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Abstract

A generalizable reward model is crucial in Reinforcement Learning from Human
Feedback (RLHF) as it enables correctly evaluating unseen prompt-response pairs.
However, existing reward models can lack this ability, as they are typically trained
by increasing the reward gap between the chosen and rejected responses, while
overlooking the prompts that the responses are conditioned on. Consequently,
when the trained reward model is evaluated on prompt-response pairs that lie
outside the data distribution, neglecting the effect of prompts may result in poor
generalization of the reward model. To address this issue, we decompose the reward
value into two independent components: prompt-free reward and prompt-related
reward. Prompt-free reward represents the evaluation that is determined only by
responses, while the prompt-related reward reflects the reward that derives from
both the prompt and the response. We extract these two components from an
information-theoretic perspective, which requires no extra models. Subsequently,
we propose a new reward learning algorithm by prioritizing data samples based
on their prompt-free reward values. Through toy examples, we demonstrate that
the extracted prompt-free and prompt-related rewards effectively characterize the
two parts of the reward value. Further, standard evaluations show that our method
improves both the alignment performance and the generalization capability of the
reward model.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) is an effective approach for Large Language
Models (LLMs) alignment [8, 5]. Within a wide range of RLHF methods, reward learning plays a
pivotal role. These methods typically first train a reward model on a static dataset and then leverage it
to do Reinforcement Learning (RL) [28, 11]. Compared with methods that are free of using reward
models [30, 40], the advantage of such methods is their capacity to leverage the generalization
capability of the reward model to evaluate outside-of-distribution prompt-response pairs. These
prompt-response pairs with generated rewards can be used to further improve the LLM’s performance
[36, 42].

Clearly, learning a generalizable reward model is central to this scenario. However, we found that
standard reward training does not guarantee sufficient generalization capability. In reward model
training, the primary goal is typically better distinguishing between chosen and rejected responses.
To achieve this, the reward model does not necessarily require consideration of the corresponding
prompt. Taking reward learning based on Bradley-Terry (BT) model as an example. Since the
potential response space is vastly larger than the dataset size, different data samples typically contain
distinct response pairs. As long as the reward gap within each response pair increases, the training loss
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Figure 1: Left: reward gaps calculated with corresponding prompt and randomly sampled prompts using
QRM-Llama3-8B1 on two different datasets that were used for training. When calculating with other prompts,
the curves show the mean and the std. Right: illustrative failure case where the reward gap overly depends
on the responses. Solid lines represent corresponding prompt-response pairs (used in training), while dashed
lines represent non-corresponding pairs (unseen during training). Since the reward gap overly depends on the
responses, it generalizes poorly to novel prompt-response pairs constructed even with seen prompts.

will decrease effectively. This can occur even if the reward model only considers the responses and
totally ignores the prompts. In this case, the trained reward model loses its generalization capability
over different prompts and may exhibit incorrect preference for novel prompt-response pairs.

Perhaps surprisingly, such a phenomenon indeed appears in current reward models, even some that
achieve SOTA performance on common benchmarks. As shown in Fig. 1 (left), after replacing the
corresponding prompt with other prompts in the dataset, the reward gaps still center around their
original values. This issue, where responses dominate the reward gap, does not affect training but
leads to catastrophic results when evaluating novel prompt-response pairs. The illustrative example
in Fig. 1 (right) shows this. When considering each prompt-response pair separately within the
training dataset, its reward gap matches the ideal value. However, when querying preferences after
replacing the original prompt with other prompts in the dataset (which are also meaningful queries),
the reward model can yield inaccurate or even wrong preferences. This generalization issue will
become more pronounced when dealing with unseen prompt-response pairs encountered during
evaluation. All of these highlight the need to distinguish two components of the reward value: one
part is the value determined solely by the response, and the other is the value that can only be
derived by simultaneously considering both the prompt and the response. We refer to the former as
prompt-free reward and the latter as prompt-related reward.

To address this, we propose a novel method of decomposition to extract these two components from
an information-theoretic perspective, without requiring extra models. After that, we use the extracted
prompt-free reward to guide the reward learning process, prioritizing training samples based on their
prompt-free reward gap values. We verify our method through several toy examples and standard
evaluations based on commonly used datasets and base models. In toy examples, the extracted
prompt-free reward gaps reflect the reward model’s preference bias about response-only features,
while the prompt-related reward gaps capture its generalizable preference information. Moreover, in
standard experiments with common datasets, the reward model trained with our method outperforms
strong baselines. These experiments show that considering both prompt-free and prompt-related
rewards during training enhances the alignment performance and generalization capabilities of the
reward model.

2 Preliminaries

Standard preference learning assumes the existence of the preference oracle which determines
P(yw ≻ yl|x), the probability that response yw is more preferred than yl conditioned on the prompt
x. Given a preference dataset D = {(x, yw, yl)i}Ni=1 where the prompt-response tuples (x, yw, yl)
are generated following P(yw ≻ yl|x), our objective is to estimate the preference oracle from it.

There exist several methods to model the preference oracle [24], among which the Bradley-Terry
(BT) model [6] is the most widely used. The BT model further assumes that the preference oracle
can be represented as a reward model r : (x, y)→ R that satisfies:

Pr(yw ≻ yl|x) =
exp(r(x, yw))

exp(r(x, yw)) + exp(r(x, yl))
. (1)

1https://huggingface.co/nicolinho/QRM-Llama3-8B
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Under this assumption, standard methods leverage a parameterized reward model rθ to perform
maximum likelihood estimation on the preference dataset [28, 36] via the following objective:

maxE(x,yw,yl)∼D[logPrθ (yw ≻ yl|x)]. (2)

In this work, we consider the preference learning based on the BT model, owing to its widespread
use and strong performance in the field of RLHF. The parameterized reward model rθ can be
implemented in various ways [37, 11, 38, 17]. Among these, the most commonly used one is the
‘Sequence Classifier’ [19, 28], which builds the reward model on top of an LLM backbone. By
projecting the feature representation of the prompt-response sequence to a scalar value using a simple
network (e.g., single linear layer), such a reward model effectively leverages the prior knowledge
embedded in the LLM backbone to evaluate prompt-response pairs. In this work, we focus on reward
models within this type. A discussion of other reward model structures is given in Appendix C.4.

3 Methods

In this section, we first present a specific form of decomposition that divides the reward value
into a prompt-free reward and a prompt-related reward. We then formalize the problem of such
decomposition and propose a solution from an MI perspective. Finally, we use the extracted prompt-
free rewards to prioritize training samples and guide reward learning.

3.1 Prompt-free Reward & Prompt-related Reward

We decompose the reward value rθ(x, y) into two separate parts: the prompt-free reward and the
prompt-related reward. The prompt-free reward is only determined by the response and can be
regarded as the overall evaluation of the response. Specifically, the prompt-free reward (r2) satisfies
Eq. (3). Once the response is given, the prompt-free reward remains unaffected by any specific
prompt.

∀x1, x2, y ∈ D, r2(x1, y) = r2(x2, y). (3)
In contrast, as the other part of rθ(x, y) besides the prompt-free reward, prompt-related reward (r1)
varies among different prompts. Such a reward can be determined only when both the prompt and the
response are given.

Given a reward model rθ during training and a prompt-response tuple (x, y1, y2) sampled from the
dataset, our goal is to identify the prompt-free reward in rθ(x, y1) and rθ(x, y2) and leverage it to
guide reward learning. We consider decomposing rθ(x, y) into the additive form:

rθ(x, y) = r1(x, y) + r2(x, y). (4)

Examining the dataset holistically, r2(x, y) demonstrates clear randomness, with the data distribution
influencing its value. Specifically, for a given (x, y) pair, if the prompts related to y are diverse,
there is little connection between r2(x, y) and rθ(x, y), since r2 remains unchanged across different
prompts, whereas rθ changes accordingly. Conversely, if the related prompts show little variety,
r2(x, y) can be closely related to rθ(x, y), since rθ(x, y) also exhibits little change. This motivates
us to define r2 by considering the randomness in the data distribution, treating r2 as the joint product
of rθ and the data distribution. We also note that although some simple definitions of r2 may
seem reasonable (e.g. r2(x, y) = Ex′∼P (X|Y=y)[rθ(x

′, y)]), they can’t truly reflect rθ’s preference
regarding the response alone (See Appendix B for more details).

3.2 Solving Prompt-free Reward via a Mutual Information (MI) Objective

In this section, we extract r2(x, y) from rθ(x, y) via a preference perspective, with a carefully
designed mutual information (MI) objective. A brief introduction to MI is provided in Appendix A.
For simplicity, we have notations

∆r(x, y1, y2) := r(x, y1)− r(x, y2) σ(∆r(x, y1, y2)) := 1/
(
1 + exp(−∆r(x, y1, y2))

)
(5)

Since we focus on preference learning based on the BT model, it is sufficient to study the reward
gap (∆r) rather the reward itself, as the reward gap decides the preference label. Consequently, we
decompose the reward gap as

∆rθ(x, y1, y2) = ∆r1(x, y1, y2) + ∆r2(x, y1, y2). (6)
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Meanwhile, since both r1 and r2 must be applicable to all (x, y1, y2), it is essential to take into
account the entire dataset when decomposing from the preference perspective. The preference labels
of r1, r2, and rθ over the entire dataset are inherently random and can be characterized by the
following random variables:

Z := Ber
(
σ(∆r1(X,Y1, Y2)

)
, Z̃ := Ber

(
σ(∆r2(X,Y1, Y2)

)
W̃ := Ber(Ex∼P (X|Y1,Y2)[σ(∆rθ(x, Y1, Y2))]), W := Ber

(
σ(∆rθ(X,Y1, Y2))

) (7)

where ‘Ber’ stands for Bernoulli random variable. Among them, Z, Z̃ and W are the random
preference labels of their corresponding rewards. W̃ is the random prompt-free preference label of rθ.
For all these random variables, the randomness comes from the prompt, responses, and the Bernoulli
distribution. We also provide a detailed interpretation of these random variables in Appendix D.1.

Based on the defined Bernoulli random variables, we proceed to characterize the desired r1 and
r2. Recall that r1 and r2 represent prompt-related and prompt-free rewards, respectively. This
means Z should encapsulate only prompt-related preference while Z̃ should only reflect prompt-free
preference. Formally, this could be written in the following conditions:

MI(Z ∥ W̃ ) = 0, MI(Z̃ ∥ W̃ ) = MI(Z̃ ∥W ). (8)

Figure 2: (a) Information in W and W̃ . (b) Desired
information in Z and Z̃. (c) Undesired information in
Z and Z̃.

The Venn diagram in Fig. 2 further illustrates
these conditions. The first condition eliminates
all information in Z that’s related to prompt-free
preference, while the second condition ensures
that the information contained in Z̃ does not
exceed the prompt-free preference.

Although these conditions effectively constrain
the information in Z and Z̃, a trivial solution
exists. Assume ∆rθ(x, y) is bounded for any
prompt x and response y. Consider an ill-
formed ∆r1 such that for any prompt x and response y, ∆r1(x, y) = +∞. Then by the definition that
∆rθ(x, y) = ∆r1(x, y)+∆r2(x, y), ∆r2(x, y) = −∞ for any prompt x and response y. In this case,
Z will always be 1, and Z̃ will always be 0. This makes MI(Z∥W̃ ) = MI(Z̃∥W̃ ) = MI(Z̃∥W ) = 0

since Z and Z̃ are both constants. Although these ill-formed r1 and r2 satisfy the conditions in
Eq. (8), they provide no information of prompt-related or prompt-free preferences. This ill-formed
example indicates that the MI condition in Eq. (8) is insufficient to induce a reasonable decomposition.
When Z and Z̃ become constants, the information within them is lost, along with their MI with other
random variables. To avoid this, we optimize the following constrained objective to derive r1 and r2,
which ensures sufficient information in Z (H stands for Shannon’s entropy):

max
r1

H(Z), s.t.

{
MI(Z∥W̃ ) = 0

MI(Z̃∥W̃ ) = MI(Z̃∥W ).
(9)

In addition to the previous conditions, we maximize the information within Z, considering that Z
represents the random prompt-related preference label across the entire dataset. This constrained
optimization problem is difficult to solve directly, and direct solutions may require additional parame-
terized reward models. However, we provide an efficient algorithm that obtains ∆r1(x, y1, y2) and
∆r2(x, y1, y2) without additional reward model. To see this, we first note that the second constraint
is satisfied with a specific structure of r2. Formally, the following theorem holds:

Theorem 1. When the value of r2 depends only on the response, i.e. r2(x, y) = r2(y), MI(Z̃∥W̃ ) =

MI(Z̃∥W ).

The proof is given in Appendix D.3. Intuitively, Theorem 1 holds since such Z̃ inherently does not
contain any information from the prompt. Consequently, removing the prompt-related information
from W to W̃ does not reduce the MI term. This important property enables us to concentrate on the
first constraint and maximize the information in Z, as long as r2 maintains this simple structure. We
continue to characterize the optimal solution of Eq. (9) in the following theorem.
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Theorem 2. For any bounded rθ and dataset (X,Y1, Y2), there exist feasible r∗1 , r∗2 such that
∀(y1, y2) ∼ P (Y1, Y2),Ex∼P (X|Y1=y1,Y2=y2)[σ(∆r∗1(x, y1, y2))] =

1
2 . Such r∗1 , r∗2 is the optimal

solution to problem (9).

The proof is given in Appendix D.3. Intuitively, this requires the prompt-free part of r∗1 to equally
prefer both responses in any given pair. This aligns with our desiderata, as r∗1 should prefer some
response only after being provided with the specific prompt. Although neither of the theorems
explicitly shows the connection with rθ, we note that the feasibility condition requires ∆r∗1(x, y1, y2)+
∆r∗2(x, y1, y2) to equal ∆r∗θ(x, y1, y2), which encodes rθ’s information. Theorem 2 also provides
an efficient way to obtain ∆r∗1(x, y1, y2) and ∆r∗2(x, y1, y2). After replacing ∆r∗1(x, y1, y2) with
∆rθ(x, y1, y2)−∆r∗2(x, y1, y2) in the optimal solution in Theorem 2, ∆r∗2(x, y1, y2) satisfies that
for any (y1, y2) ∼ P (Y1, Y2):

Φ(y1, y2) := E
x∼P (X|Y1=y1,Y2=y2)

[σ(∆rθ(x, y1, y2)−∆r∗2(y1, y2))] =
1

2
. (10)

Note that we replace ∆r∗2(x, y1, y2) with ∆r∗2(y1, y2) due to Theorem 1. Because of this, ∆r∗2(y1, y2)
will not change while taking the conditional expectation. Moreover, it can be proved that Φ(y1, y2)
in Eq. (10) decreases monotonically with the increase of ∆r∗2(y1, y2), as shown in Appendix D.3.
Combined with the bounded assumption of rθ, we have:

lim
∆r∗2 (y1,y2)→+∞

Φ(y1, y2) = 0, lim
∆r∗2 (y1,y2)→−∞

Φ(y1, y2) = 1 (11)

With this, ∆r∗2(y1, y2) can be obtained via binary search in a finite interval. The searched ∆r∗2(y1, y2)
can be interpreted as the ‘weighted average’ of ∆rθ(x, y1, y2), based on P (X|Y1 = y1, Y2 = y2).
Due to limited space, we provide the pseudo-code of the binary search process in Appendix C.1 (Alg.
1). Note that such an algorithm doesn’t require any extra parameterized reward models.

It’s clear that during the binary search, the estimation of the expectation in Eq. (10) requires sampling
from P (X|Y1 = y1, Y2 = y2). Although sampling from it is generally challenging, we propose
utilizing importance sampling by considering the decomposition with Bayes’ rule:

P (x|y1, y2) = P (x)P (y1, y2|x) / P (y1, y2). (12)

Here P (x|y1, y2) is the abbreviation of P (X = x|Y1 = y1, Y2 = y2), so as other probabilities. Given
a (y1, y2), we first sample from P (X), the marginal distribution of prompts, and then re-weight the
samples using P (y1, y2|x). Its value represents the response generation probability and thus can
be efficiently computed in some cases or approximated in others. Moreover, since P (y1, y2|x) is
independent of the trained reward model, each dataset only needs to pre-sample prompts once and
compute the probabilities once. We list the sampling schemes for different cases in Appendix C.2.

3.3 Guide Reward Learning with Prompt-free Reward

During the training process of rθ, one may consider leveraging the reward gap value ∆rθ(x, y1, y2)
to selectively train more on samples with small reward gap (including negative ones). The reason
is that, if the reward gap for (x, y1, y2) satisfies ∆rθ(x, y1, y2) ≈ 0 or < 0, it indicates that the
current reward model rθ struggles to distinguish between the preferred and dispreferred responses.
Consequently, allocating more training budget to these samples can better align the reward model
with human preference. Similar methods have been studied in training LLMs [22, 26].

Characterize ideal rθ with ∆r1 and ∆r2. However, things become different if we consider
prompt-related and prompt-free reward separately. During the learning process of rθ, we expect
(i) rθ to learn more prompt-related preference from the dataset (large ∆r1(x, y1, y2)); and (ii) rθ to
learn less prompt-free preference (small absolute values of ∆r2(x, y1, y2)). This is because when
∆r2(x, y1, y2)≫ 0 or≪ 0, it indicates strong prejudice over the sampled responses, as ∆r2 doesn’t
take the specific prompt into account. This prejudice may introduce spurious reward gaps (e.g.,
reward gap induced by length bias)[13, 35].

Prioritizing data with small ∆r2. Similar to the method discussed at the beginning of this section,
∆r1 and ∆r2 are important properties of rθ and can also be leveraged to guide the training of rθ. To
fulfill the desiderata above, we present a straightforward method that prioritizes preference data when
training reward models, with the aim of increasing prompt-related reward gaps while constraining the
value of prompt-free reward gaps. Specifically, given data samples {(x, y1, y2)i}ki=1 in each iteration,
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we first decompose rθ to get their prompt-free reward gaps {∆r2(x, y1, y2)i}ki=1 based on Alg. 1,
and then perform update for rθ on those samples with small prompt-free reward gaps. For samples
with large prompt-free gaps, we ignore them in this iteration and reinsert them into the buffer for
subsequent updates.

Analysis of prioritization mechanism. Next, we provide an in-depth analysis for the proposed data
prioritization mechanism. The standard update following the BT model only ensures the increase of
∆r1(x, yw, yl)+∆r2(x, yw, yl), so we cannot guarantee that either of them will necessarily increase.
However, (i) if samples have small prompt-free reward gaps (e.g. ∆r2 < 0), regardless of whether
their prompt-related reward gaps (∆r1) are large or small, they should be used for updates. This
is because an increase in ∆r1 suggests a better mastery of prompt-related preferences, while an
increase in their ∆r2 indicates the elimination of existing prejudices, both of which are beneficial.
(ii) Conversely, for samples with large ∆r2 (e.g., ∆r2 ≫ 0), if their ∆r1 are also large, updating
is unnecessary since the prejudice led to gradient saturation in the BT model. If their ∆r1 values
are small, their ∆rθ values are dominated by factors unrelated to the prompt (e.g., response length).
Updating rθ on them would exacerbate this issue, hindering generalization. Fig. 3 further illustrates
this mechanism. Data samples with smaller ∆r2 help achieve a better trade-off between increasing
prompt-related reward gaps and constraining prompt-free reward gaps.

Figure 3: (Illustrative) We characterize training data samples in a 2-dimensional quadrant diagram, with the
decomposed reward gaps ∆r1 and ∆r2. (a) shows initial data samples before training. (b) After training, the
ideal distribution should be centered on the positive half of the ∆r1-axis, indicating that the preference depends
solely on prompt-related information. (c-d) However, in the training process of ∆rθ , the update following the
BT model can only ensure the data points move in at least one of the positive directions of the ∆r1-axis or
∆r2-axis (up or right). If the update is based on samples with small ∆r2 (e.g. the left half), their movement
upwards or to the right, along with other unupdated samples (e.g. the right half), will cause the distribution to be
more centered on the positive ∆r1-axis. On the other hand, if the update is based on all samples, as shown in
(d), the movement of samples with large ∆r2 values to the right exacerbates the existing prejudices, causing the
distribution to become more centered on the positive ∆r2-axis.

Practical Consideration. In practice, we design a binary-cluster mechanism to determine whether
the value of ∆r2 is ‘small’ or ‘large’ in data prioritization. Specifically, at each step, we sample a
batch of (x, y1, y2) pairs from the preference dataset and perform one-dimensional binary clustering
based on their ∆r2 values. Due to the dynamic nature of rθ and the noise in data sampling, we do
not directly use the obtained decision boundary for determination. Instead, we maintain a dynamic
threshold, calculated as the exponential moving average of the boundary, and use this threshold for
the determination. Due to limited space, we provide a detailed process in Appendix C.1 (Alg. 2). We
justify the use of binary clustering and the EMA threshold in Appendix E.3 and demonstrate their
robustness through experiments.

It is worth noting that samples with ∆r2 values exceeding the threshold will not be discarded from
the dataset. Instead, the reinsertion operation assigns a probability for these samples to be updated
the next time they are sampled. Since rθ dynamically evolves during training, samples that are not
prioritized at the moment may contribute significantly to the future rθ. To avoid endlessly cycling
through samples with large ∆r2 values, the opportunities for reinsertion are limited. We provide
more details of the algorithm in Appendix C.

4 Experiments

In this section, we demonstrate the significance of identifying and utilizing prompt-free rewards
to guide reward learning from two perspectives. We first illustrate that, for some manually crafted
datasets, the extracted prompt-free reward reflects the reward model’s preference bias and the
prioritization effectively aids in reward learning. Subsequently, based on some commonly used
open-source preference datasets, we evaluate the trained reward model using direct metrics (reward
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model accuracy) and indirect metrics (performance of the induced policy). The evaluation results
demonstrate that, with the guidance of prompt-free rewards, our method enhances the generalization
ability of the learned reward model and further improves the performance of the induced LLM policy
after alignment.

4.1 Experiments on Manually Crafted Datasets

In this part, we manually construct datasets with specific characteristics from SHP [14], a commonly
used open-source preference dataset. Based on these datasets, we compare the reward models trained
with ordinary data and prioritized data. To thoroughly demonstrate their difference during training,
we select four equally spaced training steps, sample a number of data pairs at random, and visualize
them by their ∆r1,∆r2 values using the same method as in Fig. 3. Additionally, we evaluate the
final reward model using Reward-Bench [19] to assess its generalization capabilities. We choose
LLaMA-3.2-1B-Instruct as the backbone due to its lightweight nature and strong performance. For
more details of the experiments, we refer to Appendix E.4.

4.1.1 Length-biased Dataset

We construct a length-biased dataset Dbias that contains preference pairs with 80% chosen-longer
responses (i.e. |yw| > |yl|) and 20% chosen-shorter responses. The details of the construction are
given in Appendix E.4. When performing reward learning in Dbias, the BT loss for a uniformly
sampled data batch can be easily optimized by considering only the lengths of the responses, as the
majority of the data exhibits a preference for longer chosen responses. As a result, the reward model
can easily overfit to such spurious, prompt-free preferences.

The visualizations during training and the final results on Reward-Bench are shown in Fig. 4 (a)
and Table 1 (a). If rθ is trained with data uniformly sampled from Dbias (Fig. 4 (a), top), although
its prompt-related reward gap (∆r1) increases gradually, rθ rapidly overfit to the length preference.
This results in a significantly faster increase in ∆r2 for the chosen-longer pairs, and inevitably
leads to a decrease in ∆r2 for the chosen-shorter pairs since they represent opposite prompt-free
preferences. As expected, such ∆r2 indicates a clear length preference within rθ, which undermines
rθ’s generalization capability. On the other hand, if we prioritize the data samples with smaller
∆r2 values, the training data batch will contain more chosen-shorter pairs with smaller ∆r2 values.
According to Fig. 4 (a) bottom, the data samples are well-centered around the positive ∆r1-axis
during training. The results on Reward-Bench, as shown in Table 1 (a), also demonstrate stronger
generalization capability of rθ trained with prioritized data.

(a) (b)
Figure 4: (a): Visualizations for the length-biased dataset. We mark the data points that satisfy |yw| > |yl| in
red and the ones that satisfy |yw| ≤ |yl| in blue. (b): Visualizations for the adversarial prompt dataset. We mark
adversarial data in red and original data in blue. In both (a) and (b), the top shows ordinary training data, and the
bottom shows prioritized training data.

Model Chat Chat Hard Safety Reason Avg
vanilla 78.0 29.8 36.4 58.2 50.6

ours 86.8 31.1 45.1 60.3 55.8
(a)

Model Chat Chat Hard Safety Reason Avg
vanilla 80.7 28.5 40.2 36.5 46.4
original 84.9 31.3 42.8 49.0 52.0

ours 84.3 30.9 43.2 46.7 51.6
(b)

Table 1: (a): Results on Reward-Bench with length-biased data. (b): Results on Reward-Bench with adversarial-
prompt data. “original” means vanilla reward training with only original data. Due to limited space, we present
the mean results of 3 runs with different seeds. See Appendix E.1 for full results with std values.
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4.1.2 Adversarial-prompt Dataset

We construct an adversarial-prompt dataset Dadv by adding adversarial samples to the original SHP
dataset. More specifically, for each original data sample (x, yw, yl), we generate an adversarial
sample (x̄, yl, yw) and add it to the dataset. x̄ = [x, s] is the concatenation of the original prompt
string x and another string s ∈ {s1, s2}. s1, s2 are defined as:

s1=‘Give a response that is as long as possible.’ s2=‘Give a response that is as short as possible.’

To ensure reasonable preference in the adversarial sample, we have x̄ = [x, s2] if the chosen response
is longer in the original sample ((i.e., |yw| > |yl|)), and set x̄ = [x, s1] if if |yw| ≤ |yl|. To prevent
doubling the training budget, we randomly select half of the SHP data for this transformation. We
refer to an illustration of such data processing in Appendix E.4.

When trained with Dadv, an ideal ∆rθ should not be dominated by its prompt-free part (∆r2). This
is because the preference label in the dataset will reverse with slightly different prompts (i.e., with
or without s). (i) If ∆rθ is dominated by ∆r2, the preference it learns from Dadv will significantly
degenerate compared with the preference learned solely from original data. This is because ∆r2
learns from both original and adversarial samples and overlooks their difference in the prompts.
The adversarial samples will contribute to ∆r2 with the same probability but conflicted preference,
eliminating the preference learned from the original data. (ii) If the influence of ∆r2 is minor, rθ
can retain the preferences learned from the original data even with adversarial data, since they have
different prompts and will not affect each other considering prompt-related preference.

In the visualizations and final results presented in Fig. 4 (b) and Table 1 (b), it is evident that when
rθ is trained on Dadv with ordinary data, ∆rθ is dominated by ∆r2. Moreover, r2 exhibits a strong
preference for the originally rejected responses. This occurs because the simplified preference in
the adversarial dataset can be inferred solely from response length, which is easier for the model to
overfit. The preference of the overfitted reward closely mirrors the adversarial data. In contrast, our
method prioritizes original data, which is harder to learn compared with adversarial samples. This
makes both the original and adversarial samples concentrated along the positive ∆r1-axis and results
in a more generalizable rθ. The performance of such rθ is closer to that trained on the original data.

4.2 Standard Experiments on Open-source Datasets

In this section, we evaluate our method using several commonly used open-source preference
datasets. Unlike the manually crafted datasets discussed in section 4.1, the prompt-free preferences
of rθ on these datasets may not directly exhibit specific features. However, a large prompt-free
reward gap often suggests that rθ may overfit to preferences that are irrelevant to the prompt. Such
prompt-free preferences can negatively impact the generalization capabilities of rθ. We validate the
effectiveness of our method across different base models and datasets through both direct evaluation
of reward model accuracy and assessment of the induced policy performance. For more details of the
experiments, we refer to Appendix E.4.

Evaluate Reward Model Accuracy. We use Reward-Bench [19] as the benchmark to evaluate
the reward model in a direct way, by testing its accuracy on well-organized but out-of-distribution
queries. For a detailed illustration, we conduct experiments using both LLaMA-3-8B-Instruct [12]
and Mistral-7B-Instruct [18] as the backbone of the reward model. For the training data, we use
a randomly sampled subset of 300K examples from the RLHFlow preference dataset2 (originally
700K). We also conduct the same experiments on the SHP dataset (see Appendix E.2 for results).

The results are listed in Table 2 (a). We choose vanilla BT reward training and RRM [23] as the
baseline methods. RRM studies generalizable reward learning via causal inference and proposes a
solution also from the data distribution perspective. Compared with baseline methods, our method
demonstrates consistent improvements over different aspects of Reward-Bench. In Appendix E.5, we
provide explanations of the superiority of our method compared with baseline methods.

Assess Performance of Induced Policy. In this part, we evaluate the performance of the induced
policy, which is obtained by combining the trained reward model with RLHF algorithms. For all
experiments, we choose LLaMA-3-8B-Instruct as both the base policy and the backbone of the reward
model. The reward model in this part is trained with the SHP dataset. For the RLHF algorithms, we

2https://huggingface.co/datasets/RLHFlow/pair_preference_model_dataset
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(a) Reward-Bench
Method Chat Chat Hard Safety Reasoning Average

vanilla-8B 0.93 0.50 0.67 0.78 0.72

RRM-8B 0.95 0.56 0.75 0.82 0.77

Ours-8B 0.96 0.59 0.81 0.89 0.82

vanilla-7B 0.90 0.49 0.60 0.69 0.66

RRM-7B 0.94 0.52 0.65 0.70 0.70

Ours-7B 0.94 0.56 0.69 0.81 0.75

(b) AlpacaEval-2
AlpacaEval-2 (LCWR / WR)

Method vanilla RRM Ours
DPO 30.5 / 38.8 39.5 / 40.9 40.6 / 42.3

BoN(N=4) 33.2 / 42.5 35.3 / 38.4 38.5 / 45.0
BoN(N=32) 35.8 / 45.1 41.1 / 44.9 44.7 / 48.3

(c) MT-Bench
MT-Bench (T1 / T2)

Method vanilla RRM Ours
DPO 7.83 / 6.51 8.35 / 7.46 8.44 / 8.03

Table 2: (a): Reward model accuracy on Reward-Bench. (b): Results on AlpacaEval-2 [13] evaluation. LCWR
and WR denote Length-Control (LC) Win-Rate and Win-Rate, respectively. (c): Results on MT-Bench [41]
evaluation. T1 and T2 denote the 1st-Turn and 2nd-Turn, respectively. Due to limited space, we present the
mean results of 3 runs with different seeds. See Appendix E.1 for full results with std values.

choose Best-of-N and DPO [30] because of their lightweight nature. It’s straightforward to apply the
reward model in Best-of-N. For DPO, we use the base policy to generate responses on the prompt
dataset (from Ultrafeedback [9]), and then employ the trained reward model to select the best and
worst responses, which are combined as training data for DPO. We assess the performance of the
induced policy on AlpacaEval-2 and MT-Bench. The results are given in Tab. 2 (b) and Tab. 2 (c),
respectively. Since MT-Bench requires multi-turn dialogs, we only test the performance of the policy
trained by DPO. Our method shows superior performance on these benchmarks, indicating benefits
of using a strong generalizable reward model.

5 Related Works

RLHF. RLHF research can be categorized into reward-based and reward-free methods. The
reward-based methods typically train an reward model to provide reward signals for RL optimization.
PPO [31, 13] is popular in this domain [8, 28, 5]. REINFORCE [39] and rejection sampling [27]
have also been adopted in previous works [1, 10]. Alternatively, reward-free approaches directly
fine-tuning the LLM by constructing implicit reward models [3, 15], such as DPO [30] and its variants
[40, 20, 29, 25]. Recent works also try to combine DPO with reward models to iteratively generate
data and perform alignment [11, 4].

Generalizable Reward Models. Improving the generalization ability of the reward model is
crucial in RLHF. Previous research [21, 35] reveals that the reward model can be hacked by spurious
preferences (e.g., response length) and mislead the LLM when evaluating novel prompt-response pairs.
To mitigate this issue, previous methods propose to separately model different types of preference
signals [37], explicitly learn the reward bias while keeping the reward model focused on human
preference [7, 34], or augment the data with constructed prompt-response pairs [33, 23]. Unlike these
methods, our algorithm learn prompt-free reward without introducing additional models, training
data, or various types of preferences.

6 Conclusion & Limitation

In this paper, we propose a novel reward learning algorithm aiming at improving the reward model’s
generalization capability. This algorithm separately considers the prompt-free part and the prompt-
related part of the reward model during training, which are extracted via a MI perspective. By
prioritizing the training data with prompt-free reward gaps, our algorithm encourages the reward
model to focus on prompt-related preferences. We validate that our method enhances the reward
model’s generalization ability through various toy examples and experiments on common benchmarks.

The major limitation is that the decomposition of prompt-free and prompt-related rewards in this
paper relies on a specific additive form. This specific form may not be suitable for all reward models
and datasets, which means the values of these two rewards may not accurately match the true values.
Such inaccuracy prevents us from directly using the prompt-related reward as the score. Nevertheless,
even if the additive decomposition does not hold, our method can still benefit reward training in a
similar way (see Appendix D.2 for detail discussions). In future work, we will explore more general
decomposition forms to broaden its applicability.
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A Brief Introduction to Mutual Information

The mutual information of two random variables is a non-negative quantity that measures the mutual
dependence between the two random variables [32]. Intuitively, it quantifies how much information
can be gained about one random variable by observing the other. Mathematically, with a little abuse
of notation, the mutual information of two random variables (X and Y ) can be calculated from their
respective entropy and joint entropy as follows:

MI(X∥Y ) = H(X) + H(Y )− H(X,Y ) (13)

where ‘H’ represents Shannon entropy here. Note that MI(X∥Y ) = 0 is a necessary condition of
X and Y being independent, and a small or zero value of mutual information indicates that the two
random variables are weakly correlated.

B Numerical Example in Section 3.1

We provide numerical examples showing why we can’t directly obtain r2(x, y) by marginalizing over
the prompt distribution P (X|Y = y). If we directly use the following form of r2(x, y):

r2(x, y) = Ex′∼P (X|Y=y)[rθ(x
′, y)] (14)

Consider two responses y1, y2 and their corresponding conditional distributions P (X|Y = y1),
P (X|Y = y2). Assume P (X|Y = y1) = P (X|Y = y2) and a prompt set {xi} such that∑

x′∈{xi} P (X = x′|Y = y1) =
∑

x′∈{xi} P (X = x′|Y = y2) = 0.001. If rθ(x, y1) and rθ(x, y2)

satisfy the following condition:

{
rθ(x, y1) = 1e6, rθ(x, y2) = 0 if x ∈ {xi},
rθ(x, y1) = 0, rθ(x, y2) = 1 else,

(15)

It’s easy to verify that Ex′∼P (X|Y=y1)[rθ(x
′, y1)] = 1e3 and Ex′∼P (X|Y=y2)[rθ(x

′, y2)] = 0.999.
While the reward obtained by taking the expectation suggests that y1 is overwhelmingly better than
y2, y2 actually outperforms y1 in almost all cases and should be considered the better choice overall.

In fact, the gap exists due to the fact that the gap of the ‘overall reward’ cannot reflect ‘overall
preference’. When we marginalize rθ(x, y) over the prompt distribution P (X|Y = y), the reward
values calculated with different prompts are combined together. However, any constant shift of the
reward value within a prompt-response pair is equivalent under the BT model, which means the
reward values under different prompts can have totally different scales and meanings, and should
not be combined together. On the other hand, for any prompt-response pair, the induced preference
label can be interpreted as a Bernoulli random variable with a fixed probability of taking the value of
1. Such consistency makes it reasonable to consider the overall preference rather than the overall
reward.
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Algorithm 2 Guide Reward Learning with ∆r2

Input: initial reward model rθ, dataset {(x, yw, yl)i}Ni=1, EMA weight α, update step number T ,
batch size k

1: Initialize threshold λ0 = 0
2: for t = 0 to T do
3: Initialize batch list B = [ ], ∆r2 list ∆R2 = [ ]
4: while length(B) < k do
5: Sample (x′, y′w, y

′
l) from the dataset

6: {(x, yw, yl)i} = {(x, yw, yl)i} \ {(x′, y′w, y
′
l)}

7: Calculate ∆r2(x
′, y′w, y

′
l) with Alg. 1

8: if ∆r2(x
′, y′w, y

′
l) < λt then

9: ∆R2 = ∆R2 + [∆r2(x
′, y′w, y

′
l)], ‘+’ means list concatenation

10: B = B + [(x, yw, yl)]
11: else
12: ∆R2 = ∆R2 + [∆r2(x

′, y′w, y
′
l)]

13: {(x, yw, yl)i} = {(x, yw, yl)i} ∪ {(x′, y′w, y
′
l)}

14: end if
15: end while
16: Update rθ via BT model with B = [(x, yw, yl)j ]

k
j=1

17: Perform binary clustering with ∆R2, obtain boundary λ̂t

18: Update threshold as λt+1 = α · λt + (1− α) · λ̂t

19: B = [ ], ∆R2 = [ ]
20: end for

C Algorithm Details

C.1 Pseudo-code

Algorithm 1 Binary Search for ∆r∗2(yw, yl)

Input: bounded rθ(x, y) ∈ [rmin, rmax] for any prompt x and response y), response pair (yw, yl),
error threshold ϵ

1: Initialize ∆rleft = rmin − rmax,∆rright = rmax − rmin

2: while ∆rright −∆rleft > ϵ do
3: ∆rmid =

∆rright+∆rleft
2

4: Calculate prompt-free preference p:
E

x∼P (X|Yw=yw,Yl=yl)
[σ(∆rθ(x, yw, yl)−∆rmid)]

5: if p > 1
2 then

6: ∆rleft = ∆rmid

7: else
8: ∆rright = ∆rmid

9: end if
10: end while
11: Return ∆r∗2(yw, yl) =

∆rright+∆rleft
2

C.2 Sampling schemes for binary search

As mentioned in section 3.2, a key step of the binary search is estimating
E

x∼P (X|Y1=y1,Y2=y2)
[σ(∆rθ(x, y1, y2) − ∆r2(y1, y2))], which requires sampling from

P (X|Y1 = y1, Y2 = y2). We use an importance-sampling trick to turn this problem into
re-weighting x with P (y1, y2|x). Now we provide the method by which this probability can be
computed or estimated. The method is different for different kinds of datasets.

Self-generated dataset This corresponds to datasets where the responses are generated by LLM
whose parameters can be accessed by us. This is especially useful when we want to iteratively align
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a LLM. In each iteration, we may generate a couple of responses using the LLM in the previous
training iteration, based on some prompts, and then get the preference label from either human or AI
feedback. In this way, the chosen response and the rejected response are generated independently,
which leads to an easy way of calculating P (y1, y2|x) as follows:

P (y1, y2|x) = P (y1|x) ·P (y2|x) =
(
Π

|y1|
i=1P (yi+1

1 |[x, y[1···i]1 ])
)
·
(
Π

|y2|
i=1P (yi+1

2 |[x, y[1···i]2 ])
)

(16)

Note that since we have access to the parameters, P (yi+1
1 |[x, y[1···i]1 ]) is just the next-token prediction

probability and can be effectively computed.

Other dataset For general datasets that the generation probability cannot be exactly computed, we
use a simple strategy to approximate P (y1, y2|x). Specifically, if we use K prompt samples in total
to estimate expectation E

x∼P (X|Y1=y1,Y2=y2)
[σ(∆rθ(x, y1, y2) −∆r2(y1, y2))], we set P (y1, y2|x)

as a fixed probability p when (x, y1, y2) are corresponding prompt and responses. We then set
P (y1, y2|x) = 1−p

K−1 when (x, y1, y2) are non-corresponding prompt and responses. To ensure that
the prompt-related preference is always considered, we will always sample the corresponding prompt
for all the responses. In other words, we estimate the expectation with the following equation:

p · σ(∆rθ(xcorr, y1, y2)−∆r2(y1, y2)) +

K−1∑
i=1

1− p

K − 1
σ(∆rθ(xnon-corr, y1, y2)) (17)

Note that this estimation has an interesting interpretation when p = 1: p = 1 means in the dataset,
there is only one prompt xcorr that is related to the responses. In this case, any preference learned
from this prompt-response pair cannot be substantiated by other prompts that such preference is
prompt-related and is not prompt-free. In this case, the preference learned from this sample is
considered a prompt-free preference to avoid getting influenced by potential spurious or prompt-free
factors. This can be seen as a pessimistic estimation of the prompt-free preference in practice.

C.3 Other practical details of Algorithm 2

Finite reinsertion times To avoid endlessly cycling in the data samples whose ∆r2 values exceed
the threshold, every data sample has limited chances to be reinserted into the dataset. In practice, this
could be implemented in two ways:

• Immediate reinsertion: every time a data sample exceeds the ∆r2 value threshold, immedi-
ately reinsert it into the dataset and reduce its reinsertion quota.

• Lazy reinsertion: every time a data sample exceeds the ∆r2 value threshold, directly discard
it. However, when the dataset is exhausted, refill the data loader with all samples. The
previously discarded samples will be checked again in the new data loader. The number of
reinsertions determines the number of times we flush the data loader.

Binary clustering algorithm As we only perform binary clustering on one-dimensional data, a
simple algorithm works well. In practice, we choose K-means as the binary clustering method. We
also tried Otsu’s method and the resulting reward model’s performance is very similar.

C.4 Discussion of other reward modeling methods

In this paper, we mainly focus on the ‘Sequence Classifier’ reward models. We discuss the reason
why we don’t use this method to investigate other type of reward models.

• Generator: the "Generator" structure treats preference modeling as an instruction-following
task, which incorporates the prompt, chosen and rejected response in the instruction and
takes the probability of decoding a specific token as Pr[y1 ≻ y2|x] [11]. Unlike "Sequence
Classifier", it explicitly leverages the backbone’s language understanding ability and treat
the prompt and two responses as a whole, which may mitigate prompt-free preference.
More importantly, it introduces position bias(preference may vary with response order
in the instruction), making the induced value of rθ uninterpretable and unsuitable for
decomposition.
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• Implicit Reward (DPO): the calculation of reward value based on implicit reward model (e.g.
DPO) relies on the calculation of log π(y|x)

πref (y|x) , which can be very unstable when inputting
non-corresponding prompt-response pairs. Such an issue prevents us from decomposing this
unstable value.

D Additional Proofs and Interpretations

D.1 Interpretation of the random variables

We begin by interpreting the random variables defined in §3.1 in detail. Recall that they have the
following definitions:

Z̃ = Ber
(
Pr2(Y1 ≻ Y2|X)

)
= Ber

(
σ(∆r2(X,Y1, Y2)

)
,

Z = Ber
(
Pr1(Y1 ≻ Y2|X)

)
= Ber

(
σ(∆r1(X,Y1, Y2)

)
,

W̃ = Ber(Ex∼P (X|Y1,Y2)[Prθ (Y1 ≻ Y2|x)
)
])

= Ber(Ex∼P (X|Y1,Y2)[σ(∆rθ(x, Y1, Y2))]),

W = Ber
(
Prθ (Y1 ≻ Y2|X)

)
= Ber

(
σ(∆rθ(X,Y1, Y2)

)
,

(18)

By the definition of the Bernoulli random variable, all these random variables can only randomly take
the value of 0 or 1, while the inner probability determines the probability that the random variable is
1. However, as the inner probability is not a fixed value, which is determined by the random prompt
and responses, we must determine the prompt and the responses before considering the value of
Bernoulli random variables. In conclusion, since we consider the preference over the entire dataset,
the randomness of such random variables comes from two aspects: 1. the randomness of the prompt
and the responses. 2. the randomness inherently existing in the Bernoulli random variables.

Knowing where the randomness comes from, it’s easy for us to interpret the meaning of these random
variables. For W , Z and Z̃, they are simply random preferences of rθ, r1 and r2 over the entire
dataset, respectively. For these random variables, the probability of the Bernoulli variables being
1 can’t be determined until we fix the prompt and the responses. For W̃ , things get different. The
inner probability of W̃ depends only on the responses, and retains the same value across different
prompts, as we take the expectation over all the prompts. This corresponds to the intuition that
W̃ comes from r2, which represents the overall evaluation of the responses and is not affected
by specific prompts. Moreover, we note that the conditional probability P (X|Y1, Y2) is not the
standard posterior probability. This conditional probability doesn’t indicate that y1 is more preferred
than y2 but only represents the probability that the corresponding prompt is x when the response
pair contains y1 and y2, no matter which one is more preferred. We define in this way because
W̃ should represent an overall preference between y1 and y2, so we should not only consider the
prompts where y1 is better, and should also consider the prompts where y2 is better. Mathematically,
this could be further verified since only if we define in this way, Ex∼P (X|Y1=yw,Y2=yl)[Prθ (yw ≻
yl|x)

)
] + Ex∼P (X|Y1=yl,Y2=yw)[Prθ (yl ≻ yw|x)

)
] = 1 can be satisfied. We refer to the computation

of P (X = x|Y1 = y1, Y2 = y2) in the end of sub-section 3.2 for a further illustration:

P (x|y1, y2) =
P (x)P (y1, y2|x)

P (y1, y2)
=

P (x)P (y1|x)P (y2|x)∑
x′ P (x′)P (y1|x′)P (y2|x′)

(19)

D.2 Similar benefits for reward training even when additive decomposition does not hold

In the following example, we demonstrate that when r1 and r2 satisfy multiplicative decomposition
form, our method can still control ∆r2 and thus alleviate the influence of spurious preference.

We’ll start with the clarification that, due to the inner complexity of LLM-based reward model, it’s
hard to achieve a situation when the trained reward model rθ exactly satisfies some specific form of
decomposition that can be explicitly written out. So in the following example, we examine how our
method improves the subsequent training process if rθ already satisfies the multiplicative form of
decomposition and exhibits spurious prompt-free preference.

The multiplicative decomposition can be written as:
rθ(x, y) = r1(x, y) ∗ r2(x, y)
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We continue to assume the form of r1(x, y) and r2(x, y) (which construct rθ(x, y)). Before doing
so, we note that due to the multiplicative decomposition form, our method can’t obtain the ground
truth value of r1(x, y) and r2(x, y). Instead, our method gives an imprecise decomposition of
∆rθ = ∆̃r1 + ∆̃r2. The form of ground truth r1(x, y) and r2(x, y) are defined as follows:

r2(x, y) =
|y|
c
, c = average response length over dataset

r1(x, yw) = 1.0 (if yw ≻ yl|x), 0.5 (if yw ≈ yl|x), 0.1 (if yw ≺ yl|x)

r1(x, yl) = 0.1 (if yw ≻ yl|x), 0.5 (if yw ≈ yl|x), 1.0 (if yw ≺ yl|x)

It’s clear that r2 simply represents preference induced from response length, which is a prompt-free
reward. As for r1, although it has a simple form, its preference differs conditioend on different
prompts. For some non-corresponding prompts, if yl is better than yw conditioned on these prompts,
r1 will prefer yl more than yw. Thus, such a prompt-related reward is also reasonable. Moreover, it
can be easily verified that such a rθ shows a strong spurious preference (length bias) towards longer
responses.

To better simulate practical scenarios, we set the distribution of prompt-response pairs to be the same
as the SHP dataset, while adding Gaussian noise perturbation to each r1(x, y).

r1(x, y)← r1(x, y) +N (0; 0.1)

Since rθ(x, y) is well-defined for all prompt-response pairs within the dataset distribution, we ran
our method to obtain the decomposed ∆̃r1(x, yw, yl) and ∆̃r2(x, yw, yl). For a better visualization,
we characterized all prompt-response pairs in the same way as Fig. 4. To further support our claim,
we also conduct the same experiment based on a different r1. The visualizations are presented below:

If our method still works, then ∆̃r2(x, yw, yl) should be smaller for those prompt-response pairs
that satisfy |yw| < |yl|. In this way, our method will prioritize these samples and thus alleviate
spurious preference. In the visualization, it’s evident that although not all samples with |yw| < |yl|
have smaller values of ∆̃r2(x, yw, yl), the majority of them still lies on the left. Prioritizing samples
with smaller ∆̃r2(x, yw, yl) can still mitigate spurious preference and thus outperforms naive reward
training.

This exactly matches the reason we gave in the previous response. Since ∆̃r2 can always be
considered as a weighted average of ∆rθ, although the decomposition is imprecise, the spurious
preference in ∆r2 can be reflected by ∆rθ. And if ∆r2 is large, then ∆rθ can be large conditioned
on almost all prompts. This will lead to a large value of ∆̃r2 and our method can filter out these
samples.
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D.3 Proofs of the theorem

Theorem 1. When the value of r2 depends only on the response, i.e. r2(x, y) = r2(y), MI(Z̃∥W̃ ) =

MI(Z̃∥W ).

Proof. By the relation between mutual information and entropy, we first decompose the calculation
of the mutual information into the calculation of the following entropy terms:

MI(Z̃∥W̃ ) = H(Z̃) + H(W̃ )−H(Z̃, W̃ ) (20)

MI(Z̃∥W ) = H(Z̃) + H(W )−H(Z̃,W ) (21)

To prove that MI(Z̃∥W̃ ) = MI(Z̃∥W ), we can compare the two equations above, and with simple
algebraic computation we can reduce the problem into proving:

H(W̃ )−H(Z̃, W̃ ) = H(W )−H(Z̃,W ) (22)

To continue, we first calculate the Shannon entropy of W̃ and W . Because both W̃ and W are
Bernoulli random variables, their discrete nature provides the possibility to directly calculate Shannon
entropy by enumerating their possible values. Take W̃ for an example, its Shannon entropy can be
calculated as:

H(W̃ ) = −Pr[W̃ = 1] log(Pr[W̃ = 1])− Pr[W̃ = 0] log(Pr[W̃ = 0]) (23)

To calculate H(W̃ ), the rest of the problem is to calculate Pr[W̃ = 1] and Pr[W̃ = 0]. Again, we
leverage the unique property of the Bernoulli random variable: its value can take only from 0 or 1.
This allows us to turn the calculation of probability into the calculation of the expectation of the
indicator function (I[a] = 1 if a ̸= 0 else 0):

Pr[W̃ = 1] = E[I[W̃ ]] (24)

= EP (X,Y1,Y2)EBer[I[W̃ ]] (25)

= EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]] (26)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[W̃ ]]] (27)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)

[EBer[I[Ber(Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))])]]]] (28)

(29)

From the first equation to the second equation, we decompose the full expectation into two separate
expectations: one marginalizing the randomness in the random prompts and responses (EP (X,Y1,Y2)),
the other marginalizing the randomness in the Bernoulli random variable (EBer). Note that in the last
equation, the inner expectation will not be affected by different prompts x outside. We then continue
to simplify the last equation based on this. We change the expectation into summation since the
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possible values of all random variables are countable.

Pr[W̃ = 1] =
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)

[EBer[I[Ber(Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))])]]]] (30)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
(∑

x

P (X = x|Y1 = y1, Y2 = y2)
)

︸ ︷︷ ︸
equals to 1

[EBer[I[Ber(Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))])]]]] (31)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[EBer[I[Ber(Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))])]]]

(32)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))])] (33)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x′

P (X ′ = x′|Y1 = y1, Y2 = y2)[σ(∆rθ(x
′, y1, y2))])].

(34)

Note that here we use the following Bernoulli variable’s property, which can be easily verified with
the definition:

EBer[I[Ber[p]]] = p. (35)

Similarly, Pr[W̃ = 0] can be calculated as follows:

Pr[W̃ = 0] =
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x′

P (X ′ = x′|Y1 = y1, Y2 = y2)[1−σ(∆rθ(x
′, y1, y2))])].

(36)
This can be easily verified with the same calculation. With Pr[W̃ = 1] and Pr[W̃ = 0], we can
easily calculate its Shannon entropy. To continue, we calculate the probabilities Pr[W = 1] and
Pr[W = 0]. Take the calculation of Pr[W = 1] as an example:

Pr[W = 1] = E[I[W ]] (37)
= EP (X,Y1,Y2)EBer[I[W ]] (38)

= EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W ]]] (39)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[W ]]] (40)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[Ber
(
σ(∆rθ(X,Y1, Y2))

)
]]]

(41)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)[σ(∆rθ(x, y1, y2))])].

(42)

Similarly, Pr[W = 0] can be calculated as:

Pr[W = 0] =
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)[1−σ(∆rθ(x, y1, y2))])].

(43)
Combining the results of calculating Pr[W̃ = 1], P r[W̃ = 0], P r[W = 1], P r[W = 0], we can
easily verify that H(W̃ ) = H(W ). It’s worth noting that H(W̃ ) = H(W ) only means their separate
quantity of information is the same, but doesn’t characterize their relationship from the information
perspective.

The rest of the problem is to prove the equality of H(Z̃, W̃ ) = H(Z̃,W ). Once again, since the
events considering (Z̃, W̃ ) or (Z̃,W ) pair are both finite, we can decompose the calculation of the
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joint entropy as the summation of four terms. Take the calculation of H(Z̃, W̃ ) as an example:

H(Z̃, W̃ ) = −Pr[Z̃ = 1, W̃ = 1] log(Pr[Z̃ = 1, W̃ = 1])− Pr[Z̃ = 1, W̃ = 0] log(Pr[Z̃ = 1, W̃ = 0])

− Pr[Z̃ = 0, W̃ = 1] log(Pr[Z̃ = 0, W̃ = 1])− Pr[Z̃ = 0, W̃ = 0] log(Pr[Z̃ = 0, W̃ = 0]).
(44)

To prove that H(Z̃, W̃ ) = H(Z̃,W ), we prove that the four probabilities induced from (Z̃, W̃ ) equal
to that induced from (Z̃,W ), respectively. For simplicity, we only prove that Pr[Z̃ = 1, W̃ = 1] =

Pr[Z̃ = 1,W = 1], while the remaining three equations can be proved in the same way.

The key property we used to prove such equations is that although there exists a complicated
relationship between Z̃, W̃ , and W , the randomness from different inherent Bernoulli distributions
is independent. In other words, once the prompt, responses are determined for all these random
variables, the inner probability is a fixed value that is independent from each other. This motivates us
to use the same proving technique above, decomposing the full expectation into separate expectations
about the prompt-response pair and the Bernoulli distribution, respectively. Specifically, the following
holds:

Pr[Z̃ = 1, W̃ = 1] = E[I[Z̃ · W̃ ]] (45)

= EP (X,Y1,Y2)EBer×Ber[I[Z̃ · W̃ ]] (46)

= EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z̃ · W̃ ]]] (47)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer×Ber[I[Z̃ · W̃ ]]].

(48)
(49)

Note that here EBer×Ber represents the expectation over two independent Bernoulli random variables.
The independence comes from different Bernoulli random variables with fixed probability that take
the value of 1. We continue to expand EBer×Ber[I[Z̃ · W̃ ]] with the independence with the following
equation:

EBer×Ber[I[Z̃ · W̃ ]] = EBer[I[Z̃]]EBer[I[W̃ ]]. (50)

Replacing this in the previous equation, we have:

Pr[Z̃ = 1, W̃ = 1] =
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[Z̃]]EBer[I[W̃ ]]]

(51)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)

[σ(∆r2(y1, y2)) · Ex′∼P (X′|Y1=y1,Y2=y2)[σ(∆rθ(x
′, y1, y2))]︸ ︷︷ ︸

independent of x

] (52)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)

[(∑
x

P (X = x|Y1 = y1, Y2 = y2)︸ ︷︷ ︸
equals to 1

·σ(∆r2(y1, y2))
)

(∑
x′

P (X ′ = x′|Y1 = y1, Y2 = y2) · σ(∆rθ(x
′, y1, y2))

)]
(53)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)

[
σ(∆r2(y1, y2)) ·

(∑
x′

P (X ′ = x′|Y1 = y1, Y2 = y2) · σ(∆rθ(x
′, y1, y2))

)]
(54)

Note that to get the last equation, we first use Eq. (35) to simplify the inner expectations, and then
exchange the sequence from first taking the product to first taking the summation over x. Such
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exchange holds since one part of the product is independent of x. Moreover, we replace ∆r2(x, y1, y2)
with ∆r2(y1, y2) due to the assumption of the theorem, which is vital in the proof.

We continue to calculate Pr[Z̃ = 1,W = 1], the difference is that W is not independent of x.
However, the exchange we used above still holds since the specific form ∆r2(y1, y2) does not depend
on x. We have:

Pr[Z̃ = 1, W̃ = 1] =
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[Z̃]]EBer[I[W ]]]

(55)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)
∑
x

P (X = x|Y1 = y1, Y2 = y2)[σ(∆r2(y1, y2)) · σ(∆rθ(x, y1, y2))]

(56)

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)

[
σ(∆r2(y1, y2)) ·

(∑
x

P (X = x|Y1 = y1, Y2 = y2) · σ(∆rθ(x, y1, y2))
)]

(57)

It’s easy to verify that Pr[Z̃ = 1, W̃ = 1] = Pr[Z̃ = 1, W̃ = 1]. With similar derivation, we
can prove the equalities for the rest three probabilities. Combined them together, we prove that
H(Z̃, W̃ ) = H(Z̃,W ) and finish all the proofs.

Theorem 2. For any bounded rθ and dataset (X,Y1, Y2), there exist feasible r∗1 , r∗2 such that
∀(y1, y2) ∼ P (Y1, Y2),Ex∼P (X|Y1=y1,Y2=y2)[σ(∆r∗1(x, y1, y2))] =

1
2 . Such r∗1 , r∗2 is the optimal

solution to problem (9).

Proof. We begin by proving that there exists r∗1 and r∗2 that satisfy ∀(y1, y2) ∼
P (Y1, Y2),Ex∼P (X|Y1=y1,Y2=y2)[σ(∆r∗1(x, y1, y2))] = 1

2 . We then verify that such r∗1 and r∗2
are feasible, by verifying that such r∗1 and r∗2 satisfy the constraints and can recover rθ (i.e.
∆rθ(x, y1, y2) = ∆r∗1(x, y1, y2) + ∆r∗2(y1, y2)).
To prove the existence of such r∗1 and r∗2 , we first replace ∆r∗1(x, y1, y2) with ∆rθ(x, y1, y2) −
∆r∗2(y1, y2). In the following proof, we have to use the following lemma:

Lemma 1. Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) − ∆r∗2(y1, y2))] monotonically decrease with
the increase of ∆r∗2(y1, y2)

Proof. We directly take the derivative of Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) − ∆r∗2(y1, y2))].
Since ∆r∗2(y1, y2)) retains the same across different x, we have:

∂[Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2)−∆r∗2(y1, y2))]]

∂∆r∗2(y1, y2)
(58)

=
Ex∼P (X|Y1=y1,Y2=y2)[∂σ(∆rθ(x, y1, y2)−∆r∗2(y1, y2))]

∂∆r∗2(y1, y2)
(59)

= Ex∼P (X|Y1=y1,Y2=y2)[
∂ 1

1+exp(∆r∗2 (y1,y2)−∆rθ(x,y1,y2))

∂(∆r∗2(y1, y2)−∆rθ(x, y1, y2))
· ∂(∆r∗2(y1, y2)−∆rθ(x, y1, y2))

∆r∗2(y1, y2)
]

(60)

= Ex∼P (X|Y1=y1,Y2=y2)[−
exp(∆r∗2(y1, y2)−∆rθ(x, y1, y2))

(1 + exp(∆r∗2(y1, y2)−∆rθ(x, y1, y2)))2
] (61)

This shows that for any y1, y2, Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) −∆r∗2(y1, y2))] monotoni-
cally decrease with the increase of ∆r∗2(y1, y2).

To continue the proof of Theorem 2, we identify the lower and the upper bounds of
Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) − ∆r∗2(y1, y2))], under different choices of ∆r∗2(y1, y2).
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Due to the assumption of bounded rθ, we consider rθ that satisfies ∀x, y1, y2, rθ(x, y1, y2) ∈
[rmin, rmax]. The following holds:

Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2)− (rmin − rmax))] (62)

= Ex∼P (X|Y1=y1,Y2=y2)[σ
(
(rθ(x, y1)− rθ(x, y2))− (rmin − rmax)

)
] (63)

= Ex∼P (X|Y1=y1,Y2=y2)[σ
(
(rθ(x, y1)− rmin)︸ ︷︷ ︸

always ≥ 0

+(rmax − rθ(x, y2))︸ ︷︷ ︸
always ≥ 0

)
] (64)

≥ Ex∼P (X|Y1=y1,Y2=y2)[
1

2
] =

1

2
(65)

On the other hand, the following inequality also characterizes the lower bound of
Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2)−∆r∗2(y1, y2))]:

Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2)− (rmax − rmin))] (66)

= Ex∼P (X|Y1=y1,Y2=y2)[σ
(
(rθ(x, y1)− rθ(x, y2))− (rmax − rmin)

)
] (67)

= Ex∼P (X|Y1=y1,Y2=y2)[σ
(
(rθ(x, y1)− rmax)︸ ︷︷ ︸

always ≤ 0

+(rmin − rθ(x, y2))︸ ︷︷ ︸
always ≤ 0

)
] (68)

≤ Ex∼P (X|Y1=y1,Y2=y2)[
1

2
] =

1

2
(69)

Combine with the fact that Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) − ∆r∗2(y1, y2))] monoton-
ically decrease with the increase of ∆r∗2(y1, y2), there always exists ∆r∗2(y1, y2) such that
Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) − ∆r∗2(y1, y2))] = 1

2 . To satisfy the feasibility con-
dition that ∆rθ(x, y1, y2) = ∆r1(x, y1, y2) + ∆r2(y1, y2), we directly set ∆r∗1(x, y1, y2) =
∆rθ(x, y1, y2) − ∆r∗2(y1, y2), with the ∆r∗2(y1, y2) obtained before. Such ∆r∗2(y1, y2) still sat-
isfies the simple structure mentioned in Theorem 1, so the constraint MI(Z̃ ∥ W̃ ) = MI(Z̃ ∥ W )
is still satisfied. The remaining task is to proof that the ∆r∗1(x, y1, y2) obtained before satisfy the
constraint MI(Z ∥ W̃ ) = 0.

With the same proving technique in the proof of Theorem 1, we first decompose MI(Z ∥ W̃ ) into
three entropy terms:

MI(Z ∥ W̃ ) = H(Z) + H(W̃ )− H(Z, W̃ ) (70)
We further expand the right side of the equation in the following equations:

H(Z) = −Pr[Z = 1] log(Pr[Z = 1])− Pr[Z = 0] log(Pr[Z = 0])

H(W̃ ) = −Pr[W̃ = 1] log(Pr[W̃ = 1])− Pr[W̃ = 0] log(Pr[W̃ = 0])

H(Z, W̃ ) = −Pr[Z = 1, W̃ = 1] log(Pr[Z = 1, W̃ = 1])− Pr[Z = 1, W̃ = 0] log(Pr[Z = 1, W̃ = 0])

− Pr[Z = 0, W̃ = 1] log(Pr[Z = 0, W̃ = 1])− Pr[Z = 0, W̃ = 0] log(Pr[Z = 0, W̃ = 0])
(71)

With simple algebraic simplification, we have:

H(Z) + H(W̃ )− H(Z, W̃ )

= Pr[Z = 1, W̃ = 1] log(Pr[Z = 1, W̃ = 1]) + Pr[Z = 1, W̃ = 0] log(Pr[Z = 1, W̃ = 0])

+ Pr[Z = 0, W̃ = 1] log(Pr[Z = 0, W̃ = 1]) + Pr[Z = 0, W̃ = 0] log(Pr[Z = 0, W̃ = 0])

− Pr[Z = 1] log(Pr[Z = 1])− Pr[Z = 0] log(Pr[Z = 0])− Pr[W̃ = 1] log(W̃ = 1)

− Pr[W̃ = 0] log(W̃ = 0) (72)

To prove that MI(Z ∥ W̃ ) = H(Z) + H(W̃ )− H(Z, W̃ ) = 0, we first expand the inner probability
with the same technique use in proving Theorem 1, and then perform the following transformation
for EBer[I[Z]] and EBer[I[W̃ ]]:

EBer[I[Z]] = EBer[I[Z]] ·
(
EBer[I[W̃ ]] + (1− EBer[I[W̃ ]])

)
(73)

EBer[I[W̃ ]] = EBer[I[W̃ ]] ·
(
EBer[I[Z]] + (1− EBer[I[Z]])

)
(74)
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Note that this simple transformation bridges all terms. Take the calculation of Pr[Z = 1, W̃ =

1] log(Pr[Z = 1, W̃ = 1])−Pr[Z = 1] log(Pr[Z = 1])−Pr[W̃ = 1] log(W̃ = 1) for an example,
we expand the inner probability with the same technique use in proving Theorem 1:

Pr[Z = 1, W̃ = 1] log(Pr[Z = 1, W̃ = 1])− Pr[Z = 1] log(Pr[Z = 1])− Pr[W̃ = 1] log(W̃ = 1)
(75)

= EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]] log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]])

− EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]] log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]])

− EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]] log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]]) (76)

After using the previously mentioned transformation, we have the right-hand-side above equals to:

EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]] log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]])

− EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
∗

log
(
EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]] · EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]]

)
− EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · (1− EBer[I[W̃ ]])

]
log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]])︸ ︷︷ ︸

used for symmetric construction for canceling other term

− EP (Y1,Y2)EP (X|Y1,Y2)

[
(1− EBer[I[Z]]) · EBer[I[W ]]

]
log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]])︸ ︷︷ ︸

used for symmetric construction for canceling other term

(77)

With simple verification, we can find that the last two terms can be used to cancel other terms that
come from H(Z, W̃ ). This means we only have to prove that the first two terms in the above equation
cancel out. In other words, all we have to prove is:

EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]] log(EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]])

− EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
∗

log
(
EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]] · EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]]

)
= EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
∗

log

(
EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]] · EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]]

)
= 0 (78)

Note that we change all EP (Y1,Y2)EP (X|Y1,Y2)[EBer×Ber[I[Z · W̃ ]]] into

EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] ·EBer[I[W̃ ]]

]
due to independency similar as before. We can finally

use the property that for any y1, y2, Ex∼P (X|Y1=y1,Y2=y2)[σ(∆rθ(x, y1, y2) −∆r∗2(y1, y2))] =
1
2 ,

and remember that EBer[I[W̃ ]] is independent of specific x, then we can perform the following
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simplification:

EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
∗

log

(
EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]] · EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[W̃ ]]]

)
= EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
∗

log

(
EP (Y1,Y2)

[(
EP (X|Y1,Y2)EBer[I[Z]]

)
· EBer[I[W̃ ]]

]
EP (Y1,Y2)

(
EP (X|Y1,Y2)[EBer[I[Z]]]

)
· EP (Y1,Y2)[EBer[I[W̃ ]]]

)

= EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
log

(
EP (Y1,Y2)

[(
1
2

)
· EBer[I[W̃ ]]

]
EP (Y1,Y2)

(
1
2

)
· EP (Y1,Y2)[EBer[I[W̃ ]]]

)

= EP (Y1,Y2)EP (X|Y1,Y2)

[
EBer[I[Z]] · EBer[I[W̃ ]]

]
log(

1
2
1
2

) = 0 (79)

After verifying the feasibility of the solution, we verify that such r∗1 and r∗2 is optimal for maximizing
H(Z). By definition, we have:

H(Z) = −Pr[Z = 1] log(Pr[Z = 1])− Pr[Z = 0] log(Pr[Z = 0]) (80)
To calculate Pr[Z = 1], we can use the same expansion technique before. We have:
Pr[Z = 1] = EP (Y1,Y2)EP (X|Y1,Y2)[EBer[I[Z]]]

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)[EBer[I[Z]]]

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[
∑
x

P (X = x|Y1 = y1, Y2 = y2)[σ(∆r∗1(x, y1, y2))]]

=
∑
y1,y2

P (Y1 = y1, Y2 = y2)[Ex∼P (X|Y1=y1,Y2=y2)[σ(∆r∗1(x, y1, y2))] =
1

2
(81)

It’s easy to verify that such r∗1 and r∗2 reach the maximum value of H(Z), which is the optimal
solution we want.

E More about experiments

E.1 Full results in Table 1 and Table 2

Due to space limits, we only reported mean scores from 3 random seeds in the main context. Full
results (mean and std) in Table 1 and Table 2 are listed below, showing consistent performance among
different seeds.

Model Chat Chat Hard Safety Reason Avg
vanilla 78.0±2.1 29.8±0.7 36.4±0.9 58.2±1.1 50.6±1.0

ours 86.8±1.8 31.1±0.8 45.1±0.8 60.3±1.2 55.8±1.1
Table 3: Full results of experiments in Table 1 (a). We conduct the same experiments with 3 different random
seeds and report the mean and std values of the results.

Model Chat Chat Hard Safety Reason Avg
vanilla 80.7±2.1 28.5±0.8 40.2±1.0 36.5±1.5 46.4±1.3
original 84.9±1.7 31.3±0.6 42.8±1.1 49.0±1.7 52.0±0.9

ours 84.3±1.8 30.9±0.5 43.2±0.9 46.7±1.0 51.6±0.8
Table 4: Full results of experiments in Table 1 (b). We conduct the same experiments with 3 different random
seeds and report the mean and std values of the results.
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Method Chat Chat Hard Safety Reasoning Average
vanilla-8B 0.93±0.01 0.50±0.02 0.67±0.02 0.78±0.03 0.72±0.02
RRM-8B 0.95±0.01 0.56±0.01 0.75±0.02 0.82±0.02 0.77±0.01
Ours-8B 0.96±0.02 0.59±0.01 0.81±0.01 0.89±0.02 0.82±0.01

vanilla-7B 0.90±0.02 0.49±0.03 0.60±0.01 0.69±0.05 0.66±0.03
RRM-7B 0.94±0.01 0.52±0.01 0.65±0.01 0.70±0.03 0.70±0.01
Ours-7B 0.94±0.01 0.56±0.02 0.69±0.02 0.81±0.04 0.75±0.02

Table 5: Full results of experiments in Table 2 (a). We conduct the same experiments with 3 different random
seeds and report the mean and std values of the results.

Method vanilla RRM Ours
DPO 30.5±1.6 / 38.8±1.3 39.5±0.6 / 40.9±0.8 40.6±1.2 / 42.3±0.9

BoN(N=4) 33.2±2.1 / 42.5±1.7 35.3±1.4 / 38.4±1.5 38.5±1.0 / 45.0±1.1
BoN(N=32) 35.8±1.8 / 45.1±2.0 41.1±1.9 / 44.9±1.2 44.7±1.7 / 48.3±0.9

Table 6: Full AlpacaEval-2 (LCWR / WR) results. We conduct the same experiments with 3 different random
seeds and report the mean and std values of the results.

Method vanilla RRM Ours
DPO 7.83±0.12 / 6.51±0.30 8.35±0.15 / 7.46±0.24 8.44±0.10 / 8.03±0.26

Table 7: Full MT-Bench (T1 / T2) results. We conduct the same experiments with 3 different random seeds and
report the mean and std values of the results.

E.2 Reward-Bench results based on SHP dataset

Method Chat Chat Hard Safety Reasoning Average
vanilla-8B 0.91±0.02 0.39±0.01 0.46±0.01 0.75±0.02 0.63±0.01
RRM-8B 0.93±0.02 0.45±0.01 0.54±0.03 0.77±0.01 0.67±0.02
Ours-8B 0.95±0.01 0.46±0.01 0.61±0.01 0.88±0.02 0.72±0.01

vanilla-7B 0.84±0.02 0.33±0.03 0.45±0.05 0.59±0.03 0.55±0.04
RRM-7B 0.89±0.02 0.37±0.01 0.48±0.01 0.58±0.04 0.58±0.02
Ours-7B 0.90±0.01 0.39±0.01 0.52±0.01 0.74±0.03 0.64±0.02

Table 8: Results on Reward-Bench: These experiments are based on the same two reward backbones, but with
the SHP dataset. The improvement brought by our method is also significant on the SHP dataset. However,
since the SHP dataset contains many fewer data samples and may inherently have more spurious preferences,
the accuracy generally decreases.

E.3 Justification and analysis of binary clustering and EMA threshold used in data
prioritization

An adaptive threshold is required since reward learning is dynamic—Figure 4 show that even small
models (1B) experience significant ∆r2 scale changes during training.

During optimization, the reward model is updated in batches, with ∆r2 calculated from limited
samples each step. Determining whether a sample’s ∆r2 is "relatively small" in a batch becomes a
1D binary-clustering problem(∆r2 as feature). Due to high variance in ∆r2 values among different
samples (as shown in Figure 4), relying solely on current batch data is unstable and cannot truly
reflect the properties of ∆r2. Our dynamic threshold, computed via exponential moving average,
incorporates recent training steps, dynamically capturing ∆r2 properties while reducing threshold
variance.

As for the robustness, we conduct the same experiments on Reward-Bench in Section 4.2 with
different EMA weights (α in Alg. 2) and clustering methods (Otsu, K-means). Results show
robustness to thresholding methods. Limited by time and budget, we only use LLaMA-3-8B-Instruct
and SHP dataset. We believe the robustness partially stems from the fact that samples with larger ∆r2
in the current batch will not be directly discarded, preserving the chance to be used in the future step.
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Method α Chat Chat Hard Safety Reasoning Average
Otsu 0.9 0.95 0.48 0.59 0.87 0.72
Otsu 0.8 0.92 0.49 0.57 0.84 0.70

K-means 0.9 0.95 0.46 0.61 0.88 0.72
K-means 0.8 0.93 0.48 0.60 0.87 0.71

Table 9: Performance under different methods and α values.

E.4 experimental details

Our implementation is based on the OpenRLHF [16] framework, which uses Apache-2.0 license.
Experiments are run on Nvidia A100(40G) GPUs. For reward training, we use 8*A100(40G) GPUs
so that the training can be finished in 12 hours. For DPO training and response generation, we
also use 8*A100(40G) GPUs, and the time consumption is similar to the reward training. All the
reward models and the LLMs are fully fine-tuned. We use Deepspeed [2] as the framework of
parallelization. For the implementation of RRM, we reference its official code in RLHFlow3. We use
an AdamW optimizer with a learning rating of 5e-7 and 9e-6 for the DPO policy and the reward model,
respectively. For other general hyperparameters, we follow the default parameters in OpenRLHF.

Our exclusive hyperparameters include clustering methods and EMA weights for ∆r2 thresholding.
In practice, we tried Otsu’s method and K-means for clustering method and 0.8, 0.9 for EMA weight.
As is shown in Appendix E.3, our method performs consistently, so we select the best-performing
hyperparameters.

We continue to explain the data construction process for the toy cases. For the length-biased dataset,
we use all preference pairs (x, yw, yl) where the chosen response is longer, i.e., |yw| > |yl|, from
the original dataset; based on the number of chosen-longer samples, we select other samples with 1

4
number of them, whose chosen response is shorter. The combined subsets create a clearly length-
biased dataset. For the adversarial prompt dataset, we use the following diagram to illustrate the data
processing:

We note that RLHFLow uses Apache-2.0 license. SHP dataset didn’t claim the license it uses. LLaMA
models use Meta Llama 3 Community License Agreement. Mistral models use Apache-2.0 license.

E.5 Explanations of the superiority compared with baseline methods

The advantage of our method compared with vanilla training is obvious. Since vanilla training will
use all data samples, including those samples with strong prompt-free preference. Thus, the resulting
reward model easily overfits to some prompt-free preference existing in the dataset. Such prompt-free
preference harms the reward model’s generalization capability and leads to a low-quality alignment.

Compared with RRM, although both RRM and our method mitigate spurious preferences by altering
the data distribution, RRM introduces hand-crafted but mismatched prompt-response pairs into the
dataset and updates the reward model on them, which in turn affects the meaningful preferences. In
contrast, our method leverages them solely to characterize the reward model during training and
only trains on the original preference data, where each prompt-response pair is labeled by human
preference. This contributes to the superior performance of our method compared to RRM.

3https://github.com/RLHFlow
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F Boarder Impacts

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work. For positive ones, our method could result in a more
generalizable reward model and thus advance other RLHF methods. This can make the LLMs more
aligned with human preferences. For negative ones, one can achieve jailbreaking in LLMs through
malicious reward models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims can be reflected by Section 3 and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Seed Appendix D.3

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are given in Appendix E.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings are given in Section 4 and Appendix E.4. Details are
given in Appendix E.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use sufficient random seeds and provide standard deviation of the scores in
Appendix E.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of computation resources are given in Appendix E.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper doesn’t involve human participants, and the datasets in Section 4
are common open-sourced datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Potential positive impacts and negative impacts are discussed in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets we use are properly credited, and the corresponding license are
given in Appendix E.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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