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ABSTRACT

Text-to-image synthesis has recently attracted widespread attention of the com-
munity due to rapidly improving generation quality and numerous practical appli-
cations. However, little is known about the language understanding capabilities
of text-to-image models, making it difficult to reason about prompt formulations
that the model would understand well. In this work, we measure the capability
of popular text-to-image models to understand hypernymy, or the “is-a” relation
between words. To this end, we design two automatic metrics based on the Word-
Net semantic hierarchy and existing image classifiers pretrained on ImageNet.
These metrics both enable quantitative comparison of linguistic capabilities for
text-to-image models and offer a way of finding qualitative differences, such as
words that are unknown to models and thus are difficult for them to draw. We
comprehensively evaluate our metrics on various popular text-to-image generation
models, including GLIDE, Latent Diffusion, and Stable Diffusion, which allows a
better understanding of their shortcomings for downstream applications.

1 INTRODUCTION

Over the past several years, text-to-image generation has demonstrated remarkable advances (Ramesh
et al., [2021;|Nichol et al., [2021; |Rombach et al.,[2022; |Ramesh et al.,|2022; [Saharia et al., [2022)) in
the quality of generated samples, allowing to create high-fidelity images from a prompt in natural
language. These improvements have enabled a variety of practical applications, marking a visible
shift in the paradigm of conditional image generation.

Despite the progress in this field, the evaluation of images generated from textual input is still a
challenging task. In particular, the majority of works relies on standard metrics for unconditional
image generation, such as Frechet Inception Distance (FID, [Heusel et al., |2017) on datasets of
images paired with their captions, for example, MS-COCO (Lin et al.l[2014). As this metric uses
captions only as model prompts, it provides an implicit measure of language understanding; similarly,
caption-to-image similarity using CLIP (Radford et al.,|2021) also does not offer a fine-grained way
to understand the language comprehension abilities of the network. However, as correctly visualizing
the prompt requires understanding the prompt, we are ultimately interested in methods for more
in-depth analysis of the model’s linguistic competencies.

Several aspects of language understanding are of interest to users of text-to-image generation systems.
For example, one crucial aspect is knowledge of the meaning of a term: asking a model to draw an
object by giving a word that it has not observed during training is unlikely to be successful. Also, if a
model is able to draw only one particular subclass of an object (for example, only one dog breed
when asked to draw a dog) across many samples, it significantly restricts the creative potential of the
user for a prompt containing such an object. Even if it is possible to generate an object of another
subclass, knowing “difficult categories” for a model in advance can reduce the amount of manual
effort and help the user find a model more suitable for their goals.

In this work, we build tools for analyzing the lexical semantics capabilities in text-to-image generation
models. To construct the metrics for such analysis, we leverage WordNet (Fellbaum, [1998)), a well-
known lexical database of English words annotated with several semantic relations. Among these
relations, we focus on hypernymy, or the “is-a” relation. Simply put, hypernymy is the relation
between a more general term (for example, “an animal”), called a hypernym, and a more specific
term (for example, “a dog”), called a hyponym.
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Figure 1: Example calculation of In-Subtree Probability (left) and Subtree Coverage Score (right).
Blue color marks the synset used as a prompt.

Using the hypernymy tree from WordNet, we can prompt the model with a specific term (called a
synset) and measure whether samples of the model with this prompt are in the subtree of the term’s
hyponyms. Crucially, the WordNet synsets are a superset of classes of ImageNet (Deng et al.| 2009), a
highly popular dataset for training image classifiers. This correspondence allows us to find the relative
positions of concepts depicted by samples and the concept denoted by the prompt using off-the-shelf
models pretrained on ImageNet. More specifically, we design two text-to-image generation metrics
for scalable measurement of semantics understanding capabilities. The first one, named In-Subtree
Probability (ISP), shows how well a model generates instances of an object given a specific prompt,
while the second one, called Subtree Coverage Score (SCS), displays the coverage of the hyponym
subtree for that prompt. Figure|l|contains an ISP and SCS calculation example for a single synset.

We compute ISP and SCS for several popular models, such as GLIDE (Nichol et al.,[2021)), Latent
Diffusion (Rombach et al.,|2022), Stable Diffusion, and unCLIP (Ramesh et al.,|2022), showing that
our metrics generally agree both with existing metrics for text-to-image generation and with human
evaluation results. However, the granular nature of our metrics enables a more detailed analysis of
linguistic competenices: for example, we show that it is possible to use ISP to find concepts (or
meanings of words) unknown to the model. In addition, one can use ISP and SCS to easily compare
the performance of two models for a particular set of domains or find domains with the highest
disparity between models. We also provide a preliminary analysis of the reasons behind the varying
performance of models on different synsets. As we demonstrate, the capability of a model to generate
correct hyponyms is connected with the hypernymy knowledge of its language encoder and the
frequency of specific synsets in its training data.

In summary, the main contributions of this paper are as follows:

* We propose an evaluation framework for text-to-image generation models that leverages
the WordNet hierarchy to assess their hypernymy knowledge. Specifically, we design two
interpretable metrics, In-Subtree Probability and Subtree Coverage Score, that measure the
generation precision and the coverage of the WordNet tree across different prompts.

* We evaluate a broad range of publicly available models, including Latent Diffusion and
Stable Diffusion, using the proposed metricﬂ We study the influence of the classifier-free
guidance scale (Ho & Salimans) 2021)), the number of diffusion steps, and the number of
generated samples on the behavior of our metrics.

* We demonstrate an example analysis of language understanding capabilities for popular
text-to-image models made possible by our evaluation framework. Specifically, we show
how to use In-Subtree Probability and Subtree Coverage Score to find concepts that are less
known to the model or less diverse in their hyponym distribution.

* We study the connection between the text-to-image model performance (according to ISP
and SCS) and the performance of the textual encoder. Furthermore, we compare the per-
synset results of text-to-image models and the frequency of objects in standard datasets for
training such models, showing that the correlation is higher for weaker models.

'The code of our experiments is at github.com/iclr2023-paper/text—to-img-hypernymy


https://github.com/iclr2023-paper/text-to-img-hypernymy
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2 BACKGROUND

2.1 TEXT-TO-IMAGE GENERATION

Models for generating images from textual prompts have rapidly improved in recent years. Starting
from the release of DALL-E (Ramesh et al.l 2021) and marked by the emergence of diffusion
models (Sohl-Dickstein et al.,|2015; Ho et al.| 2020), the field has undergone a steady increase in
sample fidelity and diversity. Most popular text-to-image models of today, such as Latent Diffusion
(LDM, Rombach et al.;,2022)), Stable Diffusion (SD,Rombach et al.| 2022}, and Imagen (Saharia et al.,
2022)), rely on sampling from the reverse diffusion process. The forward diffusion process gradually
adds Gaussian noise to images, eventually transforming them into a stationary distribution, and the
model learns the reverse process (i.e., generating images from noise) by optimizing a denoising
objective. The diffusion process can be controlled with several hyperparameters: the number of
diffusion steps, the noise schedule (the magnitude of noise added at each step), and the solver type.
These hyperparameters directly affect the quality of samples: for instance, increasing the number of
diffusion steps generally results in higher image fidelity (Salimans & Hol 2022]).

Generating images that would correspond to a certain caption is usually done by conditioning diffusion
models on the natural language input with a pretrained encoder like BERT (Devlin et al., [2018)) or
the textual encoder of CLIP (Radford et al.,|[2021). It is also possible to trade off caption alignment
and sample diversity with classifier-free guidance (Ho & Salimans} 2021). This technique blends the
conditional and unconditional diffusion processes with weights w and 1 — w, respectively. Generally,
increasing w results in higher similarity between the caption and the image, while decreasing it results
in more diverse images.

2.2  QUALITY METRICS FOR TEXT-TO-IMAGE SYNTHESIS

The standard practice of the research community is to evaluate text-to-image models in terms of
sample quality and the similarity of the image to the prompt. Image quality is usually measured in
terms of Inception Score (IS, Salimans et al.,[2016b)) and Fréchet Inception Distance (FID, Heusel
et al.l [2017): the first metric uses the outputs of a pretrained ImageNet classifier to estimate the
diversity and fidelity of images, while the second metric computes the similarity between representa-
tions of model outputs (also extracted from a pretrained model) and representations of a reference
image dataset. These metrics assess purely visual aspects of model outputs; by contrast, CLIPScore
measures the text-image alignment as the cosine similarity between CLIP embeddings of the prompt
and the resulting sample. Although this metric reflects the direct understanding of the prompt, it
does not measure the ability of the model to cover the overall visual hierarchy. Moreover, the lack of
a predefined hierarchy makes it difficult to derive a holistic proxy measure of model performance
across all object categories.

In addition to the above approaches, there exist metrics that target more nuanced skills of text-to-
image generation models. Namely, Semantic Object Accuracy (Hinz et al.,|2019) measures the ability
of a model to depict several objects in the same image using a pretrained object detector. |Park et al.
(2021)) study the ability of text-to-image generators to generalize to novel combinations of objects
and their colors or shapes. PaintSkills (Cho et al., 2022) evaluates object recognition, counting, and
spatial relation understanding, as well as gender and skin tone biases. Similarly, TISE (Dinh et al.,
2022) proposes specific metrics for object fidelity, positional alignment, and counting alignment in
text-to-image models. Our work also targets a specific aspect of text-to-image generation; however,
unlike the aforementioned studies, we measure more abstract abilities of language understanding
beyond strict adherence to the input text.

2.3 LINGUISTIC CAPABILITIES OF TEXT-TO-IMAGE MODELS

Despite the popularity of models for text-to-image synthesis, the research into their language under-
standing has mostly been limited to surface-level abilities such as numeracy or compositionality. One
particular line of work (Daras & Dimakis| 2022} Milliere, |2022; |Struppek et al., [2022) examines the
sensitivity of text-to-image models to morphology and spelling phenomena such as homoglyphs (pairs
of similarly looking symbols). However, to the best of our knowledge, no prior studies have focused
on the broader semantic capabilities of such models. Our work addresses this gap by evaluating both
overall awareness of the concept hierarchy and the variety of hyponyms for individual concepts.
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3 METHODOLOGY

This section describes our proposed mechanism for measuring the understanding of hypernymy
in text-to-image generation. Specifically, we define the sampling protocol that uses the WordNet
database for prompts and introduce two metrics that leverage the structure of WordNet combined
with the predictions of ImageNet classifiers for those samples.

3.1 OBTAINING SAMPLES USING THE WORDNET TREE

As mentioned in Section [} we would like to design a metric for hypernymy knowledge of text-to-
image models. Hence, we rely on existing annotations for hypernymy in the form of WordNet and
map the generated images to nodes in WordNet using pretrained ImageNet classifiers.

However, not all WordNet concepts (grouped into synonym sets or synsets) have corresponding
classes in the ImageNet dataset, especially in its version with 1,000 classes. Thus, for each class of
ImageNet- 1k, we take its corresponding synset in the WordNet hierarchy; we call these synsets leaf
nodes, and we denote the set of leaf nodes as L. After obtaining L, we take all WordNet synsets
that are hypernyms of these leaf nodes and use their union as our evaluation set. For example, for
the ImageNet class “green lizard”, its hypernyms would include nodes such as “lizard”, “reptile”,
“organism”, and “physical entity”. Importantly, the leaf nodes themselves are excluded from the
evaluation set. We call the set of leaf nodes that can be reached from the synset s its classifiable
subtree, denoted as A(s).

Next, we sample a set of images according to the following protocol: for each concept s in the
evaluation set, we take its first lemma name and use it as a prompt for a text-to-image model. Each
lemma is substituted into the template “An image of a/an lemma.” (e.g. “An image of a dog.”,
“An image of an oven.”); in our preliminary experiments, we found that all templates from the
set of prompts recommended by Radford et al.| (2021) yield similar results. We denote the set of
generated images for the synset s as X . We resize the generated images to 224 x 224 using bilinear
interpolation to match the input dimensions of ImageNet classifiers.

After we generate samples for each concept, we obtain the class probability distribution p(y|z) for
each sample z using a pretrained ImageNet classifier. We then calculate the hyponym probability
distribution ps(y|x) for each generated image x of a synset s: it is computed as the conditional class
distribution given that the generated image is in the classifiable subtree of s. More formally,

ps(ylz) = p (ylz,y € A(s)), )

which can be obtained by taking the softmax of classifier logits over the subset of classes correspond-
ing to the classifiable subtree of s. We also define the average distribution of hyponyms p(y) for the
synset s as the following expression:

. 1
PaW) = 7] > pslylo). ©)

reX,

Having computed the probability distribution over hyponyms, we can now design two metrics that
leverage this distribution to measure different aspects of hyponymy understanding.

3.2 IN-SUBTREE PROBABILITY

First, we would like to measure the correctness of generation: we expect the model to generate less
abstract interpretations of the prompt word (i.e., children nodes according to the WordNet hierarchy)
and not to generate unrelated concepts. The first metric is called In-Subtree Probability (ISP): we
define it as the probability that the generated image lies in the classifiable subtree of the prompt’s
synset. We average the probabilities over generated images for each synset. More formally,

1
ISP(s) = = > > plc), 3)
‘Xs| r€Xs cEA(s)

Naturally, higher values of ISP correspond to outputs that are more consistent with the expectations
of the user, and the ideal ISP value is equal to 1.
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3.3 SUBTREE COVERAGE SCORE

For the second metric, we want to describe the diversity of generated outputs according to the
hypernymy relation. Intuitively, we are interested in covering the entire subtree of the synset across
many samples while ensuring that each sample represents only one object. This prevents two
undesirable failure modes: outputs that correspond to “a mixture” of many objects and outputs that
cover only one hyponym of the concept. Such properties of unconditional image generators are
evaluated by Inception Score (Salimans et al.| 2016a), which is why we follow it in the design of our
metric named Subtree Coverage Score (SCS). For each concept s, we calculate the average Kullback-
Leibler divergence between the hyponym probability distribution and the average distribution of
hyponyms across all samples generated from s as a prompt:

1 > Dxw(ps(yl2)lps(y))- @

SCS(s) = —
|XS‘ reXs

As with Inception Score and ISP, the higher the value of SCS, the better. In Appendix [H} we compare

Subtree Coverage Score with a simpler diversity metric that uses the entropy of classifier predictions,

finding that SCS better aligns with human preferences.

3.4 AGGREGATING RESULTS

Each of the above metrics measures the results for a single synset. To get the final metric value for a
single model, we average the metrics across all synsets from the evaluation set and divide the result
by the maximum possible value (1.0 for ISP and ~1.624 for SCS) for ease of interpretation. One
may also note that SCS(s) is always equal to O when s has only one node in A(s), as it reduces
to the average of Kullback-Leibler divergences for identical distributions. Therefore, we exclude
these synsets from aggregation in the case of Subtree Coverage Score; however, we keep them when
calculating the model’s In-Subtree Probability.

This direct averaging treats all synsets equally regardless of their position in the WordNet hierarchy,
causing the metrics to be incomparable between synsets from different levels. Indeed, higher nodes
have more hyponyms by construction: for instance, the value of ISP for “entity” (the root of the
WordNet tree) is always equal to 1. As a result, values from different levels of WordNet might skew
the aggregated metric. Future work might address this issue, for example, by applying a discounting
factor to higher levels of the hierarchy. However, in this paper, we aim to introduce the approach of
hierarchical evaluation and thus leave this question out of the scope of our study.

4 EXPERIMENTS

In this section, we evaluate several popular text-to-image models with ISP and SCS to compare our
metrics with other approaches, including human evaluation. We also study the influence of several
generation hyperparameters on the behavior of the proposed metrics.

4.1 SETUP

We run the experiments on the following text-to-image models: GLIDE (Nichol et al.|[2021), Latent
Diffusion (Rombach et al.,[2022), Stable Diffusion 1.4 , Stable Diffusion V unCLIP (Ramesh et al.,
2022), Kandinsky 2.1 (Razzhigaev et al.|[2023)), DeepFloyd IF (DeepFloyd Labl 2023)), and Stable
Diffusion XL (Podell et al., [2023). We use an open-source version of unCLIP (Lee et al.| [2022)
in our experiments, as the original one is not publicly available. We chose these models because
they are openly available and were close to state-of-the-art at the moment of their release. We use
ViT-B/16 (Dosovitskiy et al.;, 2020) as the ImageNet classifier due to its high accuracy, low calibration
error, and high robustness (Naseer et al., 2021)). We experimented with different pretrained classifiers
and found that they resulted in highly similar rankings for both metrics: more details on the choice of
the classifier are available in Appendix

We generate 32 images for each synset using the default DDIM sampler with 7 = 0: experiments
with other numbers of samples can be seen in Appendix [B] We run each model in 16-bit precision to

Zhuggingface.co/CompVis/stable-diffusion-v1-4
3huggianace .co/stabilityai/stable-diffusion-2-base
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Table 1: Model performance according to ISP, SCS, and baseline metrics. The best values are in bold.

Model Precision Diversity
ISPt CLIPScoreT SCS1T FID|
GLIDE 0.221 0.279 0.198 37.93
Latent Diffusion 0.217 0.304 0.182 36.43
Stable Diffusion 1.4  0.329 0.314 0.256 16.57
Stable Diffusion 2.0  0.297 0.317 0.233 16.25
unCLIP 0.352 0.322 0.194 18.29
Kandinsky 2.1 0.345 0.322 0.164 18.97
DeepFloyd IF XL 0.357 0.323 0.158 21.48
Stable Diffusion XL  0.345 0.324 0.196 15.03

speed up the generation process. We use 50 base model steps with 27 upsampler steps for GLIDE, 50
diffusion steps for Latent Diffusion and all Stable Diffusion models, and 25 prior, 25 decoder and
7 super-resolution steps for unCLIP: Section {.4]describes our experiments with other numbers of
steps. We set the classifier-free guidance (Ho & Salimans| [2021) weight to 7.5 in all experiments
unless stated otherwise.

4.2 RESULTS

First, we compare the models using the metrics proposed in Section 3| along with Fréchet Inception
Distance (Heusel et al., 2017) and CLIPScore (Hessel et al., [2021) as baselines. This comparison is
intended to be a form of a “sanity check” for ISP and SCS: one would expect that models generally
viewed as better generators would also be better at hypernymy knowledge. FID and CLIP are
computed on 10,000 random prompts from the MS-COCO |Lin et al.|(2014) 512 x 512 validation
set. We present the results of the experiment in Table[T} importantly, the ranking of models is mostly
consistent within metrics of similar categories. Both ISP and SCS have the relative standard deviation
of less than 1% when computed over four random seeds.

4.3 HUMAN EVALUATION

In this experiment, we measure the correlation of In-Subtree Probability and Subtree Coverage Score
with the human understanding of hyponymy. To do this, we conduct crowdsourced evaluations of
text-caption similarity and sample diversity for several text-to-image models. To estimate text to
caption similarity, we present the annotators with two generated images along with the caption from
which they were generated. The workers are then tasked to select the image that best matches the text
description. For the diversity evaluation, we show the annotators two collections of generated images
and ask them to select the grid with more diverse samples.

The models are evaluated on a random subset of 20 synsets from the WordNet hierarchy; we generate
20 pairs of images (or grids) per concept, which results in 400 tasks per comparison with the overlap of
5 labelers. We also report Krippendorff’s alpha (Krippendortt, 2018)) as a measure of inter-annotator
agreement. Further details of the human evaluation protocol, including the annotation interface, are
shown in Appendix [C|

We compare Stable Diffusion 1.4 with clasifier-free guidance of 7.5 against Latent Diffusion, unCLIP,
and Stable Diffusion 1.4 that has a lower guidance value of 2.5. The results of this evaluation can be
seen in Table[2} in general, the differences in all metrics follow human preferences.

Table 2: Results of human preference evaluation for models compared with Stable Diffusion 1.4.
Krippendorff’s alpha is in subscript.

Model Caption similarity Sample diversity
Human{ AISP1T ACLIPScoret Humant ASCS?T AFID |
Latent Diffusion  17.1% 75 -0.112 -0.010 21.9% 955 -0.074 19.86
unCLIP 49.1% 9g»  0.023 0.080 26.8% 963 -0.062 1.72
SD 14 (w=25) 253%¢g -0.060 -0.080 57.5% g5s  0.033 -5.09
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Table 3: Synset-level Spearman rank correlations of metric differences and human preferences. The
subscript shows p-values for correlations. The best values in each category are in bold.

Model Caption similarity Sample diversity
ISPt  CLIPScoret SCS?T  Inception Score 1

Latent Diffusion  0.41 (¢ -0.63 .00 0.52 00 0.33 904

unCLIP 0.63 0.00 -0.10 0.53 0.44 0.00 0.38 0.02

SD (w = 2.5) 0.63 (.00 0.59 g.00 0.40 o1 0.38 902

Next, we compute rank correlations between synset metric differences and annotator preferences in
Table [3]to measure detailed agreement. Unlike CLIPScore and Inception Score (used here due to a
lack of references for FID), both ISP and SCS have moderate yet statistically significant correlation
with human preference and thus are better for granular evaluation.

4.4 IMPACT OF THE NUMBER OF DIFFUSION STEPS

When evaluating machine learning models, one needs to balance the metric computation time and
the accuracy of measurement. In case of diffusion models, this can be easily done by adjusting the
number of steps in the reverse diffusion process: fewer steps generally lead to lower image quality. In
this experiment, we aim to determine the optimal number of steps that would be necessary for ISP
and SCS. Specifically, we compute these two metrics on Latent Diffusion and Stable Diffusion v1.4
with the number of steps 7" from the following set: {5, 10, 15, 25, 50, 75, 100}.

033 7 0.26 1o T——— —a
ol i n —— SD v1.4
@ 0.26 S 0.22 4 LDM
0.19 14 0.18
T T T T T T T T
0 25 50 75 100 0 25 50 75 100
Number of steps Number of steps

Figure 2: ISP and SCS values depending on the number of diffusion steps.

Figure [2| displays the outcome of this experiment: we find that both ISP and SCS are unstable when
the number of steps is less than 25, which is expected, because the quality of images deteriorates
when 7' is too low (Salimans & Ho||2022)). Increasing the number of diffusion steps beyond this point,
however, has little to no effect on the results. We also note that, unlike In-Subtree Probability, Subtree
Coverage Score increases at small values of 7. We attribute this to the fact that SCS measures the
diversity of classifier predictions, which might be high for out-of-distribution inputs or images with
excessive noise.

4.5 IMPACT OF CLASSIFIER-FREE GUIDANCE

As we discussed in Section 2] classifier-free guidance is a technique that allows to trade off sample
precision for diversity. To study the influence of the guidance weight on our metrics, we repeat the
experiments of Sectionfor all models using the w values of {1.0, 1.5, 2.0, 2.5, 5.0, 7.5, 10.0}.

Our findings are shown in Figure[3} as anticipated, higher guidance leads to better precision (indicated
by higher ISP) and lower guidance leads to more diverse samples (as indicated by higher SCS). We
note that excessively high or low guidance values may result in both lower SCS and lower ISP, which
hints at the presence of generation artifacts. We also observe that the ranking of models in Table|[T]
agrees with the relative positions of Pareto frontiers obtained in this experiment: this means that it is
possible to use our metrics with different guidance scales depending on the application and expect
similar results. Intuitively, hypernymy knowledge is a skill that is independent of high-fidelity image
generation ability, which is consistent with the results we obtain here.
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Figure 3: Results of evaluation with different guidance scales.
5 ANALYSIS

5.1 FINDING UNKNOWN CONCEPTS

Using In-Subtree Probability, it is easy to determine which concepts are drawn poorly by the model
by taking synsets with low values of this metric. To demonstrate this use case, we select synsets
that are among the lowest ones in terms of ISP across different models. More illustrative synsets are
displayed in Figure[4] and a random selection of synsets is presented in Figure [IT]of Appendix D]

GLIDE LDM SD v1.4 SD v2.0 unCLIP
(0.0010) (0.0009) (0.0010) (0.0005) (0.0009)
_ —
optical
device
natural
depression
Py, &
hal 5
phalanger 'y
T
oscine -

Figure 4: Outputs for synsets with low ISP. Average model ISP for these synsets is in parentheses.

As we can see, our approach not only uncovers inherently unknown concepts (such as “phalanger”
or “oscine”), but also detects homonyms for which the models are only familiar with one meaning
(e.g., “convertible” or “landing”). Additionally, it identifies synsets where the models only recognize
some of its hyponyms (e.g., “contestant”). In some cases, the model generates a coherent output, but
the concept understanding is insufficient to achieve high ISP (e.g., “optical device”). We perform an
identical analysis with Subtree Coverage Score to find concepts with low diversity in Appendix [E]

5.2 GRANULAR COMPARISON OF MODELS

We can also compare two models in terms of how well they generate individual concepts. To do
this, we calculate the differences between ISP and SCS for each synset and rank synsets according
to the resulting differences. We present this analysis for Stable Diffusion 1.4 and Stable Diffusion
2.0 in Figure 5] Such comparison allows us to more easily understand the relative strengths and
weaknesses of each model with direct illustrations. For instance, we can see that the models are
almost always equal, and yet still have synsets with drastic metric differences. Apart from analyzing
model performance on specific concepts, it is also possible to evaluate them on entire synset subtrees,
which we discuss in Appendix [{|
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Figure 5: Per-synset comparison between Stable Diffusion v1.4 and Stable Diffusion v2.0. The
vertical axis denotes the differences of metrics between the former and the latter model.

5.3 RELATIONSHIP WITH TRAINING DATA

We hypothesize that poor representation of some concepts may depend on their frequency in the
training corpus. We analyze three popular multimodal datasets, LAION-400M (Schuhmann et al.|
2021), LAION-2B-en (Schuhmann et al., 2022) and COYO (Byeon et al.l |2022), counting the
number of times that each WordNet concept appeared in the text captions. These three datasets
have significant presence in the training data of the models we use: Latent Diffusion was trained
on LAION-400M, Stable Diffusion v1.4 was trained on LAION-2B-en and then finetuned, Stable
Diffusion v2.0 was trained on a superset of LAION-2B-en and then finetuned, and the unCLIP
variation we used was partially trained on COYO. After computing the frequencies, we measure the
Spearman rank correlation between the synset counts and the per-synset metrics of the models we
evaluate in our primary experiments.

Table 4: Spearman rank correlation between synset metrics and their frequency in the dataset. P-
values are in subscript, statistically significant results (p < 0.05) are in bold.

Model In-subtree Probability Subtree Coverage Score
LAION-400M LAION-2B COYO LAION-400M LAION-2B  COYO
GLIDE 0.19 0.00 0.18 0.00 0.16 0.00 0.28 0.00 0.29 0.00 0.29 0.00
LDM 0.29 0.00 0.27 0.00 0.24 0.00 0.15 0.00 0.16 0.00 0.17 0.00
SDvl.4 0.06 .15 0.04 o34 0.01 .81 0.00 0,15 0.01 o34 0.03 o581
SD v2.0 0.10 0.01 0.08 0.04 0.05 0.18 0.07 0.01 0.08 0.04 0.08 0.18
unCLIP 0.02 0.63 0.00 0.91 -0.02 0.61 0.04 0.63 0.05 0.91 0.08 0.61

As we can see from Tabled} the majority of correlations are not high in magnitude yet still significant,
which suggests that hypernymy understanding and concept knowledge cannot be attributed purely to
the frequency of specific synsets in training data. Weaker models also tend to have higher correlations,
whereas the results for stronger models are less pronounced. This difference might arise due to the
finetuning procedures on aesthetic images or simply higher capacity of better models. Alternatively,
the hyponymy performance of text-to-image models might arise purely from the semantic capabilities
of the part of the model that encodes the prompt. In Appendix |G| we provide results of evaluation for
the CLIP language encoder, showing that there is a high and significant correlation between average
hyponym embedding similarities and metric values for a given synset.

6 CONCLUSION

In this work, we introduce In-Subtree Probability and Subtree Coverage Score, two metrics for
evaluating the language understanding capabilities of text-to-image models. We validate these metrics
by comparing them to standard evaluation methods and human judgment. Through extensive analysis,
we demonstrate how ISP and SCS can provide a deeper understanding of text-to-image models and
their semantic abilities.

Future work might address the limitation of our approach connected to its reliance on WordNet
and ImageNet: these datasets do not contain the entire concept hierarchy, and therefore it might be
valuable to study data-driven hierarchies (such as the ones proposed by Desai et al., 2023) based on
the actual use cases of text-to-image models. Furthermore, models that explicitly leverage ImageNet
data (such as all models using the CLIP encoder) might have an unfair advantage due to a smaller
domain shift and thus obtain inflated ISP and SCS scores.
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ETHICS STATEMENT

Text-to-image models trained on large-scale web data are able to generate sensitive or offensive
content. We do not directly improve these capabilities of the models and, instead, offer a way to
more thoroughly monitor their performance, which could help decrease undesired behavior. We use
human annotators as part of our research. The workers were paid above the minimum wage in their
respective countries, please see Appendix |C|for details.

REPRODUCIBILITY STATEMENT

Our work makes the following efforts to ensure reproducibility: we release the code for our ex-
periments and analyses, we describe the setup of our experiments and hyperparameter choices in
Section[4.T] and we provide details on the human evaluation protocol in Sectiond.3]and Appendix [C]
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A CLASSIFIER CHOICE

Because our metrics fundamentally depend on the quality of the pretrained clasifier, we investigate
how choosing different classifiers impacts our results. Specifically, we compute ISP and SCS with
three different classifiers: ViT-B/16 (Dosovitskiy et al.,2020), ConvNeXt-B (Liu et al.,2022)) and
ResNet-50 (He et al.| [2016). The results can be seen in Table@ importantly, the values of synset
metrics have significant pairwise rank correlations for each specific model (see Table[6). We conclude
that while the exact values of ISP and SCS can differ significantly, all classifiers rank the models
(along with synsets within one model) in a similar way.

Table 5: Comparison of metric values for different classifiers.

Model ISPt SCS 1
ViT-B/16 ConvNeXt-B ResNet-50 ViT-B/16 ConvNeXt-B  ResNet-50
GLIDE 0.221 0.188 0.220 0.198 0.180 0.243
LDM 0.218 0.190 0.218 0.180 0.161 0.218
SDvl.4 0.329 0.277 0.349 0.258 0.221 0.272
SD v2.0 0.296 0.254 0.307 0.232 0.205 0.259
unCLIP 0.351 0.299 0.363 0.190 0.157 0.211
1.0 A y:
Table 6: Mean pairwise Spearman rank correlation 0.8
between synset metrics for three classifiers. All o
results are statistically significant (p < 0.05). g 0.6 7
=]
Q 9
2 0.4+ y 4
Model ISP SCS 0.2 - —h&— ConvNeXt-B
’ ResNet-50
GLIDE 0.98 0.89 - ViT-B/16
LDM 097 0.88 00— . o
SDvl.4 098 091 0.0 02 04 0.6 0.8 1.0
SDv2.0 098 091 Confidence

unCLIP 097 0.89

Figure 6: Calibration curves on the ImageNet vali-
dation set.

To select the best classifier, we compute the expected calibration error (ECE) and accuracy on the
ImageNet validation set for the three candidates and report the results in Table [/} We also plot the
calibration curves of all models in Figure[6] Notably, while ConvNeXt-B has the highest accuracy, it
is the most miscalibrated model, and therefore we use ViT-B/16 as the classifier for our metrics.

Table 7: Expected calibration error (ECE) and accuracy for the ImageNet validation set. ECE is
computed using 100 bins.

Classifier ECE| Accuracy 1
ViT-B/16 0.035 0.81
ConvNeXt-B  0.133 0.84
ResNet-50 0.036 0.76
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B METRIC STABILITY

Because our approach fundamentally depends on the number of generated samples per synset, we
investigate how changing this value affects the final metrics. Specifically, we conduct four separate
runs for the number of samples from 4 to 32 and measure the average metric values, as well as their
standard deviations. Figure[7] shows the results of this experiment: we find that both metrics are
stable across the analyzed setups with standard deviation rarely exceeding 1% of the average value.
We also note that Subtree Coverage Score increases with the number of samples, which is expected
for a diversity measure.

> 0.35 tH—t—t——t—t—a—i —e— LDM
Z 0.003 SDvi4
g 030 - = unCLIP
A~ 0.002
Q
£
é 0.25 0.001 A
= \—0\.
= C—o0—0—0—0—0—0—0
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
(0]
§ 0.25
P 0.002
&
- -
b 0.20 \‘\
S o
© 0.001
£ 0.15
o
=1
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4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Number of samples Number of samples

Figure 7: Metric values (left) and standard deviations (right) as a function of the number of generated
samples in each synset.

In addition, we analyze how different seeds impact the ranking of synset ISP and SCS within one
model in Table[§] We discover that different runs have high pairwise correlations (> 0.97 on average
for ISP and > 0.94 for SCS) and conclude that the metrics are also stable on a per-synset level.

Table 8: Mean pairwise Spearman’s rank correlation between synset metrics for four separate seeds.
All results are statistically significant with p < 0.05.

Model ISP SCS
GLIDE 0.975 0.955
Latent Diffusion 0.980 0.943

Stable Diffusion 1.4 0.983 0.947
Stable Diffusion 2.0 0.984 0.954
unCLIP 0.989 0.944

C HUMAN EVALUATION DETAILS

Our evaluations were conducted on samples from the following 20 synsets: frog, clock, oven, monkey,
knife, wolf, pan, boat, wheel, shark, whale, fruit, turtle, hat, vegetable, pot, flower, duck, chair, spider.
The synsets were chosen randomly among those with a distance to the closest leaf node no greater
than 2: this was done to eliminate overly abstract concepts for ease of interpretation by crowd workers.
We manually discarded words with different possible meanings, such as “rail”.
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Table 9: In-subtree probability for different subtrees of the ImageNet hierarchy. The highest value is
emboldened, and the second highest is underlined.

Subset GLIDE LDM SDvl4 SDv2.0 unCLIP Kandinsky2.1 IFXL SD XL

Vessel 0.282  0.497 0.512 0.578 0.584 0.532 0.513  0.541
Furniture ~ 0.267  0.333 0.481 0.384 0.436 0.403 0.508  0.516
Bird 0470  0.271 0.462 0.420 0.425 0.431 0499  0.531
Clothing 0.065  0.206 0.247 0.172 0.276 0.230 0.296  0.242
Lizard 0.346  0.175 0.289 0.263 0.295 0.296 0294 0401
Fruit 0492 0.374 0.438 0.329 0.452 0.469 0416  0.275
Full tree 0221  0.218 0.329 0.296 0.351 0.345 0.357  0.345

We provide task descriptions in Figures[8|and[9] and the evaluation interface is shown in Figure [I0]
The participants were paid $0.10 per one task, which is above the hourly minimum wage in their
geographical regions. We required that participants complete 5 manually labeled training tasks and
achieve an accuracy of more than 60% on them before starting the evaluation procedure.

The tasks were presented in groups of five. We included one control task in each group to filter
automatically generated responses. For text to caption similarity, the control tasks had one regular
image and one image generated from a different synset. For image diversity, control tasks had one
normal grid and one grid that consisted of four identical images. Participants who failed two control
tasks in a row were banned. We also included measures against fast responses.

D ADDITIONAL SYNSETS WITH LOW IN-SUBTREE PROBABILITY

In Figure we present randomly sampled concepts that were among the lowest 50 in terms of
average model ISP.

E FINDING CONCEPTS WITH LOW DIVERSITY

Similarly to the analysis of Section[5.1] it is also possible to find concepts that have low diversity
for the given model. Here we analyze Stable Diffusion 1.4 by selecting random concepts that have
low Subtree Coverage Score and plot them in[I2] Our findings are highly interpretable: for example,
“belgian sheepdog” has four varieties: “groenendael”, “malinois”, “tervuren” and “laekenois”, and
only the first two are parts of the ImageNet hierarchy. The model only draws the “groenendael”, and

thus the coverage score is very low.

F SUBTREE COMPARISON

Our approach makes it easy to evaluate models on a particular set of concepts by simply averaging
synset metrics over it. The hierarchical nature of the ImageNet tree also simplifies the process of
finding large sets of semantically connected words: one can simply take entire hyponym subtrees of
concepts of interest. We compare a wide range of models on an illustrative set of concept subtrees in
Tables [0]and[I0] Notably, model rankings on these sets significantly differ from metrics computed
over the entire hierarchy. This highlights the advantage of our method: we are able to go beyond
what a single metric value would give us.

G RELATIONSHIP WITH THE TEXTUAL ENCODER

Because the metric values for models vary across synsets, a natural question is whether the quality for
a given concept corresponds to the knowledge about this concept contained in the textual encoder of
the model. To verify this, we conduct a comparison of performance across synsets with the similarity
of each synset to its hyponyms, using the values of ISP and SCS for Stable Diffusion v1.4, which
uses CLIP ViT-L/14 text encoder for conditioning on its prompts.
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Table 10: Subtree Coverage Score for different subtrees of the ImageNet hierarchy. The highest value
is emboldened, and the second highest is underlined.

Subset GLIDE LDM SDvl4 SDv2.0 unCLIP Kandinsky2.1 IFXL SD XL

Vessel 0.188  0.183 0.267 0.205 0.187 0.115 0.077  0.150
Furniture  0.211  0.167 0.190 0.182 0.183 0.128 0.136  0.115
Bird 0.152  0.137 0.168 0.160 0.092 0.115 0.107  0.120
Clothing 0.090  0.160 0.193 0.148 0.139 0.119 0.114  0.155
Lizard 0.084  0.104 0.064 0.119 0.086 0.059 0.061 0.061
Fruit 0.203  0.158 0.218 0.240 0.205 0.146 0.119  0.139
Full Tree  0.198  0.180 0.258 0.232 0.190 0.164 0.158  0.196

More specifically, for each synset from the evaluation set, we obtain the CLIP text encoder embeddings
for this synset, as well as the embeddings for all its hyponyms contained in the set of ImageNet
classes. We exclude all other hyponyms to ensure a proper comparison with the ISP and SCS. After
that, we compute the average cosine similarity of each synset to its hyponyms and compute the
correlation of these similarities to ISP and SCS across a range of classifier-free guidance values.

Table 11: Spearman correlation of CLIP hyponym similarities with WordNet-based metrics for Stable
Diffusion 1.4. All results are statistically significant (p < 0.05).

Guidance In-Subtree Probability = Subtree Coverage Score

2.5 0.397 -0.139
5.0 0.405 -0.178
7.5 0.400 -0.186
10.0 0.393 -0.192

The results of this evaluation are available in Table [TT} As we can see, the cosine similarity of
synsets to their hyponyms significantly correlates with the In-Subtree Probability, which suggests a
connection between the knowledge of the hypernymy relationship of the encoder and the performance
of the full model according to this metric. On the other hand, Subtree Coverage Score displays a
negative correlation, which might be caused by more diverse subtrees with inaccurate representation
of the prompt having higher scores.

H COMPARISON OF SUBTREE COVERAGE SCORE AND AVERAGE ENTROPY

One common approach to estimating diversity is computing the entropy of class distribution. However,
it heavily relies on the assumption that all objects have distinct classes assigned to them. This is
not the case in our setup, because we utilize a pretrained classifier which may give any distribution
as output for a single object. If all generated images are nearly identical and they represent some
mixture between subtypes (for example, a blend between all dog breeds), the entropy of the average
distribution H(p,) is going to be extremely high, while the actual diversity is low. Therefore, we
penalize our diversity measure when the predicted objects do not belong to distinct classes by using
the Inception Score formulation. In Table[I2] we compare the correlation of human preference to
Subtree Coverage Score and average entropy, similarly to the setup of Section[d.3] We find that SCS
has a higher correlation and that Average Entropy does not provide statistically significant results for
unCLIP and Latent Diffusion, which supports our choice of metric inspired by the Inception Score.
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Model Subtree Coverage Score T  Average Entropy 1
Latent Diffusion 0.52 y.00 0.26 .02
unCLIP 0.44 0.00 0.21 0.18
SD (w = 2.5) 0.40 0.01 0.31 0.05

Table 12: Synset-level Spearman rank correlations of metric differences and human preferences. The
subscript shows p-values for correlations. The best values in each category are in bold.

Two neural networks tried to generate an image of an object given the text caption.
Please help us understand which image better matches the object given in the text.
How to answer the question:

For all comparisons we provide a text description from which these images were created. Text
description contains a reference to some object (e.g. “An image of a cat”). To answer the question,
we suggest using the following algorithm. For each generated image:

* First, read the text description (e.g. “An image of a cat”).
* If no images correspond to the object select option “equal”.

* If only one image corresponds to the object and another one does not: select the image that
corresponds to the text.

* If both images correspond to the text: it is up to you whether to select “equal” or to choose
the one that in your opinion corresponds to the text more precisely.

Figure 8: Text to caption similarity task description.
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Two neural networks tried to generate an image of an object given the text caption. We present to you
two grids of 4 generated images each.

Please help us understand which grid of images is more diverse.
What do we mean by diversity:

A grid is diverse if it has variation in the generated object. Some examples of variation include:
* Different animal species (e.g. a persian cat and a sphinx cat).
« Different subtypes of an object: (e.g. a race car, a sedan car).
* Different colors: (e.g. a black cat and a white cat).
* Different positions of the same object (e.g. a running human and a sitting human).

* Different details on the same object (e.g. a human wearing glasses and a human wearing a
monocle).

How to answer the question:

To answer the question, we suggest using the following algorithm. For each pair of grids:

* If only one grid has diverse images, and the other one has little variation: select the grid that
is diverse.

* If none of the grids has diverse images, and both of them have little variation: select “equal”.

* If both images have some level of diversity, it’s up to you whether to select: “equal” or to
choose the one that in your opinion has more diversity.

Figure 9: Diversity task description.

Instructions

Text description
Animage of a vegetable

Generated image A Generated image B

1) Which of the generated images better corresponds to the text?
1 A

2 B
3 Equal

Instructions

Generated grid A Generated grid B

vEe®
|

all=

1) Which of the grids has more diversity?
1

2 B
3 Equal

Figure 10: Screenshots from the evaluation interface. Top is caption similarity, bottom is diversity.
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GLIDE SD v1.4 SD v2.0 unCLIP
(0.0002) (0.0003) (0.0006) (0.0001)
lever D X
contestant
convertible |
[

landing E

Figure 11: Generated images of randomly selected synsets with low ISP. Average model ISP for these
synsets is presented in parenthesis.

wildcat
(0.022)

fox
(0.010)

Figure 12: Generated images of randomly selected synsets with low SCS for Stable Diffusion 1.4.
Synset SCS is presented in parenthesis.
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