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ABSTRACT

We study the cooperative asynchronous multi-agent multi-armed bandits problem,
where the active (arm pulling) decision rounds of each agent are asynchronous.
In each round, only a subset of agents is active to pull arms, and this subset is
unknown and time-varying. We propose a fully distributed algorithm that relies
on novel asynchronous communication protocols. This algorithm attains near-
optimal regret with constant (time-independent) communications for adversarial
asynchronicity among agents. Furthermore, to protect the privacy of the learning
process, we extend our algorithms to achieve local differential privacy with rigor-
ous guarantees. Lastly, we report numerical simulations of our new asynchronous
algorithms with other known baselines.

1 INTRODUCTION

Multi-Agent Multi-Armed Bandit (MA2B) is an important extension of the canonical multi-armed
bandit model (Lai et al., 1985) in sequential decision making. A MA2B model consists of K ∈ N+

arms and M ∈ N+ agents. Each of these K arms is associated with a reward distribution, and
whenever an agent pulls an arm, they receive a reward sample drawn from their distribution. Most
of MA2B prior works assume that agents are fully synchronous, to name a few (Bistritz & Bambos,
2020; Bistritz & Leshem, 2021; Boursier & Perchet, 2019; Chakraborty et al., 2017; Yang et al.,
2023; Zhu et al., 2021; Wang et al., 2020b), where all M agents have aligned decision rounds. That
is, in each time slot (or interchangeably, “(decision) round”), each of these M agents chooses one
arm to pull and obtains a reward sample. The objective is to maximize the cumulative rewards of all
agents over a given time horizon T ∈ N+ that is often large in practice.

In many real-world applications, instead of agents always being available in all time slots, they may
be asynchronously available. For example, for clinical trial cooperation among multiple hospitals
(i.e., agents) (Momtazmanesh et al., 2020; Aziz et al., 2021), whether a hospital can conduct a clin-
ical treatment at a certain time depends on the availability and condition of the involved patients,
which can be non-deterministic and heterogeneous. Another example is the path planning among
multiple drones (i.e., agents) (Tsourdos et al., 2010). As each drone has multiple tasks to conduct,
whether a drone is available for cooperative path planning at a certain time is also heterogeneous.
Other examples of asynchronous agents include multiple secondary users sensing channel avail-
ability in cognitive radio network (Modi et al., 2017), multiple edge devices searching for efficient
servers in edge computing (Dagan & Koby, 2018), multiple farms searching for right feed additives
to cows for reducing methane emissions (Benetel et al., 2022), etc.

To model these asynchronous agent applications, in this paper, we propose and study the Asyn-
chronous Multi-Agent Multi-Armed Bandits (AMA2B) model (§2). Instead of all agents being active
(available) in each time slot, only a subset of agents is active for pulling arms. In other words, the
active time slots of each agent can be unknown and irregularly spaced. One objective of AMA2B is
to minimize regret, which is the aggregate cumulative differences between rewards from all active
agents pulling the optimal arm and those generated by the cooperative algorithm’s arm-pulling pol-
icy. Minimizing regret is equivalent to maximizing the total reward of all agents. As in a multi-agent
system, the focus lies not solely on minimizing regret but also on developing efficient cooperative
algorithms (i.e., with low communications) to achieve this goal.
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Table 1: Communication cost comparison of MA2B algorithms in different scenarios

AMA2B model Algorithm Communication
Synchronous DoE-bandit O(KM log∆−1

2 ) (Yang et al., 2023)
Asynchronous SE-ODC O(KM2∆−2

2 log T ) (Chen et al., 2023)
Asynchronous SE-AAC-ODC O(KM log∆−1

2 ) (Theorem 2)
ε-LDP Asynchronous SE-AAC-ODC-CTB O(KM log(∆2ε)

−1) (Theorem 9)
∆2 is the smallest reward gap. All algorithms achieve near-optimal regrets.
For ε-LDP settings, we simplify factor (eε + 1)/(eε − 1) by O(1/ε).

In the synchronous MA2B literature, there are prior algorithms (Wang et al., 2020a; Yang et al.,
2023) that achieve near-optimal regrets and constant communication1. However, these algorithms
— relying on their aligned decision rounds — cannot be straightforwardly extended to AMA2B:
The unaligned active decision rounds make it difficult for agents to efficiently cooperate (e.g., share
reward observations). For example, instant broadcast of new observations to other agents, though
a valid protocol, requires large O(T ) communications. On the other hand, aggregating multiple
messages together into one communication may cause large delays because the sender agent may
wait a large number of time slots to accumulate enough information due to a lack of active rounds.
Meanwhile, during these time slots, other agents may have many active decision rounds and thus
pay a high regret cost due to not being informed timely by the sender agent.

1.1 CONTRIBUTIONS

First, in §3, we propose a constant communication algorithm for AMA2B; that is, the number of
communications required is independent of time horizon T . The challenges for devising an efficient
communication policy (for each agent) are (i) when to trigger communication and, if triggered, (ii)
which agents to communicate with (§3.1). To tackle these challenges, we propose the Accuracy
Adaptive Communication (AAC) protocol, which uses the relative amount of “new information”
from recent local observations to decide when to communicate and the On-Demand Communication
(ODC) protocol, which utilizes token exchanges to determine eligible agents to communicate with.
Besides the communication protocols, we utilize the Success Elimination (SE) mechanism for arm
pulling, which maintains a candidate arm set for pulling (initialized as the full arm set) and gradually
eliminates suboptimal arms from this set until only one arm is left. We propose a cooperative bandit
algorithm consisting of the combination of arm pulling policy SE with communication protocols
AAC and ODC, named SE-AAC-ODC (§3.2). Then, in §4, we prove that SE-AAC-ODC achieves near-
optimal regret while only requiring a constant number of communications, which is the first constant
communication algorithm for AMA2B.

Second, we extend the algorithms to ensure privacy guarantees for the learning process. Toward this,
we consider a local differential privacy (LDP) model, which protects the user’s sensitive reward
feedback from any attacker (e.g., any other user, an agent, or an adversary outside the agents).
This privacy model is applicable to both fully distributed and leader-coordination schemes. We
utilize a simple yet effective convert-to-Bernoulli mechanism to protect every possible observation.
Through rigorous analysis, we show that the private algorithms achieve ε user-level LDP (where ε
is the privacy budget). As a trade-off for our privacy protection, the regret and communication are
increased by at most a factor O((e

ε+1/eε−1)2), which still maintains the constant communication.
Due to the space limit, we defer the detail of the privacy results to Appendix A, which includes the
formal privacy definitions (§A.1), privacy protection mechanisms (§A.2), theoretical analysis for
our algorithm with privacy guarantee (§A.3), and numerical experiments (§A.4).

Finally, in §5, we conduct numerical simulations to evaluate the empirical performance of SE-AAC-
ODC compared to other known baseline algorithms. The numerical results verify our theoretical
results on achieving near-optimal group regret and constant communication costs.

1In this paper, we use the term “constant communication” to indicate that the number of communication is
time-independent. Because in applications, the time horizon T is usually much larger than the number of arms
K and the number of agents M .
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1.2 RELATED WORKS

We compare the theoretical results of this paper and the most relevant prior results in Table 1, and
in what follows we review them in detail.

Several prior works studied asynchronous multi-agent online learning models, e.g., in linear ban-
dits (Li & Wang, 2022; He et al., 2022) and online convex optimization (Cesa-Bianchi et al., 2020;
Jiang et al., 2021; Joulani et al., 2019). In the context of asynchronous multi-agent multi-armed
bandits (AMA2B), the only prior work we know is Chen et al. (2023), where a fully distributed al-
gorithm with an on-demand communication protocol (ODC) is proposed for AMA2B that achieves
near-optimal regret at the expense of spending logarithmic communications. Although both Chen
et al. (2023) and our SE-AAC-ODC algorithm utilize the ODC idea, it is not ODC itself that helps to
reduce both algorithms’ communications: Chen et al. (2023) leverage a buffer-threshold approach to
achieve the communication cost of O(KM2∆−2

2 log T ). In contrast, SE-AAC-ODC introduces the
AAC protocol to reduce the communication to O(KM log∆−1

2 ), where ∆2 is the smallest reward
gap (formally defined in §2). We note that devising an algorithm combining AAC with ODC is differ-
ent from their combination of the buffer-threshold approach and ODC, and the new communication
protocol in this work is the first to achieve constant communications in AMA2B, which can be much
smaller than the logarithmic one in Chen et al. (2023). Besides, Chen et al. (2023) do not consider
differential privacy guarantee.

Among MA2B algorithms with constant communications (Wang et al., 2020b;a; Yang et al., 2023),
Yang et al. (2023) is the most related work which proposed a constant communication algorithm
with near-optimal problem-dependent regret performance for synchronous MA2B. Their algorithm
relies on a distributed online estimator that only needs constant communications to guarantee that
all agents’ estimation is as good as a centralized estimation. However, the communication protocol
in Yang et al. (2023) relies on the aligned decision rounds of all agents as their estimators require
the knowledge of the total number of observations, while with the misaligned asynchronous decision
rounds in AMA2B, obtaining such knowledge needs immediate communication in each time slot. To
circumvent the misaligned decision round issue, we devise an asynchronous online estimator with
a weaker guarantee — instead of all agents’ estimators with good performance as in Yang et al.
(2023), we show that at least one agent’s estimator can have comparable performance to a centralized
estimator. Then, we show that, with this weak estimator, we can devise a fully distributed algorithm
that achieves the near-optimal regret with constant communications in AMA2B.

More broadly, synchronous MA2B has been extensively studied in either a fully distributed set-
ting (Szorenyi et al., 2013; Chawla et al., 2020; Landgren et al., 2016; Buccapatnam et al., 2015;
Martı́nez-Rubio et al., 2019; Bistritz & Bambos, 2020; Madhushani et al., 2021; Chakraborty et al.,
2017; Cesa-Bianchi et al., 2016; Hillel et al., 2013; Dubey et al., 2020; Yang et al., 2021; 2022;
Sankararaman et al., 2019; Féraud et al., 2019) or a leader-coordinated setting (Shi & Shen, 2021;
Wang et al., 2020b;a; Bar-On & Mansour, 2019; Chakraborty et al., 2017; Dubey et al., 2020; Kolla
et al., 2018), and various communication schemes such as peer-to-peer (Dubey & Pentland, 2020),
consensus-based (Martı́nez-Rubio et al., 2019), gossip-style (Sankararaman et al., 2019; Chawla
et al., 2020), and immediate broadcasting (Buccapatnam et al., 2015; Yang et al., 2021; 2022) have
been considered. Beyond collaborative MA2B, there is also a branch of prior MA2B works studying
a competitive setting where simultaneously pulling the same arm degrades the reward (Wang et al.,
2020a; Boursier & Perchet, 2019; Shi et al., 2021; Bistritz & Leshem, 2018; Bubeck et al., 2020;
Besson & Kaufmann, 2018). These works are at a clear distance from the asynchronous model
studied in this paper.

2 MODEL

Model We consider an asynchronous multi-agent multi-armed bandits (AMA2B) model including
K arms and M agents. Each arm k ∈ K := {1, 2, . . . ,K} is associated with a Bernoulli reward
distribution with unknown mean µk, and we assume 1 > µ1 > µ2 ⩾ . . . ⩾ µK > 0 such that
arm 1 is the unique optimal arm. We define ∆k := µ1 − µk for k ⩾ 2 as the reward gap between
optimal arm 1 and suboptimal arm k. Each agent m ∈ M := {1, 2, . . . ,M} is associated with an
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arbitrary sequence of activation times generated by an adversary at the beginning2 and is unknown
to agents. When an agent is activated, we refer to it as an active agent. Furthermore, we refer to the
time slot that an agent becomes active as an (active) decision round because the agent needs to make
a decision to pull an arm in the time slot.

Denote by T the set of time slots in which at least one agent is active and denote T = |T |. In each
time slot t ∈ T := {1, 2, . . . , T} (T ∈ N+), each active agent m ∈ M selects one arm k ∈ K to
pull and obtains a reward X

(m)
k (t) drawn from its reward distribution. We denote by T (m) the set of

time slots that agent m is active, and T (m) := |T (m)|. We assume there are no collisions, i.e., when
more than one agent pull the same arm, each of them gets a reward sample independently drawn
from the reward distribution of this arm.

Objective We first define the expected regret of all agents as follows,

R(T ) :=
∑

m∈M
E

T (m)µ1 −
∑

t∈T (m)

X
(m)

k(m)(t)


=
∑

m∈M
T (m)µ1 − E

 ∑
m∈M

∑
t∈T (m)

µk(m)(t)

 ,

where the first expectation is taken over the randomness of the algorithm and rewards realization.
In this cooperative AMA2B model, we allow agents to communicate with each other, and define the
expected rounds of communications as follows,

C(T ) := E

[ ∑
m∈M

∑
t∈T

1{agent m sends a message at time t}

]
,

where 1{·} is the indicator function. Our objectives are to minimize both the group regret R(T ) and
the number of communication rounds C(T ).

3 COMMUNICATION-EFFICIENT ALGORITHM FOR AMA2B

In this section, we introduce a fully distributed asynchronous algorithm, called SE-AAC-ODC (de-
tails summarized in §3.2), for the AMA2B model. SE-AAC-ODC involves multiple technical com-
ponents (§3.1) — Accuracy Adaptive Communication (AAC), On-Demand Communication (ODC),
and Successive Elimination (SE), which provide necessary functions to devise the algorithm. We
also present the theoretical analysis of SE-AAC-ODC in §4. In the following, we first explain the
technical challenges along with our algorithmic ideas for tackling the AMA2B model.

3.1 DESIGN CHALLENGES AND KEY IDEAS

The major challenge in designing a communication-efficient cooperation policy in synchronous
MA2B is determining the right time for sharing local observations with other agents. By tackling
this challenge using different techniques, recent works have significantly improved the communi-
cation cost of a bandit algorithm in the synchronous-agent setting (Yang et al., 2023; Wang et al.,
2020a). However, in the asynchronous setting, and when the agents are not active in regular patterns,
a new challenge is to find the right agent to communicate with. For example, in communications
between two asynchronous agents — one “fast” agent (often active) and one “slow” agent (seldom
active), a synchronous communication policy requires both agents to communicate in the same fre-
quency, which would cause many redundant communications. Because, firstly, the slow agent may
not have new observations to communicate with the fast agent, and, secondly, the slow agent, if there
are no future active rounds, may not need the extra information from the fast agent. Putting together
the existing challenge in synchronous MA2B and the new challenge in the asynchronous setting, a
communication policy for AMA2B should appropriately answer two critical questions: (1) when to

2This kind of adversary is called oblivious in online learning because it cannot adaptively alter the active
decision rounds based on history and algorithm’s action.
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Algorithm 1 SE-AAC-ODC: successive arm elimination (for agent m)

1: Inputs: threshold parameter α > 1

2: Initialization: τk(t) ← 0, µ̂(m)
k (t), n(m)

k (t) ← 0, S(m)
k (t) ← 0, tk(m→m′) for all agents

m′ ∈M and arms k ∈ K
3: for all t ∈ T do
4: if t ∈ T (m) then
5: Update µ̂

(m)
k′ (t) for all arm k′ ∈ K according to Eq. (3)

6: Update the candidate arm set C(t) according to Eq. (4) ▷ Elimination
7: if any arm elimination happens then notify other agents for this elimination
8: Pick an arm k from candidate arm set C(t) to pull in a Round-Robin manner
9: Obtain arm k’s reward observation X

(m)
k (t)

10: S
(m)
k (t)← S

(m)
k (t) +X

(m)
k (t) and n

(m)
k (t)← n

(m)
k (t) + 1

11: if αECR(m)
k (t) ⩽ ECR(m)

k (τk(t)) then ▷ AAC communication condition
12: τk(t)← t ▷ Update the latest communication time slot

13: Collect (n(m′)
k (t), S

(m′)
k (t)) from all agents m′

whose token tk(m→m′) is held by agent m
14: Update nk(t) and µ̂k(t)
15: Send (k, nk(t), µ̂k(t), τk(t)) to other agents m′

whose token tk(m→m′) is held by agent m
16: Send tokens tk(m→m′) to corresponding agent m′

17: Return all tokens tk(m′→m) on hold to corresponding agents m′

18: if receive tk(m→m′) from agent m′ then
19: Send messages (k′, nk′(t), µ̂k′(t), τk′(t)) for arms whose updates were blocked

due to that agent m did not hold token for agent m′

20: Keep token tk(m→m′)

21: if receive tk(m′→m) from agent m′ then
22: Keep token tk(m′→m)

23: if receive broadcast (k′, nk′(t), µ̂k′(t), τk′(t)) from other agents m′ then
24: Update local (nk′(t), µ̂k′(t), τk′(t)) for arm k′

communicate, and (2) who to communicate with, both of which are challenging due to the agent’s
asynchronicity.

Our approach to addressing the question (1) is to have each agent wait until it has accumulated
sufficient “new information” since its last communication. In other words, agents communicate
when the expected “information gain” of the whole system is substantial enough. To measure the
amount of new information, we use the ratio between the confidence radius based on an agent’s local
observations (including global observations obtained in the last communication) and the confidence
radius only based on the global observation in the last communication. When this ratio exceeds
a threshold, the “new information” contained in the agent’s recent local observations is deemed
worthwhile to share, and a new communication round is triggered.

Addressing question (2) regarding whom to communicate with, requires the determination of which
agents can benefit from the new information. In other words, the new information should be sent to
those agents whose regret may decrease as a consequence. The amount of decrease in agent regret
depends on the agent’s activation frequency, which can be addressed by introducing the idea of on-
demand communication. That is, if an agent m is on-demand (i.e., active), then other agents should
share information with this agent m to reduce its regret; otherwise, other agents shall stay away from
communicating with inactive agents and save the cost of unnecessary communication.

In the following, we present how both high-level communication ideas can be implemented in a
cooperative multi-agent bandit algorithm.
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3.2 SE-AAC-ODC: A FULLY DISTRIBUTED BANDIT ALGORITHM

3.2.1 ACCURACY ADAPTIVE COMMUNICATION (AAC) PROTOCOL (LINES 11-15)

We use the confidence radius (half of a confidence interval’s width) to represent the accuracy of the
current estimate of reward mean and show how the AAC protocol determines when an agent decides
to share information. We define the confidence radius as follows,

CR(n) := min{1,
√

2 log T

n
}, (1)

where n is the number of samples (drawn from a Bernoulli distribution) used in this calculation.
This confidence interval guarantees that, with a probability of at least 1−T−4, the true reward mean
µ lies inside the confidence interval (µ̂− CR(n), µ̂+ CR(n)), where µ̂ is the empirical average of n
samples. To construct a confidence interval, the agents need to determine the number of observations
n. However, since agents are distributed and asynchronous, without timely communication, each
agent does not know the exact pull times for other agents since their last communication. To address
this issue, we use the number of agent m’s recent local observations (since the last communication)
as a surrogate for the number of other agents’ recent local observations.

To facilitate presentation of the AAC protocol, we first fix an arm k and consider the task that all
asynchronous agents cooperate to estimate arm k’s mean µk. Denote by n

(m)
k (t) the number of

observations of arm k (excluding those received from others) by agent m up to time slot t, and by
nk(t) the total number of times among all agents that arm k has been pulled on and before time
slot t, i.e., nk(t) =

∑
m∈M n

(m)
k (t). Denote the last communication rounds for sharing arm k’s

observations at time slot t as τk(t). We denote ECR(m)
k (t) an estimated confidence radius of agent

m for arm k at time t as a representation for accuracy, which can be expressed as

ECR(m)
k (t) := min{1,CR(nk(τk(t)) +M(n

(m)
k (t)− n

(m)
k (τk(t))))}. (2)

The 1 is in the min because arm reward means lie in (0, 1) and the value 1 is the radius upper bound.
The term M(n

(m)
k (t) − n

(m)
k (τk(t))) acts as a surrogate for the number of recent observations of

other agents for arm k since the last communication time τk(t) by using the agent m’s recent local
observations. We note that if the current time slot is a communication round, i.e., t = τk(t), then
there is no surrogate observation, therefore, the confidence radius is equal to the estimated one,
i.e., CR(nk(τk(t))) = ECR(m)

k (τk(t)),∀m. Hence, we refer to the estimated confidence radius in a
communication round, i.e., ECR(m)

k (τk(t)) as the aligned confidence radius.

We use the ratio between the latest aligned confidence radius and the current estimated confidence
radius ECR(m)

k (τk(t))/ECR(m)
k (t) to measure the relative amount of “new information” that agent m col-

lects since its last communication. Notice that the confidence radius decreases with the number of
observations. Hence, when the ratio exceeds some predetermined threshold α > 1, there is sufficient
“new information” to initiate a new communication (Line 11).

3.2.2 ON-DEMAND COMMUNICATION (ODC) PROTOCOL (LINES 15-22)

We employ tokens to implement On-Demand Communication (ODC). At initialization, each agent
m is assigned M−1 tokens tk(m→m′), each corresponding to one agent m′ ∈M\{m} (except for
itself). Agent m can communicate to agent m′ only when agent m holds token tk(m→m′). More
specifically, when the AAC communication condition is fulfilled (Line 11), if token tk(m→m′) is
available at agent m, it sends a message containing the token tk(m→m′) to agent m′ (Lines 15-
16); otherwise (without token tk(m→m′)), agent m does not communicate with agent m′. On
the other hand, consider the case that agent m holds some tokens tk(m′→m) received from other
agents m′. These tokens tk(m′→m) are only useful for their corresponding agents m′ to decide
whether to communicate with agent m and are useless for agent m. Then, once agent m is active
he will immediately return these tokens to their corresponding senders m′, as a signal to agents m′

notifying that the agent m is on-demand (Line 17). We note a special case: when agent m′ returns
token tk(m→m′) to agent m, agent m needs to send one updating message to agent m′ containing
information that was not previously communicated due to agent m not having a token for agent m′

(after this information update, agent m keeps the returned token tk(m→m′)) (Lines 18-20).
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3.2.3 SUCCESSIVE ELIMINATION (SE) ARM PULL POLICY (LINES 6-10)

Denote by C(t) the candidate arm set, which is initialized as the full arm set, i.e., C(0) = K. The
main idea of successive elimination is to uniformly explore all remaining arms in the candidate
arm set in a round-robin manner (Line 8) and remove an arm from the candidate arm set (Line 6)
whenever it is identified as suboptimal. Note that whenever an agent eliminates one arm, this agent
notifies all other agents to eliminate the arm from their candidate arm sets as well; hence, all agents
have the same candidate arm set (Line 7).

Next, we introduce notation to illustrate the technical details of eliminating a suboptimal arm from
the candidate arm set. Denote by S

(m)
k (t) the sum of n(m)

k (t) observations of arm k for agent m at
time slot t, which can be expressed as

S
(m)
k (t) :=

n
(m)
k (t)∑
s=1

X
(m)
k (s),

where X(m)
k (s) is a reward observation for arm k of agent m. Next, we introduce estimator µ̂(m)

k (t)
for the reward mean of agent m for arm k at time t as follows,

µ̂
(m)
k (t) :=

nk(τk(t))µ̂k(τk(t)) +
(
S
(m)
k (t)− S

(m)
k (τk(t))

)
nk(τk(t)) + n

(m)
k (t)− n

(m)
k (τk(t))

, (3)

where τk(t) is the latest time slot (on or before t) that agent m communicates information about arm
k to other agents (i.e., synchronizes globally), and µ̂k(τk(t)) is the average of all nk(τk(t)) obser-
vations. This estimator in Eq. (3) together with the confidence radius Eq. (1) yields the following
confidence interval for µk,

µk ∈
(
µ̂
(m)
k −CR

(
nk(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk(t)))

)
,

µ̂
(m)
k + CR

(
nk(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk(t)))

))
.

With the above confidence interval, an arm k is eliminated by agent m from the candidate set C(t)
at time t if there exist an arm k′ ∈ C(t) such that the upper confidence bound of arm k is less than
the lower confidence bound of arm k′, i.e.,

µ̂
(m)
k (t) + CR

(
nk(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk(t)))

)
< µ̂

(m)
k′ (t)− CR

(
nk′(τk′(t)) + (n

(m)
k′ (t)− n

(m)
k′ (τk′(t)))

)
.

(4)

Eq. (4) is the elimination condition used for identifying suboptimal arms in the candidate set.

4 THEORETICAL ANALYSIS OF SE-AAC-ODC

This section presents the theoretical analysis of the SE-AAC-ODC algorithm. We start by studying
the estimation performance of the estimator in Eq. (3) in Lemma 1.
Lemma 1. Assume M agents independently and asynchronously sample arm k associated with an
i.i.d. reward process, Bernoulli distribution with unknown mean µk, as Algorithm 1 (with threshold
parameter α > 1), and nk(t) is the total number of available samples across all agents. For any t,
there exists an agent ℓ such that, with probability 1−MT−3, we have |µ̂(ℓ)

k (t)−µk| ⩽ αCR(nk(t)).

Lemma 1 shows that among the estimates of all agents for reward mean µk of arm k, at least one
agent ℓ’s estimate µ̂

(ℓ)
k (t) enjoys the estimate accuracy comparable (up to an α factor) to that of an

estimate that uses all of the observations of arm k, i.e., all nk(t) samples. In the proof of Lemma 1
deferred to Appendix B, this agent ℓ is set to be the one with the largest number of active decision
rounds since the last communication time τk(t) for arm k. The active decision rounds of agents
in AMA2B can vary in terms of the number of active rounds; hence, which agent is with a good
estimator performance may change over time. Next, in Theorem 2, we show that although agents
with good estimates can vary over time, the SE-AAC-ODC algorithm is able to adapt to the changes
in the agent with the best estimates in the whole time horizon. Therefore, it achieves near-optimal
regret and constant communication cost.
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Theorem 2. Algorithm 1’s regret and communication can be upper bounded as

R(T ) ⩽
∑
k>1

8(1 + α)2 log T

∆k
+
∑
k>1

M∆k +KM2, (5)

C(T ) ⩽
∑
k>1

2M logα

(
2(1 + α)

∆k

)
+ 2M logα

(
2(1 + α)

∆2

)
+ 2KM3. (6)

To efficiently leverage the good estimators that may be of different agents in different time slots,
SE-AAC-ODC employs an arm elimination notification technique (Line 7) such that whenever an
agent is sufficiently confident to eliminate an arm, the agent notifies the other agents that this arm
has been eliminated. We prove that the arm elimination notification technique ensures that agents
lacking good estimates spend little time exploring such an arm in Lemma 12 (Appendix B), and this
result guarantees the near-optimal regret upper bound in Theorem 2.

As Remark 4 shows, the major communication cost of SE-AAC-ODC comes from communica-
tions triggered by AAC. For any arm k ∈ C(t), AAC triggers one communication when the ra-
tio ECR(m)

k (τk(t))/ECR(m)
k (t) is greater than the threshold α (Line 11), and AAC stops communicat-

ing about the arm k when the arm is eliminated, which happens when CR(m)
k (t) < ∆k/2, that is,

ECR(m)
k (t) < c∆k for some constant c > 0. Therefore, the total communication costs for this arm

k are upper bounded by O(M logα ∆−1
k ), where M is because the communication is involved with

all agents, the logarithm with base α is due to that the ratio based communication condition employs
threshold α, and the ∆−1

k is because the communication stops when ECR(m)
k (t) < c∆k. We defer

the detailed proof of Theorem 2 to Appendix B.
Remark 3 (Regret optimality). We recall the known MA2B’s regret lower bound (Wang et al., 2020a,
§1.2) (also proved for AMA2B by Chen et al. (2023, Appendix C)),

lim inf
T→∞

R(T )

log T
⩾
∑
k>1

∆k

KL(νk, ν1)
, (7)

where KL(·, ·) denotes the KL-divergence between two distributions, and νk denotes the reward
distribution of arm k with mean µk. There are many distributions fulfilling that KL(νk, ν1) =
Θ(∆2

k), e.g., Bernoulli or Gaussian, in which cases, the regret lower bound becomes

lim inf
T→∞

R(T )

log T
⩾ C ·

∑
k>1

1

∆k
,

where C is a constant that depends on the specific reward distribution. On the other hand, the regret
upper bound of SE-AAC-ODC in Eq. (5) can be rewritten as

lim sup
T→∞

R(T )

log T
⩽ 8(1 + α)2 ·

∑
k>1

1

∆k
.

Therefore, comparing the above asymptotic regret lower and upper bounds shows that the regret of
the SE-AAC-ODC algorithm is tight up to a constant factor.
Remark 4 (Constant communication and its comparison). There are three contributions to the com-
munication cost of SE-AAC-ODC: (i) arm elimination notifications due to SE, (ii) token exchanges
(send and return) for the implementation of ODC, and (iii) message sharing according to AAC. Com-
munication cost due to (i) is (K−1)(M−1) and does not appear in the communication upper bound
in Eq. (6) as an independent term. Also, the communication cost due to (ii) is upper bounded by at
most twice the communication cost of (iii). This is because token exchange consists of sending and
returning: each token sending is always together with one message sending triggered by AAC (see
Lines 15-16), and each token returning is just a consequence of the token’s previous sending. There-
fore, we only need to bound the communication costs of AAC, i.e., (iii), which yields the constant
bound in Eq. (6). Lastly, we note that the only prior algorithm for AMA2B was proposed by Chen
et al. (2023), which needed at least O(KM2∆−1

2 log T ) communications to achieve a near-optimal
regret upper bound, while our SE-AAC-ODC only needs O(KM log∆−1

2 ) communications, which
is much smaller than that of Chen et al. (2023) especially when T is large.

8
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(a) Communications (b) regrets

Figure 1: Experiment 1 (Stochastic)

(a) Communications (b) Regrets

Figure 2: Experiment 2 (Adversarial)

Figures 1a and 2a show that SE-AAC-ODC enjoys a much smaller (constant) communication costs
than known benchmark algorithms in both stochastic and adversarial AMA2B, and Figures 1b and 2b
show that SE-AAC-ODC has similar near-optimal regret performance to known baselines.

Remark 5. Recently, Yang et al. (2023) proposed a fully distributed cooperation algorithm for syn-
chronous MA2B that achieved a near-optimal regret upper bound with constant communication cost.
Their algorithm includes a confidence radius-based communication condition similar to Line 11 in
Algorithm 1. However, Yang et al. (2023)’s algorithm design and analysis relied on the synchronous
MA2B model (aligned decision rounds) and thus cannot be applied to AMA2B. Similar communica-
tion ideas were also applied to linear contextual bandits recently, e.g., Li & Wang (2022); He et al.
(2022), but they still require logarithmic communications to achieve good regret performance.

5 NUMERICAL EXPERIMENTS

Last, we conduct brief numerical experiments to verify the performance of the proposed algorithms
using two experimental scenarios: stochastic and adversarial AMA2B.

Experiment 1 (Stochastic). In this experiment, we set K = 16 arms, 5 fast agents each with activa-
tion frequency 0.8, and 10 slow agents each with activation frequency 0.1. The arm reward means
are drawn from the click-through-rates in the Ad-click dataset in Kaggle (2015). We report the num-
ber of communications and regrets after T = 80 000 time slots averaged over 30 independent trials.
We compare SE-AAC-ODC with α = 6 against prior algorithms, including UCB-ODC, UCB-IBC,
SE-ODC (AAE-ODC with constant buffer in Chen et al. (2023)), and SE-IBC (AAE-IBC in Chen
et al. (2023)), with α = 3 (the definition of their α parameter is different). The results, presented in
Figure 1, show that the numbers of communications SE-AAC-ODC incur are significantly smaller
than those incurred by benchmark algorithms, while the regret of SE-AAC-ODC is no worse than
that of benchmark algorithms.

Experiment 2 (Adversarial). In this experiment, we study non-stationary asynchronicity. Specifi-
cally, we have K = 16 arms, M = 10 agents and the activation frequency of agent m follows a
sine function, sin(θm + t/30), where the phase shifts θm = m/5, m ∈ {1, ..., 10} differ for dif-
ferent agents. We report the number of communications and regrets after T = 80 000 time slots
averaged over 30 independent trials. We compare SE-AAC-ODC with α = 5 with prior algorithms,
UCB-ODC, UCB-IBC, SE-ODC, and SE-IBC, with α = 3. The results, presented in Figure 2, show
that, in a non-stationary asynchronous setting, SE-AAC-ODC outperforms benchmark algorithms in
terms of communication while obtain similar regrets.

6 FUTURE DIRECTIONS

This paper studied the asynchronous multi-agent multi-armed bandits problem and proposed a novel
algorithms with near-optimal regret and horizon-independent communication costs for basic and pri-
vate versions of the problem. An interesting future direction is, instead of user-level privacy, how
to provide agent-level privacy protection while preserving near-optimal regret and constant commu-
nication costs. Besides the fully distributed algorithm studied in this paper, there is another kind of
algorithm that can achieve constant communications (Wang et al., 2020a;b) in synchronous MA2B
where they elect (or assume) a leader to coordinate the arm pulling among all agents. Design-
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ing leader-coordinated algorithms that achieve constant communication in (asynchronous) AMA2B
problem is another interesting future direction.
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Flavia Alves Melo, Annelise AG Lobo, James Pierre Muir, and Ives CS Bueno. Essential oils
as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing
tropical grasses. Molecules, 27(7):2227, 2022.

Lilian Besson and Emilie Kaufmann. Multi-player bandits revisited. In Algorithmic Learning The-
ory, pp. 56–92. PMLR, 2018.

Ilai Bistritz and Nicholas Bambos. Cooperative multi-player bandit optimization. Advances in
Neural Information Processing Systems, 33:2016–2027, 2020.

Ilai Bistritz and Amir Leshem. Distributed multi-player bandits-a game of thrones approach. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Ilai Bistritz and Amir Leshem. Game of thrones: Fully distributed learning for multiplayer bandits.
Mathematics of Operations Research, 46(1):159–178, 2021.

Etienne Boursier and Vianney Perchet. Sic-mmab: synchronisation involves communication in
multiplayer multi-armed bandits. Advances in Neural Information Processing Systems, 32, 2019.
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Kégl. Gossip-based distributed stochastic bandit algorithms. In International Conference on
Machine Learning, pp. 19–27. PMLR, 2013.

Jay Tenenbaum, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Differentially private multi-
armed bandits in the shuffle model. Advances in Neural Information Processing Systems, 34:
24956–24967, 2021.

Aristide Tossou and Christos Dimitrakakis. Algorithms for differentially private multi-armed ban-
dits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Antonios Tsourdos, Brian White, and Madhavan Shanmugavel. Cooperative path planning of un-
manned aerial vehicles, volume 32. John Wiley & Sons, 2010.

Po-An Wang, Alexandre Proutiere, Kaito Ariu, Yassir Jedra, and Alessio Russo. Optimal algorithms
for multiplayer multi-armed bandits. In International Conference on Artificial Intelligence and
Statistics, pp. 4120–4129. PMLR, 2020a.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: Near-
optimal regret with efficient communication. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020b.

Lin Yang, Yu-Zhen Janice Chen, Stephen Pasteris, Mohammad Hajiesmaili, John C.S. Lui, and Don
Towsley. Cooperative stochastic bandits with asynchronous agents and constrained feedback.
Advances in Neural Information Processing Systems, 34:8885–8897, 2021.

Lin Yang, Yu-Zhen Janice Chen, Mohammad Hajiesmaili, John C.S. Lui, and Don Towsley. Dis-
tributed bandits with heterogeneous agents. In In Proceedings of The IEEE International Confer-
ence on Computer Communications 2022, 2022.

Lin Yang, Xuchuang Wang, Lijun Zhang, Mohammad Hajiesmaili, John C.S. Lui, and Don Towsley.
Cooperative multi-agent bandits: Distributed algorithms with optimal individual regret and con-
stant communication costs. arXiv preprint arXiv:2308.04314, 2023.

Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, and Liwei Wang. Locally differentially private
(contextual) bandits learning. arXiv preprint arXiv:2006.00701, 2020.

Xingyu Zhou and Sayak Ray Chowdhury. On differentially private federated linear contextual ban-
dits. arXiv preprint arXiv:2302.13945, 2023.

Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu. Federated bandit: A gossiping approach. In
Abstract Proceedings of the 2021 ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, pp. 3–4, 2021.

12



Under review as a conference paper at ICLR 2024

APPENDIX

A PRIVACY PROTECTION MECHANISMS

In multi-agent/distributed learning, it is critical to protect user’s sensitive data from privacy risks, so
as to encourage users to participate and collaborate with the agents in the learning process. Specif-
ically, using the example mentioned in the introduction, imagine that M hospitals (i.e., agents) are
collaborating with each other to conduct a clinical trial (i.e., bandit problem) to study how differ-
ent treatments (i.e., arms) can affect a disease. Each hospital will choose a specific treatment for
participating patients (i.e., users) based on past observations of treatment effects. However, due to
privacy concerns about health data leakage, the patients may not be willing to share the actual effects
of the treatments with the hospital, which prevent the agents from learning from patient feedback.
To ensure privacy, we use the notion of differential privacy (DP), which is a de facto standard for
reasoning about information leakage (Dwork et al., 2014). As defined in Definition 6, DP implies
that for any neighboring records, after an ε-DP mechanism, their statistical behaviors are indistin-
guishable. In this case, it is difficult for any attacker to determine which record is the source of the
given output.
Definition 6 (ε-differential privacy (ε-DP)). For ε > 0, a randomized mechanism Q : D → Rl is
said to be ε-DP on D ⊂ Rl′ if for any neighboring x, x′ ∈ D where

∑
i∈[l′] 1{xi ̸= x′

i} = 1 and a
measurable subset E of Rl, we have P{Q(x) ∈ E} ⩽ eε · P{Q(x′) ∈ E}.

In the above definition of DP, ε is called the privacy budget, where smaller ε implies higher levels
of privacy protection. When ε =∞, there is no privacy protection.

Related works about differential privacy. There is extensive literature on studying differential
privacy (DP) in multi-armed bandits (Tossou & Dimitrakakis, 2016; Basu et al., 2019; Shariff &
Sheffet, 2018; Dubey & Pentland, 2020; Zhou & Chowdhury, 2023; Tenenbaum et al., 2021; Chowd-
hury & Zhou, 2022; Zhou & Chowdhury, 2023; Ren et al., 2020; Zheng et al., 2020; Li et al., 2022).
Our work uses the notion of local DP, which has been studied under the single-agent MAB (Ren
et al., 2020), the single-agent linear contextual MAB (Zheng et al., 2020), and distributed linear con-
textual bandits with partial feedback (Li et al., 2022). Ren et al. (2020) studies the DP in single-agent
MAB, which largely inspires our privacy protection mechanism. However, we consider a new asyn-
chronous multi-agent MAB setting and prove a series of important privacy/regret/communication
guarantees. Other notions for DP, including central DP (Tossou & Dimitrakakis, 2016; Basu et al.,
2019), shuffle DP (Tenenbaum et al., 2021; Chowdhury & Zhou, 2022; Zhou & Chowdhury, 2023),
joint DP (Shariff & Sheffet, 2018; Dubey & Pentland, 2020; Zhou & Chowdhury, 2023), etc., pose
weaker privacy protections for MAB models, but they may achieve better trade-offs between regret,
communication, and privacy. Studying these DP notions for AMA2B will be left as interesting future
works.

In this work, we focus on user-level local differential privacy (LDP), which allows the algorithm to
be agnostic about privacy. For this reason, this notion is presently adapted by Apple and Google
for their large-scale systems3. In what follows, we give its formal definitions (§A.1), mechanisms
(§A.2), theoretical guarantees (§A.3), and numerical experiments (§A.4).

A.1 USER-LEVEL LOCAL DIFFERENTIAL PRIVACY (LDP)

To define user-level LDP, we need to specify the user model and the threat model to supplement
the model described in §2. Specifically, we denote U = (u(m)(t))t∈T (m),m∈M be a sequence of∑

m∈M T (m) unique users. At each time t ∈ T (m), user u(m)(t) comes to be served by agent m,
who obtains reward X

(m)
k (t) after the agent m recommends arm k(m)(t) to the user. In this context,

each user u(m)(t) is identified by their reward responses given to all possible actions recommended
to them.

For the threat model, the users do not trust the agent or other users, and the privacy burden lies on
the user himself. In this case, each user u(m)(t) needs to (1) release a private version of their reward

3https://desfontain.es/privacy/real-world-differential-privacy.html
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Algorithm 2 Convert-to-Bernoulli(ε) (CTB (ε)) Mechanism

1: Input: A random reward r ∈ [0, 1] from the user
2: Return: An independent sample following Q(r) ∼ Bernoulli( re

ε+1−r
1+eε )

feedback X
(m)
k (t) via a ε-DP mechanism Q, where Q could be privacy protection software or trusted

third-party plugins embedded in the user’s devices or terminals, and the non-private data will not
leave the control of the user unless they are processed and released by these software/plugins; and
(2) the agents should make recommendations only based on the private releases. For any random
vectors X and Y , we use X ∈ σ(Y ) to denote that X is determined by Y plus some random
factors independent of Y and the bandit instance. Formally, user-level LDP is defined as follows in
Definition 7.
Definition 7 (User-level ε-LDP). For ϵ > 0, we say the learning process satisfies ε-
LDP if (1) there is an ε-DP mechanism Q : D → R, and (2) Action k(m)(t + 1) ∈
σ
((
k(j)(s), Q(X

(j)

k(j)(s)
(s))

)
s⩽t,j∈M

)
for any agent m and time t.

Note that user-level LDP is a strong DP guarantee in the sense that it ensures that any attacker
(which could be any other user, an agent, or an adversary outside the agents) cannot infer too much
about any user’s sensitive information (e.g., preference, reward feedback) or determine whether an
individual participated in the learning process. Other DP notions, such as agent-level DP (where the
agent containing the user can be trusted) (Zhou & Chowdhury, 2023), will also be satisfied by the
post-processing of DP data if user-level LDP is preserved (Dwork et al., 2014).

A.2 CONVERT-TO-BERNOULLI (CTB) MECHANISM

To guarantee user-level LDP, one can adopt the widely-used Laplace mechanism (Dwork et al.,
2014) (i.e., adding Laplace noises to data records). However, adding Laplace noise makes the reward
unbounded, which significantly increases regret and hinders the algorithm from obtaining constant
communication costs. Inspired by Ren et al. (2020), we use a simple yet effective Convert-to-
Bernoulli (CTB) mechanism, which converts the rewards bounded in [0, 1] to Bernoulli responses.
The CTB mechanism is described in Algorithm 2.

For our algorithm, CTB mechanism Q is agnostic to the algorithm, in the sense that we only need to
change the way the agent obtains the reward of Line 9 of Algorithm 1. In particular, agent m now
obtains arm k’s reward observation Q(X

(m)
k (t)) with parameter ε as in Algorithm 2. The rest of the

algorithm remains exactly the same.

A.3 PRIVACY, REGRET, AND COMMUNICATION GUARANTEES

Here we present our privacy results, together with the new regret and communication cost. We also
compare the non-private and private regret/communication cost.
Theorem 8. SE-AAC-ODC (Algorithms 1) with CTB (ε) (Algorithm 2) all satisfy user-level ε-LDP.
Theorem 9. The regret and communication cost of Algorithm 1 with CTB (ε) (Algorithm 2) are
upper bounded as follows,

R(T ) ⩽
∑
k>1

8(1 + α)2 log T

∆k
·
(
eε + 1

eε − 1

)2

+
∑
k>1

M∆k +KM2,

C(T ) ⩽
∑
k>1

2M logα

(
2(1 + α)

∆k
·
(
eε + 1

eε − 1

))
+ 2M logα

(
2(1 + α)

∆2
·
(
eε + 1

eε − 1

))
+ 2KM3.

Remark 10 (Regret comparison). Compared with non-private SE-AAC-ODC in the fully distributed
setting, the regret increases by at most a factor of

(
eε+1
eε−1

)2
factors, which is the cost for privacy

protection. Since eε+1
eε−1 ⩽ 1 + 2

ε , this factor approaches 1 as ε approaches infinity.
Remark 11 (Communication cost comparison). When we compare communication cost bounds with
non-private algorithms, private SE-AAC-ODC algorithm increases by at most a factor of log

(
eε+1
eε−1

)
,

which still remains independent of time horizon T .
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(a) Private comm (b) Private regret

Figure 3: Experiment 1 (Stochastic)

(a) Private comm (b) Private regrets

Figure 4: Experiment 2 (Adversarial)

Figures (c) (communications) and (d) (regrets) are performance of SE-AAC-ODC-CTBwith privacy
ϵ =∞, 2, 1, 0.8, 0.6.

A.4 NUMERICAL EXPERIMENTS FOR PRIVACY PROTECTION MECHANISM

In this subsection, we report the empirical performance of SE-AAC-ODC-CTB algorithm with differ-
ent privacy budgets ϵ =∞, 2, 1, 0.8, 0.6 in both stochastic and adversarial scenarios (see detail setup
in §5). Figures 3a and 3b show that the number of communications and regrets of SE-AAC-ODC
increase as the privacy level increases (i.e., as ϵ decreases) in stochastic AMA2B. Figures 4a and 4b
show that the number of communications and regrets of SE-AAC-ODC increase as the privacy level
ϵ increases in adversarial scenario as well.

B PROOFS FOR FULLY DISTRIBUTED ALGORITHM

B.1 PROOF OF LEMMA 1

We pick an agent ℓ with the highest number of times of pulling arm k in the time slots from τk(t) to
time t (break tie arbitrarily), that is,

ℓ := argmax
m′∈M

t∑
s=τk(t)

1{I(m
′)(s) = k} = argmax

m′∈M

(
n
(m′)
k (t)− n

(m′)
k (τk(t))

)
, (8)

where I(m
′)(s) denotes the arm that agent m′ pulls at time slot s. Recall that the estimate µ̂

(ℓ)
k (t)

is obtained by averaging nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)) samples, where nk(τk(t)) is the number

of samples of arm k among all agents at time slot τk(t). Hence, the following equation holds with
probability 1−MT−3,

|µ̂(ℓ)
k (t)− µk|

(a)

⩽ CR(nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)))

(b)

⩽ CR(nk(τk(t)))

(c)
< αCR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t))))

(d)
< αCR(nk(t)),

where inequality (a) is proved below by Hoeffding’s inequality and union bound, inequality (b) is
due to that the confidence radius becomes larger with a smaller number of samples, inequality (c) is
due to that the condition in Line 11 of Algorithm 1 is false at time slot t (> τk(t)), and inequality
(d) is because that the agent ℓ has the highest number of times of pulling arm k during τk(t) to t,
that is, nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t))) ⩾ nk(t).
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Below, we present the detailed steps for proving inequality (a) as follows,

P
(
|µ̂(ℓ)

k (t)− µk| ⩽ CR(nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)))

)
= P

(
|µ̂(ℓ)

k (t)− µk| ⩽
√

4 log T

nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t))

)

= 1− P

(
|µ̂(ℓ)

k (t)− µk| >
√

4 log T

nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t))

)
(a1)

⩾ 1−
M ·t∑
n=1

P

(
|µ̂(ℓ)

k (t)− µk| >
√

4 log T

n

∣∣∣∣∣nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)) = n

)
× P

(
nk(τk(t)) + n

(ℓ)
k (t)− n

(ℓ)
k (τk(t)) = n

)
⩾ 1−

M ·t∑
n=1

P

(
|µ̂(ℓ)

k (t)− µk| >
√

4 log T

n

∣∣∣∣∣nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)) = n

)
(a2)

⩾ 1−
M ·t∑
n=1

T−4 ⩾ 1−MT−3,

where inequality (a1) is due to union bound, and inequality (a2) is by applying Hoeffding’s inequal-
ity.

B.2 PROOF OF THEOREM 2

Definitions. Applying Hoeffding’s inequality and union bound, we know that for any agent m, the
following inequality holds with a probability of at least 1−MT−3,

|µ̂(m)
k (t)− µk| ⩽ CR(nk(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk(t)))), (9)

where we recall that τk(t) is the last time slot that agents conduct communication to synchronize the
observations of arm k before time slot t.

We denote the decision made at a time slot t as a Type-I decision when Eq. (9) holds for any agent
m ∈M and arm k ∈ K at this time slot t; otherwise, we denote it as a Type-II decision.

We note that, as long as the decision is Type-I, the elimination condition in Eq. (4) always correctly
eliminates suboptimal arms, and, therefore, when there is only one arm remaining in the candidate
arm set C(t), it is the optimal arm for sure. In the next two steps, we bound the probability that there
are any Type-II decisions and the number of pulling times of any suboptimal arm when there are
only Type-I decisions respectively.

Step 1. Upper bound the probability of any Type-II decision occurring. Below we bound the
probability of the event that there exists any confidence interval not containing its corresponding
true reward mean.

P(∃(k,m, t), |µ̂(m)
k (t)− µk| > CR(nk′(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk′(t)))))

⩽ P(∃(k,m, t, n), |µ̂(m)
k (t)− µk| > CR(n))

⩽
∑

(k,m,t,n)∈(K×M×T ×T )

P(|µ̂(m)
k (t)− µk| > CR(n))

⩽
∑

(k,m,t,n)∈(K×M×T ×T )

MT−3 = KM2T−1.

Step 2. Upper bound the number of times of pulling suboptimal arms.
Lemma 12. At any time t ⩽ T , if the optimal arm lies in the candidate set and an agent m
makes a Type-I decision with pulling a suboptimal arm k, i.e., I(m)(t) = k, we have nk(t) ⩽
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8(1+α)2 log T/∆2
k. Therefore, the total number of pulling times of arm i in the whole time horizon is

upper bounded as follows,

nk(T ) ⩽
8(1 + α)2 log T

∆2
k

+M.

Proof. Arm k is pulled at some time t

(a)
=⇒ k ∈ C(t) for agent ℓ fulfills Lemma 1
(b)
=⇒ µ̂

(ℓ)
k (t) + CR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t))))

⩾ µ̂
(ℓ)
k′ (t)− CR(nk′(τk′(t)) +M(n

(ℓ)
k′ (t)− n

(ℓ)
k′ (τk′(t)))) for any k′ ∈ C(t)

(c)⇐⇒ µ̂
(ℓ)
k (t) + 2CR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t)))) ⩾ µ̂

(ℓ)
k′ (t) for any k′ ∈ C(t)

(d)
=⇒ µ̂

(ℓ)
k (t) + 2CR(nk(t)) ⩾ µ̂

(ℓ)
k′ (t) for any k′ ∈ C(t)

=⇒ µ̂
(ℓ)
k (t) + 2CR(nk(t)) ⩾ µ̂

(ℓ)
1 (t)

(e)
=⇒ µk + (2 + α)CR(nk(t)) ⩾ µ1 − αCR(n1(t))

=⇒ 2(1 + α)CR(nk(t)) ⩾ µ1 − µk = ∆k (10)

=⇒ nk(t) ⩽
8(1 + α)2 log T

∆2
k

,

where (a) is because the candidate arm sets C(t) are the same for all agents (including arm ℓ),
(b) is by the definition of candidate arm set, (c) is because arms in the candidate arm set are evenly
explored in a round-robin manner, (d) is from the definition of arm ℓ in Eq. (8), and (e) is by applying
Lemma 1.

Lastly, since the pulling of arm k in the critical time slot t is not counted, the total pulling times of
arm k may be increased by M at most, i.e.,

nk(T ) ⩽
8(1 + α)2 log T

∆2
k

+M.

Combining the results of Steps 1 and 2, the group regret is upper bounded as follows,

E[R(T )] ⩽
∑
k>1

nk(T )×∆k +KM2T−1 × T

⩽
∑
k>1

8(1 + α)2 log T

∆k
+
∑
k>1

M∆k +KM2

Step 3. Upper bound communication costs If there are any Type-II decisions, the total communi-
cation times is at most KM2.

Assume there is no Type-II decision. In the proof of Lemma 12, we have a middle step Eq. (10): for
any suboptimal arm k, denoting κk as the last time slot that the arm was pulled, we have

2(1 + α)CR(nk(κk)) ⩾ ∆k.

Recall that τk(t) is the latest communication round about arm k on or before time slot t. Then,
ECR(m)

k (τk(κk)) is the ECR at the latest communication for arm k which can be upper bounded as
follows,

ECR(m)
k (τk(κk))

(a)
= CR(nk(τk(κk))) ⩾ CR(nk(κk)) ⩾

∆k

2(1 + α)
,

where equality (a) is because τk(κk) is a communication time slot in which the estimated confidence
radius (ECR) is equal to CR. Recall the initial ECR(m)

k (0) = 1 by definition. The total number of
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times of communication on arm k is upper bounded as follows,

logα

(
ECR(m)

k (0)

ECR(m)
k (τk(κk))

)
⩽ logα

(
2(1 + α)

∆k

)
.

Since all arms are pulled in a round-robin manner, the communication cost on the optimal arm is
upper bounded by logα

(
2(1+α)

∆2

)
where ∆2 is the smallest reward gap.

Summing the above two type cases yields the communication upper bound as follows,∑
k>1

logα

(
2(1 + α)

∆k

)
+ logα

(
2(1 + α)

∆2

)
+KM2.

As each communication round above needs 2(M − 1) communications and the notification of arm
elimination needs (K − 1)M communications in total, the final communication costs are upper
bounded by ∑

k>1

2M logα

(
2(1 + α)

∆k

)
+ 2M logα

(
2(1 + α)

∆2

)
+ 2KM3.

C PROOFS FOR PRIVACY PROTECTION MECHANISM

C.1 PROOF OF THEOREM 8

Proof of Theorem 8. To prove the privacy guarantee, we need to check the two requirements of the
Definition 7.

For requirement i), we rely on the key proposition as follows, which proves that CTB (ε) is ε-DP.

Proposition 13 (Lemma 5 of Ren et al. (2020)). CTB (ε) mechanism (Algorithm 2) is ε-DP on [0,1],
and the returned sample follows the Bernoulli distribution with mean µk,ε = 1/2+(µk− 1/2) · e

ε−1
eε+1 .

For requirement ii), since the private version of SE-AAC-ODC-CTB only use the observation from
CTB, which satisfies requirement ii).

C.2 PROOF OF THEOREM 9

Proof of Theorem 9. Notice that after applying CTB, Proposition 13 ensures that the means of the
private (Bernoulli) observations become 1 > µ1,ε > µ2,ε ⩾ . . . ⩾ µK,ε > 0, where arm 1 is still the
unique optimal arm. For the sub-optimal arm k, the sub-optimality gap becomes ∆k,ε ≜ eε−1

eε+1∆k

when bounding the number of times nk(T ) until sub-optimal arms will not be pulled. For each
pull of arm k, the algorithm will still pay ∆k regret. Specifically, we slightly adapt the proof from
Section B and show the following lemma.

Lemma 14. Assume M agents independently sample an arm k associated with an i.i.d. reward
process with unknown mean µk as Algorithm 1 (with threshold parameter α > 1), and nk(t) is the
total available samples of all agents. For any t, there exists an agent ℓ such that, with probability
1−MT−3, we have

|µ̂(ℓ)
k (t)− µk,ε| ⩽ αCR(nk(t)).

Proof. We pick an agent ℓ with the highest number of times of pulling arm i in the time slots from
τk(t) to time t, that is,

ℓ ∈ argmax
m′∈M

t∑
s=τk(t)

1{I(m
′)(s) = i}. (11)
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Note that the estimate µ̂
(ℓ)
k (t) is obtained by averaging nk(τk(t)) + n

(ℓ)
k (t) − n

(ℓ)
k (τk(t)) samples.

Hence, the following equation holds with probability 1−MT−3.

|µ̂(ℓ)
k (t)− µk,ε|

(a)

⩽ CR(nk(τk(t)) + n
(ℓ)
k (t)− n

(ℓ)
k (τk(t)))

(b)

⩽ CR(nk(τk(t)))

(c)
< αCR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t))))

(d)
< αCR(nk(t)),

where inequality (a) is by Hoeffding’s inequality and union bound, inequality (b) is due to that the
confidence radius becomes larger with a smaller number of samples, inequality (c) is due to that the
condition in Line 11 is false at time slot t (> τk(t)), and inequality (d) is because that the agent ℓ has
the highest number of times of pulling arm k during τ

(ℓ)
k (t) to t, that is, nk(τk(t)) +M(n

(ℓ)
k (t) −

n
(ℓ)
k (τk(t))) ⩾ nk(t).

Now we follow steps 1-3 in Appendix B.

Step 1. Upper bound the probability of any Type-II decision occurring.

P(∃(k,m, t), |µ̂(m)
k (t)− µk,ε| > CR(nk′(τk(t)) + (n

(m)
k (t)− n

(m)
k (τk′(t)))))

⩽ P(∃(k,m, t, n), |µ̂(m)
k (t)− µk,ε| > CR(n))

⩽
∑

(k,m,t,n)∈(K×M×T ×T )

P(|µ̂(m)
k (t)− µk,ε| > CR(n))

⩽
∑

(k,m,t,n)∈(K×M×T ×T )

MT−3 = KM2T−1.

Step 2. Upper bound the number of times of pulling suboptimal arms

Lemma 15. At any time t ⩽ T , if the optimal arm lies in the candidate set and an agent
makes a Type-I decision with pulling a suboptimal arm i, i.e., I(m)(t) = i, we have nk(t) ⩽
8(1+α)2 log T/∆2

k,ε. Therefore, the total number of pulling times of arm i in the whole time horizon is
upper bounded as follows,

nk(T ) ⩽
8(1 + α)2 log T

∆2
k,ε

+M.

Combining the results of Steps 1 and 2, the group regret is upper bounded as follows,

E[R(T )] ⩽
∑
k>1

nk(T )×∆k +KM2T−1 × T

⩽
∑
k>1

8(1 + α)2 log T

∆k
·
(
eε + 1

eε − 1

)2

+
∑
k>1

M∆k +KM2.

Step 3. Upper bound communication costs For communication, the bound also holds by replacing
∆k with ∆k,ε. Specifically, if there are any Type-II decisions, the total communication times is at
most KM2.

Assume there is no Type-II decision. Following the proof of Lemma 12, we have a similar middle
step Eq. (12): for any suboptimal arm k, denoting κk as the last time slot that the arm was pulled,
we have

2(1 + α)CR(nk(κk)) ⩾ ∆k,ε.

Hence, the last ECR(m)
k (T ) can be upper bounded as

ECR(m)
k (T )

(a)
= CR(nk(κk)) ⩾

∆k,ε

2(1 + α)
,
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where inequality (a) is because after round κk there is no further pulling on arm k. Recall the initial
ECR(m)

k (0) = 1. The total number of times of communication on arm i is upper bounded as follows,

logα

(
ECR(m)

k (0)

ECR(m)
k (T )

)
⩽ logα

(
2(1 + α)

∆k,ε

)
.

Since all arms are pulled in a round-robin manner, the communication cost on the optimal arm is
upper bounded by logα

(
2(1+α)
∆2,ε

)
where ∆2,ε is the smallest reward gap.

Summing the above two type cases yields the communication upper bound as follows,∑
k>1

logα

(
2(1 + α)

∆k
·
(
eε + 1

eε − 1

))
+ logα

(
2(1 + α)

∆2
·
(
eε + 1

eε − 1

))
+KM2.

As each communication round above needs 2(M − 1) communications and the notification of arm
elimination needs (K − 1)M communications in total, the final communication costs are upper
bounded by∑

k>1

2M logα

(
2(1 + α)

∆k
·
(
eε + 1

eε − 1

))
+ 2M logα

(
2(1 + α)

∆2
·
(
eε + 1

eε − 1

))
+ 2KM3.

Proof of Lemma 15.

Arm k is pulled at time t

(a)
=⇒ k ∈ C(t) for agent ℓ fulfills Lemma 14
(b)
=⇒ µ̂

(ℓ)
k (t) + CR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t))))

⩾ µ̂
(ℓ)
k′ (t)− CR(nk′(τk′(t)) +M(n

(ℓ)
k′ (t)− n

(ℓ)
k′ (τk′(t)))) for any k′ ∈ C(t)

(c)
=⇒ µ̂

(ℓ)
k (t) + 2CR(nk(τk(t)) +M(n

(ℓ)
k (t)− n

(ℓ)
k (τk(t)))) ⩾ µ̂

(ℓ)
k′ (t) for any k′ ∈ C(t)

(d)
=⇒ µ̂

(ℓ)
k (t) + 2CR(nk(t)) ⩾ µ̂

(ℓ)
k′ (t) for any k′ ∈ C(t)

=⇒ µ̂
(ℓ)
k (t) + 2CR(nk(t)) ⩾ µ̂

(ℓ)
1 (t)

(e)
=⇒ µk,ε + (2 + α)CR(nk(t)) ⩾ µ1,ε − αCR(n1(t))

=⇒ 2(1 + α)CR(nk(t)) ⩾ µ1,ε − µk,ε = ∆k,ε (12)

=⇒ nk(t) ⩽
8(1 + α)2 log T

∆2
k,ε

where (a) is because the candidate arm sets C(t) are the same for all agents (including arm ℓ), (b)
is by the definition of candidate arm set, (c) is because arms in the candidate arm set are evenly
explored in a round-robin manner, (d) is from the definition of arm ℓ in Eq. (11), and (e) is by
applying Lemma 14.

Lastly, since the pulling of arm i in the critical time slot t is not counted, the total pulling times of
arm i may be increased by M at most, i.e.,

nk(T ) ⩽
8(1 + α)2 log T

∆2
k,ε

+M.

D ADDITIONAL SIMULATIONS

In this section, we report three more experiments to further corroborate the performance of our
algorithm and compare it to baselines.
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In Figure 5, we report the SE-ODC with no buffer (green), and SE-ODC with doubling buffer
(brown) and compare both to our algorithm, SE-AAC-ODC (red). Although SE-ODC-D with
doubling buffer enjoys better communication performance than SE-ODC with constant buffer,
SE-ODC-D’s communication performance is still worse than that of SE-AAC-ODC proposed in
our paper, and SE-ODC-D’s empirical regret is far worse than SE-AAC-ODC. We updated this
additional simulation results in the revised version of this paper.

Figure 6 compares the performance of SE-AAC-ODC with α = 3 and α = 6. This simulation
validates the communication-regret trade-off—the case of α = 3 enjoys a better regret but suffers a
higher communication. Additional, the communications of both cases are much lower than that of
other baseline algorithms.

In Figure 7, we report additional experiments where the number of agents are M = 30 greater
than the number of arms K = 16. In these experiments, our algorithm outperforms other baseline
algorithms in communication and enjoys similar regret as the other baselines, which are the same
observation as in our original numerical simulations at Figure 1.

(a) Communications (b) regrets

Stochastic case

(c) Communications (d) Regrets

Adversarial case

Figure 5: Additional experiments for SE-ODC with doubling buffer

(a) Communications (b) regrets

Stochastic case

(c) Communications (d) Regrets

Adversarial case

Figure 6: Additional experiments for SE-AAC-ODC with different α

(a) Communications (b) regrets

Stochastic case - 10 fast agents and 20 slow agents

(c) Communications (d) Regrets

Adversarial case

Figure 7: Additional experiments for 30 agents
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