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INSTANTIR: BLIND IMAGE RESTORATION WITH

INSTANT GENERATIVE REFERENCE
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(a) Low-Quality Input (b) w/o Prompt (c) Prompt: Fox (d) Prompt: Cat
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Figure 1: I. INSTANTIR presents exceptional capability in reproducing photorealistic details. II.
INSTANTIR provides an active interface for natural language guidance, helps handling large degra-
dation and features creative restoration with semantic editing.

ABSTRACT

Handling test-time unknown degradation is the major challenge in Blind Image
Restoration (BIR), necessitating high model generalization. An effective strategy
is to incorporate prior knowledge, either from human input or generative model.
In this paper, we introduce Instant-reference Image Restoration (INSTANTIR), a
novel diffusion-based BIR method which dynamically adjusts generation condi-
tion during inference. We first extract a compact representation of the input via a
pre-trained vision encoder. At each generation step, this representation is used to
decode current diffusion latent and instantiate it in the generative prior. The de-
graded image is then encoded with this reference, providing robust generation con-
dition. We observe the variance of generative references fluctuate with degrada-
tion intensity, which we further leverage as an indicator for developing a sampling
algorithm adaptive to input quality. Extensive experiments demonstrate INSTAN-
TIR achieves competitive performance and offering outstanding visual quality.
Through modulating generative references with textual description, INSTANTIR
can restore extreme degradation and additionally feature creative restoration.

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Image restoration seeks to recover High-Quality (HQ) visual details from Low-Quality (LQ) images.
This technology has a wide range of important applications. It can enhance social media contents
to improve user experience (Chao et al., 2023). It also functions at the heart in industries like
autonomous driving (Patil et al., 2023) and robotics (Porav et al., 2019) by improving adaptability
in diverse environments, as well as assists object detector in adverse conditions (Sun et al., 2022).

Image restoration remains a long-standing challenge extending beyond its practical application. The
information loss during degradation makes a single LQ image corresponds to multiple plausible
restorations. This ill-posed problem is further exacerbated in Blind Image Restoration (BIR), where
models are tested under unknown degradation. A common strategy is to leverage prior knowledge.
Reference-IR models use other HQ images to modulate LQ features, requiring additional inputs
with similar contents but richer visual details (Lu et al., 2021). Generative approaches, on the other
hand, directly learn the HQ image distribution. The input is first encoded into a hidden variables z,
which servers as the generation condition to sample HQ image from the learned distribution p(y|z).
Although generative methods achieve single-image restoration, they are prone to hallucinations that
produce artifacts in restoration (Yang et al., 2020). This happens when the encoder fails to re-
trieve accurate hidden variable due to the input distribution shift in degradation. Existing methods
improve robustness by training on more diverse synthetic degradation data or introduce discrete fea-
ture codebook. We argue that these are only shot-term solutions. Alternative methods are pendding
to be explored to better address unknown inputs in BIR.

In this paper, we present INSTANTIR, a dynamic restoration pipeline that iteratively refines gen-
eration condition using a pre-trained Diffusion Probabilistic Model (DPM). INSTANTIR employs
two complementary way for processing input LQ image. First, a pre-trained vision encoder extracts
compact representation from degraded content. The encoder’s high compression rate enhances the
robustness in the extracted representation, while retaining only high-level semantics and structural
information. Next, we introduce the Previewer module, a distilled DPM capable of one-step gen-
eration. At each generation step, the previewer decodes current diffusion latent using the compact
representation, providing a restoration preview resembles original input in high-level features. This
preview serves as an instant generative reference to guide the Aggregator in encoding identity and
other fine-grained missing from the compact representation. We observe in experiments that the
previewer tends to decode aggressively when the input is clear, resulting in high variance in restora-
tion previews. We take this as a reliable indicator of input image quality, and develop an adaptive
sampling algorithm that amplifies the fine-grained encoding with relatively high quality inputs. Ad-
ditionally, we find the previewer is controllable through text prompts, which produces diverse gen-
erative references and enables semantic editing with restoration. Our contributions are as follows:

1. We explore a novel BIR method that iteratively aligns with the generative prior to address un-
known degradation;

2. We introduce a novel architecture based on pre-trained DPM, which dynamically adjusts the
generation condition by previewing intermediate outputs;

3. We develop sampling algorithms tailored for our pipeline, enabling both adaptive and control-
lable restoration to text prompts;

4. We perform extensive evaluations to validate the effectiveness of the proposed methods.

2 RELATED WORK

2.1 DIFFUSION MODEL

DPM is a class of generative model that generate data by iteratively denoising from Gaussian
noise (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b). Typically, a neural net-
work with a UNet architecture (Ronneberger et al., 2015) is trained to predict the noise added at
each inference step. DPM offers superior mode coverage compared to Variational Autoencoders
(VAE) (Kingma & Welling, 2013) and outperform GAN-based models (Goodfellow et al., 2020)
in generation quality without the need of adversarial training (Dhariwal & Nichol, 2021). These
advantages establish DPM as the leading approach in vision generative models. By incorporating

2



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2025

Figure 2: (a) Overview of the INSTANTIR pipeline. INSTANTIR utilizes two pre-trained encoder
for processing LQ image at different levels. DINOv2 extracts compact representation clq robust
to degradations, providing high-level guidance for sampling the generative reference Zr from the
refined posterior p(z0|zt, clq). SDXL’s VAE encodes the LQ latent Zl, preserving fine-grained de-
tails. (b) A Previewer model block. RB denotes Residual-Block and SA/CA corresponds to Self-
Attention/Cross-Attention. We introduce a new CA to process the two modalities in parallel, the
output is regulated by a hyperparameter wl. (c) Connector between the Aggregator and SDXL. Zr

and Zl are spatially concatenated in the Aggregator to minimize additional parameters channel-wise.
Finally, the outputs from the Aggregator are split and fused using Spatial Feature Transform.

additional inputs, DPMs can learn diverse conditional distributions (Nichol & Dhariwal, 2021), with
the most widely used application being text-to-image (T2I) generation (Rombach et al., 2022; Sa-
haria et al., 2022a; Ramesh et al., 2022). Leveraging the flexibility of text inputs and the vast amount
of text-image training data (Schuhmann et al., 2022), these models are capable of generating images
with exceptional visual quality and remarkable diversity, forming the foundation for many subse-
quent excellent work in vision generative models (Wang et al., 2024c;a).

2.2 BLIND IMAGE RESTORATION

The task setting makes BIR particular valuable in real-world applications. The major challenge in
BIR is the input distribution gap between training and testing data. Previous work have explored
multiple ways to address this issue. Feature quantification is widely used in generative-based meth-
ods (Esser et al., 2021; Van Den Oord et al., 2017; Zhou et al., 2022). They align the encoded LQ
image features to a learnable feature codebook, ensuring the input to generator is unaffected by do-
main shifts. However, this hard alignment constraints the generation diversity and quality by the
capacity of the discrete codebook. Previous work have also explored the application of powerful
DPM in BIR. Some approaches design specialized architectures and train DPMs from scratch (Sa-
haria et al., 2022b; Sahak et al., 2023; Li et al., 2022), while the others apply additional modules
on pre-trained T2I model (Wang et al., 2024b; Yu et al., 2024; Sun et al., 2024a), leveraging their
large-scale prior. In many practical scenarios, HQ images with similar contents, such as those from
photo albums or video frames, are available. This has spurred interest in restoring images using
reference-based methods (Cao et al., 2022; Jiang et al., 2021; Lu et al., 2021; Xia et al., 2022; Yang
et al., 2020; Zhang et al., 2019). They adopt regression models to learn how to transfer high-quality
features to LQ images, enhancing details restoration.

3 METHODOLOGY

The distribution gap between training and testing data exacerbates the ill-posed nature of BIR, caus-
ing hallucinations in generation-based IR models and producing artifacts. We attribute this to the
error in encoding LQ image, and propose a generative restoration pipeline that refines the LQ en-
codings with generative references. This is achieved by exploiting the reverse process of DPM.
Specifically, we first encode the LQ image into a compact representation via pre-trained vision en-
coder, capturing global structure and semantics to initiate diffusion generation. Conditioned on this
embedding, our Previewer module generates a restoration preview at each diffusion time-step. The
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(b) Generative References(a) DINOv2 Classification Accuracy
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Figure 3: (a) Zero-shot classification accuracies of DINOv2 on ImageNet-1K under various degra-
dations, showing the robustness of its representations. (b) Sampling from the refined posterior
p(z0|zt, clq) across diffusion time-steps. Generative references conditioned on clq resemble the LQ
input on high-level features and gradually converge toward the target mode in the reverse process.

preview resembles to the input image with more plausible details, and they are further fused in the
Aggregator module to preserve fidelity. Finally, the adjusted LQ encoding is used to control the
pre-trained DPM for a fine-grained diffusion step.

3.1 PRELIMINARIES

DPM involves two stochastic processes named forward and reverse process (Ho et al., 2020). In the
forward process, i.i.d. Gaussian noise is progressively added to the image x. The marginal distribu-
tion of diffusion latent xt follows N (αtx, βtI), where αt and βt are hyperparameters defining the
forward process. xt converges to pure noise as t increases, and the reverse process generates images
by inverting the forward process. Generally, we train a neural-network to predict the noise added at
each time-step by minimizing the diffusion loss:

Ldiff = E
[

∥ϵθ (xt, t)− ϵ∥2
]

, (1)

where ϵθ denotes the noise-prediction network. At each step in the reverse process, we can retrieve
a denoising sample with the predicted noise and re-parameterization (Karras et al., 2022):

x̂ =
xt − βtϵθ (xt, t)

αt

. (2)

In the open-sourced T2I model Stable Diffusion (SD) (Rombach et al., 2022), the noise-prediction
network ϵθ is additionally conditioned on a text input that describes the target image. Moreover, SD
employs a VAE to move the input xt into latent space zt, compressing inputs by a factor of 48 and
significantly reduces the memory usage to enable image generation up to 5122 resolution.

3.2 ARCHITECTURE

The restoration pipeline of INSTANTIR consists of three key modules: Degradation Content Percep-
tor (DCP) for compact LQ image encoding, Instant Restoration Previewer for generating references
on-the-fly during the reverse process, and Latent Aggregator for integrating restoration references.

Degradation Content Perceptor Human visual perception can easily tell the meaning and sub-
jects of images even when they are heavily degraded. The same thing happens to vision recognition
models. In Fig. 3(a) we test the zero-shot classification accuracy of DINOv2 (Oquab et al., 2023)
on ImageNet-1K (Deng et al., 2009) under various degradations including noise, blur and JPEG
artifacts. DINOv2 sustains 80% accuracy even under a mixture of degradations. The high-level in-
formation in DINO’s representation can provide semantic guidance for the reverse process, yielding
samples closely resemble the LQ input in these features. We employ the compact representation
extracted from pre-trained DINOv2, and modulated it by a learnable Resampler (Han et al., 2024).
For the l-th cross-attention block, we introduce an additional cross-attention operation:

f l
out = f l

in + CrossAttn
(

f l
in, ctxt

)

+ wl · CrossAttn
(

f l
in,Φ (clq, t)

)

, (3)

where Φ denotes the DCP module and clq is the LQ context matrix. We retain the text cross-attention
here as it is a crucial part of the pre-trained T2I model that synthesizes high-level semantics. Jointly
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training DCP with textual transformation allows it to focus on low-level information absent in the
other modality. We introduce a hyper-parameter wl to regulate their behaviors. Note that the DCP
also takes time-step t as input to establish temporal dependency in the output. Specifically, we use
adaptive layer-normalization to modulate the context matrix from the DCP according to time-step t:

Φ (x, t) = T scale ⊙ LayerNorm (clq) + T shift, (4)

where, T scale,T shift are calculated from the time-step. We train the DCP module on a frozen
diffusion model using the standard diffusion loss in Eq. 1.

Instant Restoration Previewer The compact representation encoded by the DCP, while robust
against degradation, lacks low-level information. We introduce Previewer, a diffusion model gen-
erates from current diffusion latent instead of noise, to decode generative references from the DCP
encoding. Decoding at each diffusion time-step requires (T (T + 1) /2) network forward passes
with the vanilla T2I model. To streamline this process, we fine-tune the Previewer using consistency
distillation (Luo et al., 2023) to make it a one-step generator. For diffusion latent zs at time-step s,
we first obtain the Previewer output conditioned solely on clq . Then, we perform a diffusion step
using the pre-trained model from zs, conditioned on both clq and ctxt, to reach zt. zt is regarded as
the ground-truth diffusion latent at time-step t in the sampling trajectory. Finally, we get the preview
of zt, again conditioned solely on clq . The consistency distillation loss is then calculated by:

Ldist = ∥Ψ(zs, s,Φ (clq, s))− StopGrad (Ψ (zt, t,Φ (clq, t)))∥
2, (5)

where Ψ denotes the previewer model. Additionally, Eq. 5 trains the previewer to follow the sam-
pling trajectory without ctxt, removing its dependency on text conditions which are typically un-
available in BIR tasks. The consistency constraint (Song et al., 2023) of enforcing consistent outputs
across time-step enabling the Previewer to decode generative references on-the-fly.

Latent Aggregator The primary challenge in the BIR task is the input distribution shift. Previous
work address this by aligning LQ features with reference HQ images or a learned feature codebook.
The former takes extra inputs, while the latter is limited to a specific domain by the codebook
capacity. In contrast, we generate reference features directly from diffusion prior. Since the compact
embedding clq retains only high-level information, it is insufficient for the Previewer to reconstruct
HQ images at larger time-steps, as shown in Fig. 3. Relying solely on reference preview incurs error
accumulation, so the Aggregator anchors preview to the original input to prevent divergence in the
reverse process. The input LQ image is encoded into SD’s latent space and spatially concatenated
with the preview. This expanded input remains compatible to the diffusion UNet, allowing the
Aggregator to be initialized as a trainable copy of UNet compression path following (Zhang et al.,
2023). We remove text cross-attention layers to make the Aggregator lightweight and independent of
textual conditions like the Previewer. The preview and LQ hidden featrues are fused in the spatial-
attention layers, which are further integrated via Spatial Feature Transform (SFT) (Wang et al.,
2018). For hidden feature H l at the l-th layer in the Aggregator, we first split it spatially into hl

p and

hl
o, corresponding to the hidden features of preview and LQ latent, and integrate them with SFT:

hl
res =

(

1 +αl
)

⊙ hl
p + βl;hl

p,h
l
o = Split

(

H l
)

, (6)

where αl,βl = Ml
θ(h

l
o) are two affine transformation parameters calculated from the feature map

of LQ latent at this level. We extract multi-level features
{

hl
res

}L

l=1
from Aggregator using Eq. 6,

and inject them into the corresponding part of U-Net expansion path through residual connections.

3.3 ADAPTIVE RESTORATION

INSTANTIR processes LQ image through two complementary ways: 1) extracting compact represen-
tation using the DCP, which is robust to degradation but loses fine-grained information; 2) encoding
via the lossless SD-VAE and integrating with restoration preview, which is prone to errors in the
SD-VAE. Under severe degradation, INSTANTIR may produce samples deviate from the target HQ
image. In such cases, restoration previews exhibit small variation, suggesting the DCP struggles to
provide guidance according to the input. We further analyze the trajectory of restoration previews
during the reverse process, compare it with the denoising predictions from Eq. 2. We assess them
on four degradation levels: HQ image, 4x downsampling, 8x downsampling and synthetic multi-
degradation, representing decreasing input quality. Fig. 4 (a) illustrates the L2-distance between
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(a) Trajectory Difference (b) Previewer Temporal Difference (c) Normalized Trajectory Difference

Figure 4: The evolution of the Previewer outputs during generation. (a) L2-distances between pre-
views and denoising means; (b) temporal differences of the Previewer trajectory, measured by L2-
distances between adjacent points; (c) relative distances between previews and denoising means.

these two trajectories, which increases monotonically as input quality improves. A pronounced dis-
parity between preview and ordinary denoising prediction represents the Previewer is confident with
the guidance, suggesting the input LQ image is informative. Based on this observation, we use the
relative difference between two predictions as an indicator of input quality:

δ =
∥Ψ(zt, t,Φ (clq, t))− ẑt∥

2

∥Ψ(zt, t,Φ (clq, t))−Ψ(zt+1, t+ 1,Φ (clq, t+ 1))∥2
, (7)

where ẑt is given by Eq. 2. From Fig. 4(b) we can see the Previewer is unstable at the begin-
ning. The consistency training in Eq. 5 drives it to decode aggressively, causing large prediction
variance during early reverse process where the input diffusion latent is too noisy. Normalizing
the L2-distance between trajectories with Previewer’s temporal difference effectively mitigates the
temporal correlation as illustrated in Fig. 4(c). A larger δ indicates higher input quality, and the
conditional signals from the Aggregator should be amplified to preserve fine-grained information
from the original input. On the other hand, DPM is known to first generate low-frequency features
such as global structure, and add high-frequency details in the later stage of the reverse process. A
decreasing δ prevents INSTANTIR from divergence induced by generative references at the begin-
ning. We provide pseudo-code of the proposed adaptive restoration (AdaRes) algorithm in Alg. 1.
We provide more detailed discussion of the quality-fidelity trade off strategies in Appendix. B.

Algorithm 1 Adaptive Restoration

Input: ϵθ,Ψ, zlq, c, {αt, βt|t = 1...T} , η
1: Sample zT ∼ N (0, βT I)
2: Initialize z̄Ψ

t+1 = 0, z = 0, δ = 1
3: for t in [T, . . . , 1] do
4: z̄Ψ

t = Ψ(zt, t, c)
5: zref = z̄Ψ

t + δ ·
(

zlq − z̄Ψ
t

)

6: z̄t = (zt − βtϵθ(zt, zref , t, c))/αt

7: δ = ∥z̄Ψ
t − z̄t∥

2 · ∥z̄Ψ
t − z̄Ψ

t+1∥
−2

8: zt−1 = (βt−1/βt)zt − (αt/βt −αt−1)z̄t
9: end for

Output: z0

Surprisingly, although only the DCP module
is explicitly trained on text-image data, IN-
STANTIR demonstrates notable creativity fol-
lowing textual descriptions. By employing a
text-guided Previewer, we can generate diverse
restoration variations with compound seman-
tics from both modalities. However, these vari-
ation samples can conflict with the original in-
put, making them ineligible as generative ref-
erences. We provide detailed analysis in Ap-
pendix. A. Inspired by previous work in image
editing, we disable the Aggregator at later stage
generation and let INSTANTIR renders seman-
tic details according to LQ representation and
text prompt. This ensures the low-frequency features are succeeded from the Aggregator, mean-
while prevents the high-frequency semantics and noise from entering the final results.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

INSTANTIR is built on SDXL (Podell et al., 2023) accompanied by a two-stage training strategy.
In Stage-I, we train the Resampler in the DCP module connecting frozen DINOv2 and SDXL,
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Table 1: Quantitative comparisons on both synthetic validation data and public real-world dataset.
We highlight the best results in bold and the second best with underline.

Dataset Model PSNR SSIM LPIPS CLIPIQA MANIQA MUSIQ NIQE

Synthetic

BSRGAN 20.21 0.5214 0.7793 0.2072 0.2076 17.53 11.06
Real-ESRGAN 19.92 0.5317 0.7554 0.2102 0.2331 17.39 9.840
StableSR 20.42 0.5388 0.3751 0.4672 0.2602 52.33 5.274
CoSeR 19.92 0.5114 0.3353 0.6651 0.4152 67.51 3.919
SUPIR 20.46 0.4990 0.4090 0.4875 0.3081 56.43 4.408
INSTANTIR (ours) 18.54 0.5126 0.3986 0.5497 0.4379 68.59 4.373

Real-world

BSRGAN 26.38 0.7651 0.4120 0.3151 0.2147 28.58 9.528
Real-ESRGAN 27.29 0.7894 0.4173 0.2532 0.2398 25.66 8.561
StableSR 26.40 0.7721 0.2597 0.4501 0.2947 48.79 7.724
CoSeR 25.59 0.7402 0.2788 0.5809 0.3941 60.51 6.514
SUPIR 26.41 0.7358 0.3639 0.3869 0.2721 42.72 8.550
INSTANTIR (ours) 21.75 0.6766 0.3686 0.5401 0.4819 65.32 6.064

(a) Scenario 1: 5122 image restoration. The outputs of SUPIR and INSTANTIR are downsampled to 512
2.

Dataset Model PSNR SSIM LPIPS CLIPIQA MANIQA MUSIQ NIQE

Synthetic

BSRGAN 21.32 0.5267 0.5611 0.4289 0.3299 37.97 9.566
Real-ESRGAN 20.45 0.5202 0.5660 0.4566 0.3627 37.92 8.276
StableSR 21.01 0.5490 0.3921 0.4526 0.2492 48.94 5.640
CoSeR 20.50 0.5215 0.3488 0.6461 0.3939 64.84 4.265
SUPIR 20.57 0.4569 0.4196 0.6286 0.3962 61.00 4.372
INSTANTIR (Ours) 18.80 0.5076 0.3903 0.6111 0.4303 66.09 4.095

Real-world

BSRGAN 28.60 0.8141 0.3690 0.4720 0.2258 18.26 10.89
Real-ESRGAN 28.13 0.8209 0.3647 0.4435 0.3229 35.31 10.16
StableSR 27.79 0.8043 0.2514 0.4634 0.2901 46.54 7.475
CoSeR 27.04 0.7683 0.2882 0.5847 0.4068 58.39 6.514
SUPIR 26.10 0.5825 0.5429 0.4822 0.3232 44.95 9.582
INSTANTIR (Ours) 21.89 0.6879 0.3601 0.5647 0.4389 62.58 8.024

(b) Scenario 2: 1024
2 image restoration. We crop 512

2 patches as inputs to 512-models and evaluate the
quantitative metrics on the cropped area only.

followed by the Previewer’s consistency distillation training (see Sec. 3.2). The Previewer is trained
by applying Low-Rank Adaptation (LoRA) (Hu et al., 2021) on the base SDXL model for efficiency.
By toggling the Previewer LoRA, we can seamlessly switch between the Previewer and SDXL,
reducing memory footprint. After obtaining the DCP and Previewer LoRA, we proceed to Stage-II
Aggregator training. The two-stage training ensures the Aggregator receives high-quality previews
since the beginning of its training course.

We adopt SDXL’s data preprocessing and conduct training on 10242 resolution. In both two stages
we use the AdamW (Loshchilov, 2017) optimizer with a learning rate of 1 × 10−4. In Stage-I, we
train the DCP module using a batch size of 256 over 200K steps, and distill the Previewer for another
30K steps with the same batch size. We train the Aggregator with a batch size of 96 over 200K steps
in Stage-II. The entire training process spans approximately 9 days on 8 Nvidia H800 GPUs.

To enable Classifier-free Guidance (CFG) (Ho & Salimans, 2022) sampling, we apply LQ image
dropout with a probability of 15% in both stages training. In all test experiments, we employ 30
steps DDIM sampling (Song et al., 2020a) with a CFG scale of 7.0.

4.2 EXPERIMENTAL CONFIGURATION

Training Data We synthesis LQ-HQ image pairs using Real-ESRGAN (Wang et al., 2021) with
the default setting. As mentioned in Sec. 3.2, we conduct Stage-I training on the JourneyDB
dataset (Sun et al., 2024b), a generated dataset with descriptive captions. While JourneyDB im-
ages are of extreme quality, they lack the textures in real-world images. Hence for Stage-II training,
we incorporate publicly available texture-rich datasets to enhance model’s ability to produce realistic
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LQ Real-ESRGAN StableSR CoSeR SUPIR InstantIR

Figure 5: Qualitative comparisons on real-world LQ images. Restorations from INSTANTIR are rich
in details with global semantic consistency. Better viewed zoom in.

visual details. Specifically, we use DIV2K (Agustsson & Timofte, 2017), LSDIR (Li et al., 2023),
Flickr2K (Timofte et al., 2017) and FFHQ (Karras et al., 2019).

Test Setting For a comprehensive evaluation, we test INSTANTIR on a synthetic dataset and pub-
lic benchmarks following previous work. We synthesize 2, 000 multi-degradation samples from
DIV2K and LSDIR validation sets using Real-ESRGAN pipeline, including deblur, denoise, SR
and deJPEG simultaneously. We include a small portion of JourneyDB validation data to enhance
benchmark diversity. We conduct evaluations on RealSR (Cai et al., 2019) and DRealSR (Wei et al.,
2020) to assess model performance on real-world LQ images. We report full-reference metrics
PSNR, SSIM, LPIPS (Zhang et al., 2018), if ground-truth targets are available, and non-reference
metrics MANIQA (Yang et al., 2022), CLIPIQA (Wang et al., 2023), MUSIQ (Ke et al., 2021), and
NIQE (Mittal et al., 2012) to quantitatively compare INSTANTIR with other models.

4.3 COMPARING TO EXISTING METHODS

We compare INSTANTIR with state-of-the-art models, including StableSR (Wang et al., 2024b),
CoSeR (Sun et al., 2024a), SUPIR (Yu et al., 2024), BSRGAN (Zhang et al., 2021) and Real-
ESRGAN (Wang et al., 2021). For the SD-based methods, we roughly balance the computational
cost to 30 seconds per image on a V100 GPU. Since some of them are limited to 5122 resolution, we
consider two test scenarios for a fair comparison: 1) models are tested on 5122 images with outputs
of 1024-models scaled accordingly; 2) following SUPIR, the models are tested on 10242 images by
cropping 5122 patch as inputs to 512-models, metrics are evaluated on the cropped area only.

Quantitative Comparison The results are summarized in Tab. 1. INSTANTIR demonstrates su-
perior image quality, as evaluated by an average ranking of 1.48 across non-reference metrics. IN-
STANTIR continuously achieves the highest MUSIQ and MANIQA scores across all test settings,
outperfoming the second best by large margins up to 22% in MANIQA and 8% in MUSIQ. Notably
in scenario 1, despite halving the input data, INSTANTIR still performs comparably to SOTA mod-
els. While CoSeR achieves the best CLIPIQA scores closely followed by INSTANTIR, restorations
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LQ image w/o preview w/ preview

(a) In-domain previews enhance detail restoration.

LQ w/o prompt w/ prompt

“pink�rose”“cherry�blossom�”

“rabbit” “piggy”

(b) Out-domain previews edits high-level semantics.

Figure 6: Visual examples of the previewing mechanism in INSTANTIR. Better viewed zoom in.

from 1024-models SUPIR and INSTANTIR are rich in details as shown in Fig. 5. We also observe
the misalignment of PSNR and SSIM scores with visual quality as reported in the literature (Yu
et al., 2024; Wang et al., 2024b). We include these metrics here for reference purpose.

Qualitative Comparison We provide some restoration samples on real-world LQ images in Fig. 5.
Through leveraging the previewing mechanism, INSTANTIR actively aligns with generative prior,
reducing hallucinations and producing sharp yet realistic details. In the second row of Fig. 5, while
SUPIR’s result contains rich textures, the absence of global semantic guidance causes the diver’s
body and mask to blend together. In contrast, the cognitive encoder in CoSeR helps it identifies
statues in the second example. CoSeR employs a feature codebook to handle unknown degradations,
which limits the generation of complex textures on the statues. Notably in the first row of Fig. 5,
INSTANTIR is the only one that successfully recovers all four faces without distortion, suggesting
its superior ability in capturing semantic and reproduce realistic details from diverse degradations.

4.4 ABLATION STUDY

In-domain Reference for Detail Enhancement Reference-based BIR models improve detail
restoration by transferring high-quality textures from HQ references. INSTANTIR achieves this by
querying the T2I model, eliminating additional inputs. To evaluate the effectiveness of generative
references, we test INSTANTIR with different sources of reference. Specifically, we consider six
reference sources with progressively increasing quality: the input LQ image, the target HQ image,
DDIM mean from Eq. 2, unconditional restoration preview, restoration preview with DCP and addi-
tionally with text prompt. The latter three are both produced by our distilled Previewer. Results of
this ablation study are summarized In Tab. 2a. Using the LQ image as reference yields the highest
PSNR and SSIM value, as it preserves the maximum amount of original information. However,
using the target HQ image will have these two metrics reduced. This occurs because INSTANTIR
is designed to utilize dynamic generative references, and a fixed reference does not align with its
training paradigm. We leave this limitation for future improvements. As more conditions are incor-
porated into the generative references, the restored image quality consistently increases, as indicated
by perceptual metrics like CLIPIQA, despite decreasing PSNR and SSIM values. This observation
aligns with the ’perception-distortion tradeoff’ (Blau & Michaeli, 2018) that better perceptual qual-
ity comes at a price of worse distortion. We provide some visual samples in Fig. 6a.

Out-domain Reference for Creative Restoration Thanks to the efficiency of our Aggregator in
processing latent inputs, INSTANTIR is able to perform high-level semantic editing during restora-
tion, altering specific attributes of the subject and leaving other visual details unchanged as shown in
Fig. 6b. We empirically find INSTANTIR offers better text-editing ability under heavy degradation
where there is a relatively large information loss in the DINO representation. Detailed analysis as
well as more visual samples are provided in Appendix. A.
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Table 2: Ablation studies. The best results are highlighted in bold.

Reference PSNR SSIM LPIPS CLIPIQA MANIQA MUSIQ NIQE

LQ Image 21.36 0.6417 0.4950 0.2415 0.2025 33.39 8.049
HQ Image 16.86 0.5791 0.3728 0.5078 0.3892 65.72 5.139

DDIM Mean 21.10 0.6066 0.4000 0.4515 0.3727 60.93 5.819
Restoration Preview 20.94 0.6108 0.3787 0.5023 0.4052 65.71 5.168

+DCP 18.77 0.5514 0.3933 0.5941 0.4687 70.45 4.658
+DCP +prompt 18.01 0.5202 0.4065 0.6489 0.5112 72.32 4.669

Diffusion Latent 23.07 0.7312 0.3830 0.3767 0.2924 49.23 4.894

(a) Ablation study of different reference types.

AdaIN AdaRes PSNR SSIM LPIPS CLIPIQA MANIQA MUSIQ NIQE

✗ ✗ 22.40 0.6937 0.3625 0.5361 0.4673 63.55 7.577
✗ ✓ 21.75 0.6766 0.3686 0.5401 0.4819 65.32 6.064
✓ ✗ 25.16 0.7247 0.3469 0.5188 0.4575 63.56 7.978
✓ ✓ 24.51 0.7102 0.3558 0.5319 0.4672 64.56 7.997

(b) Ablation study of the adaIN and AdaRes sampling.

Adaptive Restoration Alg. 1 enhances restoration quality by gradually relaxing the constraints,
which, however, incurs worse distortion. As shown in the first two rows of Tab. 2b, image quality
scores increase as full-reference metrics degraded. On the other hand, diffusion model can occasion-
ally exhibit color shift (Choi et al., 2022), where minor deviations in pixel values can significantly
affect full-reference metrics. To address this issue, (Wang et al., 2024b) proposed normalizing gen-
eration outputs with color statistics derived from the LQ image, a post-process trick referred to as
adaIN. We conduct an ablation study of Alg. 1 combined with adaIN in Tab. 2b. While adaIN can
substantially improve full-reference metrics, it compromises image quality. Therefore, we opt not
to incorporate this technique in INSTANTIR.

Fresh Noise to Restoration Previews We additionally train an Aggregator that injects fresh
noise to reference latents according to diffusion time-step. The noisy preview latent follows the
same distribution as current diffusion latent, making the overall pipeline resemble a ControlNet
model (Zhang et al., 2023). As shown in the last row of Tab. 2a, INSTANTIR significantly out-
performs ControlNet with LQ image as conditional inputs. This highlights the effectiveness of the
previewing mechanism in INSTANTIR for adjusting generation conditions during inference.

5 CONCLUSION

In this paper, we explore a novel method to address unknown degradations in BIR task. We first
demonstrate the reliability of pre-trained DINOv2 in this low-level vision task, the extracted high-
level representations are robust against degradations. Through exploiting the generation process of
DPM, we propose to actively align with the generative prior to reduce the errors in encoding condi-
tions. Our pipeline is implemented based on pre-trained SDXL model, referred to as INSTANTIR.
Extensive experiments demonstrate the exceptional restoration capability of INSTANTIR, deliver-
ing competitive performance in quantitative metrics and visual quality. However, we observe some
disparity in full-reference metrics such as PSNR and SSIM compared to SOTA models, partly due
to our AdaRes algorithm which relaxes the generation constraints to promote quality. Integrating
INSTANTIR with an adaIN post-processing step can mitigate this issue with a compromised restora-
tion quality, reflecting the perception-distortion tradeoff. Future work could explore approaches to
further advance this Pareto frontier, such as improving the interaction between generative references
and conditions, as well as refining the previewer to more constraint references. Another potential
limitation of INSTANTIR is its generalization across other image modalities, which will require
fine-tuning the Aggregator with DINOv2 replaced by domain-specific image recognition models.
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A CREATIVE RESTORATION

Although the Stage-2 Aggregator training of INSTANTIR is not conducted on images paired with text
captions, INSTANTIR demonstrates notable flexibility in responding to text prompts. The compact
representation from DINOv2, while robust against degradations, inevitably loses original informa-
tion to different extent. This information loss leaves space for the injection of high-level semantic
from text modality. In the DCP module, the two cross-attention layers are combined additively,
allowing text descriptions to complement or modify the high-level features absent in DINOv2’s rep-
resentation. To validate this, we synthesize LQ images from the ImageNet-1K validation set using
the Real-ESRGAN degradation pipeline. These images are then categorized based on their DI-
NOv2 classification scores. We test the creative restoration outputs across these samples, using text
prompts that either semantically close to with or deviate from that in the LQ images. Fig. 7- 9 vi-
sualize the restoration outputs, showing results without text prompts, with semantically aligned and
deviated prompts, respectively. Across the first two rows, we can see that the intermediate restora-
tion previews are easily manipulated when the DINO’s classification scores are low, regardless of
whether the text prompts close to or deviate from LQ images. This is because a low classification
scores imply the high-level information is either absent or ambiguous in the DINO representation,
allowing text cross-attention to dominate the joint transformation. As DINO classification scores in-
crease, high-level information becomes more prominent in the representation and text-editing flex-
ibility gradually vanish. At moderate classification scores illustrated in the third rows, the two
modalities exert a balanced influence, and semantic conflicts can result in unpleasant outcomes. Fi-
nally, at high classification scores where the semantic is clear in DINO representation shown in the
last two rows. It is difficult to manipulate the French bulldog, even at large diffusion time-steps as
the high-level information from DINO overwhelms the semantics.

B QUALITY-FIDELITY TRADE OFF

Balancing generative capacity and fidelity to the input LQ image is a crucial aspect of developing
generative-based BIR models. Among the compared methods in Tab. 1, DiffBIR (Lin et al., 2023),
SUPIR (Yu et al., 2024) and StableSR (Wang et al., 2024b) each implements unique sampling algo-
rithm to approach quality-fidelity balancing.

As a core component of DiffBIR pipeline, a pre-trained IR module not only provides diffusion sam-
pling conditions for ControlNet, but also is used to balance quality-fidelity. Similar to INSTANTIR,
DiffBIR retrieves the DDIM mean z̄t at each diffusion time-step t. This mean z̄t is then decoded into
pixel space using SD-VAE to obtain x̄t. This intermediate output is used to calculate mean-squared
loss with the IR module output, which typically holds high PSNR but sub-optimal perceptual qual-
ity, and the gradient is back-propagated with respect to current latent z̄t to get an update direction.
Compared to INSTANTIR, our pipeline is more efficient in two aspects: 1) we save both memory
and computation induced by a pre-processing model; 2) we directly process the restoration previews
in latent space using the Aggregator, eliminating the computational cost involved in calling SD-VAE
and gradient propagation at every sampling step.

StableSR adopts the Controllable Feature Wrapping (CFW) module to balance quality-fidelity.
Specifically, the SD-VAE is tuned on LQ images. The encoder is optimized for degradation ro-
bustness, ensuring it generates latent from LQ image that close to the corresponding HQ image.
On the other hand, residual connections from the LQ encoder features are added to the decoder for
preserving input information. These residual connections can be regulate with a hyper-parameter
CFW-scale between [0.0, 1.0]. A larger CFW-scale enhances the LQ features in the decoder and
thus improve fidelity. Since StableSR is trained on SD-2-1, the provided VAE checkpoint is not
compatible with the SDXL model in INSTANTIR. However, we believe integrating this strategy into
INSTANTIR could potentially enhance the flexibility in quality-fidelity balancing.

The encoder of SD-VAE is also fine-turned for degradation robustness in SUPIR. Unlike StableSR,
SUPIR does not adjust the decoder for applying CFW module. SUPIR utilizes the degradation robust
encoder as an initial restoration ẑlq . At each diffusion step, the diffusion mean z̄t is interpolated
with ẑlq using a time-dependent scaler kt = (t/T )τ . Smaller τ corresponds to larger kt, making
the interpolated mean closer to ẑlq .
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0% ~ 20%

LQ w/o promptClassification 
Score
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w/o prompt

Figure 7: InstantIR outputs of synthesized LQ images from ImageNet-1K validation set. The images
are categorized by DINOv2 classification scores. Column 2-5 visualize the generative references
from the Previewer at different diffusion time-step.

In Alg. 1, the scaling factor δ is also time-dependent as kt, which is beneficial for providing finer-
grained control across time-steps. However, kt depends only on time-step t while δ is adaptive
to different inputs, offering additional flexibility. The idea of interpolation with ẑlq in SUPIR’s
restoration-guided sampling algorithm is simple but effective. In Alg. 1, we borrow this idea and
adapt it to INSTANTIR, where we interpolate the generative reference z̄Ψ

t at each step with ẑlq . This
interpolation prevent large distortion induced when previewing from a too noisy diffusion latent zt.
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Figure 8: InstantIR outputs of synthesized LQ images from ImageNet-1K validation set, guided
by semantically closed text prompts. The images are categorized by DINOv2 classification scores.
Column 2-5 visualize the generative references from the Previewer at different diffusion time-step.
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Figure 9: InstantIR outputs of synthesized LQ images from ImageNet-1K validation set, guided by
semantically far text prompts. The images are categorized by DINOv2 classification scores. Column
2-5 visualize the generative references from the Previewer at different diffusion time-step.
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