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Abstract

Modern Natural Language Processing (NLP)001
models are known to be sensitive to input per-002
turbations and their performance can decrease003
when applied to real-world, noisy data. How-004
ever, it is still unclear why models are less ro-005
bust to some perturbations than others. In this006
work, we test the hypothesis that the extent to007
which a model is affected by an unseen tex-008
tual perturbation (robustness) can be explained009
by the learnability of the perturbation (defined010
as how well the model learns to identify the011
perturbation with a small amount of evidence).012
We further give a causal justification for the013
learnability metric. We conduct extensive ex-014
periments with four prominent NLP models015
— TextRNN, BERT, RoBERTa and XLNet —016
over eight types of textual perturbations on017
three datasets. We show that a model which018
is better at identifying a perturbation (higher019
learnability) becomes worse at ignoring such020
a perturbation at test time (lower robustness),021
providing empirical support for our hypothesis.022

1 Introduction023

Despite the success of deep neural models on many024

Natural Language Processing (NLP) tasks (Liu025

et al., 2016; Devlin et al., 2019; Liu et al., 2019b),026

recent work has discovered that these models are027

not robust to noisy input from the real world and028

thus their performance will decrease (Prabhakaran029

et al., 2019; Niu et al., 2020; Ribeiro et al., 2020;030

Moradi and Samwald, 2021). A reliable NLP sys-031

tem should not be easily fooled by slight noise032

in the text. Although a wide range of evaluation033

approaches for robust NLP models have been pro-034

posed (Ribeiro et al., 2020; Morris et al., 2020;035

Goel et al., 2021; Wang et al., 2021), few attempts036

have been made to understand these benchmark037

results. Given the difference of robustness be-038

tween models and perturbations, it is a natural039

question why models are more sensitive to some040

perturbations than others. It is crucial to avoid041
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Figure 1: Robustness vs. post data augmentation ∆ vs.
average learnability on IMDB dataset. Each point in the
plots represents a model-perturbation pair. We define
“robustness” as the performance drop on perturbed test
set, “post aug ∆” as the performance boost on perturbed
test set after data augmentation along such a perturba-
tion, and “average learnability” as how well the model
learns to identify the perturbation with a small amount
of evidence.

over-sensitivity to input perturbations, and under- 042

standing why it happens is useful for revealing 043

the weaknesses of current models and designing 044

more robust training methods. To the best of our 045

knowledge, a quantitative measure to interpret the 046

robustness of NLP models to textual perturbations 047

has yet to be proposed. To improve the robust- 048

ness under perturbation, it is common practice to 049

leverage data augmentation (Li and Specia, 2019; 050

Min et al., 2020; Tan and Joty, 2021). Similarly, 051

how much data augmentation through the pertur- 052

bation improves model robustness varies between 053

models and perturbations. In this work, we aim to 054

investigate two Research Questions (RQ): 055

• RQ1: Why NLP models are less robust to 056

some perturbations than others? 057

• RQ2: Why data augmentation works better 058

at improving the model robustness to some 059

perturbations than others? 060
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We test a hypothesis for RQ1 that the extent to061

which a model is affected by an unseen textual062

perturbation (robustness) can be explained by the063

learnability of the perturbation (defined as how064

well the model learns to identify the perturbation065

with a small amount of evidence). We also val-066

idate another hypothesis for RQ2 that the learn-067

ability metric is predictive of the improvement on068

robust performance brought by data augmentation069

along a perturbation. Our proposed learnability070

is inspired by the concepts of Randomized Con-071

trolled Trial (RCT) and Average Treatment Effect072

(ATE) from Causal Inference (Rubin, 1974; Hol-073

land, 1986). Estimation of perturbation learnability074

for a model consists of three steps: ① randomly075

labelling a dataset, ② perturbing examples of a par-076

ticular pseudo class with probabilities, and ③ using077

ATE to measure the ease with which the model078

learns the perturbation. The core intuition for our079

method is to frame an RCT as a perturbation identi-080

fication task and formalize the notion of learnability081

as a causal estimand based on ATE. We conduct082

extensive experiments on four neural NLP mod-083

els with eight different perturbations across three084

datasets and find strong evidence for our two hy-085

potheses. Combining these two findings, we further086

show that data augmentation is only more effective087

at improving robustness against perturbations that088

a model is more sensitive to, contributing to the089

interpretation of robustness and data augmentation.090

Learnability provides a clean setup for analysis091

of the model behaviour under perturbation, which092

contributes better model interpretation as well.093

Contribution. This work provides an empirical094

explanation for why NLP models are less robust095

to some perturbations than others. The key to096

this question is perturbation learnability, which is097

grounded in the causality framework. We show a098

statistically significant inverse correlation between099

learnability and robustness.100

2 Setup and Terminology101

As a pilot study, we consider the task of binary102

text classification. The training set is denoted as103

Dtrain = {(x1, l1), ..., (xn, ln)}, where xi is the104

i-th example and li ∈ {0,1} is the corresponding105

label. We fit a model f ∶ (x; θ) ↦ {0,1} with106

parameters θ on the training data. A textual per-107

turbation is a transformation g ∶ (x;β) → x∗ that108

injects a specific type of noise into an example x109

with parameters β and the resulting perturbed ex-110

ample is x∗. We design several experiment settings 111

(Table 1) to answer our research questions. Exper- 112

iment 0 in Table 1 is the standard learning setup, 113

where we train and evaluate a model on the original 114

dataset. Below we detail other experiment settings. 115

2.1 Definitions 116

Robustness. We apply the perturbations to test 117

examples and measure the robustness of model 118

to said perturbations as the decrease in accuracy. 119

In Table 1, Experiment 1 is related to robustness 120

measurement, where we train a model on unper- 121

turbed dataset and test it on perturbed examples. 122

We denote the test accuracy of a model f(⋅) on 123

examples perturbed by g(⋅) in Experiment 1 as 124A1(f, g,D∗test). Similarly, the test accuracy in Ex- 125

periment 0 is A0(f,Dtest). Consequently, the ro- 126

bustness is calculated as the difference of test accu- 127

racies: 128

robustness(f, g,D) = A1(f, g,D∗test)−A0(f,Dtest).
(1) 129

Models usually suffer a performance drop when en- 130

countering perturbations, therefore the robustness 131

is usually negative, where lower values indicate 132

decreased robustness. 133

Improvement by Data Augmentation (Post Aug- 134

mentation ∆). To improve robust accuracy (Tu 135

et al., 2020) (i.e., accuracy on the perturbed test 136

set), it is a common practice to leverage data aug- 137

mentation (Li and Specia, 2019; Min et al., 2020; 138

Tan and Joty, 2021). We simulate the data aug- 139

mentation process by appending perturbed data to 140

the training set (Experiment 2 of Table 1). We cal- 141

culate the improvement on performance after data 142

augmentation as the difference of test accuracies: 143

∆post_aug(f, g,D) = A2(f, g,D∗test)−A1(f, g,D∗test).
(2) 144

where A2(f, g,D∗test) denotes the test accuracy of 145

Experiment 2. ∆post_aug(f, g,D) is the higher the 146

better. 147

Learnability. We want to compare perturbations 148

in terms of how well the model learns to identify 149

them with a small amount of evidence. We cast 150

learnability estimation as a perturbation classifi- 151

cation task, where a model is trained to identify 152

the perturbation in an example. We define that 153

the learnability estimation consists of three steps, 154

namely ① assigning random labels, ② perturb- 155

ing with probabilities, and ③ estimating model 156
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Exp No. Measurement Label Perturbation Training Examples Test Examples

0 Standard original l ∈ ∅ (xi,0), (xj ,1) (xi,0), (xj ,1)
1 Robustness original l ∈ {0,1} (xi,0), (xj ,1) (x∗i ,0), (x∗j ,1)
2 Data Augmentation original l ∈ {0,1} (xi,0), (xj ,1)(x∗i ,0), (x∗j ,1) (x∗i ,0), (x∗j ,1)
3

Learnability
random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (x∗i ,1′)

4 random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (xi,1′)
Table 1: Example experiment settings for measuring learnability, robustness and improvement by data augmentation.
We perturb an example if its label falls in the set of label(s) in “Perturbation” column. ∅ means no perturbation at
all. Training/test examples are the expected input data, assuming we have only one negative (xi,0) and positive(xj ,1) example in our original training/test set. l′ is a random label and x∗ is a perturbed example.

performance. Below we introduce the procedure157

and intuition for each step. This estimation frame-158

work is further grounded in concepts from the159

causality literature in Section 3, which justifies160

our motivations. We summarize our estimation161

approach formally in Algorithm 1 (Appendix A).162

1. Assigning Random Labels. We randomly163

assign pseudo labels to each training example164

regardless of its original label. Each data point165

has equal probability of being assigned to pos-166

itive (l′ = 1) or negative (l′ = 0) pseudo la-167

bel. This results in a randomly labeled dataset168

D′train = {(x1; l′1), ..., (xn, l′n)}, where L′ ∼169

Bernoulli(1,0.5). In this way, we ensure170

that there is no difference between the two171

pseudo groups since the data are randomly172

split.173

2. Perturbing with Probabilities. We apply174

the perturbation g(⋅) to each training example175

in one of the pseudo groups (e.g., l′ = 1 in176

Algorithm 1)1. In this way, we create a corre-177

lation between the existence of perturbation178

and label (i.e., the perturbation occurrence is179

predictive of the label). We control the per-180

turbation probability p ∈ [0,1], i.e., an exam-181

ple has a specific probability p of being per-182

turbed. This results in a perturbed training set183

D′∗train = {(x∗1 , l′1), ..., (x∗n, l′n)}, where the184

1Because the training data is randomly split into two
pseudo groups, applying perturbations to any one of the groups
should yield same result. We assume that we always perturb
into the first group (l′ = 1) hereafter.

perturbed example x∗i is: 185

Z ∼ U(0,1),∀i ∈ {1,2, ..., n}
x∗i = ⎧⎪⎪⎨⎪⎪⎩

g(xi) l′i = 1 ∧ z < p,
xi otherwise.

(3) 186

Here Z is a random variable drawn from a 187

uniform distribution U(0,1). Due to random- 188

ization in the formal step, now the only dif- 189

ference between the two pseudo groups is the 190

occurrence of perturbation. 191

3. Estimating Model Performance. We train a 192

model on the randomly labeled dataset with 193

perturbed examples. Since the only difference 194

between the two pseudo groups is the exis- 195

tence of the perturbation, the model is trained 196

to identify the perturbation. The original test 197

examples Dtest are also assigned random la- 198

bels and become D′test. We perturb all of the 199

test examples in one pseudo group (e.g., l′ = 1, 200

as in step 1) to produce a perturbed test set 201

D′∗test. Finally, the perturbation learnability is 202

calculated as the difference of accuracies on 203

D′∗test and D′test, which indicates how much 204

the model learns from the perturbation’s co- 205

occurrence with pseudo label: 206

learnability(f, g, p,D) = A4(f, g, p,D′∗test)−A3(f, g, p,D′test).
(4)

207

A4(f, g, p,D′∗test) and A3(f, g, p,D′test) are 208

accuracies measured by Experiment 4 and 3 209

of Table 1, respectively. 210
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We observe that the learnability depends on211

perturbation probability p. For each model–212

perturbation pair, we obtain multiple learn-213

ability estimates by varying the perturbation214

probability (Figure 4). However, we expect215

that learnability of the perturbation (as a con-216

cept) should be independent of perturbation217

probability. To this end, we use the logAUC218

(area under the curve in log scale) of the219

p − learnability curve (Figure 4), termed as220

“average learnability”, which summarizes the221

overall learnability across different perturba-222

tion probabilities p1, ..., pt:223

avg_learnability(f, g,D) ∶= logAUC({(pi,
learnability(f, g, pi,D)) ∣ i ∈ {1,2, ..., t}})

(5)
224

We use logAUC rather than AUC because225

we empirically find that the learnability varies226

substantially between perturbations when p is227

small, and a log scale can better capture this228

nuance. We also introduce learnability at a229

specific perturbation probability (Learnabil-230

ity @ p) as an alternate summary metric and231

provide a comparison of this metric against232

logAUC in Appendix E.233

2.2 Hypothesis234

With the above-defined terminologies, we propose235

hypotheses for RQ1 and RQ2 in Section 1, respec-236

tively.237

Hypothesis 1 (H1): A model for which a pertur-238

bation is more learnable is less robust against the239

same perturbation at the test time.240

This is not obvious because the model encounters241

this perturbation during training in learnability es-242

timation while they do not in robustness measure-243

ment.244

Hypothesis 2 (H2): A model for which a pertur-245

bation is more learnable experiences bigger robust-246

ness gains with data augmentation along such a247

perturbation.248

We validate both Hypotheses 1 and 2 with exper-249

iments on several perturbations and models de-250

scribed in Section 4.1 and 4.2.251

3 A Causal View on Perturbation252

Learnability253

In Section 2.1, we introduce the term “learnability”254

in an intuitive way. Now we map it to a formal,255
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Figure 3: Learnability of eight perturbations for four NLP models on three datasets, as a function of perturbation
probability.

the language of causality, this is “correlation is not288

causation". Causality provides insight on how to289

fully decouple the effect of perturbation and other290

latent features. We introduce the causal motiva-291

tions for step 1 and 3 of learnability estimation in292

the following Section 3.1 and 3.2 respectively.293

3.1 A Causal Explanation for Random Label294

Assignment295

Natural noise (simulated by perturbations in this296

work) usually co-occurs with latent features in an297

example. If we did not assign random labels and298

simply perturbed one of the original groups, there299

would be confounding latent features that would300

prevent us from estimating the causal effect of the301

perturbation. Figure 4a illustrates this scenario.302

Both perturbation P and latent feature T may affect303

the outcome Y ,3 while the latent feature is predic-304

tive of label L. Since we make perturbation P on305

examples with the same label, P is decided by L.306

It therefore follows that T is a confounder of the ef-307

fect of P on Y , resulting in non-causal association308

flowing along the path P ← L ← T → Y . How-309

ever, if we do randomize the labels, P no longer310

has any causal parents (i.e., incoming edges) (Fig-311

ure 4b). This is because perturbation is purely ran-312

dom. Without the path represented by P ← L, all313

of the association that flows from P to Y is causal.314

As a result, we can directly calculate the causal315

effect from the observed outcomes (Section 3.2).316

Our randomization experiments allow us to dis-317

3Y is later defined in Section 3.2

P Y

TL

causal association

confounding association

(a) Before randomization.

P Y

TL

causal association
(b) After randomization.

Figure 4: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.
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the language of causality, this is “correlation is not288

causation". Causality provides insight on how to289

fully decouple the effect of perturbation and other290

latent features. We introduce the causal motiva-291

tions for step 1 and 3 of learnability estimation in292

the following Section 3.1 and 3.2 respectively.293

3.1 A Causal Explanation for Random Label294

Assignment295

Natural noise (simulated by perturbations in this296

work) usually co-occurs with latent features in an297

example. If we did not assign random labels and298

simply perturbed one of the original groups, there299

would be confounding latent features that would300

prevent us from estimating the causal effect of the301

perturbation. Figure 4a illustrates this scenario.302

Both perturbation P and latent feature T may affect303

the outcome Y ,3 while the latent feature is predic-304

tive of label L. Since we make perturbation P on305

examples with the same label, P is decided by L.306

It therefore follows that T is a confounder of the ef-307

fect of P on Y , resulting in non-causal association308

flowing along the path P ← L ← T → Y . How-309

ever, if we do randomize the labels, P no longer310

has any causal parents (i.e., incoming edges) (Fig-311

ure 4b). This is because perturbation is purely ran-312

dom. Without the path represented by P ← L, all313

of the association that flows from P to Y is causal.314

As a result, we can directly calculate the causal315

effect from the observed outcomes (Section 3.2).316

Our randomization experiments allow us to dis-317

3Y is later defined in Section 3.2

P Y

TL

causal association

confounding association

(a) Before randomization.

P Y

TL

causal association
(b) After randomization.

Figure 4: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.
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(b) After randomization.

Figure 2: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.

quantitative measure in standard statistical frame- 256

works. Learnability is actually motivated by con- 257

cepts from the causality literature. We provide a 258

brief introduction to basic concepts of causal in- 259

ference in Appendix C. In fact, learnability is the 260

causal effect of perturbation on models, which is 261

often difficult to measure due to the confounding 262

latent features. In the language of causality, this is 263

“correlation is not causation”. Causality provides 264

insight on how to fully decouple the effect of per- 265

turbation and other latent features. We introduce 266

the causal motivations for step 1 and 3 of learnabil- 267

ity estimation in the following Section 3.1 and 3.2, 268

respectively. 269

3.1 A Causal Explanation for Random Label 270

Assignment 271

Natural noise (simulated by perturbations in this 272

work) usually co-occurs with latent features in an 273

example. If we did not assign random labels and 274

simply perturbed one of the original groups, there 275

would be confounding latent features that would 276

prevent us from estimating the causal effect of the 277

perturbation. Figure 2a illustrates this scenario. 278

Both perturbation P and latent feature T may affect 279

the outcome Y ,2 while the latent feature is predic- 280

tive of label L. Since we make the perturbation P 281

on examples with the same label, P is decided by L. 282

It therefore follows that T is a confounder of the ef- 283

fect of P on Y , resulting in non-causal association 284

flowing along the path P ← L ← T → Y . How- 285

ever, if we do randomize the labels, P no longer 286

has any causal parents (i.e., incoming edges) (Fig- 287

ure 2b). This is because perturbation is purely 288

2Y is later defined in Section 3.2
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Perturbation Example Sentence
None His quiet and straightforward demeanor was rare then and would be today.
duplicate_punctuations His quiet and straightforward demeanor was rare then and would be today..
butter_fingers_perturbation His quiet and straightforward demeanor was rarw then and would be today.
shuffle_word quiet would and was be and straightforward then demeanor His today. rare
random_upper_transformation His quiEt and straightForwARd Demeanor was rare TheN and would be today.
insert_abbreviation His quiet and straightforward demeanor wuz rare then and would b today.
whitespace_perturbation His quiet and straightforward demean or wa s rare thenand would be today.
visual_attack_letters Hiṩ qủiẽt ầռd strḁighṭḟorwẳrȡ dԑmeanoŕ wȃṣ rȧre tḫen and wouᶅd ϸә tອḏầȳ.
leet_letters His qui3t and strai9htfor3ard d3m3an0r 3as rar3 t43n and 30uld 63 t0da4.

Figure 3: An example sentence with different types of perturbations.

random. Without the path represented by P ← L,289

all of the association that flows from P to Y is290

causal. As a result, we can directly calculate the291

causal effect from the observed outcomes.292

3.2 Learnability is a Causal Estimand293

We identify learnability as a causal estimand. In294

causality, the term “identification” refers to the pro-295

cess of moving from a causal estimand (Average296

Treatment Effect, ATE) to an equivalent statistical297

estimand. We show that the difference of accura-298

cies on D′∗test and D′test is actually a causal esti-299

mand. We define the outcome Y of a test example300

xi as the correctness of the predicted label:301

Yi(0) ∶= 1{f(xi)=l′i}
(6)302

where 1{⋅} is the indicator function. Similarly, the303

outcome Y of a perturbed test example x∗i is:304

Yi(1) ∶= 1{f(x∗i )=l′i} (7)305

According to the definition of Individual Treatment306

Effect (ITE, see Equation 9 of Appendix C), we307

have ITEi = 1{f(x∗i )=l′i}−1{f(xi)=l′i}
. We then take308

the average over all the perturbed test examples309

(half of the test set)3. This is our Average Treatment310

Effect (ATE):311

ATE = E[Y (1)] −E[Y (0)]312 = E[1{f(x∗)=l′}] −E[1{f(x)=l′}]313 = P (f(x∗) = l′) − P (f(x) = l′)314 = A(f, g, p,D′∗test) −A(f, g, p,D′test)315

(8)316

3The other half of the test set (l′ = 0) is left unperturbed,
following the same procedure in Section 2.1. Model predic-
tions will not change for unperturbed ones, resulting in ITEs
with zero values. Therefore, we do not take them into account
for ATE calculation.

where A(f, g, p,D) is the accuracy of model f(⋅) 317

trained with perturbation g(⋅) at perturbation prob- 318

ability p on test set D. Therefore, we show that 319

ATE is exactly the difference of accuracy on the 320

perturbed and unperturbed test sets with random 321

labels. And the difference is learnability according 322

to Equation 4. 323

We discuss another means of identification of 324

ATE in Appendix D, based on the prediction prob- 325

ability. We compare between the probability-based 326

and accuracy-based metrics there. We find that our 327

accuracy-based metric yields better resolution, so 328

we report this metric in the main text of this paper. 329

4 Experiments 330

4.1 Perturbation methods 331

Criteria for Perturbations. We select various 332

character-level and word-level perturbation meth- 333

ods in existing literature that simulate different 334

types of noise an NLP model may encounter in 335

real-world situations. These perturbations are non- 336

adversarial, label-consistent, and can be automat- 337

ically generated at scale. We note that our pertur- 338

bations do not require access to the model internal 339

structure. We also assume that the feature of per- 340

turbation does not exist in the original data. Not all 341

perturbations in the existing literature are suitable 342

for our task. For example, a perturbation that swaps 343

gender words (i.e., female→ male, male→ female) 344

is not suitable for our experiments since we cannot 345

distinguish the perturbed text from an unperturbed 346

one. In other words, the perturbation function g(⋅) 347

should be asymmetric, such that g(g(x)) ≠ x. 348

Figure 3 shows an example sentence with 349

different perturbations. Perturbation of “dupli- 350

cate_punctuation” doubles the punctuation by ap- 351

pending a duplicate after each punctuation, e.g., 352

5



Figure 4: Learnability of eight perturbations for four NLP models on three datasets, as a function of perturbation
probability.

“,” → “„”; “butter_fingers_perturbation” misspells353

some words with noise erupting from keyboard354

typos; “shuffle_word” randomly changes the or-355

der of word in the text (Moradi and Samwald,356

2021); “random_upper_transformation” randomly357

adds upper cased letters (Wei and Zou, 2019); “in-358

sert_abbreviation” implements a rule system that359

encodes word sequences associated with the re-360

placed abbreviations; “whitespace_perturbation”361

randomly removes or adds whitespaces to text; “vi-362

sual_attack_letters” replaces letters with visually363

similar, but different, letters (Eger et al., 2019);364

“leet_letters” replaces letters with leet, a common365

encoding used in gaming (Eger et al., 2019).366

4.2 Experimental Settings367

To test the learnability, robustness and improve-368

ment by data augmentation with different NLP369

models and perturbations, we experiment with370

four modern and representative neural NLP mod-371

els: TextRNN (Liu et al., 2016), BERT (Devlin372

et al., 2019), RoBERTa (Liu et al., 2019b) and373

XLNet (Yang et al., 2019). For TextRNN, we374

use the implementation by an open-source text375

classification toolkit NeuralClassifier (Liu et al.,376

2019a). For the other three pretrained models, we377

use the bert-base-cased, roberta-base,378

xlnet-base-cased versions from Hugging379

Face (Wolf et al., 2020), respectively. These two380

platforms support most of the common NLP mod-381

els, thus facilitating extension studies of more mod- 382

els in future. We use three common binary text 383

classification datasets — IMDB movie reviews 384

(IMDB) (Pang and Lee, 2005), Yelp polarity re- 385

views (YELP) (Zhang et al., 2015), Quora Question 386

Pair (QQP) (Iyer et al., 2017) — as our testbeds. 387

IMDB and YELP datasets present the task of sen- 388

timent analysis, where each sentence is labelled 389

as positive or negative sentiment. QQP is a para- 390

phrase detection task, where each pair of sentences 391

is marked as semantically equivalent or not. To 392

control the effect of dataset size and imbalanced 393

classes, all datasets are randomly subsampled to 394

the same size as IMDB (50k) with balanced classes. 395

The training steps for all experiments are the same 396

as well. We implement perturbations g(⋅) with two 397

self-designed ones and six selected ones from the 398

NL-Augmenter4 library. For perturbation proba- 399

bilities, we choose 0.001, 0.005, 0.01, 0.02, 0.05, 400

0.10, 0.50, 1.00. We run all experiments across 401

three random seeds and report the average results. 402

4.3 Perturbation Learnability Analysis 403

Figure 4 shows learnability as a function of per- 404

turbation probability. Learnability @ p generally 405

increases as we increase the perturbation proba- 406

bility, and when we perturb all the examples (i.e., 407

p = 1.0), every model can easily identify it well, 408

4https://github.com/GEM-benchmark/
NL-Augmenter
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Perturbation XLNet RoBERTa BERT TextRNN
Average

over models

whitespace_perturbation 1.638 1.436 1.492 0.878 1.361
shuffle_word 1.740 1.597 1.766 0.594 1.424
duplicate_punctuations 1.086 1.499 1.347 2.050 1.495
butter_fingers_perturbation 1.590 1.369 1.788 1.563 1.578
random_upper_transformation 1.583 1.520 1.721 2.039 1.716
insert_abbreviation 1.783 1.585 1.564 2.219 1.788
visual_attack_letters 1.824 1.921 1.898 2.094 1.934
leet_letters 1.816 2.163 1.817 2.463 2.065

Table 2: Average learnability (logAUC of corresponding curve in Figure 4) of each model–perturbation pair on
IMDB dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.

ρ IMDB YELP QQP

Avg. learnability
vs. robustness

-0.643* -0.821* -0.695*

Avg. learnability
vs. post aug ∆

0.756* 0.846* 0.750*

Table 3: Correlations of average learnability vs. ro-
bustness vs. post data augmentation ∆. ρ is Spearman
correlation. ∗ indicates high significance (p-value <
0.001).

resulting in the maximum learnability of 1.0. This409

shows that neural NLP models master these per-410

turbations eventually. At lower perturbation prob-411

abilities, some models still learn that perturbation412

alone predicts the label. In fact, the major differ-413

ence between different p − learnability curves is414

the area of lower perturbation probabilities and this415

provides motivation for using logAUC instead of416

AUC as the summarization of learnability at dif-417

ferent p (Section 2.1).418

Table 2 shows the average learnability over419

all perturbation probabilities of each model–420

perturbation pair on IMDB dataset in Figure 4.5421

It reveals the most learnable perturbation for each422

model. For example, the learnability of “vi-423

sual_attack_letters” and “leet_letters” are very high424

for all four models, likely due to their strong425

effects on the tokenization process. Perturba-426

tions like “white_space_perturbation” and “dupli-427

cate_punctuations” are less learnable for pretrained428

models, probably because they have little effect429

on the subword level tokenization, or they may430

5Please refer to Appendix F for benchmark results on
YELP (Table 5) and QQP (Table 6) datasets.

have encountered similar noise in the pretraining 431

corpora. We observe that “duplicate_punctuations” 432

already exists in the original text of YELP dataset 433

(e.g., “The burgers are awesome!!”), thus violat- 434

ing our assumptions for perturbations in Section 435

4.1. As a result, the curve for this perturbation sub- 436

stantially deviates from others in Figure 4. We do 437

not count this perturbation on YELP dataset in the 438

following analysis. The perturbation learnability 439

experiments provide a clean setup for NLP practi- 440

tioners to analyze the effect of textual perturbations 441

on models. 442

4.4 Empirical Findings 443

We observe a negative correlation between learn- 444

ability (Equation 4) and robustness (Equation 1) 445

across all three datasets in Table 2, validating Hy- 446

pothesis 1. Table 2 also quantifies the trend that 447

data augmentation with a perturbation the model is 448

less robust to has more improvement on robustness 449

(Hypothesis 2).6 Both the correlations between 450

1) learnability vs. robustness and 2) learnability 451

vs. improvement by data augmentation are strong 452

(Spearman ∣ρ∣ > 0.6) and highly significant (p-value 453< 0.001), which firmly supports our hypotheses. 454

Our findings provide insight about when the model 455

is less robust and when data augmentation works 456

better for improving robustness. 457

Figure 1 shows that the more learnable a pertur- 458

bation is for a model, the greater the likelihood that 459

its robustness can be improved through data aug- 460

mentation along this perturbation. We argue that 461

this is not simply because there is more room for 462

6For visualizations of correlations, please refer to Figure
5 for IMDB, Figure 6 for YELP and Figure 7 for QQP in
Appendix F.
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improvement by data augmentation. From a causal463

perspective, learnability acts as a common cause464

(confounder) for both robustness and improvement465

by data augmentation. This indicates a potential466

limitation of using data augmentation for improv-467

ing robustness to perturbations (Jha et al., 2020):468

for unlearnable perturbations, data augmentation469

may be of little help. Approaches that go beyond470

simple data augmentation are required to combat471

such perturbations.472

5 Discussion473

Potential Impacts. Our findings seem intuitive474

but are non-trivial. The NLP models were not475

trained on perturbed examples when measuring ro-476

bustness, but still they display a strong correlation477

with perturbation learnability. Understanding these478

findings are important for a more principled eval-479

uation of and control over NLP models (Lovering480

et al., 2020). Specifically, the learnability metric481

complements to the evaluation of newly designed482

perturbations by revealing model weaknesses in483

a clean setup. Reducing perturbation learnability484

is promising for improving robustness of models.485

Contrastive learning (Gao et al., 2021; Yan et al.,486

2021) that pulls the representations of the original487

and perturbed text together, makes it difficult for488

the model to identify the perturbation (reducing489

learnability) and thus may help improve robustness.490

Moreover, learnability may facilitate the develop-491

ment of model architectures with explicit induc-492

tive biases (Warstadt and Bowman, 2020; Lover-493

ing et al., 2020) to avoid sensitivity to noisy per-494

turbations. Grounding the learnability within the495

causality framework inspires future researchers to496

incorporate the causal perspective into model de-497

sign (Zhang et al., 2020), and make the model ro-498

bust to different types of perturbations.499

Limitations. We note that this work has not es-500

tablished that the relationship between learnability501

and robustness is causal. This could be explored502

with other approaches in causal inference for decon-503

founding besides simulation on randomized control504

trial, such as working with real data but stratify-505

ing it (Frangakis and Rubin, 2002), to bring the506

learnability experiment closer to more naturalistic507

settings. Although we restrict to balanced, binary508

classification for simplicity in this pilot study, our509

framework can also be extended to imbalanced,510

multi-class classification. We are aware that com-511

puting average learnability is expensive for large512

models and datasets, which is further discussed 513

in Appendix B. We provide a greener solution in 514

Appendix E. We could further verify our assump- 515

tions for perturbations with a user study (Moradi 516

and Samwald, 2021) which investigates how under- 517

standable the perturbed texts are to humans. 518

6 Related Work 519

Robustness of NLP Models to Perturbations. 520

The performance of NLP models can decrease 521

when encountering noisy data in the real world. 522

Recent works (Prabhakaran et al., 2019; Ribeiro 523

et al., 2020; Niu et al., 2020; Moradi and Samwald, 524

2021) present comprehensive evaluations of the 525

robustness of NLP models to different types of 526

perturbations, including typos, changed entities, 527

negation, etc. Their results reveal the phenomenon 528

that NLP models can handle some specific types 529

of perturbation more effectively than others. How- 530

ever, they do not go into a deeper analysis of the 531

reason behind the difference of robustness between 532

models and perturbations. 533

Interpretation of Data Augmentation. Al- 534

though data augmentation has been widely used 535

in CV (Sato et al., 2015; DeVries and Taylor, 2017; 536

Dwibedi et al., 2017) and NLP (Wang and Yang, 537

2015; Kobayashi, 2018; Wei and Zou, 2019), the 538

underlying mechanism of its effectiveness remains 539

under-researched. Recent studies aim to quan- 540

tify intuitions of how data augmentation improves 541

model generalization. Gontijo-Lopes et al. (2020) 542

introduce affinity and diversity, and find a correla- 543

tion between the two metrics and augmentation per- 544

formance in image classification. In NLP, Kashefi 545

and Hwa (2020) propose a KL-divergence–based 546

metric to predict augmentation performance. Our 547

proposed learnability metric implies when data aug- 548

mentation works better and thus acts as a comple- 549

ment to this line of research. 550

7 Conclusion 551

This work targets at an open question in NLP: why 552

models are less robust to some textual perturba- 553

tions than others? We find that learnability, which 554

causally quantifies how well a model learns to iden- 555

tify a perturbation, is predictive of the model robust- 556

ness to the perturbation. In future work, we will 557

investigate whether these findings can generalize 558

to other domains, including computer vision. 559
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A Algorithm for Perturbation776

Learnability Estimation777

Algorithm 1 Learnability Estimation
Input: training set Dtrain ={(x1, l1), ..., (xn, ln)}, test set Dtest ={(xn+1, ln+1), ..., (xn+m, ln+m)}, D =
Dtrain ∪ Dtest, model f ∶ (x; θ) ↦ {0,1},
perturbation g ∶ (x;β) → x∗, perturbation
probability p
Output: learnability(f, g, p,D)

1: // ① assigning random labels
2: Initialize an empty dataset D′

3: for i in {1,2, ..., n +m} do
4: l′i ← randint[0,1]
5: D′ ←D′ ∪ {(xi, l′i)}
6: end for
7: // ② perturbing with probabilities
8: Initialize an empty dataset D′∗

9: for i in {1,2, ..., n +m} do
10: z ← rand(0,1)
11: x∗i ← xi
12: if l′i = 1 ∧ z < p then
13: x∗i ← g(xi)
14: end if
15: D′∗ ←D′∗ ∪ {(x∗i , l′i)}
16: end for
17: // ③ estimating model performance
18: D′train,D

′

test ←D′[1 ∶ n],D′[n + 1 ∶ n +m]
19: D′∗train,D

′∗

test ←D′∗[1 ∶ n],D′∗[n+1 ∶ n+m]
20: fit the model f(⋅) on D′∗train
21: A(f, g, p,D′∗test)← f(⋅) accuracy on D′∗test
22: A(f, g, p,D′test)← f(⋅) accuracy on D′test
23: return A(f, g, p,D′∗test) −A(f, g, p,D′test)
B Ethics Statement778

Computing average learnability requires training779

a model for multiple times at different perturba-780

tion probabilities, which can be computationally781

intensive if the sizes of the datasets and models are782

large. This can be a non-trivial problem for NLP783

practitioners with limited computational resources.784

We hope that our benchmark results of typical per-785

turbations for NLP models work as a reference for786

potential users. Collaboratively sharing the results787

of such metrics on popular models and perturba-788

tions in public fora can also help reduce duplicate789

investigation and coordinate efforts across teams.790

To alleviate the computational efficiency issue of 791

average learnability estimation, using learnability 792

at selected perturbation probabilities may help at 793

the cost of reduced precision (Appendix E). We are 794

not alone in facing this issue: two similar metrics 795

for interpreting model inductive bias, extractability 796

and s-only error (Lovering et al., 2020) also re- 797

quire training the model repeatedly over the whole 798

dataset. Therefore, finding an efficient proxy for 799

average learnability is promising for more practical 800

use of learnability in model interpretation. 801

C Background on Causal Inference 802

Causal Inference. The aim of causal inference 803

is to investigate how a treatment T affects the out- 804

come Y . Confounder X refers to a variable that 805

influences both treatment T and outcome Y . For 806

example, sleeping with shoes on (T ) is strongly 807

associated with waking up with a headache (Y ), 808

but they both have a common cause: drinking the 809

night before (X) (Neal, 2020). In our work, we aim 810

to study how a perturbation (treatment) affects the 811

model’s prediction (outcome). However, the latent 812

features and other noise usually act as confounders. 813

Causality offers solutions for two questions: 1) 814

how to eliminate the spurious association and iso- 815

late the treatment’s causal effect; and 2) how vary- 816

ing T affects Y , given both variables are causally- 817

related (Liu et al., 2021). We leverage both of these 818

properties in our proposed method. Let us now in- 819

troduce Randomized Controlled Trial and Average 820

Treatment Effect as key concepts in answering the 821

above two questions, respectively. 822

• Randomized Controlled Trial (RCT). In 823

an RCT, each participant is randomly as- 824

signed to either the treatment group or the 825

non-treatment group. In this way, the only 826

difference between the two groups is the treat- 827

ment they receive. Randomized experiments 828

ideally guarantee that there is no confounding 829

factor, and thus any observed association is 830

actually causal. We operationalize RCT as a 831

perturbation classification task in Section 3.1. 832

• Average Treatment Effect (ATE). In Sec- 833

tion 3.2, we apply ATE (Holland, 1986) as a 834

measure of learnability. ATE is based on In- 835

dividual Treatment Effect (ITE, Equation 9), 836

which is the difference of the outcome with 837

and without treatment. 838

ITEi = Yi(1) − Yi(0) (9) 839
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Here, Yi(1) is the outcome Y of individual i840

that receives treatment (T = 1), while Yi(0)841

is the opposite. In the above example, waking842

up with a headache (Y = 1) with shoes on843

(T = 1) means Yi(1) = 1.844

We calculate the Average Treatment Effect845

(ATE) by taking an average over ITEs:846

ATE = E[Y (1)] −E[Y (0)] (10)847

ATE quantifies how the outcome Y is ex-848

pected to change if we modify the treatment849

T from 0 to 1. We provide specific definitions850

of ITE and ATE in Section 3.2.851

D Alternate Definition of Perturbation852

Learnability853

In Section 3.2, we propose an accuracy-based854

identification of ATE. Now we discuss another855

probability-based identification and compare be-856

tween them. We can also define the outcome Y of857

a test example xi as the predicted probability of858

(pseudo) true label given by the trained model f(⋅):859

860

Yi(0) ∶= Pf(L′ = l′i ∣X = xi) ∈ (0,1) (11)861

Similarly, the performance outcome Y of a per-862

turbed test data point x∗i is:863

Yi(1) ∶= Pf(L′ = l′i ∣X = x∗i ) ∈ (0,1) (12)864

For example, for a test example (xi, l′i) which re-865

ceives treatment (l′i = 1), the trained model f(⋅) pre-866

dicts its label as 1 with only a small probability 0.1867

before treatment (it has not been perturbed yet), and868

0.9 after treatment. So the Individual Treatment869

Effect (ITE, see Equation 9) of this example is cal-870

culated as ITEi = Yi(1) − Yi(0) = 0.9 − 0.1 = 0.8.871

We then take an average over all the perturbed test872

examples (half of the test set)7 as Average Treat-873

ment Effect (ATE, see Equation 10), which is ex-874

actly the learnability of a perturbation for a model.875

To clarify, the two operands in Equation 10 are876

defined as follows:877

E[Y (1)] ∶= P(f, g, p,D′∗test) (13)878

It means the average predicted probability of879

(pseudo) true label given by the trained model f(⋅)880

on the perturbed test set D′∗test.881

E[Y (0)] ∶= P(f, g, p,D′test) (14)882

7The other half of the test set (l′ = 0) is left unperturbed,
following the same procedure in Section 2.1. Therefore, we
do not take them into account for ATE calculation.

Similarly, this is the average predicted probability 883

on the randomly labeled test set D′test. 884

Notice that the accuracy-based definition of out- 885

come Y (Equation 6) can also be written in a simi- 886

lar form to the probability-based one (Equation 11): 887

888

Yi(0) ∶= 1{f(xi)=l′i}
= 1{Pf (L′=l

′

i∣X=xi)>0.5} ∈ {0,1}
(15) 889

because the correctness of the prediction is 890

equal to whether the predicted probability of true 891

(pseudo) label exceeds a certain threshold (i.e., 892

0.5). 893

The major difference is that, accuracy-based 894

ITE is a discrete variable falling in {−1,0,1}, 895

while probability-based ITE is a continuous one 896

ranging from -1 to 1. For example, if a model learns 897

to identify a perturbation and thus changes its pre- 898

diction from wrong (before perturbation) to correct 899

(after perturbation), accuracy-based ITE will be 900

1 − 0 = 1 while probability-based ITE will be less 901

than 1. That is to say, accuracy-based ATE tends 902

to vary more drastically than probability-based if 903

inconsistent predictions occur more often, and thus 904

can better capture the nuance of perturbation learn- 905

ability. Empirically, we find that accuracy-based 906

average learnability varies greatly (σ = 0.375, Ta- 907

ble 4) and thus can better distinguish between dif- 908

ferent model-perturbation pairs than probability- 909

based one (σ = 0.288, Table 4). As a result, we 910

choose accuracy-based ATE as the primary mea- 911

surement of learnability in this paper. 912

E Investigating Learnability at a Specific 913

Perturbation Probability 914

Inspired by Precision @ K in Information Retrieval 915

(IR), we propose a similar metric dubbed Learnabil- 916

ity @ p, which is the learnability of a perturbation 917

for a model at a specific perturbation probability 918

p. We are primarily interested in whether a se- 919

lected p can represent the learnability over different 920

perturbation probabilities and correlates well with 921

robustness and post data augmentation ∆. 922

We calculate the standard deviation (σ) of Learn- 923

ability @ p and average learnability (logAUC) 924

over all model-perturbation pairs to measure how 925

well it can distinguish between different models 926

and perturbations. Table 4 shows that average learn- 927

ability is more diversified than all Learnability @ 928

p and diversity (σ) peaks at p = 0.01 for accuracy- 929

based/probability-based measurement. Accuracy- 930

based Learnability @ p is generally more diversi- 931
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p
Accuracy-based Learnability @ p Probability-based Learnability @ p

σ Avg Learn. Robu. Post Aug ∆ σ Avg Learn. Robu. Post Aug ∆

Avg. 0.375 1.000* -0.643* 0.756* 0.288 1.000* -0.652* 0.727*

0.001 0.182 0.426* -0.265 0.259 0.114 0.367* -0.279 0.288
0.005 0.235 0.637* -0.383* 0.522* 0.192 0.925* -0.620* 0.702*
0.01 0.263 0.741* -0.530* 0.635* 0.192 0.893* -0.567* 0.586*
0.02 0.257 0.816* -0.636* 0.743* 0.192 0.886* -0.686* 0.690*
0.05 0.236 0.279 -0.158 0.136 0.121 0.576* -0.371* 0.350*
0.1 0.241 0.354* -0.162 0.192 0.115 0.543* -0.288 0.258
0.5 0.094 0.024 0.155 -0.179 0.037 -0.080 0.114 -0.258
1.0 0.011 -0.199 0.252 -0.332 0.019 -0.220 0.294 -0.402*

Table 4: Standard deviations (σ) of Learnability @ p and Spearman correlations between accuracy-based/probability-
based learnability @ p vs. average learnability/robustness/post data augmentation ∆ over all model-perturbation
pairs on IMDB dataset. ∗ indicates significance (p-value < 0.05).

fied across models and perturbations than its coun-932

terpart.933

To investigate the strength of the correlations,934

we also calculate Spearman ρ between accuracy-935

based/probability-based learnability @ p vs. aver-936

age learnability/robustness/post data augmentation937

∆ over all model-perturbation pairs. Table 4 shows938

that generally average learnability has stronger cor-939

relation than Learnability @ p. Correlations with940

both robustness and post data augmentation ∆ peak941

at p = 0.02 for accuracy-based/probability-based942

measurements, and the correlations with average943

learnability (0.816*/0.886*) are also strong at these944

perturbation probabilities.945

Overall, Learnability @ p with higher standard946

deviation correlates better with average learnabil-947

ity, robustness and post data augmentation ∆. Our948

analysis shows that if p is carefully selected by σ,949

Learnability @ p is also a promising metric, though950

not as accurate as average learnability. One advan-951

tage of Learnability @ p over average learnability952

is that it costs less time to obtain learnability at a953

single perturbation probability. We plan to explore954

other efficient proxies of average learnability in955

future.956

F Additional Experiment Results957
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Figure 5: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on IMDB dataset.
Each point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).
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Figure 6: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on YELP dataset.
Each point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).
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Figure 7: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on QQP dataset. Each
point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).
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Perturbation RoBERTa XLNet TextRNN BERT
Average

over models

shuffle_word 1.538 1.586 0.401 1.854 1.345
butter_fingers_perturbation 1.301 1.433 1.425 1.758 1.479
whitespace_perturbation 1.276 1.449 1.720 1.569 1.504
insert_abbreviation 1.437 1.370 2.241 1.572 1.655
random_upper_transformation 1.432 1.828 1.733 1.715 1.677
visual_attack_letters 2.060 2.006 2.030 1.808 1.976
leet_letters 2.083 1.947 2.359 1.824 2.053

Table 5: Average learnability (logAUC of corresponding curve in Figure 4) of each model–perturbation pair on
YELP dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.

Perturbation RoBERTa TextRNN XLNet BERT
Average

over models

whitespace_perturbation 0.732 0.399 0.562 0.711 0.601
duplicate_punctuations 0.722 0.823 0.640 0.872 0.764
butter_fingers_perturbation 0.555 0.878 0.775 1.022 0.808
insert_abbreviation 0.820 1.440 0.960 1.206 1.107
random_upper_transformation 1.062 0.664 1.392 1.483 1.150
shuffle_word 1.231 0.816 1.552 1.623 1.306
visual_attack_letters 1.429 1.810 1.744 1.608 1.648
leet_letters 1.720 1.676 1.840 1.718 1.738

Table 6: Average learnability (logAUC of corresponding curve in Figure 4) of each model–perturbation pair on
QQP dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.
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