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ABSTRACT

We present a notion of geometry encoding suitable for machine learning-based
numerical simulation. In particular, we delineate how this notion of encoding is
different than other encoding algorithms commonly used in other disciplines such
as computer vision and computer graphics. We also present a model comprised
of multiple neural networks including a processor, a compressor and an evaluator.
These parts each satisfy a particular requirement of our encoding. We compare
our encoding model with the analogous models in the literature.

1 INTRODUCTION

Applications of machine learning for accelerating and replacing numerical simulations have received
significant traction over the past few years. Various physics-based (Raissi & Karniadakis}, 2018}, [Wu
et al., [2018; [Raissi et al., [2019; Rao et al., [2020; |Gao et al., [2020; (Qian et al., 2020), data-driven
(Morton et al.,|2018; [Thuerey et al.,2020; |Pfaff et al.,2020)) as well as hybrid algorithms (Xue et al.,
2020; |[Ranade et al., 2021} [Kochkov et al.,|2021)) are proposed for this purpose. The existing studies
are primarily tested on simple geometries and academic benchmark problems; e.g. flow over a cylin-
der or sphere. While these problems play a fundamental role in developing intuition and shed light
on how machine learning can assist numerical simulations, they are significantly simpler than prob-
lems we encounter in real-life applications, and fail to generalize to different geometries even with
same underlying physical problem. Here, we aim to move towards achieving machine learning-
based algorithms that are capable of solving partial differential equation over complex domains,
which generalize across various complex geometries and assemblies. More specifically, we intro-
duce the notion geometry encoding for numerical simulations: a methodology to encode complex
geometric objects using neural networks to create a compressed spatial representation. This notion
of geometry encoding can be used for i) solving partial differential equation using machine learning,
ii) discretization and meshing the geometry, and iii) a priori computational resource prediction (e.g.
for cloud computing).

Geometrical objects are ubiquitous in a wide range of disciplines including computer vision and
perception, and computer graphics. Hence, various learning and non-learning based algorithms for
geometry representation and geometry encoding are present in the literature. However, geometry
encoding for numerical simulations demands a specific set of requirements. As an example, in
computer vision, one may only care about the boundaries of the object present in geometry, and
therefore, encoding is more focused on resolving the boundary of objects. However, in the case
a numerical simulation, a geometry encoding algorithm has to be accurate not only at the object
boundary, but also the entire domain. In §I.T|we lay down the specific feature of geometry encoding
for numerical simulations.

1.1 REQUIREMENTS OF GEOMETRY ENCODING FOR NUMERICAL SIMULATIONS

An encoded geometry for the purpose of numerical simulations should have the following features:
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1.1.1 GLOBAL ACCURACY OF ENCODING

As explained earlier, for the purpose of numerical simulations, geometry encoding not only concerns
the objects boundaries, but also their respective distances, as well as their distance from the domain
boundaries. This differentiates our notion of geometry encoding from those commonly used in
computer vision and computer graphics (Eslami et al.| 2018; Mescheder et al.l 2019} [Park et al.,
2019; |(Gropp et al.l 2020), where object boundaries receive significantly more attention. As an
example, consider the flow over an sphere; one of the most iconic example of solving Navier-Stokes
equations. Geometry encoding needs to accurately resolve not only the boundaries of the sphere, but
also the boundaries of the entire domain (inlets, outlets or walls), where fluid boundary conditions
and source terms may be specified.

1.1.2 COMPRESSED ENCODING

A popular approach for numerically solving partial differential equations using machine learning is
to reduce the problem dimensionality and to process in an encoded space, where the operations are
faster, and the training is simpler (Morton et al., 2018; (Carlberg et al., [2019; He & Pathakl 2020;
Ranade et al.|[2021). Compressing the geometry from a sparse high-dimensional representation to a
lower-dimensional dense representation will lead to faster learning and more robust generalization.
In addition to numerical simulations, a condensed representation of geometry can be useful for
tasks such as predicting computational resources needed for a particular simulation (e.g. for cloud
computing). For these reasons, the encoded geometry should be represented in a lower dimensional
manifold. Note that compression should take place without losing the accuracy of representation.

1.1.3 CONTINUITY AND DIFFERENTIABILITY OF ENCODING

Many industrial, environmental or biological processes can be accurately modeled with partial dif-
ferential equations (PDE). In fact, that is why the ability to solve these equations have been pursued
for many decades. In particular, accurate and rapid PDE solvers can be used for design purposes,
where several design parameters can change, often times leading to a computationally infeasible de-
sign space. Gradient-based optimization algorithms can be utilized to efficiently search the design
space (Morton et al.| 2018} |[Remelli et al.,[2020). Therefore, an ideal geometry encoding should be
continuous and differentiable with respect to the parameters of geometry (e.g. coordinate variables).
This feature enables us to further use machine learning to identify optimal designs.

1.1.4 VARIABLE ENCODING/DECODING RESOLUTION

Geometrical objects in the context of numerical simulation may have different levels of complexity.
Instead of encoding all input geometries to a fixed-size encoding, an ideal geometry encoder for
numerical simulation may use a variable size encoding depending on the complexity of the geometry.
In addition, on the decoding side, depending on the applications, the geometry encoder should be
capable of reconstructing the geometry with a variable resolution.

2 SIGNED DISTANCE FIELD AS A GEOMETRY ENCODING

Over the past few years, several studies have focused on identifying memory-efficient, yet expres-
sive, means to represent 2D and 3D geometries. Continuous implicit representation has particularly
received significant attention (Mescheder et al.| [2019; [Park et al., |2019; Duan et al., [2020; (Chibane
et al., 2020; [Sitzmann et al., 2020). As pointed out earlier in a continuous representation can
also be used for optimization purposes (Remelli et al.l 2020).

In this paper, we argue the signed distance field (SDF) can be used as a geometry encoder for
numerical simulation with the requirements specified in Consider a geometry that contains
one or multiple objects. The signed distance of any point within the geometry is defined as the
distance between that point and the boundary of the closest object.

Below, we describe our model of a geometry encoder for numerical simulations. We assume the
geometry files are provided as binary 2D images. We discuss the limitation of this assumption in
our concluding remarks §4} Our geometry encoding model is comprised of three parts: i) processor;
ii) compressor and iii) evaluator:
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Figure 1: Comparison of our work (processor and compressor models) against MetaSDF
2020) on MNIST dataset. White dashed lines show the iso-line contours. The compressor
generates an 8x smaller encoding compared to the processor. The bottom row shows absolute mean
error.

2.1 PROCESSOR

The processor consists of a U-net (Ronneberger et al., |2015) configuration. We used strided con-
volutional layers to down-sample the input image resolution, while expanding the feature channels.
The up-sampling is performed using transposed convolutional layers (see Fig. 2). The input to the
processor is the binary images, and the output is the SDF. The role of the processor is to accu-
rately perform the transition from binary pixel data to SDF, satisfying one of the requirements of the
geometry encoder.

An important aspect of the processor configuration is the skip connections that connect earlier layers
before the latent code to later layers of the network after the latent code. In our experience, we were
not able to train a processor with reasonable accuracy without the skip connections. The presence of
the skip connection means that the processor is not able to provide a compressed encoding, because
the intermediate values before the latent code (the skip connections) are necessary for decoding the
encoded geometry. Therefore, the role of compressed encoding is assigned to the second part: the
COMPIessor.

2.2 COMPRESSOR

The second part of the geometry encoding is the compressor network which receives the output of
the processor as input, and returns a true compressed encoding. The compressor has a structure
similar to the processor, except with no skip connection (i.e. a convolutional autoencoder). In our
experiments presented in §3] the compressor compresses the input by a factor of 8, with insignificant
loss of accuracy. We believe more efficient compressors can be trained if the hyper-parameters and
model configurations are optimized. We did not pursue this route.
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Table 1: Comparison of MetaSDF with the processor and compressor networks on MNIST dataset
over 500 samples of a validation set. The compressor generates an 8x smaller encoding compared
to the processor.

MetaSDF Processor ~ Compressor

L 43x1073 43x107* 14x1073
Ly 36x107° 54x1077 4.7x10°6
Loo 78x1072 39x1072 5.0x1072

2.3 EVALUATOR

In order for the geometry encoder to be used in an optimization scheme, we need to specify an
evaluator. The role of the evaluator is to interpolate the SDF solution at any given (x, y) coordinate
points. The evaluator should be differentiable.

For practical purposes, the evaluator implementation should support automatic differentiation. Oth-
erwise, it cannot be used in a deep learning based optimization procedure. As an example, a pure
python implementation does not support automatic differentiation. In this study, we implemented a
bilinear interpolation with no learning parameters within the PyTorch (Paszke et al [2019)) frame-
work. This is the simplest design for an evaluator, and can be improved by adding learning parame-
ters and/or using more complex interpolating schemes.

3  COMPARISON

The accompanying code can be found at https://github.com/ansysresearch/geometry-encoding. The
details of data generation and the training procedure is outlined in[A.I] In particular, we emphasize
that our synthesized training dataset is comprised of only circles and polygons. However, the trained
model learns to produce accurate prediction on more complex geometries.

To evaluate how well our geometry encoding works, we compare our results with those of MetaSDF
paper (Sitzmann et al., 2020) on the MNIST dataset. The MetaSDF study is one of the most recent
publications regarding learning SDF, and generates results on par with other contenders. Fig. []
shows two examples of the MNIST dataset in the validation set. The MetaSDF is directly trained
on the MNIST dataset, and the results are generated via meta-learning (i.e. it requires a few steps of
gradient descent at inference time). Our model, however, has only been trained on our synthesized
primitive dataset (Fig. [3)), which includes no shapes similar to MNIST dataset. Despite such a
difference, Fig[I] shows that our model performs more accurately. In particular, we emphasize how
our model preserves the levelsets of SDF. We have also prepared a more quantitative comparison
over a validation dataset containing 500 examples. The aggregate results are shown in Table[T]

For more results on other datasets, refer to

4 CONCLUSION

In this paper, we introduced the idea of geometry encoding for the purpose of numerical simulation
with four specific features: i) global accuracy; ii) compressed encoding; iii) differentiability with re-
spect to geometry parameters and iv) variable-size encoding. We presented a simple neural network
structure comprised of three parts: processor, compressor and evaluator which satisfy the first three
features. We also compared our results with that of MetaSDF (Sitzmann et al., [2020)).

This paper was intended to be an introduction to the idea of geometry encoding for numerical sim-
ulations. We aim to extend this idea in multiple different directions. Most immediately, we intend
to establish a similar encoder for 3D voxelized data. Other 2D and 3D representations such as point
clouds and meshes are more prevalent in simulations. We intend to extend this analysis to these
geometry representations. In particular, we believe graph neural networks are suitable for working
with mesh data. Moving towards working with meshed input data will also allow us to satisfy the
fourth feature: variable-size encoding.


https://github.com/ansysresearch/geometry_encoding
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A APPENDIX

A.1 DATA GENERATION AND TRAINING

Convolutional layer
. . Regular connection
Strided Convolutional layer = Reg
=> Skip connection

Transposed Convolutional layer

Figure 2: The configuration of processor and compressor networks. The skip connections are absent
in the compressor network.

The processor and compressor networks are trained using data generated with primitive 2D shapes:
circles, triangles, rectangles and polygons; see Fig.|3] The SDF is computed following two distance
transformations, as described in|Sitzmann et al.| (2020 El To enrich the dataset, we have augmented
geometries by random rotating, translating or scaling of the primitive shapes, as well as by com-
bining two or three shapes together, see Fig.[3] The input binary image and associated SDF are
128 x 128.

The processor and compressor networks are trained in a supervised learning fashion (recall our
evalutor network does not have any learning parameters). Following (2019), we use
mean absolute error (MAE) as the loss function. The training is performed with ADAM optimizer
(Kingma & Ba, 2014) with an initial learning rate of 5 x 10~ and momentum parameters (31, 2) =
(0.9,0.999). The learning rate was reduced as training progressed. The batch size and number of
epochs varied for each network. We found that training the networks separately will lead to more
stable training. Therefore, we initially trained the processor, froze the weights, and then trained the
COMPressor.

A.2 RESULTS ON COMPLEX GEOMETRIES

Although the training set contains only simple shapes, the processor and compressor are able to
accurately predict the SDF of complex geometries. Example of such complex shapes are presented

in Fig. [

'The SDF for the primitive shapes can be computed analytically; see for example |here . But as explained
here, there is no analytical way to combine analytical expressions of multiple SDFs to generate a new valid
SDE. Therefore, we rely on numerical estimation of SDFs.


https://www.iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
https://www.iquilezles.org/www/articles/interiordistance/interiordistance.htm
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binary image SDF

Figure 3: Data generation process. left column) training data contains primitive shapes and the
associated SDF; middle column) training dataset is augmented by random rotation, translation and
scaling; right column) training dataset is augmented by random combination of 2 or 3 objects.
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Figure 4: Performance of the processor on more complex geometries. The compressor produces
almost exact same results.
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