed data. Note that these differ
from confidence intervals for the median estimator, which would be much narrower and indicate the
precision of our point estimate rather than the inherent uncertainty in the imputation task. This pattern
suggests that our model effectively learns the temporal dependencies, such as periodic or seasonal
trends, in each dataset and uses them to bridge prolonged gaps. The confidence bands expand around
regions of sharp ground-truth fluctuations, indicating the model captures higher uncertainty in those
transitions and reflects it in broader intervals.

D Limitations and broader impact

Limitations. Our theoretical results rely on standard regularity assumptions of linear drift and
non-degenerate Gaussian diffusion (see Remark. A.4), which are satisfied by most modern diffusion
frameworks Karras et al. [2022]. For multiplicative (state-dependent) noise models, which arise in
variance-expanding or data-adaptive diffusion schedules, relaxing these assumptions and investigating
the smoothing behavior of forward operators remains an open question. While our frequency-aware
block effectively captures temporal patterns in regular time-series data, its extension to more complex
frequency structures requires further investigation. Our empirical evaluation focuses on six publicly
available multivariate time-series datasets with minute-to-hourly granularity. Adapting our single-step
operator to irregularly sampled sequences, longer contexts (e.g., high-frequency financial data or audio
signals), or entirely different modalities would require more non-trivial architectural modifications to
properly capture domain-specific structures.

Broader impact. Our single-step operator learning approach for conditioned time-series diffusion
models reduces the number of function evaluations from a typical 20 Li et al. [2025], Ye et al.
[2025] to just 1, yielding computational speedup during inference. This efficiency can translate to
reduced energy consumption while maintaining comparable or superior performance across multiple
benchmarks. The proposed method also naturally produces confidence intervals alongside point
estimates, as shown in our showcase experiments (Fig. 5), allowing more informed decision-making
in domains where trend identification is needed (e.g., energy forecasting, traffic monitoring). Since we
focus on structured time-series data generation, potential negative impacts remain limited primarily
to cases where historical data is biased or erroneous.
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Figure 5: Imputation comparison for the ETTh1 dataset with a 48-step window using a time series
sample of 7 features. The red shaded area represents the 90% confidence interval, the blue line
denotes the ground truth, the dotted line indicates the median imputation, and the blue points mark
the imputed ground truth values. Columns from left to right correspond to missing ratios of 10%,
25%, 50%, 75%, and 90%. Rows from top to bottom correspond to different channels.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

25



Justification: We provide the assumption in Section 3 and Appendix A and provide a
complete proof in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We described the models in Section 4, corresponding algorithms in Appendix B,
and experimental details in Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used are publicly available and cited in Appendix C. The implemen-
tation code is available at https://github.com/vsingh-group/SSOL-timeseries.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We described the experimental details in Section 5 and Appendix C, and the
algorithms in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars for our proposed model in the sampling stage are reported in the
Appendix C. Baselines are shown without error bars because many original sources did not
provide variance estimates.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://github.com/vsingh-group/SSOL-timeseries
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All datasets and models used are open-sourced.
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and research with human subjects
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well as details about compensation (if any)?
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or other labor should be paid at least the minimum wage in the country of the data
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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