
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DÉJÀQ: OPEN-ENDED EVOLUTION OF DIVERSE,
LEARNABLE AND VERIFIABLE PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in reasoning models have yielded impressive results in mathemat-
ics and coding. However, most approaches rely on static datasets, which encourage
memorisation and limit generalisation. We introduce DÉJÀQ, a framework that
departs from this paradigm by jointly evolving a diverse set of synthetic mathe-
matical problems alongside model training. This evolutionary process optimises
the dataset’s learnability, adapting to the model’s abilities throughout training. We
propose two LLM-driven mutation strategies in which the model itself mutates the
training data, either by altering contextual details or by directly modifying problem
structure. We find that the model can generate novel and meaningful problems,
and that these LLM-driven mutations improve training outcomes compared to both
standard RL and a mutator that selects examples from a static dataset based on
learnability. We analyse key aspects of DÉJÀQ, including the validity of generated
problems and computational overhead. Our results underscore the potential of
dynamically evolving training data to enhance mathematical reasoning and indicate
broader applicability, which we will support by open-sourcing our code.

LLM
Inference

Server

Dataset

Technical

1

2

3

Training loop

Sample questions

Rollout solution
attempts

Train with RL
algorithm

Events Economic

🤖Setting mutator
Rewrite into a sports setting

Symbolic mutator

Distractor mutator

Estimate difficulty using learnability

Insert more learnable questions into the dataset

Mutate

🤖
🤖

Alice has 5 apples and then recieves 3
more. How many does she have now?

England have 5 points, but each player on the
team scores 3 more. They are playing against

America. How many do they have now?

Add a harmless sentence

Introduce a multiplication

Split into settings

Evolution loop

Figure 1: Overview of DÉJÀQ. We maintain an archive of problem-answer pairs, organised by the
setting each question applies to. Training data for RLVR is sampled from this archive, which is
continuously updated through various mutators. The setting mutator changes the setting (e.g., from
Personal Life to Events), the distractor mutator introduces irrelevant information, and the symbolic
mutator alters the underlying mathematical structure. Each problem is scored by its learnability and
retained or replaced accordingly.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Post-training of large language models (LLMs) is a highly active area of research, with recent methods
focusing on designing training recipes that leverage real or synthetically generated datasets to enhance
instruction-following ability (Ouyang et al., 2022; Wang et al., 2023b), coding performance (Nijkamp
et al., 2023; Lozhkov et al., 2024), and mathematical reasoning (Shao et al., 2024; Hendrycks et al.,
2021). Two key limitations are the scarcity of high-quality data and the substantial compute required
for training. We approach both challenges through the following research question:

How can we dynamically generate diverse and learnable training data that
enables LLMs to bootstrap their own post-training?

One of the central motivations for this question is the need to obtain training data that remains well-
suited to the model’s current capabilities. A commonly observed issue is the prevalence of training
examples with (near-)zero variance, which provide little to no learning signal and introduce noise into
gradient updates (Foster & Foerster, 2025; Yu et al., 2025). This not only hinders learning but also
wastes valuable compute. Although such examples can be filtered manually, this only underscores the
broader issue of limited and ineffective training data. In this work, we introduce DÉJÀQ, a method
that evolves a dataset of challenging yet solvable problems, explicitly optimised to maximise the
model’s learning progress.

The design of DÉJÀQ builds on three complementary ideas that have proven effective in reinforcement
learning, including to some extent LLM post-training. From ACCEL (Parker-Holder et al., 2022),
we adopt the principle of evolving training data jointly with model optimisation, rather than relying
on a fixed dataset. From RAINBOW TEAMING (Samvelyan et al., 2024), we incorporate the use of
MAP-Elites to maintain a structured archive of diverse training problems, and apply LLM-guided
mutations to generate new high-quality examples in sparsely populated regions of the search space.
From learnability-based training (Foster & Foerster, 2025), we take learnability as a proxy metric
for the expected utility of a datapoint during training. DÉJÀQ unifies these components into a single
framework that evolves a dataset of verifiable problem-answer pairs through quality-diversity search
for LLM post-training. The model continuously evaluates newly generated problems and retains
those deemed sufficiently learnable, enabling open-ended bootstrapping without external supervision.

A core challenge in realising this framework is generating problems that are both verifiable, with
ground-truth answers available by construction, and skill-appropriate, meaning they are neither
trivial nor beyond the model’s current capabilities. To address this, we introduce two complementary
mutation strategies. The first is a curriculum-style approach that replaces problems with others
expected to yield greater learning progress. The second is an LLM-guided strategy, in which the
model rewrites existing problems either by modifying their contextual framing or by altering their
structure in a controlled way. Structural changes include the insertion of distractors, which are
semantically coherent sentences that do not affect the solution, as well as symbolic modifications to
the underlying operations in the solution.

We evaluate DÉJÀQ using QWEN2.5-7B-INSTRUCT (Yang et al., 2024) on both in- and out-of-
distribution mathematical problems. We find that the combination of curriculum learning with
LLM-guided mutations significantly outperforms standard RL fine-tuning and the curriculum-based
approach by itself. As LLM-guided mutations may introduce or reinforce incorrect information, we
analyse the ability of our scoring function to distinguish hard-but-solvable problems from flawed
ones. Furthermore, we empirically measure the rate at which our mutators introduce such errors
in the archive and analyse the resource requirements imposed by our data evolution pipeline. We
summarise our main contributions below and provide a visual overview of our method in Fig. 1:

1. DÉJÀQ - Synthetic Data Evolution: An evolutionary framework for constructing a dataset
of highly learnable, verifiable problem-answer pairs tailored to reasoning models.

2. Different Mutation Strategies: We propose LLM-guided mutators that increase diversity
and complexity while preserving verifiability.

3. Efficient Bootstrapping: The same model is used for both data generation and training,
enabling a fully bootstrapped setup that leverages shared infrastructure.

4. Empirical Validation: We present a detailed empirical study showing that DÉJÀQ generates
diverse and learnable problems for model training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Post-training of LLMs often involves a reinforcement learning (RL) phase, where a token-level
Markov decision process (MDP) is defined by treating each token as an action and transitions as the
concatenation of tokens to the existing context. Reinforcement Learning with Verifiable Rewards
(RLVR) optimises the LLM using reward signals that can be automatically verified (Lambert et al.,
2024). In mathematics, this may correspond to checking against ground-truth answers; in code
generation, to evaluating against a test suite. Formally, RLVR maximises the objective,

Ey∼πθ(x) [rRLVR(x, y)− βDKL(πθ(y | x) ∥ πref(y | x))] (1)

where rRLVR(x, y) ∈ {0, 1} denotes a verifiable binary reward, and the second term penalises
deviation from a reference policy, weighted by the regularisation parameter β. Recently, the Group
Relative Policy Optimisation (GRPO) algorithm has shown strong performance in mathematical
domains (Shao et al., 2024). Unlike its predecessor, PPO (Schulman et al., 2017), GRPO avoids
reliance on a learned value network by sampling multiple generations and estimating advantages
directly from them, offering both simplicity and improved stability.

2.2 MAP-ELITES

To co-evolve a dataset of challenging yet solvable questions for the LLM to train on, we adopt a
quality-diversity algorithm (Cully & Demiris, 2018), namely MAP-Elites (Mouret & Clune, 2015).
MAP-Elites maintains an archive of items x ∈ X , where each item is assigned a feature descriptor via
a mapping d : X → Rn, and scored by a fitness function f : X → R. In our setting, the feature space
is discretised into a finite grid by assuming that each dimension of d(x) is categorical. The archive is
initially populated with a set of seed items {x1, . . . , xk}, each inserted into its corresponding cell.
Thereafter, the algorithm proceeds iteratively: at each step, an item x ∈ X is sampled from the archive
and modified by a mutation operator q : X → X , yielding a new item x′ = q(x). The mutated item
x′ is then assigned to a cell via d(x′), and scored using f(x′). Let y denote the current occupant of
that cell. If the cell is empty or if f(x′) > f(y), then x′ replaces y in the archive. Through repeated
application of this procedure, MAP-Elites constructs an archive that is both diverse and high-quality.

3 RELATED WORK

Curricula for LLMs. Training large language models (LLMs) typically consists of two phases,
pre-training and post-training, both of which require substantial data and compute. To maximise
the utility of a fixed training budget, the design of effective learning curricula has emerged as a key
strategy. In pre-training, Jin et al. (2023) introduce a sequence-length-based curriculum to improve
efficiency, while Pouransari et al. (2024) apply a similar approach to address inefficiencies related
to how documents are concatenated and chunked. Lin et al. (2024) propose Selective Language
Modelling, which restricts loss computation to informative tokens. In post-training, recent state-
of-the-art models have adopted hand-crafted curricula to guide training (Yu et al., 2025). Beyond
manual design, adaptive curriculum learning has gained traction. Foster & Foerster (2025) propose
upsampling examples with high learnability, a proxy for how likely an input is to improve model
performance. Similarly, Qi et al. (2025) apply evolution to web-based LLM agents, progressively
generating more complex tasks to drive continual improvement. Finally, Shi et al. (2025) propose
selecting training samples based on their proximity to a dynamically determined target difficulty,
encouraging the model to focus on examples that are neither too easy nor too hard.

Reasoning models. LLMs are increasingly deployed in domains such as mathematics and coding,
driving the development of specialised reasoning models trained to solve complex problems via
intermediate steps. Techniques like Chain-of-Thought (CoT) (Wei et al., 2022), Tree-of-Thought
(ToT) (Yao et al., 2023) and Self-Consistency (Wang et al., 2023a) prompt models to articulate
reasoning traces prior to producing answers. To further strengthen this capability, several iterative
schemes have been proposed in which models generate reasoning samples, fine-tune on them, and
repeat the process (Zelikman et al., 2022; Hosseini et al., 2024). More recently, reinforcement
learning (RL) approaches have shown that effective reasoning strategies can emerge without explicit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

instruction (Shao et al., 2024; DeepSeek-AI et al., 2025). These methods often follow the inference-
time compute paradigm, accepting increased computational cost during inference in exchange for
improved downstream performance (Snell et al., 2024; Wu et al., 2025).

Synthetic math problems. Strong mathematical reasoning capabilities require high-quality training
data, but such data is costly and difficult to curate at scale. As a result, synthetic data has emerged
as a compelling alternative. MathScale (Tang et al., 2024) begins from a seed dataset, extracts key
concepts, and instructs an LLM to recombine them into novel questions. PromptCOT (Zhao et al.,
2025) follows a similar path, additionally transferring chain-of-thought rationales from existing
problems to guide new generations. WizardMath (Luo et al., 2023) leverages GPT-4 to generate
training data and supervise student models, outsourcing both tasks to a static external oracle, which
inherently limits downstream performance. In work concurrent to ours, SPARQ (Havrilla et al., 2025)
applies quality-diversity evolution to construct a training set scored by solve rate. Unlike our method,
however, it performs only a single round of generation followed by supervised fine-tuning. While this
restricts adaptivity, SPARQ demonstrates strong gains in out-of-distribution generalisation, though
in-distribution improvements remain limited.

4 OPEN-ENDED EVOLUTION OF DIVERSE AND LEARNABLE VERIFIABLE
PROBLEMS

Our objective is to evolve a dataset of highly learnable reasoning problems in tandem with model
training, while preserving verifiability and diversity. To this end, we introduce DÉJÀQ, a post-
training method that curates a stream of challenging yet solvable problems tailored to the model’s
current capabilities. DÉJÀQ combines two asynchronous processes: model post-training via RLVR,
implemented with GRPO (Shao et al., 2024), and dataset evolution using MAP-Elites (Mouret &
Clune, 2015), a quality-diversity algorithm that maintains an archive of problem–answer pairs indexed
by a feature descriptor, with each cell retaining the highest-scoring pair.

4.1 INITIAL ARCHIVE POPULATION

To instantiate the MAP-Elites archive, we require a seed dataset D0 and a descriptor function d that
maps each datapoint to a set of features or categories. For D0, we adopt all templates from GSM-
Symbolic (Mirzadeh et al., 2024), a template-based variant of GSM8K (Cobbe et al., 2021) designed
to mitigate overfitting in frontier models. While symbolic templates are not strictly necessary for our
method, we leverage them to obtain a larger pool of high-quality seed data.

To define the descriptor function d, we manually inspect the templates and devise a classification
scheme based on their problem setting, such as Professional, Economic, or Recreational. Each
template is assigned a setting by instantiating a concrete example and prompting a language model
(QWEN2.5-32B-INSTRUCT (Yang et al., 2024)) to generate a chain-of-thought rationale followed
by a final classification. The complete list of setting categories is provided in Appendix A, and the
classification prompt is shown in Appendix E.

4.2 PROBLEM SCORING

To evolve a dataset that meaningfully advances the model’s capabilities, we require a principled
fitness function. We adopt learnability as the central scoring criterion. For a given problem instance x
and model parameters θ, learnability is defined as lθ(x) = pθ(x)(1− pθ(x)) (Tzannetos et al., 2023),
where pθ(x) denotes the probability that the model solves x correctly. This measure is grounded in
learning theory and has been successfully applied in RL and LLM post-training for mathematical
domains (Parker-Holder et al., 2022; Rutherford et al., 2024; Foster & Foerster, 2025).

In practice, the true probability pθ(x) is unknown and must be estimated. To this end, we use a
model inference server to generate K completions for each problem and compute the empirical
success rate p̂θ(x) as the fraction of correct completions. Learnability is then estimated using the
unbiased estimator l̂θ(x) = K

K−1 p̂θ(x)(1− p̂θ(x)). An intuitive benefit of this scoring function is
that malformed or unsolvable problems naturally receive low learnability scores and are therefore
unlikely to be retained in the archive.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Base problem-answer pair and mutations

A fog bank rolls in from the ocean to cover a city. It takes 256 minutes to cover every 9 miles of the city.
If the city is 72 miles across from the oceanfront to the opposite inland edge, how many minutes will it
take for the fog bank to cover the whole city?
Setting: Environmental Solution: 2048
— Setting Mutator (Retain solution)

In a scientific experiment, a fog bank is generated to simulate atmospheric conditions. The fog bank
travels at a consistent speed, taking 256 minutes to cover every 9 kilometers of the experimental field.
If the experimental field is 72 kilometers across, how long will it take for the fog bank to completely
cover the field?
Setting: Scientific Solution: 2048
— Distractor Mutator (Retain solution)

A fog bank rolls in from the ocean to cover a city. It takes 256 minutes to cover every 9 miles of the
city. The fog starts to move in from the sea, creeping over the rooftops slowly. If the city is 72 miles
across from the oceanfront to the opposite inland edge, how many minutes will it take for the fog bank
to cover the whole city?
Setting: Environmental Solution: 2048
— Symbolic Mutator (Modify solution)

A fog bank rolls in from the ocean to cover a city. The fog bank’s speed is 64 miles per 256 minutes at
the start and decreases uniformly to half that speed by the time it reaches the end of the city, which is
72 miles across. How many minutes will it take for the fog bank to cover the whole city?
Setting: Environmental Solution: 384

Figure 2: Example LLM-guided mutations of a fog coverage problem under the operators used in
DÉJÀQ. Shown are real generations produced by the 7B base model and obtained using the same
prompts as applied during training.

4.3 LLM-GUIDED MUTATIONS

Balancing expressivity with verifiability is a key consideration when constructing synthetic datasets
for reasoning domains such as mathematics. Models require access to sufficiently challenging and
diverse training data, yet the solutions to these problems must remain accessible to ensure meaningful
supervision. Prior work circumvents this issue by relying on stronger teacher models to generate and
validate data (Luo et al., 2023). To move beyond this dependence on external oracles, we introduce
LLM-guided mutators that support continual self-improvement. Examples are shown in Fig. 2, and
all prompts are detailed in Appendix E.

Setting mutator. We introduce an LLM-guided setting mutator inspired by Samvelyan et al. (2024).
This mutator first identifies a category in the archive with low learnability and prompts an LLM to
rewrite a high-quality parent problem to match that category. This enables exploration beyond the
seed dataset, yielding more diverse and targeted problems. Crucially, the LLM is instructed to alter
only the problem setting, leaving the reasoning structure and quantities unchanged, so the original
solution remains valid.

Distractor mutator. Beyond contextual rewrites, we introduce a distractor mutator that adds
semantically irrelevant sentences to a problem. These distractors provide additional detail or colour
while preserving the original logic and solution.

Symbolic mutator. While the setting and distractor mutators change the presentation of the problem,
the reasoning required to solve it is left unchanged. In contrast, the symbolic mutator modifies the
mathematical structure of the problem and updates the solution accordingly. Since our model is trained
to produce chain-of-thought reasoning, we prompt it to first propose an interesting modification and
then solve the mutated problem step by step. This approach helps maintain both the correctness and
diversity of the resulting examples.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

LLM inference server integration. A key consideration in our setup is the computational overhead
introduced by estimating learnability and performing LLM-guided mutations, compared to training
on static templated data. To avoid additional cost, we leverage the same LLM inference server already
used during GRPO training. As our evolutionary framework only requires online generation, this
shared infrastructure can be directly integrated. Implementation details are provided in Appendix A.

4.4 PITFALLS OF EVOLUTION

While our LLM-guided mutations expand the problem space, they also introduce several challenges.
Since each mutator modifies a parent to produce a new candidate, frequent reuse of high-quality
parents can reduce diversity and increase the risk of errors. To counter this, we reduce the probability
of selecting deeply mutated items as parents. To further mitigate error accumulation, we periodically
refresh the archive by replacing some candidates with real problems sampled from the seed dataset,
ensuring a steady influx of verifiable examples. To encourage substantive variation, we adopt the
filtering strategy from RAINBOW TEAMING, using BLEU (Papineni et al., 2002) to admit only those
candidates whose surface form differs sufficiently from the parent. Finally, since the archive evolves
alongside model training, examples with high initial learnability may become stale as the model
improves. To address this, learnability scores are decayed over time (Parker-Holder et al., 2022) and
refreshed using the GRPO rollouts whenever the corresponding problem was used for training.

5 EXPERIMENTS

We experimentally evaluate DÉJÀQ using QWEN2.5-7B-INSTRUCT (Yang et al., 2024). Our code
is implemented on top of TRL (von Werra et al., 2020) for RL fine-tuning on the LLMs and vLLM
(Kwon et al., 2023) for the model inference server.

Methods. As baselines, we include the original base model and RLVR with a domain randomisation
(DR) strategy that uniformly samples from the set of available templates and instantiates them with
valid parameters. We also consider a variant trained using the same evolutionary framework, but with
mutations limited to resampling from the initial dataset. We compare these against two variants of
DÉJÀQ: the setting mutator (DÉJÀQ-S), and the full combination of setting, distractor, and symbolic
mutators (DÉJÀQ-A). We do not evaluate the distractor or symbolic mutators in isolation, as they
cannot produce cross-category mutations.

Benchmarks. We evaluate mathematical reasoning on the Symbolic, P1, and P2 subsets of the
GSM-Symbolic test set (Mirzadeh et al., 2024). The P1 and P2 suites can be regarded as progressively
harder in-distribution variants, as they remain GSM questions but include one or two additional
clauses that increase difficulty and move performance closer to an out-of-distribution regime. True
out-of-distribution generalisation is assessed on MATH-500 (Hendrycks et al., 2021; Lightman et al.,
2024). To isolate the contribution of open-ended LLM-guided mutations, we also construct two
synthetic benchmarks with GPT-5. GPT-Eval-ID explicitly contains in-distribution GSM problems,
while GPT-Eval-OOD features creative and varied out-of-distribution cases. Full construction details
are provided in Appendix B.

5.1 INSIGHTS ON EVALUATION ACCURACY

Table 1 reports mean accuracy with 95% confidence intervals for the base model, the domain-
randomisation (DR) baseline, the resample baseline, and the two DÉJÀQ variants, with the best-
performing method shown in bold. Results for GPT-Eval-ID are only provided in Appendix D, as
all models achieved accuracy above 95%, indicating that performance on basic GSM questions is
already saturated.

In- vs. out-of-distribution performance. Across all evaluations in Table 1, DÉJÀQ outperforms the
baselines. On the most in-distribution tasks (Symbolic, P1), DÉJÀQ-S achieves the highest mean
accuracy. This follows from its design, which increases surface-level variety while keeping the
symbolic form unchanged, directly strengthening in-distribution performance. DÉJÀQ-A is a close
second, showing that structural mutations do not significantly reduce in-distribution gains. On P2,
DÉJÀQ-A becomes the best method. Repeatedly applying the structural mutations can recover a
similar style of questions as in P2, since these mutations can also add two or more clauses to the base

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Mean accuracy with 95% confidence interval on QWEN2.5-7B-INSTRUCT. Bold indicates
the best method per evaluation.

In-Distribution (%) Out-of-Distribution (%)
Method Symbolic P1 P2 MATH-500 GPT-Eval-OOD

Base 88.0± 0.9 77.4± 1.2 62.6± 1.9 68.0± 4.1 86.6± 3.0
DR 85.4± 1.0 63.4± 1.3 51.6± 2.0 62.6± 4.2 81.6± 3.4
Resample 87.6± 0.9 64.2± 1.3 46.4± 2.0 63.2± 4.2 79.6± 3.5
DÉJÀQ-S 94.1± 0.7 84.1± 1.0 64.4± 1.9 67.4± 4.1 86.6± 3.0
DÉJÀQ-A 94.1± 0.7 83.7± 1.0 65.5± 1.9 69.6± 4.0 89.0± 2.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ac

cu
ra

cy

Symbolic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0
P1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0
P2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ac

cu
ra

cy

GPT-Eval-ID

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0
MATH-500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0
GPT-Eval-OOD

Base DR Resample DéjàQ-S DéjàQ-A

Figure 3: Mean accuracy under conditional value at risk (CVaR) across the six evaluation datasets.
The x-axis denotes the risk parameter α (log scale), the y-axis shows mean accuracy, and shaded
regions indicate 95% confidence intervals.

question. This makes them well-suited to handle the increased complexity of this benchmark. On
clearly out-of-distribution tasks (MATH-500, GPT-Eval-OOD), DÉJÀQ-A also performs best. This
supports the idea that combining setting, distractor, and symbolic mutations improves generalisation
beyond the training distribution, consistent with the findings from SPARQ (Havrilla et al., 2025).

Naive training degrades performance. Both domain randomisation and resampling fail to improve
over the base model and often reduce accuracy (e.g., P1: Base 77.40% vs. DR 63.42%; P2: Base
62.60% vs. Resample 46.44% in Table 1). The only cases where performance does not drop as
sharply are the most in-distribution datasets (Symbolic and GPT-Eval-ID). A likely explanation is
that the base model has already been post-trained on highly curated data, and further naive fine-
tuning on comparatively basic distributions disrupts this carefully optimised state. By contrast,
DÉJÀQ applies LLM-guided mutations that generate informative variation rather than indiscriminate
training examples, which enables it to not only recover but surpass the base model’s performance.
These findings caution against unstructured post-training on generic data and support structured,
learnability-driven data evolution as a safer and more effective path to robustness and generalisation.

Robustness to challenging instances. We evaluate robustness using Conditional Value at Risk
(CVaR) (Rutherford et al., 2024), which measures the expected success rate over the hardest α-
fraction of tasks. For a given α ∈ (0, 1], CVaR computes the mean success on the lowest α-percentile
of task outcomes, placing emphasis on difficult cases that standard averages may obscure. Results for
all datasets are shown in Fig. 3.

Across risk levels, both DÉJÀQ variants strictly dominate the baselines on most datasets and match
them on the remainder. On Symbolic and GPT-Eval-ID, where overall accuracy is already very high,
meaningful differences still appear for smaller α, reflecting stronger tail robustness. The largest
differences are observed on P1, P2, and GPT-Eval-OOD, where DÉJÀQ outperforms at every risk level
and most clearly at lower α, consistent with improved performance on the hardest instances. These
results support the conclusion that learnability-driven selection combined with targeted LLM-guided
mutations enhances tail performance and improves robustness both in- and out-of-distribution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20 0.25

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

P (invalid | l ≥ τ)

0.00 0.05 0.10 0.15 0.20 0.25

τ

0.0

0.2

0.4

0.6

0.8

1.0
P (l ≥ τ | invalid)

0 2 4 6 8 10

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

P (invalid | d ≥ τ)

0 2 4 6 8 10

τ

0.0

0.2

0.4

0.6

0.8

1.0
P (d ≥ τ | invalid)

Base DéjàQ-S Post DéjàQ-S Base DéjàQ-A Post DéjàQ-A

Figure 4: Estimated probabilities with 95% confidence intervals. The left column shows P (invalid |
x ≥ τ), i.e., the probability that a question is invalid given that its learnability or depth exceeds a
threshold τ . The right column shows the reverse conditional, P (x ≥ τ | invalid).

5.2 MAINTAINING VERIFIABILITY THROUGH LLM-GUIDED MUTATIONS

A key advantage of using RL to train LLMs for mathematical reasoning is the availability of ground-
truth data. LLM-guided mutations risk undermining this by introducing errors into the training
process. To assess this risk, we designed two controlled experiments, shown in Fig. 4.

Setup. The first experiment fixes the model to eliminate non-stationarity and then simulates the
evolutionary pipeline by evolving the archive for 100 mutation rounds. We estimate learnability
from 100 generations and decay it after each simulated sample call to emulate the GRPO callback.
This setup captures the validity of questions produced during a realistic evolutionary process. In
the second, we repeatedly mutated each of 200 seed problem-answer pairs along a linear chain of
ten steps, without any evolutionary selection, to isolate the effect of mutation depth alone. In both
cases, we perform these experiments on the base model QWEN2.5-7B-INSTRUCT with DÉJÀQ-S and
DÉJÀQ-A as well as on the post-trained models with their respective mutator and use GPT-5-MINI
as a reasoning oracle to estimate correctness for all problems generated over time.

Learnability as a verifier. The top row of Fig. 4 reports learnability versus invalidity. Base rates
differ markedly across mutators: for the base model, DÉJÀQ-S yields 22.2% ± 2.9%, whereas
DÉJÀQ-A yields 43.7% ± 3.4%. This gap is intuitive, as surface-level context rewrites are easier
for an instruction-tuned base model than structural mutations that alter problem composition. After
post-training, the rates shift to 35.7% ± 3.3% for DÉJÀQ-S and 36.6% ± 3.4% for DÉJÀQ-A. In
other words, post-training raises the invalidity base rate for the setting mutator but lowers it for
the all mutator. This suggests that improved student capabilities can feed back into the teacher,
making mutations more reliable when variation spans multiple axes and supports out-of-distribution
generalisation. In contrast, restricting the teacher to surface-level rewrites exhausts its benefit, as
such variability cannot scale with the student’s growing abilities.

Conditioned on invalidity, we observe that learnability decreases. When conditioning on learnability
instead, base models show the expected pattern: the probability of invalidity declines as learnability
rises, indicating that learnability acts as an effective filter. Post-trained models, however, exhibit the
opposite trend, with high-learnability pairs being increasingly likely to be invalid. We conjecture that
as the student becomes stronger, generating genuinely new and correct problems becomes increasingly
difficult. As their share in the dataset declines, invalid problems occupy a larger fraction. Since our
RLVR process optimises only the student’s performance and leaves the teacher static, this mismatch
likely exacerbates the problem.

Recursive mutations. The bottom row of Fig. 4 shows that recursive application of mutators does not
significantly increase the likelihood of invalid pairs. The conditional probability P (invalid | d ≥ τ)
remains stable across depths, with occasional dips at deeper levels due to early termination of chains
after hard failures (e.g., JSON errors), which lowers measured invalidity among surviving items. The
complementary curves P (d ≥ τ | invalid) decrease smoothly with τ . Across both mutators, the
post-trained model consistently yields fewer invalid generations than the base model. These results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Inference server GPU and memory statistics (mean± standard deviation). Memory (GiB) and
Memory (%) report allocated GPU memory; GPU Util (%) is the average streaming multiprocessor
utilisation; Mem Util (%) is the average memory controller utilisation.

Method Memory (GiB) Memory (%) GPU Util (%) Mem Util (%)

DR 74.4± 2.5 93.4± 3.2 3.2± 16.4 2.4± 12.5
Resample 65.1± 28.0 81.7± 35.2 12.3± 25.2 3.6± 7.6
DÉJÀQ-S 71.6± 7.4 89.8± 9.3 21.2± 36.3 16.0± 27.6
DÉJÀQ-A 72.4± 3.2 91.0± 4.1 51.7± 41.5 39.2± 31.8

support the hypothesis from the learnability analysis: deeper mutation does not drive more errors, but
rather improving the model’s capabilities makes it harder to find genuinely new, correct problems.
This underscores the need to train the teacher alongside the student so the mutator can keep pace
with a stronger solver and continue generating diverse, verifiable problems.

5.3 RESOURCE ANALYSIS

In addition to serving the RLVR loop, the inference server is used for learnability estimation and
LLM-guided mutations. It is therefore important to examine whether these extra calls introduce
bottlenecks. Table 2 reports GPU and memory statistics across methods.

Memory footprint and bandwidth. Memory usage is stable across methods (about 65–74GiB, or
82–93%), showing that learnability estimation and LLM-guided mutations do not increase the model
footprint. Memory utilisation rises with mutations (from 2.4% for DR to 39.2% for DÉJÀQ-A), but
remains well below saturation, indicating that mutations mainly improve bandwidth usage rather than
impose new constraints.

GPU utilisation. The DR baseline achieves very low utilisation (3.2%), suggesting that training
alone does not exploit the inference server efficiently. Learnability estimation (Resample) raises
utilisation to 12.3% and additionally performing a single round of LLM-guided mutations (DÉJÀQ-S)
raises utilisation further to 21.2%. The full mutation pipeline (DÉJÀQ-A), which can chain up to three
inference calls in one mutation reaches 51.7% on average. High variance reflects bursty workloads
rather than steady load. Thus, LLM-guided mutations make more effective use of available capacity
without exhausting resources.

Wall-clock effects and scheduling. Due to high variability on the shared cluster, we do not report
wall-clock comparisons. Nevertheless, runs with mutations were consistently slower. This likely
stems from contention when training and evolution submit requests simultaneously: queues can delay
training even if average utilisation is far from 100%. Lightweight scheduling, such as prioritising
training queries or timing mutation requests to follow the completion of a training iteration, could
alleviate these delays by better interleaving the two workloads.

6 CONCLUSION

We introduced DÉJÀQ, an evolutionary framework that leverages LLM-guided mutators to asyn-
chronously evolve a dataset of diverse, learnable problems for reinforcement learning with verifiable
rewards. Building on MAP-Elites, DÉJÀQ maintains an archive of synthetic problems, selecting and
retaining those most learnable under the current model. Empirically, DÉJÀQ improves both in- and
out-of-distribution performance and shows greater robustness to the most challenging instances. Our
analysis demonstrates that increased mutation depth does not inflate failure rates and that DÉJÀQ
requires only modest additional resources. Finally, while learnability is an effective proxy for verifia-
bility in base models, post-trained models struggle to generate highly learnable valid samples. We
hypothesise that this bottleneck arises from the teacher lagging behind the student, highlighting an
important avenue for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental setup is detailed in the main paper, with further specifications provided in Ap-
pendix C. All prompts used for LLM generations are included in Appendix E. Additional implemen-
tation details of DÉJÀQ are given in Appendix A. We will release our code and synthetic datasets
publicly upon acceptance.

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22(2):245–259, 2018. doi: 10.1109/
TEVC.2017.2704781.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing reasoning capability in
llms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.

Thomas Foster and Jakob Foerster. Learning to reason at the frontier of learnability, 2025.

Alex Havrilla, Edward Hughes, Mikayel Samvelyan, and Jacob Abernethy. SPARQ: Synthetic
problem generation for reasoning via quality-diversity algorithms, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, Virtual, 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STaR: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Chia-Yuan Chang, and Xia Hu.
GrowLength: Accelerating llms pretraining by progressively growing training length. CoRR,
abs/2310.00576, 2023. doi: 10.48550/ARXIV.2310.00576.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Unlocking RL potential for LLM reasoning
through refined credit assignment, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. TÜLU
3: Pushing frontiers in open language model post-training. CoRR, abs/2411.15124, 2024. doi:
10.48550/ARXIV.2411.15124.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need. CoRR,
abs/2404.07965, 2024. doi: 10.48550/ARXIV.2404.07965.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. StarCoder 2 and the stack v2:
The next generation, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. CoRR, abs/2308.09583, 2023.
doi: 10.48550/ARXIV.2308.09583.

Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. CoRR, abs/2410.05229, 2024. doi: 10.48550/ARXIV.2410.05229.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. CoRR,
abs/1504.04909, 2015.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pp. 311–318. ACL, 2002.
doi: 10.3115/1073083.1073135.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob N. Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

(eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp. 17473–17498.
PMLR, 2022.

Hadi Pouransari, Chun-Liang Li, Jen-Hao Rick Chang, Pavan Kumar Anasosalu Vasu, Cem Koc,
Vaishaal Shankar, and Oncel Tuzel. Dataset decomposition: Faster LLM training with variable
sequence length curriculum. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Jiadai Sun, Xinyue Yang, Yu Yang,
Shuntian Yao, Wei Xu, Jie Tang, and Yuxiao Dong. WebRL: Training LLM web agents via self-
evolving online curriculum reinforcement learning. In The Thirteenth International Conference on
Learning Representations, 2025.

Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and Jakob N.
Foerster. No regrets: Investigating and improving regret approximations for curriculum discovery.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H. Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel,
and Roberta Raileanu. Rainbow teaming: Open-ended generation of diverse adversarial prompts.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. MathScale: Scaling instruction
tuning for mathematical reasoning. In Forty-First International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Georgios Tzannetos, Bárbara Gomes Ribeiro, Parameswaran Kamalaruban, and Adish Singla. Proxi-
mal curriculum for reinforcement learning agents. 2023, 2023.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023a.

12

https://github.com/huggingface/trl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics,
2023b. doi: 10.18653/V1/2023.ACL-LONG.754.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024. doi:
10.48550/ARXIV.2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An open-source
LLM reinforcement learning system at scale, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping reasoning with
reasoning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

Xueliang Zhao, Wei Wu, Jian Guan, and Lingpeng Kong. PromptCoT: Synthesizing olympiad-
level problems for mathematical reasoning in large language models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for
Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 18167–18188.
Association for Computational Linguistics, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 The DÉJÀQ algorithm. Shared components are highlighted in blue.

Require: Initial model parameters θ0, seed dataset D0, mutation operator q, and training budget T
Ensure: A post-trained reasoning model with parameters θT

1: Initialise LLM inference server
2: Initialise MAP-Elites archive A ← ∅
3: Populate A with seed problems from D0 and compute learnability scores l(x; θ0)

4: Launch two asynchronous processes:
5: (1) Model Training Loop
6: for t = 1 to T do
7: Sample training batch B from A
8: Update model via RLVR: ▷ Uses LLM inference server to sample generations

θt ← argmax
θ

Ey∼πθ(x) [rRLVR(x, y)− βDKL (πθ(y | x) ∥πref(y | x))]

9: end for

10: (2) Dataset Evolution Loop
11: while training is running do
12: Sample x ∼ A
13: Generate mutant x′ ← q(x) ▷ Uses LLM inference server to propose mutations
14: if x′ is correctly formatted then
15: Compute score s′ ← l(x′; θt) ▷ Uses LLM inference server to estimate learnability
16: Assign descriptor d← d(x′)
17: if d /∈ A or s′ > l(A[d]; θt) then
18: A[d]← x′

19: end if
20: end if
21: end while
22: return θT

A DÉJÀQ IMPLEMENTATION DETAILS

In this section we provide all remaining implementation details for DÉJÀQ. Complete pseudocode is
given in Algorithm 1.

A.1 SETTING CATEGORISATION

In Table 3, we present the setting categorisation used in our DÉJÀQ experiments and was derived
through a combination of manual analysis and LLM-assisted inspection.

A.2 LLM INFERENCE SERVER INTEGRATION

Our approach integrates dataset curation into the same inference infrastructure used for training. We
elaborate here on why the additional inference cost is justified and how this integration can be made
efficient in practice.

First, prior work has shown that training on low-information samples can negatively impact model
performance by slowing down overall training and introducing noise into the gradient updates (Yu
et al., 2025; Foster & Foerster, 2025). Filtering out such instances in advance can therefore result in
more effective gradient updates, offsetting the added inference cost. Second, recent RLVR methods
employed in LLM post-training, such as GRPO (Shao et al., 2024) and VinePPO (Kazemnejad et al.,
2024), already rely on fast, online sampling. These methods typically use a separate inference server
such as vLLM (Kwon et al., 2023) to generate rollouts in real time. Importantly, this server is often
underutilised during phases such as backpropagation or data staging.

By integrating dataset curation into the same inference infrastructure, we make more efficient use
of available resources without incurring additional overhead. In our implementation, we employ an

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: The setting categories used in our DÉJÀQ experiments.

Name Description
Personal Life Scenarios from everyday personal experiences involving home life, family,

school, food, health habits, or individual routines.
Professional Contexts involving occupations, productivity, workplace responsibilities, or

services rendered as part of a job or trade.
Economic Situations involving money, costs, purchases, income, trade, markets, or finan-

cial decision-making.
Recreational Scenarios focused on hobbies, play, sports, games, or other leisure activities

pursued for enjoyment.
Events Social or organised occasions such as birthdays, holidays, celebrations, school

fairs, or community gatherings.
Scientific Problems involving biological, chemical, or physical concepts, including natural

processes and scientific observations.
Technical Scenarios involving machines, devices, or engineered systems where under-

standing tools, parts, or operational constraints is essential.
Environmental Scenarios involving ecosystems, weather, agriculture, conservation, or interac-

tions between humans and the natural world.

agnostic scheduling strategy that queries the inference server opportunistically, whether for training,
scoring, or data generation. Identifying an optimal schedule that maximises throughput while avoiding
interference with training remains a non-trivial engineering challenge and an open direction for future
work.

A.3 A LITTLE BIT TOO OPEN-ENDED?

We designed the featurisation of GSM-Symbolic templates to capture real-world domains we consid-
ered relevant. Because DÉJÀQ does not impose strict constraints on the types of problems generated,
the model sometimes introduced unexpected axes of variation. For example, during development we
observed smaller models rewriting problems from English into Spanish, occasionally mixing both
languages while still producing valid math questions. Training on these examples does not improve
performance on our current English-only benchmarks, but we hypothesise that it increases robustness
along dimensions not measured by standard evaluations. This suggests the need for evaluation sets
that better reflect the diversity and open-endedness of real-world problems, or, if the aim is to remain
within a constrained domain, the use of auxiliary filtering mechanisms such as a judge model, as in
RAINBOW TEAMING (Samvelyan et al., 2024).

B GENERATING THE SYNTHETIC EVALUATION DATA

As outlined in Section 5, we construct two synthetic evaluation datasets using GPT-5 as the generator.
These datasets are designed to assess the performance impact of DÉJÀQ under both in-distribution
and out-of-distribution conditions. In total, we generated 500 problem-answer pairs for each dataset.

For the in-distribution dataset, we prompt GPT-5 with a description of the training distribution and
request batches of 100 ideas. Each batch is balanced across a difficulty axis, with 30 easy, 40 medium,
and 30 hard problems, and distributed evenly across settings. These ideas are then passed back to
GPT-5 in a second prompt, which expands them into fully specified questions with corresponding
answers.

For the out-of-distribution dataset, we instead encourage GPT-5 to propose maximally imaginative
scenarios by varying both the settings (e.g., dreams, fantasy) and the narrative styles (e.g., diary
entries, code blocks). Unlike the in-distribution case, we impose no constraints on the type of
mathematics involved. The resulting ideas are subsequently transformed into complete questions and
answers using a second query to the model.

The exact prompts used for dataset generation are provided in Appendix E.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Combined Configuration Parameters for training, and evolution.

Parameter Value
Training Parameters

reward_funcs cos_correctness, format
reward_weights 2.0, 1.0
algorithm GRPO
learning_rate 1.0e-06
lr_scheduler_type cosine_with_min_lr
lr_scheduler_kwargs min_lr_rate: 0.1
gradient_accumulation_steps 8
gradient_checkpointing true
gradient_checkpointing_kwargs use_reentrant: false
num_generations 6
scale_rewards true
max_prompt_length 512
max_completion_length 2048
per_device_train/eval_batch_size 6 / 6
num_iterations 1
max_steps 500
use_vllm true

Evolution Parameters
cell_size 4
ignore_top_k 6
score_decay 0.95
score_alpha 0.5
bleu_threshold 0.6
resample_prob 0.25
structure_probs distractor: 0.4, symbolic: 0.4, both: 0.2, none: 0.0
max_tries 5
mutation_batch_size 8

Table 5: Mean accuracy with 95% confidence interval on QWEN2.5-7B-INSTRUCT. Bold indicates
the best method per evaluation.

In-Distribution (%) Out-of-Distribution (%)
Method Symbolic P1 P2 GPT-Eval-ID MATH-500 GPT-Eval-OOD

Base 88.0± 0.9 77.4± 1.2 62.6± 1.9 98.0± 1.2 68.0± 4.1 86.6± 3.0
DR 85.4± 1.0 63.4± 1.3 51.6± 2.0 96.4± 1.6 62.6± 4.2 81.6± 3.4
Resample 87.6± 0.9 64.2± 1.3 46.4± 2.0 97.2± 1.4 63.2± 4.2 79.6± 3.5
DÉJÀQ-S 94.1± 0.7 84.1± 1.0 64.4± 1.9 98.2± 1.2 67.4± 4.1 86.6± 3.0
DÉJÀQ-A 94.1± 0.7 83.7± 1.0 65.5± 1.9 95.8± 1.8 69.6± 4.0 89.0± 2.7

C EXPERIMENT DETAILS

We provide the hyperparameters used during our experiments in Table 4. Our experiments were
executed on a compute cluster whose nodes were equipped with NVIDIA A40 and NVIDIA L40S
GPUs, each offering 48 GB of VRAM. In every run, five GPUs were used, with one assigned to
vLLM inference and the remaining four to training.

D ADDITIONAL RESULTS

In Section 5 we omitted the results on the GPT-Eval-ID benchmark. We reproduce the full table of
results in Table 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E PROMPTS

Qwen Math System Prompt

Please reason step by step, and put your final answer within \boxed{}.

Teacher System Prompt

You are a knowledgeable and patient mathematics teacher. Aim to develop the student’s intuition and
problem-solving skills. You will be given math problems along with specific instructions, and your task
is to revise or adapt the problems to best meet those instructions.

Setting Mutate Prompt Template

You will receive:
- Candidate context: A target setting for the problem, e.g., "Personal life".
- Word problem: A mathematical word problem.

TASK

Rewrite the problem to fit the candidate context. The story should clearly reflect this setting.

REQUIREMENTS

1. Preserve the mathematical structure and all quantities.
2. Change contextual details (names, objects, setting) to reflect the new context.
3. The result must be natural, coherent, and in English.

OUTPUT FORMAT

Start with a short reasoning:
- What is the original context?
- What changes will you make?
- What stays the same?

Then output a JSON:

{
"mutated_problem": "<rewritten problem>"

}

INPUTS

Candidate context: {{ candidate_context }}
Word problem: {{ word_problem }}

Distractor Mutate Prompt Template

You will receive:
- Word problem: A mathematical word problem.

TASK

Add a single harmless sentence that brings detail or colour, without changing the logic or answer.

REQUIREMENTS

1. Do not change the reasoning or introduce new relevant variables.
2. You may refer to quantities or names already present.
3. The result must be natural, coherent, and in English.

OUTPUT FORMAT

Start with a short justification:
- What sentence will you insert?
- Why does it not affect the answer?

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Then output a JSON:

{
"mutated_problem": "<problem with inserted sentence>"

}

INPUT

Word problem: {{ word_problem }}

Symbolic Mutate Prompt Template

You will receive:
- Word problem: A mathematical word problem.
- Solution: The solution to the problem.

TASK

Make a meaningful change to the mathematical reasoning needed to solve the problem while ensuring
the solution is updated accordingly. The goal is to create a new problem with a different solution, while
keeping the rewrite as local and natural as possible.

REQUIREMENTS

1. Any change must be logically integrated into the story and affect the reasoning in a coherent way.
2. Preserve the original setting as much as possible.
3. The new problem must be solvable, consistent, clearly worded and in English.

OUTPUT FORMAT

Start with a short reasoning:
- Why is the current solution correct?
- What reasoning change are you making?
- How will you adapt the story?

Then output a JSON:

{
"mutated_problem": "<rewritten problem>",
"mutated_reasoning": "<step-by-step reasoning to solve the new

problem>",
"mutated_solution": "$<new solution in LaTeX>$"

}

INPUTS

Word problem: {{ word_problem }}
Solution: {{ solution }}

18

	Introduction
	Background
	Reinforcement Learning with Verifiable Rewards
	MAP-Elites

	Related Work
	Open-Ended Evolution of Diverse and Learnable Verifiable Problems
	Initial Archive Population
	Problem Scoring
	LLM-Guided Mutations
	Pitfalls of Evolution

	Experiments
	Insights on Evaluation Accuracy
	Maintaining Verifiability through LLM-Guided Mutations
	Resource Analysis

	Conclusion
	DéjàQ Implementation Details
	Setting Categorisation
	LLM Inference Server Integration
	A Little Bit Too Open-Ended?

	Generating the Synthetic Evaluation Data
	Experiment Details
	Additional Results
	Prompts

