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ABSTRACT

Knowledge distillation (KD) is a promising yet challenging model compression
technique that transfers rich learning representations from a well-performing but
cumbersome teacher model to a compact student model. Previous methods for
image super-resolution (SR) mostly are tailored to the specific teacher-student
architectures. And the potential for improvement is limited, which hinders their
wide applications. This work presents a novel KD framework for SR models,
the multi-granularity mixture of prior knowledge distillation (MiPKD), that is
universally applicable to a wide array of architectures at feature and block levels.
The teacher’s knowledge is effectively integrated with the student’s feature via the
Feature Prior Mixer, and the reconstructed feature propagates dynamically in the
training phase with the Block Prior Mixer. Extensive experiments demonstrate the
effectiveness of the proposed MiPKD method.

1 INTRODUCTION

Super-resolution (SR) is a fundamental yet challenging task in the field of computer vision (CV),
restoring high-resolution (HR) images from their low-resolution (LR) counterparts (Dong et al.,
2015; Liang et al., 2021; Chen et al., 2021). In the past decade, the convolutional neural network
(CNN) (Dong et al., 2014; Kim et al., 2016; Lim et al., 2017) and the Transformer (Chen et al., 2021;
Liang et al., 2021; Wang et al., 2022c; Zamir et al., 2022) have demonstrated exceptional success
for SR. However, it is impractical to directly deploy these models on resource-limited devices due
to their heavy computation overload (Zhang et al., 2021b). Consequently, there has been a growing
interest in model compression for SR models to facilitate their real-world applications.

Knowledge distillation, emerging as an effective model compression method, can significantly reduce
computation overload, facilitating the student by transferring dark knowledge from the well-performed
but cumbersome teacher model to the compact student model (Zhang et al., 2021a; Luo et al., 2021;
Hui et al., 2019; Lee et al., 2020). Compared with other model compression techniques, such as
quantization (Li et al., 2020; Hong et al., 2022; Ma et al., 2019), pruning (Wang et al., 2021a;b),
compact block design (Ahn et al., 2018; Song et al., 2021; Nie et al., 2021; Wang et al., 2022a),
and neural architecture search (NAS) (Zoph & Le, 2016; Wan et al., 2020; Ren et al., 2021), KD
is a widely recognized method that can be combined with these techniques to further improve the
compactness of the student model. KD for SR has also attracted wide attention recently and has
gained remarkable progress (Li et al., 2020; Lee et al., 2020; Zhang et al., 2021a; He et al., 2020;
Wang et al., 2021b). These methods can be roughly classified into the response-based KD and
the feature-based KD, the former uses the output of the teacher model to supervise the student
model, while the latter aligns the hidden representations between the teacher model and the student
model (Gou et al., 2021; Wang et al., 2021b; He et al., 2020).

Although previous KD methods show promising results in SR, several issues hinder their wide
applications. First, existing KD techniques for SR are tailored to specific teacher-student architectures.
They support network depth (Figure 1(a)) or network width (Figure 1(b)) compression (He et al.,
2020), and deteriorate the student dramatically when they are adopted into another setting. For
instance, FAKD (He et al., 2020) boosts the student model in depth compression but deteriorates the
student when applied to a width compression circumstance. CSD (Wang et al., 2021b) improves the
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Figure 1: The PSNR of student models on Urban100 testset under different compression settings. In
the depth compression (a), there are barely KD methods outperforming vanilla logits-KD. For width
compression (b), CSD performs well but only satisfies this setting. For compounded compression,
almost all KD underperforms training without KD.

student model significantly (Figure 1(b)) but is not compatible with depth compression in Figure 1
(a). It’s necessary to propose a more flexible KD framework which is closer to real-world application.
While few methods have discussed compounded compression on both depth and width dimensions,
which is a much more general but challenging scenario. The existing KD methods for SR and those
feature-based methods introduced from high-level CV, e.g. RKD (Park et al., 2019), AT (Zagoruyko &
Komodakis, 2016), and FitNet (Romero et al., 2014) hardly benefit the student model. Figure 1 shows
that the previous depth and channel distillation methods can just obtain a marginal performance gain
or even deteriorate the student in most cases. To alleivate these issues, in this paper, we present a novel
knowledge distillation framework for SR models, the multi-granularity mixture of prior knowledge
distillation (MiPKD), that is universally applicable to a wide array of teacher-student architectures
at feature and block levels. Specifically, the feature prior mixer dynamically combines priors from
the teacher and student models’ intermediate feature maps. Then its output enhanced feature map is
supervised by the teacher model’s feature map. The block prior mixer adopts a coarser-grained prior
mixture at the network block level that dynamically and stochastically switches the normal forward
propagation path to the teacher or the student. The output SR image of this ensembled sub-network is
supervised by the teacher’s output. In summary, the main contributions of this paper are as follows:

• We present MiPKD, a KD framework for efficient SR, transferring the teacher model’s prior
knowledge from both network width and depth levels. It’s flexible and applicable to a wide
array of teacher-student architectures.

• We propose the feature and block prior mixers to reduce the capacity disparity between
teacher and student models for better alignment. The former combines the feature maps in
a unified latent space, while the latter assembles dynamic combination of network blocks
from teacher and student models.

• Extensive experiments on various benchmarks show that the proposed MiPKD framework
significantly outperforms the previous arts.

2 RELATED WORK

Deep SISR Models. Deep neural networks (DNNs) have made significant strides for image
super-resolution (SR). Dong et al. (2014) introduced a convolutional neural network (CNN)
architecture comprised of just three CNN layers for SR task. This was further advanced by (Kim et al.,
2016) with the introduction of residual learning in the “Very Deep Super Resolution” (VDSR) model,
which greatly expanded the architecture. Building on this foundation, Lim et al. (2017) proposed
the “Enhanced Deep Super-Resolution Networks” (EDSR) model where the convolution layer is
replaced with a simpler design. Zhang et al. (2018) then proposed the Residual Channel Attention
Network (RCAN), which was much deeper than previous works. Recently, there has been a surge of
interest in utilizing Transformers for image restoration tasks. Liang et al. (2021) introduced the Swin
Transformer to low-level CV tasks, facilitating the deep feature extraction. Moreover, Zamir et al.
(2022) proposed Restormer, which features a multi-scale hierarchical architecture that efficiently
optimized the self-attention and MLP modules. Similarly, Wang et al. (2022c) introduced the Uformer
model, which utilizes a LeWin Transformer block tailored for image restoration tasks. Despite the
remarkable performance of both CNNs and Transformers in single image super-resolution (SISR),
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Figure 2: Framework of the MiPKD method. MiPKD utilizes the multi-granularity prior mixture
to constrain the KD process. At the k and (k + i)-th distillation position, the feature prior mixer
dynamically combines priors from the teacher and student model, and the block prior mixer adopts a
coarser-grained prior mixture at the network block level.

these approaches are often hindered by substantial memory requirements and computational overhead.

Efficient SISR. To improve the model efficiency, there have been various approaches to make the
SR model less redundant, such as neural architecture search (NAS) (Chu et al., 2021; Song et al.,
2020), pruning (Wang et al., 2021a;b), low-bit quantization (Ma et al., 2019; Li et al., 2020; Hong
et al., 2022), and compact net block design (Ahn et al., 2018; Song et al., 2021; Nie et al., 2021;
Wang et al., 2022a;c; Zamir et al., 2022). The strength of NAS manifests in searching the optimal
architecture but is time-consuming and computationally expensive due to the massive search space.
Afterwards, compact SR model designs have attracted rising attention and achieved remarkable
progress (Zhang et al., 2022; Hui et al., 2019; Ahn et al., 2018; Dong et al., 2016). ELAN, proposed
by Zhang et al. (2022), incorporates the GMSA module that effectively exploits long-range image
dependencies and achieves superior performance compared to transformer-based super-resolution
models while being much less complex. Pruning (Wang et al., 2021a;b) and quantization (Ma et al.,
2019; Li et al., 2020; Hong et al., 2022) are other two types of methods to remove model redundancy
by sparsity and low-bit quantization mappings. Despite the considerable progress made by these
lightweight networks, significant computational resources are still demanded.

Knowledge Distillation for SISR. Knowledge distillation is widely recognized as an effective neural
network compression technique that is able to significantly reduce the computation overload and
improve student’s capability by transferring dark knowledge from the large teacher model to the
lightweight student model (Gou et al., 2021; Yim et al., 2017; Hinton et al., 2015). Recently, several
attempts have also been made for image super-resolution knowledge distillation. Lee et al. (2020)
employ an trainable encoder-decoder network to perform information extraction, and use the statistics
computed from the scale maps of the decoder to distill student models. He et al. (2020) proposed
FAKD to distill the correlation information from the affinity matrix of feature maps. Wang et al.
(2021b) proposed CSD that incorporates self-distillation and contrastive learning by introducing extra
simply upsampled LR images as negative samples. However, none of the existing SRKD methods
have discussed how to customize a proper teacher for a student with limited capacity or whether
a stronger teacher consistently benefits the capacity-limited student. MTKDSR (Yao et al., 2022)
employed two teacher models with different SR objectives (PSNR, perceptual) to guide the student
model simultaneously. CrossKD (Fang et al., 2023) divides the teacher and student networks into two
segments that are interchanged and connected to perform forward propagation. Furthermore, existing
SRKD techniques for SR are tailored to specific teacher-student architectures, focusing on either
network depth (Wang et al., 2021b) or channel compression (He et al., 2020), which is infeasible for
practical compounded compression applications.
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3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Given a low-resolution input image ILR, the deep SR model F(·) aims to reconstruct the high-
resolution image ISR = F(ILR; Θ) with fine details and consistent content with corresponding
high-resolution image IHR, where Θ denotes the model parameters. The logits-based KD method
compels the student model FS to produce the same prediction as the teacher model

Llogits = Dlogits(I
S
SR, I

T
SR) (1)

where ISSR = FS(ILR; Θ
S) and ITSR = FT (ILR; Θ

T ) represent the output SR images of the student
and teacher models, and Dlogits is the loss function that measures the difference between two models’
outputs, e.g. the L1 or L2 loss function. Similarly, the feature-based KD methods aim to mimic
the rich implicit hidden representations between the teacher and the student, which also can be
represented by the feature distillation loss

Lfeat = Dfeat(Ts(FS
k ), Tt(FT

k )) (2)

where FS
k and FT

k denote the feature maps of the student model and the teacher model at the k-th
distillation position, respectively. Tt and Ts are the transformations applied on raw feature maps and
Dfeat is the loss function for feature distillation.

3.2 MIXTURE OF PRIOR KNOWLEDGE DISTILLATION

Inspired by MAE (He et al., 2022) that reconstructs the missing pixels from the masked input
patches, we proposed the prior knowledge mixing mechanism for KD on SR tasks in both feature
and block levels. The prior mixers are applied to the raw feature maps of the student and teacher
models in order to encode them into a unified latent space, in which the models’ prior knowledge
is mixed. Subsequently, the mixed latent feature map is decoded to its original space, enabling the
reconstruction of the enhanced feature map and the performance of distillation. While the purpose
of the MAE is to reconstruct the masked pixels, the encoder-decoder in the feature prior mixer
reconstructs the portion of the teacher model feature map that is replaced by the student’s. This allows
the student model’s intermediate representations to have a similar distribution to the teacher model’s.
The block prior mixer modulates the network’s capacity to process and represent information. This is
achieved by means of a dynamic combination of blocks, whereby the resulting fusion information
is transferred from the feature prior mixer to the enhanced network. The two granularity of prior
mixtures follows the common idea of prior mixing and propagation, which effectively reduces the
capacity disparity between the teacher and student.

Feature Prior Mixer. Figure 2 illustrates the hybrid prior knowledge framework at the feature level,
including the encoder modules for the teacher and student feature maps and the decoder module for
the fused latent representation. At the k-th feature distillation position, initially, the feature maps
of both the student model FS

k and teacher model FT
k are fed into the respective encoder models to

obtain the latent representations ZS
k , ZT

k ∈ RC×H×W in a unified latent space, where C,H,W are
the dimension of the feature maps. Subsequently, the encoded student and teacher feature maps are
fused in accordance with a pair of randomly generated complementary masks. And the decoder
reverts the fused feature map ZS

k to the enhanced feature map representation FE
k in the same space as

raw feature maps as

FE
k = Decoder(ZE

k ) = Decoder(ZS
k ⊙ (1− IM ) + ZT

k ⊙ (IM )), (3)

where IM ∈ {0, 1}C×H×W represents a random three-dimensional mask and ⊙ denotes the element-
wise product between matrices. The student’s feature map is combined with the teacher’s prior
knowledge with the above mixing mechanism to reduce the discrepancy between them at the feature
level. FE

k is utilized as an input to the subsequent block level prior mixer module. The feature
distillation loss LfeatF

k of Feature Prior Mixer is computed between FE
k and FT

k as

LfeatF
k = Dfeat(FE

k , FT
k ) (4)

Additionally, in order to enhance the reconstruction capability of the decoder and ensure the stability
of training, at the beginning of training, the auxiliary enhanced feature map F

′E
k is obtained by
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directly passing the teacher’s feature map to the teacher’s encoder and decoder without applying the
above masking and mixing strategy. The auxiliary “auto-encoder” loss Lae

k is computed as

Lae
k = Dfeat(F

′E
k , FT

k ). (5)

It requires the encoder and decoder to serve as an auto-encoder structure, ensuring the decoded
enhanced feature map is comparable with FT

k . The enhancement of the decoder contributes to the
overall effectiveness of the feature prior mixer module.

Block Prior Mixer. Existing feature-based distillation methods on SR tasks mostly align the feature
maps in the original representation space with Mean Absolute Error or Mean Square Error (MSE).
The semantic information among the teacher and student networks are differently distributed (Liu
et al., 2023). Solely aligning features at the present distillation node with the same magnitudes of
distance can lead the student model to learn entirely different information. To tackle this issue, we
propose to align the networks’ ability of processing and representing information by assembling a
dynamic combination of blocks and transmitting the fusion information from the Feature Prior Mixer
to the enhanced network.

To construct an enhanced network (Fblock
E ) at the distillation position k, according to the Block Prior

Mixing Option Rk randomly sampled from {0, 1}, the output of Feature Prior Mixer FE
k is forwarding

propagated to the student network (Rk = 1) or teacher network (Rk = 0), as the propagation path
exemplified in Figure 2. The BS(k)

and BT(k)
represent the block from student and teacher models

after the current position respectively. BO(k)
represents the mixed block at the current position based

on Rk, which can be computed as

BO(k)
= RkBS(k)

+ (1− Rk)BT(k)
. (6)

Based on this process, denote the output of such concatenated network as IEk

SR,

IEk

SR = Fblock
E (ILR; Θ

S) = BO(k)
(FE

k ) (7)

The feature knowledge distillation loss based on Block Prior Mixer is derived through the combined
network’s final output with the teacher model’s output:

LfeatB
k = D(IEk

SR, I
T
SR) (8)

In addition, LfeatB
k = 0 if the k-th feature distillation position is dropped out. It is anticipated that

there will be an attainment of interchangeability between the corresponding teacher and student
network blocks, allowing the student to inherit and replicate the capabilities of the teacher model.

The Whole Pipeline. Compared to conventional feature-based KD methods, MiPKD uses the
enhanced feature maps and networks to impose more constraints on the student model. In general,
for each feature distillation position k, based on the pair of FT

k and FS
k as the input of Feature

Prior Mixer, the random masked feature maps are fused in a unified latent space. And the LfeatF
k

is computed to align the enhanced feature map FE
k with the initial teacher feature map in the same

representation space. Subsequently, the randomly sampled Rk determines the propagation option of
FE

k , the networks’ blocks are randomly exchanged and the knowledge is transmitted from the teacher
to student model, as shown in Figure 2. Besides logits-KD loss Llogits, reconstruction loss Lrec, the
feature losses in block and feature levels are accumulated:

Ltotal = λkdLlogits + λrecLrec +
∑
k≤K

(λfeatLfeatF
k + λblockLfeatB

k ). (9)

where λkd, λrec, λfeat, λblock represent the weights for logits-kd loss, reconstruction loss, feature
prior mixer and block prior mixer respectively. The teacher’s prior knowledge is effectively transferred
through this multi-level distillation process.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUPS

Backbones and Evaluation. We use EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018), and
SwinIR (Liang et al., 2021) as backbone models to verify the effectiveness of MiPKD and compare it
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Table 1: SR model specifications on ×4 experimental settings. The #Params, FLOPs and FPS are
calculated with a 256×256×3 input image and FPS is computed on a single NVIDIA V100 GPU.

Model Role Network FLOPs (G) #Params (M) FPS
Channel Block Group

EDSR
Teacher 256 32 - 3293.35 43.09 3.2

Student 1 64 32 - 207.28 2.70 33.958
Student 2 64 16 - 129.97 (25.3×) 1.52 (28.3×) 53.3

RCAN Teacher 64 20 10 1044.03 15.59 6.3
Student 64 6 10 366.98 5.17 12.3

SwinIR Teacher 180 6 - 861.27 11.90 0.459
Student 60 4 - 121.48 1.24 0.874

with prior KD methods on ×2, ×3, and ×4 super-resolving scales. The SR network specifications
and some statistics are presented in Table 1, including the number of channels, residual blocks and
residual groups (RCAN), number of parameters (#Params), FLOPs, and inference speed (frame per
second, FPS).

Table 2: Quantitative comparison of distilling EDSR (Lim et al., 2017) on the benchmark datasets. In
these experiments, the EDSR student model of c64b32 is distilled by the teacher model of c256b32.

Scale Method Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x2

Teacher 38.20/0.9606 34.02/0.9204 32.37/0.9018 33.10/0.9363
Scratch 38.00/0.9605 33.57/0.9171 32.17/0.8996 31.96/0.9268
KD 38.04/0.9606 33.58/0.9172 32.19/0.8998 31.98/0.9269
RKD 38.03/0.9606 33.57/0.9173 32.18/0.8998 31.96/0.9270
AT 37.96/0.9603 33.48/0.9167 32.12/0.8990 31.71/0.9241
FitNet 37.59/0.9589 33.09/0.9136 31.79/0.8953 30.46/0.9111
FAKD 37.99/0.9606 33.60/0.9173 32.19/0.8998 32.04/0.9275
CSD 38.06/0.9607 33.65/0.9179 32.22/0.9004 32.26/0.9300
MipKD 38.18/0.9611 33.82/0.9197 32.30/0.9011 32.56/0.9323

x3

Teacher 34.76/0.929 30.66/0.8481 29.32/0.8104 29.02/0.8685
Scratch 34.39/0.927 30.32/0.8417 29.08/0.8046 27.99/0.8489
KD 34.43/0.9273 30.34/0.8422 29.10/0.8050 28.00/0.8491
RKD 34.43/0.9274 30.33/0.8423 29.09/0.8051 27.96/0.8493
AT 34.29/0.9262 30.26/0.8406 29.03/0.8035 27.76/0.8443
FitNet 33.35/0.9178 29.71/0.8323 28.62/0.7949 26.61/0.8167
FAKD 34.39/0.9272 30.34/0.8426 29.10/0.8052 28.07/0.8511
CSD 34.45/0.9275 30.32/0.8430 29.11/0.8061 28.21/0.8549
MipKD 34.60/0.9288 30.50/0.8454 29.21/0.8079 28.52/0.8592

x4

Teacher 32.65/0.9005 28.95/0.7903 27.81/0.744 26.87/0.8086
Scratch 32.29/0.8965 28.68/0.7840 27.64/0.7380 26.21/0.7893
KD 32.30/0.8965 28.70/0.7842 27.64/0.7382 26.21/0.7897
RKD 32.30/0.8965 28.69/0.7842 27.64/0.7383 26.20/0.7899
AT 32.22/0.8952 28.63/0.7825 27.59/0.7365 25.97/0.7825
FitNet 31.65/0.8873 28.33/0.7768 27.38/0.7309 25.40/0.7637
FAKD 32.27/0.8960 28.65/0.7836 27.62/0.7379 26.18/0.7895
CSD 32.34/0.8974 28.72/0.7856 27.68/0.7396 26.34/0.7948
MipKD 32.45/0.8980 28.79/0.7865 27.71/0.7400 26.46/0.7968

We compare MiPKD with the baselines: train from scratch, Logits-KD (Hinton et al., 2015),
RKD (Park et al., 2019), AT (Zagoruyko & Komodakis, 2016), FitNet (Romero et al., 2014),
FAKD (He et al., 2020), CrossKD (Fang et al., 2023), and CSD (Wang et al., 2021b). Since the
CSD is a self-distillation method in the channel-spliting manner, it’s not applicable to the RCAN
experiments of network depth distillation. The results for ×4 EDSR trained with CSD are obtained by
testing the provided checkpoint, and the ×2 and ×3 ones are reproduced by us since the checkpoints
are unavailable. To evaluate quality of SR model’s output, we calculate the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) on the Y channel of the YCbCr color space.
We use 800 images from DIV2K (Timofte et al., 2017) for training and evaluate SR models on four
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Table 3: Quantitative comparison on RCAN (Zhang et al., 2018) architecture on the benchmark
datasets. In these experiments, the RCAN student model of c64b6 is distilled by the teacher model of
c64b20.

Scale Method Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x2

Teacher 38.27/0.9614 34.13/0.9216 32.41/0.9027 33.34/0.9384
Scratch 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327
KD 38.17/0.9611 33.83/0.9197 32.29/0.9010 32.67/0.9329
RKD 38.18/0.9612 33.78/0.9191 32.29/0.9011 32.70/0.9330
AT 38.13/0.9610 33.70/0.9187 32.25/0.9005 32.48/0.9313
FitNet 37.97/0.9602 33.57/0.9174 32.19/0.8999 32.06/0.9279
FAKD 38.17/0.9612 33.83/0.9199 32.29/0.9011 32.65/0.9330
CrossKD 38.18/0.9612 33.82/0.9195 32.29/0.9012 32.69/0.9331
MiPKD 38.26/0.9614 34.02/0.9210 32.35/0.9017 32.98/0.9357

x3

Teacher 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702
Scratch 34.61/0.9288 30.45/0.8444 29.18/0.8074 28.59/0.8610
KD 34.61/0.9291 30.47/0.8447 29.21/0.8080 28.62/0.8612
RKD 34.67/0.9292 30.48/0.8451 29.21/0.8080 28.60/0.8610
AT 34.55/0.9287 30.43/0.8438 29.17/0.8070 28.43/0.8577
FitNet 34.21/0.9248 30.20/0.8399 29.05/0.8044 27.89/0.8472
FAKD 34.63/0.9290 30.51/0.8453 29.21/0.8079 28.62/0.8612
CrossKD 34.66/0.9291 30.50/0.8448 29.22/0.8082 28.64/0.8617
MiPKD 34.76/0.9299 30.61/0.8467 29.28/0.8090 28.89/0.8658

x4

Teacher 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087
Scratch 32.38/0.8971 28.69/0.7842 27.63/0.7379 26.36/0.7947
KD 32.45/0.8980 28.76/0.7860 27.67/0.7400 26.49/0.7982
RKD 32.39/0.8974 28.74/0.7856 27.67/0.7399 26.47/0.7981
AT 32.31/0.8967 28.69/0.7839 27.64/0.7385 26.29/0.7927
FitNet 31.99/0.8899 28.50/0.7789 27.55/0.7353 25.90/0.7791
FAKD 32.46/0.8980 28.77/0.7860 27.68/0.7400 26.50/0.7980
CrossKD 32.45/0.8984 28.81/0.7866 27.69/0.7406 26.53/0.7992
MiPKD 32.58/0.8998 28.84/0.7875 27.75/0.7418 26.66/0.8029

benchmark datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012), BSD100 (Martin
et al., 2001), and Urban100 (Huang et al., 2015).

Training Details. All models are trained using Adam (Kingma & Ba, 2014) optimizer with β1 = 0.9,
β2 = 0.99 and ϵ = 10−8, with a batch size of 16 and a total of 2.5× 105 updates. The initial learning
rate is set to 10−4 and is decayed by a factor of 10 at every 105 iteration. We set the loss weights λ1

and λ2 to 10 and 1, respectively. The proposed MiPKD is implemented by the BasicSR (Wang et al.,
2022b) and PyTorch (Paszke et al., 2019) framework and train them using 4 NVIDIA V100 GPUs.
The LR images used for training and evaluation were obtained by down-sampling the HR images
with the bicubic degradation method. During training, the input images are randomly cropped into
48× 48 patches and augmented with random horizontal/vertical flips and rotations.

4.2 RESULTS AND COMPARISON

Comparison with Baseline Methods. Quantitative results for training EDSR (Lim et al., 2017),
RCAN (Zhang et al., 2018), and SwinIR (Liang et al., 2021) of three SR scales are presented
in Table 2, Table 3 and Table 4, from which we can draw the following conclusions:

(1) Existing KD methods for SR have limited effects, some may even deteriorate the student model.
The KD methods originally designed for high-level CV tasks (RKD, AT, FitNet), though applicable,
hardly improve the SR models over training from scratch. For instance, AT and FitNet underperform
the vanilla student models trained without KD among all settings.

(2) The presented MiPKD outperforms existing KD methods baselines for model compression. For
example, MiPKD outperforms the vanilla student in the most challenging dataset Urban100 in
EDSR×2, ×3 and ×4 settings by 0.6 dB, 0.53 dB, 0.25 dB in terms of PSNR, respectively as Table 2
shown. Compared with trainning from scratch, 0.35 dB, 0.30 dB, 0.30 dB in terms of PSNR are
improved, respectively, on Urban100 dataset in RCAN ×2, ×3, and ×4 settings as Table 3 shown.
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Table 4: Quantitative comparison of distilling SwinIR (Liang et al., 2021) on the benchmark datasets.

Scale Method Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

2

Teacher 38.36 0.9620 34.14 0.9227 32.45 0.9030 33.40 0.9394
Scratch 38.00 0.9607 33.56 0.9178 32.19 0.9000 32.05 0.9279

KD 38.04 0.9608 33.61 0.9184 32.22 0.9003 32.09 0.9282
MipKD 38.14 0.9611 33.76 0.9194 32.29 0.9011 32.46 0.9313

3

Teacher 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744
Scratch 34.41 0.9273 30.43 0.8437 29.12 0.8062 28.20 0.8537

KD 34.44 0.9275 30.45 0.8443 29.14 0.8066 28.23 0.8545
MipKD 34.53 0.9283 30.52 0.8456 29.19 0.8079 28.47 0.8591

4

Teacher 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164
Scratch 32.31 0.8955 28.67 0.7833 27.61 0.7379 26.15 0.7884

KD 32.27 0.8954 28.67 0.7833 27.62 0.7380 26.15 0.7887
FitNet 32.08 0.8925 28.51 0.7800 27.53 0.7354 25.80 0.7779
FAKD 32.06 0.8926 28.52 0.7800 27.53 0.7354 25.81 0.7780

MipKD 32.39 0.8971 28.76 0.7854 27.68 0.7403 26.37 0.7956

(3) The MiPKD is applicable to the transformer network and able to boost the model’s performance.
Conventional feature-based KD methods are not directly applicable to the Transformer-type networks,
so we compare MiPKD with training from scratch and the response-based KD (Hinton et al., 2015)
in the experiments. The results in Table 4 indicate that the MiPKD could improve the transformer
SR model by a large margin, further emphasizing its superior performance.

Table 5: Training expenses of KD methods for distilling ×2 EDSR model.
KD methods Logits-KD FitNet FAKD CSD MiPKD

Time (s/step) 0.49 0.56 0.56 1.18 0.87
Urban100 PSNR 31.98 30.46 32.04 32.26 32.56

Visual Comparison. Figure 3 compares the output of ×4 EDSR models from the Urban100 dataset
with various KD methods. For instance, for img_047, MiPKD can reconstruct much better fine
details than all baseline works. FAKD are prone to artifacts in the left-bottom of the building and the
vanilla student, Logits-KD, FAKD, and FitNet are over-blurred. In contrast, MiPKD alleviates the
blurring artifacts and reconstructs much more structural details. Similar observations can be found
in other cases, e.g. the characters and anisotropic textures in img_073. These visual comparisons
are consistent with the quantitative results, demonstrating the superiority of MiPKD. More visual
comparisons can be found in the supplementary materials.

Comparison of training costs: As shown in Table 5, MiPKD significantly outperforms Logits-KD
by 0.12dB PNSR, while with an increase of only 0.38s training time per step. It indicates that our
MiPKD achieves the best trade-off between performance and training time.

5 ABLATION STUDY

To demonstrate the effectiveness of the proposed MiPKD scheme, we conduct detailed ablation
studies on ×multiple scale RCAN and EDSR networks.

Ablation on the feature and block prior mixers for MipKD. There are two fine-grained prior mixer
modules in MiPKD, namely, the feature and block prior mixers. Their individual effects are ablated
in Table 6. The result shows that employing the feature prior mixers leads to significant performance
improvement and the block prior mixer based on it could further boost the student model.

Ablation on the MiPKD feature prior mixer module. In the feature prior mixer module of MiPKD,
the teacher and student models’ feature maps are mapped to the latent space through corresponding
encoders, then randomly mixed and stitched. We present an analysis on the encoders in Table 7,
comparing MiPKD with 1) removing the encoders, aligning and utilizing the teacher’s feature map
directly and 2) sharing encoder between the teacher and student model. Removing the encoders
would substantially deteriorate the student model’s performance. Due to the different distribution of
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Figure 3: Visual comparison (×4) with existing SRKD methods from Urban100. The numbers in the
bracket denote the PSNR of the presented patches.

Table 6: Ablation on the two prior mixers. The RCAN
student model of c32b5g5 is distilled by the teacher
model of c32b6g10.

Feature Prior
Mixer

Block Prior
Mixer

Urban100

PSNR / SSIM

✗ ✗ 25.60 / 0.7700
✓ ✗ 25.63 / 0.7711
✗ ✓ 25.65 / 0.7717
✓ ✓ 25.69 / 0.7728

Table 7: Ablation on the encoder type
in MiPKD feature mixer module without
block prior mixer module.

Encoder Type Urban100

PSNR SSIM

No Encoder 24.51 0.7149
Shared Encoder 25.61 0.7704
Separate Encoder 25.63 0.7711

teacher and student models’ feature maps, a shared encoder cannot effectively map them to the same
latent space, leading to noisy mixtures. Assigning separate encoders to the teacher and student models
yields the best results, indicating that mixing feature priors in the same latent space is necessary.

Table 8 compares the encoder and decoder of different network architectures with similar sizes. The
convolutional neural network can better project the representations to the unified latent space, as the
result shows that CNN exhibits better performance than the MLP encoder/decoder.

Ablation on the “auto-encoder” loss Lae
k . We compared the MiPKD with and without Lae

k
in Table 9. The results indicate that the auxiliary “auto-encoder” loss makes the mapping between
the raw feature maps’ space and the latent space more accurate, leading to better student model
performance.

9
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Table 8: Comparison of different encoder and de-
coder network settings.

Encoder/Decoder Type Urban100

PSNR/SSIM

MLP 26.42/0.7964
Conv 26.66/0.8029

Table 9: Ablation study on the auto-encoder
loss Lae

k .

Auto-encoder Loss Urban100

PSNR/SSIM

✗ 26.42/0.7971
✓ 26.66/0.8029

Table 10: Ablation analysis on the masking strategy for feature prior mixture.

masking strategy Urban100
PSNR/SSIM

Cosine 25.62/0.7711
Grid mask 25.61/0.7669
CKA 25.63/0.7713
Random 25.69/0.7728

Besides, the mask generation strategies are compared in Table 10. Compared with 1) masking
according to the Cosine or CKA similarity between teacher and student models’ feature maps or
2) generating the complementary pairs of feature map by fixed grid pattern, the random 3D-mask
exhibits the best performance and least calculation consumption. A more flexible, generalizable
strategy is applied in the prior mixer module.

Ablation on the Loss weights setting of feature and block mixers. The impact of various weights
of feature mixers loss and block mixer loss is evaluated as Table 11 shown, where λrec, λkd, λfeat,
λblock represent the weights for reconstruction loss, logits-kd loss, feature prior mixer and block prior
mixer respectively. Considering the initial fluctuation caused by mixing the block from networks,
λblock is applied since 0.1 presented the best student performance as the Table 9 shown. In addition,
the reconstruction loss of auto-encoder in the feature prior mixer is introduced in the initial stage of
training. As the reconstruction ability of decoder improves, it’s beneficial for the prior mixer to fuse
dark knowledge and restore the enhanced feature map efficiently.

Table 11: Ablation analysis on the weights of different losses

λrec λkd λfeat λblock
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

1 1 1 1 32.46/0.8972 28.75/0.7851 27.68/0.7399 26.53/0.7976
1 1 0.1 1 32.34/0.8970 28.73/0.7849 27.67/0.7394 26.47/0.7960
1 1 0.1 0.1 32.42/0.8980 28.75/0.7857 27.68/0.7399 26.51/0.7988
1 1 1 0.1 32.58/0.8998 28.84/0.7875 27.75/0.7418 26.66/0.8029

6 CONCLUSION

In this paper, we proposed the prior mixing mechanism for KD on SR in feature and block levels. The
teacher’s knowledge is effectively integrated with the student’s feature via the Feature Prior Mixer,
and the reconstructed feature propagates stochastically by the Block Prior Mixer. The masked feature
maps are fused in a unified latent space, and the mixed prior narrows the optimization space. The
Block Prior Mixer propagates the reconstructed feature and re-ensembles the networks to constrain
the student model. The two granularity of the prior mixtures follows the common idea of prior mixing
and propagation, which effectively reduces the capacity disparity between the teacher and the student.
Extensive experiments demonstrate the effectiveness and superiority of the proposed MiPKD method.
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