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ABSTRACT

Weight-space models learn directly from the parameters of neural networks, en-
abling tasks such as predicting their accuracy on new datasets. Naive methods
– like applying MLPs to flattened parameters – perform poorly, making the de-
sign of better weight-space architectures a central challenge. While prior work
leveraged permutation symmetries in standard networks to guide such designs,
no analogous analysis or tailored architecture yet exists for Kolmogorov–Arnold
Networks (KANs). In this work, we show that KANs share the same permutation
symmetries as MLPs, and propose the KAN-graph, a graph representation of their
computation. Building on this, we develop WS-KAN, the first weight-space ar-
chitecture that learns on KANs, which naturally accounts for their symmetry. We
analyze WS-KAN’s expressive power, showing it can replicate an input KAN’s
forward pass - a standard approach for assessing expressiveness in weight-space
architectures. We construct a comprehensive “zoo” of trained KANs spanning
diverse tasks, which we use as benchmarks to empirically evaluate WS-KAN.
Across all tasks, WS-KAN consistently outperforms structure-agnostic baselines,
often by a substantial margin.

1 INTRODUCTION

Deep neural networks are now powerful tools for prediction, generation, and beyond. A recent
perspective (Navon et al., 2023; Zhang et al., 2023) views their parameters not merely as weights,
but as data – enabling the design of weight-space models, which are networks that operate directly
on the parameters of other networks. This shift makes it possible to predict test accuracy (Eilertsen
et al., 2020; Unterthiner et al., 2020), generate new sets of weights (Erkoç et al., 2023), and classify
or synthesize Implicit Neural Representations (INRs; Mescheder et al. 2019; Sitzmann et al. 2020),
all through a single forward pass.

A straightforward way to design weight-space (WS) models is to flatten all weights and biases
into a single feature vector for prediction. However, this overlooks neuron permutation symmetries
(Hecht-Nielsen, 1990; Brea et al., 2019), i.e., parameter transformations that keep the underlying
function computed by the neural network unchanged. Thus, such naive models may produce differ-
ent predictions for equivalent reorderings. While pioneering approaches used generic architectures
to process model parameters (Schürholt et al., 2022b;a;c), more recent developments incorporate
those networks’ symmetries, either through weight sharing in linear layers (Navon et al., 2023;
Zhou et al., 2023) (via geometric deep learning principles; Bronstein et al. 2021), or by treating
networks as graphs (Lim et al., 2024; Kalogeropoulos et al., 2024; Zhang et al., 2023; Kofinas et al.,
2024) and applying Graph Neural Networks (GNNs; Scarselli et al. 2008; Kipf 2016; Gilmer et al.
2017), which naturally respect these symmetries.

Previous work on WS learning has only begun to explore the potential of characterizing and ap-
plying WS models across different architectures. Initially, research has concentrated on MLPs with
straightforward extensions to CNNs (Navon et al., 2023; Zhou et al., 2023). Recent developments
have expanded to transformer architectures (Tran et al., 2024) and architectures incorporating tensor
symmetry structures (Zhou et al., 2024). However, designing WS models for diverse architectural
paradigms remains an important open challenge that warrants further investigation.

In this work, we introduce the first WS model specifically designed to process an emerging class
of neural networks: Kolmogorov–Arnold Networks (KANs; Liu et al. 2025). Why design a
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Figure 1: Constructing the KAN-graph for a given Kolmogorov-Arnold Network (KAN).

weight-space model that takes KANs as input? KANs represent a fundamentally different neu-
ral paradigm—rather than employing scalar weight matrices with fixed nonlinear activations, they
construct networks from matrices of learnable univariate functions, while preserving the universal
approximation properties of conventional neural networks (Kolmogorov, 1954; Braun & Griebel,
2009). This architectural shift yields compelling advantages over standard MLPs, including supe-
rior parameter efficiency (Koenig et al., 2025), accelerated neural scaling (i.e., performance scales
faster than expected as model size increases) (Liu et al., 2025), and notably, enhanced interpretability
(Barašin et al., 2024). The learnable functions that replace scalar weights can be directly visualized
and analyzed, offering unprecedented insight into the network’s decision-making process.

As KANs gain traction within the deep learning community, we anticipate a proliferation of trained
KAN models across diverse applications. WS learning will become increasingly valuable for help-
ing practitioners understand, compare, and leverage these models effectively. However, developing
weight-space models for KANs presents several challenges. The network architecture differs fun-
damentally from those previously studied in the weight-space literature, as its learnable components
are functions rather than simple scalar parameters. Additionally, the structural understanding from
symmetry perspectives that have been developed for traditional neural networks remains largely
unexplored for KANs.

Our contributions. We begin by showing that KANs also exhibit permutation symmetries – in
fact, the same as conventional neural networks. Building on this insight, we introduce the KAN-
graph, a novel attributed graph with edge features that compactly encodes the structure of a given
KAN; see Figure 1. On top of this representation, we develop WS-KAN, a GNN-based architecture
capable of learning directly over the KAN-graph. We show that WS-KAN applied to a KAN-
graph can simulate the forward pass of the corresponding KAN, validating our approach from a
theoretical perspective, and laying the ground for stronger results such as functional approximation
theorems. To validate our approach experimentally, we construct the first “model zoo” of pre-trained
KANs across diverse tasks, together with their corresponding KAN-graph representations serving
as a benchmark for WS-KAN. We show that WS-KAN consistently outperforms both generic
baselines (such as MLPs over flattened parameters) and more sophisticated architectures, which
effectively act as ablation studies and further validate our architectural design from the perspective
of the symmetry analysis.

2 BACKGROUND AND RELATED WORK

Equivariance and invariance in deep learning. Many learning tasks involve functions that ei-
ther remain unchanged (invariant) or transform in a predictable manner (equivariant) under specific
symmetries of the input. A classic example is the translation invariance of Convolutional Neural
Networks (CNN; Krizhevsky et al. 2012), where shifting an image does not alter its label. While
simple MLPs can, in principle, learn such symmetries from data, this approach is often inefficient.
By explicitly incorporating the symmetry into the model architecture Cohen et al. (2018); Maron
et al. (2020); Zaheer et al. (2017); Ravanbakhsh et al. (2017), the property becomes an inherent fea-
ture of the model rather than something that must be inferred during training. This typically leads to
better generalization and data efficiency (Cohen & Welling, 2016; Brehmer et al., 2024). Building
on these principles, a new class of models has recently emerged, referred to as weight-space models.

weight-space models. The weight-space of a neural network refers to the collection of parameters
that fully define its architecture. For a multilayer perceptron (MLP), this is the set of weights and
biases across all layers, θ = (W1,b1, . . . ,WL,bL). weight-space models are approaches that op-
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erate directly on this parameter space. While pioneering approaches proposed standard architectures
for learning in WS (Schürholt et al., 2021; 2022b;a), more recent works (Navon et al., 2023; Zhou
et al., 2023) have focused on the symmetries inherent in neural networks (Hecht-Nielsen, 1990;
Brea et al., 2019), leading to tailored architectures that explicitly respect these symmetries. Several
strategies have emerged: for instance, Navon et al. (2023); Zhou et al. (2023) enforce weight sharing
in linear layers, while Graph Meta-Networks (Kalogeropoulos et al., 2024; Kofinas et al., 2024; Lim
et al., 2024) leverage graph neural networks to operate directly on a model’s computational graph.
In particular, Lim et al. (2024) has shown that those neural network symmetries correspond to graph
automorphisms of their computational graphs.

Kolmogorov–Arnold Networks (KANs). KANs are a recently introduced class of neural networks
in which edges of the computational graph, rather than carrying simple numerical weights, abstractly
represent univariate functions (Liu et al., 2025). Formally, given an input x ∈ Rd, an L-layer KAN
defines a function f as follows:

f(x) = xL, where xlp =

dl−1∑
q=1

ϕ l
p,q

(
xl−1
q

)
, x0 = x, (1)

where each ϕl is a matrix of univariate functions of size dl× dl−1. That is, every entry is a function
ϕlp,q : R→ R. Conveniently, and analogous to MLPs, the composition of such layers is defined:

f(x) = (ϕL ◦ · · · ◦ ϕ1)x, (2)

where the operator ◦ denotes the application of a layer to its input. To clarify the notation, for a
given layer l, we define

(
ϕl(xl−1)

)
p
:=
∑dl−1

q=1 ϕ
l
p,q(x

l−1
q ).

Several parameterizations of these 1D functions are possible (Bozorgasl & Chen, 2024; Zhang et al.,
2025). In this work, consistent with the original KAN paper, we adopt a B-spline-based parametriza-
tion (Schoenberg, 1946), denoted B(x), which represents smooth piecewise polynomial functions
over a domain. For a more detailed review of B-splines, see App. B. Specifically, we define the 1D
function ψ(·) composing KANs as follows,

ψ(x) = wb b(x) + wsB(x); B(x) = ⟨c,B(x)⟩ =
∑
i

ciBi(x), (3)

where wb, ws are learnable parameters, b(x) = silu(x) = x
1+e−x , and Bi(x) are pre-defined B-

spline basis functions with ci as the learnable coefficients.

3 LEARNING ON KAN PARAMETER SPACES

Overview. We begin by analyzing the structure of KANs’ parameters and demonstrate that per-
muting hidden neurons does not alter the underlying function, mirroring the behavior observed in
MLPs. Inspired by prior work on weight-space models for MLPs that introduced graph representa-
tions (Lim et al., 2023; Kofinas et al., 2024), our approach can be presented as follows: we repre-
sent the input KAN as a graph, where nodes correspond to individual neurons and edges represent
the connections between them. The learned one-dimensional functions of the KAN are used to
define the edge features (details follow). We refer to this construction as the KAN-graph; see Fig-
ure 1. Importantly, the permutation symmetries—those that leave the underlying KAN function
unchanged—correspond to permutations of hidden neurons within the KAN-graph, which likewise
leave the graph itself unchanged. Thus, we employ a graph neural network-based technique to pro-
cess the KAN-graph, leveraging their inherent equivariance to node permutations.

In what follows, we (1) demonstrate that the permutation symmetries present in MLPs also hold in
KANs; (2) present a method for converting KANs into KAN-graphs; and (3) introduce WS-KAN a
GNN-based architecture for processing KAN-graphs and analyze its expressive power.

3.1 PERMUTATION SYMMETRIES IN KANS

In a seminal work, Hecht-Nielsen (1990) observed that MLPs exhibit permutation symmetries: re-
ordering the neurons within any hidden layer leaves the represented function unchanged. In this
subsection, we make the observation that the same symmetry also holds for KANs.

3
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A KAN is fully specified by the collection of one-dimensional functions assigned to each in-
put–output pair in every layer. For convenience, we denote the functions in an L-layer KAN by
[ϕl]l∈[L] (where [L] := {1, 2, . . . , L}). Given permutation matrices P1 and P2, we define their
action on a matrix of univariate functions ϕ as,

(P1ϕP2)p,q = ϕσ−1
1 (p),σ2(q)

, (4)

where σ1 and σ2 are the permutations associated with P1 and P2, respectively. Intuitively, this
corresponds to reordering the rows and columns of ϕ according to the given permutations. Below,
we formally state the permutation symmetries of KANs.

Proposition 3.1 (KAN symmetries). Let θ = (ϕL, . . . ,ϕ1) denote the collection of parametric
one-dimensional functions composing an L-layer KAN. Consider the group, G := Sd1

× Sd2
×

· · · × SdL−1
, the direct product of symmetric groups corresponding to the intermediate dimensions

d1, . . . , dL−1. Let g = (P1, . . . ,PL−1) ∈ G, where each Pl is the permutation matrix of σl ∈ Sdl
.

Define the group action g · θ = θ′ with θ′ = (ϕ′L, . . . ,ϕ′1) given by,

ϕ′1 = P⊤
1 ϕ1 , ϕ′l = P⊤

L ϕlPl−1, ∀l = 2, . . . , L− 1 , ϕ′L = ϕLPL−1 .

Then, fθ(x) = fθ′(x) for all x.

A short proof is given in App. E for the case of a single hidden-layer KAN, and the extension to
multiple hidden layers follows naturally.
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Figure 2: Hidden neuron permutation symmetries in KANs.

Intuitively, such permutations corre-
spond to reordering nodes within hid-
den layers. As an example, Fig-
ure 2 illustrates a single–hidden-layer
KAN, where the permutation matrix
P corresponds to (1, 3). In other
words, the first and third nodes are
mapped to one another, while the sec-
ond remains unchanged. Importantly,
these permutation symmetries hold independently of the chosen parametrization of the 1D functions.

In the next subsection, we introduce the KAN-graph, a graph representation of KANs that (i) com-
pactly encodes their structure, and (ii) remains invariant under neuron permutations that do not alter
the function computed by the KAN.

3.2 KAN-GRAPH

The main idea behind the definition of the KAN-graph is relatively natural: as illustrated in Figure 1,
nodes represent the KAN’s neurons and edges should represent the univariate functions. In this
subsection, we formalize the construction by explicitly defining the nodes, edges, and edge features
derived from those univariate functions.
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2

 𝜙3,1
2  𝜙3,2

2

We define the KAN-graph as a directed graph G = (V,E) where
V represents the set of neurons, E represents the set of edges, and
v ∈ Rn×dV , e ∈ Rm×dE are their corresponding features, respectively.
Here, n,m denote the total number of nodes and edges in the graph, re-
spectively. To clarify, in Figure 2(left), we have n = 7 nodes, m = 12
edges, and the corresponding adjacency matrix is visualized inset.1

Univariate functions as edge features in the KAN-graph. To fully define the KAN-graph, we must
specify how to incorporate the explicit parametrization of [ϕl]l∈[L] characterizing the KAN into the
KAN-graph. In this work, we focus on the parametrization introduced in the original KAN paper
(Liu et al., 2025), wherein the learnable univariate functions are based on B-splines; as per Eq. (3).

In this case, the learnable parameters composing those univariate functions can be conveniently
‘collected’ into a vector ϕ̃l

p,q := [wl
b;p,q, w

l
s;p,q, c

l
p,q]. Thus, we define, for a layer l, an input node

1The adjacency matrix of a given KAN-graph is extremely sparse: nonzeros appear only in the first super-
diagonal blocks, specifically between blocks l and l + 1 for each l ∈ [L].
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(or neuron) p, and an output node q, the following edge feature,

elp,q = ϕ̃l
p,q := [wl

b;p,q, w
l
s;p,q, c

l
p,q], (5)

which elegantly collects the learnable parameters of the one-dimensional function ϕl
p,q .

3.3 LEARNING ON THE KAN-graph

To learn on the KAN-graph, we adopt a general message-passing framework motivated by Gilmer
et al. (2017), as follows (the letters a–d denote the order of execution),

a) vF
i ←MLP(2; F)

v

(
vi,
∑

j: e(i,j)∈E

MLP(1; F)
v (vj , e(i,j))

)
; b) vB

i ←MLP(2; B)
v

(
vi,
∑

j: e(i,j)∈ET

MLP(1; B)
v (vj , e(i,j))

)
;

c) e(i,j) ← MLPe(vi,vj , e(i,j)); d) vi ← MLP(3)
v (vi,v

F
i ,v

B
i ) .

Intuitively, node features are updated by aggregating information from both their outgoing and in-
coming neighbors. Edge features, in turn, are refined based on the states of their endpoints as well
as their own current representation. Each node’s representation is then updated by combining its in-
trinsic features with the forward- and backward-aggregated information. We note that although the
computational graph of KANs is inherently directed, with edges pointing from one layer to the next,
we explicitly perform bidirectional message passing – propagating information not only forward but
also in reverse – as this dual flow was found to enhance performance.

0

1

0

2

2

2

3

4

0

1

4

4

Figure 3: PE.

Positional encodings (PE) as additional edge and node features.
We follow prior work (Kofinas et al., 2024; Lim et al., 2024) and
augment each node and edge of the KAN-graph with positional em-
beddings that indicate their position in the computation flow. This
breaks potential artificial symmetries that may arise in the KAN-
graph. Specifically, all nodes within the same intermediate layer share
a common positional embedding. By contrast, input and output nodes
are assigned distinct embeddings, since permutations of these nodes
generally alter the network’s function. For edges, we assign a unique
identifier to each one, associated with its input and output nodes.

Figure 3 depicts a possible assignment of positional encoding (via simple integers) to both nodes and
edges for the running example of Figure 2(left). Intuitively, permuting neurons within a hidden layer
leaves the feature-augmented graph (i.e., its adjacency matrix) unchanged. In contrast, permuting a
node from the first layer with one from the last does alter the graph.

4 EXPRESSIVE POWER OF WS-KAN

While there are multiple ways to design a WS architecture for processing KANs, we adopted one
specific approach, which stems from equivariance principles, and models the KAN as a graph. How-
ever, a question arises: is this the right design choice?

In general, imposing group-equivariance constraints might reduce a model’s expressive power
(Maron et al., 2019; Xu et al., 2019; Morris et al., 2019). In the weight-space literature, this ex-
pressive power is often analyzed by demonstrating that the architecture can simulate (i.e., approxi-
mate) the forward pass of a given input model. For example, Lim et al. (2024); Navon et al. (2023)
establish such results in the context of processing standard neural networks. Such approximation
results typically serve as an intermediate step toward proving stronger results, such as functional
approximation theorems (Navon et al., 2023).

In this section, we show that WS-KAN can simulate a forward pass for a given input KAN. We begin
by showing that there exists a set of weights for a single-hidden-layer MLP that can approximate
any univariate function based on B-splines (under mild assumptions), as per Eq. (3), to arbitrary
precision. We then use this result to prove our main result: WS-KAN can simulate the forward pass
of the original KAN. All proofs are provided in App. E.
Lemma 4.1 (MLP as an approximation of the univariate functions composing the KAN). Let B
denote the family of cardinal B-splines of degree k, defined on a fixed grid G over the domain

5
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[a, b], and parameterized by coefficients c = [c0, . . . , cG+k−1] ∈ C ⊂ RG+k, where the set of
admissible coefficients lies in a compact domain C. Consider the function ψ : R → R defined as
ψ(x) = wb b(x) + wsB(x), where wb, ws ∈ W ⊂ R for some compact set W . b(x) denotes the
silo function, and B(x) denotes the B-spline. Then, for any ε > 0, and for any compact domain X
there exists a set of weights for a multilayer perceptron MLP : RG+k+3 → R such that,

supx∈X
∣∣MLP(x,ws, wb, c)− ψ(x)

∣∣ < ε.

Lemma 4.1 essentially states that, under the assumptions above, there exists an MLP that effectively
computes the univariate functions composing our input KANs, over any chosen compact domain X .
Consequently, we show that under mild conditions, WS-KAN can approximate a forward pass of
the input KAN model.
Proposition 4.2 (WS-KAN can simulate the forward pass of KANs). Let fθ be a given KAN ar-
chitecture, defined over an input domain [a, b]n, where each univariate function is represented by a
B-spline from the family B. Let G be its KAN-graph, where the nodes in the first layer are enhanced
with the input x ∈ [a, b]n. For every ε > 0, there exists a WS-KAN such that,

supx∈[a,b]n

∣∣WS-KAN(G)− fθ(x)
∣∣ < ε.

Importantly, Proposition 4.2 holds for any choice of parameters defining the KANs’ univariate func-
tions (Eq. (3)). Below we present the proof idea, while the full proof can be found in App. E.

Proof idea. A KAN computation can be viewed as a composition of L continuous functions (lay-
ers). Using Lemma 4.1, we show that WS-KAN can approximate each individual layer to arbitrary
precision. Then, by applying standard techniques (e.g., ideas from Lemma 6 of Lim et al. 2022)
and the message passing mechanism, we construct approximations layer by layer, ensuring that the
overall WS-KAN output remains arbitrarily close to that of the original KAN.

5 EXPERIMENTS

While various “model zoos” (e.g., Schürholt et al., 2022c) exist for benchmarking weight-space
models in conventional neural networks, no comparable resource has yet been developed for KANs.
Nor are there established baselines against which WS-KAN can be evaluated. To address this
gap, we take inspiration from tasks and baselines explored in the weight-space literature for con-
ventional neural networks and construct several families of model zoos of trained KANs. These
zoos are designed to capture both invariant and equivariant tasks and are built from five datasets:
MNIST (LeCun et al., 1998), Fashion-MNIST (F-MNIST; Xiao et al. 2017), Kuzushiji-MNIST
(K-MNIST; Clanuwat et al. 2018), CIFAR10 (Krizhevsky et al., 2009), and a synthetic dataset that
we designed inspired by the one in Navon et al. (2023).

We focus on two invariant problems—INR classification (Section 5.1) and accuracy prediction (Sec-
tion 5.2)–and one equivariant task – pruning, where the goal is to predict a pruning mask directly
from the KAN’s weights (Section 5.3). For each model in the zoo, we also construct the correspond-
ing KAN-graph. We benchmark WS-KAN against the following baselines.

Standard baselines: (1) MLP: A simple multilayer perceptron applied to a vectorized representation
of the KAN’s parameters. (2) MLP + Aug.: The same MLP as above, but trained with permutation
augmentation, i.e., randomly permuting the input KAN in ways that preserve its underlying function.
(3) MLP + Align.: Inspired by alignment techniques for MLPs (Ainsworth et al., 2022), where
parameters are reordered to maximize model similarity, we extend this idea to KANs. The main
challenge is that KAN parameters are functions rather than scalars, and therefore alignment requires
defining distances between functions. Full details are in App. D. We consider as a baseline an
MLP applied to aligned KANs. (4) DMC (Eilertsen et al., 2020): a convolutional layer applied
to the (vectorized) model parameters. Ablation baselines: We introduce two additional baselines
to ablate our architectural design choice. (5) DS (DeepSets): A DeepSets (Zaheer et al., 2017)
architecture applied to the graph’s edge features. Importantly, while this baseline is invariant to
KAN permutation symmetries, it is also invariant to many more permutations that do not correspond
to these symmetries, and completely neglects the graph topology. (6) SetTrans: Similar to (5),
but employing a transformer architecture (Vaswani et al., 2017) over the set of edges. We note

6
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that this baseline is only feasible for relatively small input KANs, since the attention matrix scales
quadratically with the number of neurons.2 Thus, SetTrans is reported only when feasible.

In the following sections, we provide additional details on the tasks considered, describe the con-
struction of the KAN training datasets, and present our results. For each experiment, we report
mean performance over three seeds, with error bars for standard deviation. All test results were
obtained by optimizing for validation performance. Additional experimental details, including the
hyperparameter grid, implementation notes, and extended results, are available in App. C3.

5.1 INR CLASSIFICATION

First, we evaluate WS-KAN on INR (Mescheder et al. 2019; Sitzmann et al. 2020) classification.

What is an INR? For a given image, an INR learns
a mapping from any input coordinate to the corre-
sponding grayscale (or RGB) value of that coordi-
nate in the image. See inset (top). At the bottom
inset, we show example reconstructions produced
by KAN-based INRs over CIFAR10, F-MNIST,
MNIST – left corresponds to ground truth image, and right corresponds to the reconstructed one.

Weight-space 
architecture

(e.g., our WS-KAN)

𝑥 =

𝑥 =

KANs trained on different images trained to predict original class

,    𝑦 = 5

,    𝑦 = 8
INR training

INR training

INR
classifier

Setup and dataset construction. The setup is il-
lustrated inset. For this task, we convert the follow-
ing datasets to KAN-based INRs: Sine waves (a syn-
thetic dataset), MNIST, F-MNIST, and CIFAR10.
Taking MNIST as an example, the key idea is that
for each image in the dataset, we train an independent KAN-based INR to ‘reconstruct’ it. Once
this zoo of INRs is constructed, we train the weight-space model under study (e.g., WS-KAN) to
classify the digit, using as input the parameters of the KAN-based INR (or the KAN-graph when
WS-KAN is tested) rather than the raw pixel data. See App. C.1 for dataset split and details.

Table 1: INR classification accuracy.

Method MNIST F-MNIST CIFAR-10

MLP 34.1±0.1 41.3±0.3 16.8±0.1
MLP + Aug. 62.7±1.1 63.0±0.3 28.2±0.7
MLP + Align. 81.0±0.1 73.6±0.2 30.0±0.2
DMC 73.4±3.0 73.1±1.0 33.0±0.7

DS (Ours) 59.1±3.3 65.9±0.8 23.2±3.9
SetTrans (Ours) 87.5±0.8 80.2±0.1 34.3±0.7
WS-KAN (Ours) 94.3±0.5 84.6±0.6 42.2±0.8

Results. Table 1 reports the accuracy of pre-
dicting the class (e.g., the digit in MNIST)
from the weights of the KAN-based INR. WS-
KAN outperforms all baselines by a large mar-
gin. SetTrans ranks second, suggesting that ex-
plicitly accounting for symmetries is advanta-
geous, albeit suboptimal, as the symmetries it
captures are broader than the KAN permutation
symmetries. Finally, we observe that “MLP +
Align. > MLP + Aug. > MLP”, aligning with
intuition and validating the effectiveness of our
alignment technique. Results over the synthetic dataset are provided in App. C.1.3.

5.2 ACCURACY PREDICTION

Here, we consider the task of predicting the accuracy of a given KAN, based on its parameters.

Setup and dataset construction. We experiment on MNIST, F-MNIST, and K-MNIST.
Over each dataset, we train 4000 KAN models with a 3000/500/500 train/validation/test split.
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)We observed that different KANs trained on these datasets yield simi-
lar accuracies. Thus, to make predicting accuracy from parameters more
challenging, we introduce label noise: for each KAN, we randomly sam-
ple portions of the training data and shuffle their labels. As shown inset,
this results in a diverse set of trained KANs with varying test accuracies
(results for other datasets provided in Figure 9 in App. C). The training
pipeline is illustrated in Figure 10 in App. C.2.

2In practice, we found this approach computationally expensive—training a single epoch could take up to
one hour in some experiments—making it significantly slower than WS-KAN and other baselines.

3We will release all code, including model zoo construction, upon acceptance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Results. To test how well WS-KAN predicts the test accuracies, we follow Lim et al. (2024) and
report two metrics: Mean Squared Error (MSE) and R-squared (R2). The results, summarized in
Table 2, exhibit the same trend as in INR classification: WS-KAN consistently achieves the best
performance across all datasets. The ordering of baselines remains unchanged, with our ablation
baseline (DS) ranking second, followed by MLP + Alignment as the next most effective approach.

Table 2: Accuracy prediction. Comparison of MSE and R2 across datasets.

MSE (lower is better; ↓) [×103] R2 (higher is better; ↑) [×102]

Method MNIST F-MNIST K-MNIST MNIST F-MNIST K-MNIST

MLP 14.58±0.02 11.55±0.12 6.68±0.16 76.99±0.04 69.59±0.33 80.13±0.49
MLP + Aug. 10.41±0.24 8.86±1.47 5.33±0.19 83.56±0.38 76.66±3.88 84.15±0.55
MLP + Align. 5.26±0.09 6.32±0.15 3.33±0.10 91.70±0.15 83.37±0.41 90.11±0.31
DMC 7.00±0.06 6.46±0.32 3.27±0.05 88.95±0.09 82.99±0.85 90.29±0.14

DS (Ours) 3.29±0.12 3.90±0.04 2.00±0.11 94.81±0.18 89.73±0.11 94.07±0.32
WS-KAN (Ours) 3.29±0.17 2.94±0.13 1.45±0.08 94.81±0.27 92.27±0.35 95.69±0.24

5.3 PRUNING MASK PREDICTION

In this section, we tackle the challenging equivariant task of network pruning for KANs, aiming to
discard a subset of weights without significantly degrading performance.

Motivation. Most pruning methods are data-driven, requiring large amounts of data to determine
which parameters to remove. For instance, activation-based approaches rely on recorded activation
values, while gradient-based methods depend on training loss gradients. In contrast, pruning a model
using only a simple forward pass, as enabled by WS-KAN (demonstrated below), is especially
valuable, as it avoids repeated, data-intensive passes.

Setup. Here, we use the same datasets as in Section 5.2. Supervision is obtained by applying a
data-driven edge-based pruning algorithm for KANs4, which we denote as Oracle-prune. The core
idea behind this algorithm is straightforward: it removes edges whose average activation values,
computed from training data, fall below a predefined threshold (set to 0.01 in all experiments).
We refer to this pruning method as Oracle-pruning, as it is our supervision. The oracle pruning
algorithm outputs a binary mask, where edges marked with 0 are pruned and those marked with 1
are retained. The task of interest is to predict this mask, see Figure 11 in App. C.3 for the training
pipeline. Crucially, this task is equivariant: prediction is made for each individual edge of the KAN,
rather than as a single prediction for the entire network. We are interested in evaluating two aspects:
(i) how accurately WS-KAN predicts the pruning mask, and (ii) whether using the mask generated
by WS-KAN leads to effective downstream pruning performance.

Table 3: Pruning mask prediction.

Accuracy (↑, %) ROC-AUC (↑, %)

Method MNIST F-MNIST K-MNIST MNIST F-MNIST K-MNIST

MLP 93.10±<0.01 96.65±<0.01 91.39±<0.01 87.12±0.04 84.92±0.38 75.32±0.02
MLP + Aug. 93.29±<0.01 96.65±<0.01 91.39±<0.01 91.36±0.12 86.21±0.09 74.89±0.01
MLP + Align. 93.57±0.01 96.64±<0.01 91.52±0.01 93.00±0.03 91.66±0.10 82.76±0.05
DMC 93.07±<0.01 96.59±<0.01 91.39±<0.01 84.27±0.06 84.39±0.01 75.06±0.02

DS (Ours) 94.34±0.02 96.90±0.09 94.34±0.02 95.45±0.05 95.81±0.04 95.45±0.05
WS-KAN (Ours) 97.93±0.19 98.93±0.05 97.72±0.14 99.54±0.01 99.72±0.02 99.46±0.09

Results (i). We evaluate mask prediction as a binary classification task using the metrics ROC-AUC
and Accuracy. Results are provided in Table 3. WS-KAN consistently outperforms all baselines
across all datasets and evaluation metrics. Again, the DS approach emerges as the second best over-
all. Notably, the hierarchy among the MLP variants mirrors our earlier findings, further supporting
the effectiveness of our alignment strategy.

4This (off-the-shelf) pruning algorithm is found in https://github.com/KindXiaoming/pykan
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Figure 5: Downstream pruning performance across methods over KANs trained on MNIST.
We report: (i) Test accuracy: the downstream accuracy of pruned networks, averaged over non-
overlapping bins of 20%, to highlight the relative effectiveness of pruning strategies under varying
noise levels – Figure 5a; (ii) Kept weights: the percentage of weights retained after pruning, aver-
aged over the same bins as in (i) – Figure 5b; and (iii) Pruning time (↓): the computational cost
comparison (log scale) in seconds, between WS-KAN and Oracle prune – Figure 5c, low is better.

Results for downstream pruning performance (ii). To properly evaluate downstream pruning, it is
not enough to only report the downstream accuracy achieved by applying a mask. A trivial mask that
leaves all weights untouched would naturally yield high accuracy, but would provide no practical
benefit. A meaningful mask must therefore strike a balance: it should maintain strong downstream
accuracy while also inducing sparsity in the model.

We now evaluate how well WS-KAN achieves this trade-off, and present two complementary plots.
In Figure 5a, we report the downstream accuracy (y-axis) achieved by pruned models across different
noise levels in the training labels (x-axis, binned in 20% non-overlapping intervals). In Figure 5b,
we show the corresponding fraction of weights retained by each method. Together, these plots
illustrate both the accuracy–sparsity trade-off and how each method compares against the oracle-
pruning baseline. It is clear that WS-KAN most closely follows the accuracy–sparsity trade-off
of the oracle-pruning technique. Moreover, DS consistently ranks second best, whereas all other
approaches perform poorly. The only partial exception is MLP + Alignment, which shows some
utility but still falls significantly behind both DS and WS-KAN. Additional downstream pruning
results are available in App. C. Importantly, we observe that WS-KAN offers a significant timing
advantage over Oracle Prune, being up to five orders of magnitude faster (Figure 5c).

Discussion. WS-KAN consistently provides the most effective WS technique for learning over
KANs. Importantly, our ablation baselines (DS/SetTrans) are generally second-best. This under-
scores the value of incorporating the structural properties of KANs, since even a suboptimal inte-
gration (as per DS/SetTrans) still proves beneficial to some extent. Although our alignment method
(see App. D) does not outperform structure-aware approaches, it remains a strong alternative. Across
nearly all tasks/datasets/metrics combinations, we consistently observe the ordering: “MLP + Align.
> MLP + Aug. > MLP”.

6 CONCLUSIONS

We addressed the development of weight-space models for KANs by performing a symmetry anal-
ysis that guided the design of our WS-KAN architecture. We also built comprehensive model zoos
to support future research and evaluation of weight-space models for KANs.

Several promising future directions remain open. The task of out-of-distribution testing, e.g., train-
ing WS-KAN on small KANs (in terms of depth and width) and evaluating it on larger ones. Beyond
this, the availability of weight-space models for both KANs and MLPs, naturally invites the study
of transformations between the two, enabling us to leverage their complementary strengths. Many
analytical tools are well established for MLPs; by converting a KAN into an equivalent MLP (while
preserving its function), these tools can be used to study the original KAN. Conversely, converting
an MLP into a KAN allows us to exploit the interpretability of KANs (Barašin et al., 2024), offering
new insights into the MLP. Finally, Evaluating WS-KAN’s generalization to other KANs – e.g.,
CNN-KANs – would be an interesting direction.
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REPRODUCIBILITY STATEMENT

Upon acceptance, we will release our code, including the complete training and evaluation scripts.
All implementation details required to replicate the results and evaluations are provided in App. C.
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A APPENDIX ROADMAP

This appendix gathers the mathematical background, full experimental details, the alignment proce-
dure, and proofs that support the main text. See guide below.

• App. B (B-splines). Reviews uniform B-splines and clarifies how they parameterize the
univariate functions in KANs.

• App. C (Extended Experimental Section). Provides all details to create the model zoos
for each task and reproduce all results:

– App. C.1 – INR classification.
– App. C.2 – Accuracy prediction.
– App. C.3 – Pruning mask prediction.

• App. D (Aligning Kolmogorov-Arnold Networks). Here we extend the alignment ideas
presented in Ainsworth et al. (2022) to KANs.

• App. D.1 (Aligning a model zoo or a dataset). Here we describe how our alignment
procedure discussed in App. D can be applied to an entire dataset of trained KANs.

• App. E (Proofs). Collects all formal propositions and proofs.
• App. F (Large Language Model (LLM) Usage). Here we provide details on how we used

LLMs.

B B-SPLINES

B-splines are smooth piecewise polynomial functions over a domain [a, b], defined using
a knot vector T. Specifically, a degree-k B-spline with G grid points is expressed as:

B(x) = ⟨c,B(x)⟩ =
G+k−1∑

i=0

ciBi(x), (6)

where Bi(x) are basis functions and ci are the learnable parameters; see the inset5 illustra-
tion for the basis functions corresponding to G = 5 and k = 3. The knot vector T =
[t−k, . . . , t0, t1, . . . , tG, . . . , tG+k] is larger than the domain itself, and determines where and how
the basis functions are defined. The basis functions are defined recursively using the Cox–de Boor
formula (De Boor, 1978); the explicit expression is provided below. For uniform B-splines, of
which we focus on in this paper, the knots are equally spaced with t0 = a, tG = b, and spacing
∆t = ti − ti−1.

Cox–de Boor Formula The Cox–de Boor recursion De Boor (1978) defines the B-spline basis
functions as follows:

Ni,k′(x) =

{
1, if ti ≤ x < ti+1,

0, otherwise,
for k′ = 0,

Ni,k′(x) =
x− ti

ti+k′ − ti
Ni,k′−1(x) +

ti+k′+1 − x
ti+k′+1 − ti+1

Ni+1,k′−1(x), for k′ > 0.

5The figure is taken from Liu et al. (2025).
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We denote
Bi(x) := Ni−k,k(x).

In the uniform case, the denominators simplify to k′∆t.

C EXTENDED EXPERIMENTAL SECTION

The implementation of WS-KAN was carried out using PyTorch (Paszke et al., 2019) and Py-
Torch Geometric (Fey & Lenssen, 2019), which are distributed under the BSD and MIT licenses,
respectively. Hyperparameter optimization was conducted with the Weight and Biases frame-
work (Biewald, 2020). Below we provide the additional details necessary to reproduce our ex-
periments. These include instructions on how we constructed the model zoos for each task, how we
trained both WS-KAN and the baseline models, as well as the hyperparameter grids and other rel-
evant configurations. Importantly, for all WS models considered we employed the exact same data
split and hyperparameter grid search. For the specific procedure used to align a dataset of trained
KANs, please refer to App. D.1.

Optimizer and schedulers. For all considered datasets and tasks for WS models considered, we
use the AdamW optimizer Loshchilov & Hutter (2019) in combination with a linear learning rate
scheduler, incorporating a warm-up phase over the first 100 of training steps.

All KANs we have trained for constructing the various model zoos use the fit function from the
PyKAN library6.

C.1 INR CLASSIFICATION: EXTENDED SECTION

C.1.1 MODEL ZOO – INR CLASSIFICATION

Constructing the synthetic 2D sine wave INR dataset. We start by sampling a frequency vector
uniformly at random from the range w ∈ [0.5, 10]2. Each sample defines a 2D sine wave of the
form,

g(x) = sin(w · x),
where x is the input and g(x) is the target output. To learn this mapping, we train a KAN-based
implicit neural representation (INR) with architecture depth/width configuration of [2, 32, 32, 1]. We
train 1,000 independent models, using a split of 800/100/100 for training, validation, and testing,
respectively. Training is performed with a batch size of 128, and the learning rate is fixed at 0.01,
for 1, 000 epochs. The univariate functions in the KAN is parameterized via B-splines with G = 30
and k = 3. See example of a KAN-based INR for a samples sine function in Figure 6.

Constructing INRs for MNIST, F-MNIST, CIFAR10. For each dataset, we train a KAN-
based implicit neural representation (INR) model that maps pixel coordinates to their corresponding
intensity values—grayscale for MNIST and F-MNIST, and RGB for CIFAR10. The network ar-
chitecture is configured as [2, 32, 32, 1] for MNIST and F-MNIST, and [2, 32, 32, 3] for CIFAR10

6https://github.com/KindXiaoming/pykan

Figure 6: Example of a KAN-based INR applied to the synthetic 2D sine wave dataset. The left
panel shows the ground truth, and the right panel shows the reconstructed result.
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to account for its three color channels. For all datasets, we adopt a batch size of 128 and train for
1,000 epochs using a fixed learning rate of 0.01. The univariate functions in the KAN is parame-
terized via B-splines with G = 10 and k = 3. An illustration of a KAN-based INR is provided in
Figure 7.

Figure 7: Reconstructions from INR on CIFAR-10, Fashion-MNIST, and MNIST. All PSNRs are
more than 40.

C.1.2 INR CLASSIFICATION - ADDITIONAL DETAILS

Hyperparameters. For all datasets considered (except the sine wave dataset), we trained both
WS-KAN and the baseline models on a randomly sampled subset of 10,000 trained KANs, with
an additional 5,000 reserved for validation. The KANs used for testing are those that were trained
on the original dataset’s test images. For each considerd WS model, we used 4 layers, a hidden
dimension of 128, batch size of 128, weight decay of 0.01, dropout of 0.2, and 300 epochs. For the
learning rate, we performed a search over the set {0.001, 0.0001}.
For the sine wave dataset, we made the following adjustments: training was conducted for 200
epochs with a fixed learning rate of 0.001. Additionally, we experimented with varying training set
sizes, using subsets of {100, 200, 500, 800} from the available 800 samples.

C.1.3 RESULTS ON SYNTHETIC DATASET

Synthetic dataset: 2D Sine waves. We constructed a dataset of KAN-based INRs for 2D sine waves
– see App. C.1.1 for more details on this dataset construction. The task is to predict the frequency
w of a given test KAN-based INR, via its parameters. To evaluate the generalization capabilities
of the architectures on this synthetic dataset, we repeat the experiment while varying the number of
training examples (INRs). As shown in Figure 8, WS-KAN consistently outperforms all baseline
methods, even when trained with only a small number of examples.

C.2 ACCURACY PREDICTION – EXTENDED SECTION

The weight-space training pipeline for the task of accuracy prediction is illustrated in Figure 10.

240 320 400 480 560 640 720 800
Number of train samples

10 1

100

101

M
SE

 (l
og
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e)

DMC
DeepSets (Ours)
MLP
MLP + Align.
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SetTrans (Ours)
WS-KAN (Ours)

Figure 8: Results on the synthetic 2D sine wave INR dataset.
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Figure 9: KANs test accuracies. Scatter plots of KAN accuracies on the test set (Y-axis) as a
function of the number of noisy labels (X-axis).
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(e.g., our WS-KAN)

,         𝑦 = 93%𝑥 =

𝑥 =

trained KANs trained to predict the KAN’s accuracy

,         𝑦 = 78%

accuracy
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Figure 10: Weight-space training for accuracy prediction. We train KANs under varying noise
levels, then fit a WS model (e.g., WS-KAN) to predict their accuracy from weights.

C.2.1 MODEL ZOO – ACCURACY PREDICITON

To construct the model zoos for the task of accuracy prediction, we used MNIST, F-MNIST, and
K-MNIST. For each dataset, we trained 4,000 KAN models with a 3000/500/500 split for training,
validation, and testing. Each KAN model we trained (to classify the images in the dataset at hand)
used 3 layers. For MNIST and F-MNIST, the layer dimensions were [784, 32, 32, 10], where
784 = 28× 28 corresponds to the number of grayscale input pixels. For CIFAR10, the dimensions
were [3072, 32, 32, 10], with 3072 = 32× 32× 3 accounting for the RGB input pixels. Note that 10
denotes the number of target classes across all datasets.

We observed that KANs trained on these datasets achieved similar accuracy levels. To increase the
difficulty of predicting accuracy from parameters, we introduced label noise. Specifically, for each
KAN, we randomly selected portions of the training data and permuted their labels. In Figure 9, we
report the test accuracies over a random sample of 100 test instances.

We trained those KANs for 100 epochs, with a fixed learning rate of 0.01 and a batch size of 128.
We again used a grid size of G = 5 and k = 3 for the B-splines that define the univariate functions
in the trained KANs.

C.2.2 ACCURACY PREDICTION – ADDITIONAL DETAILS

Hyperparameters. The hyperparameters used in all experiments, across tasks, datasets, and base-
lines, are summarized in Table 4.

C.3 PRUNING MASK PREDICTION – EXTENDED SECTION

The pipeline for training a WS model for the task of predicting the pruning mask is provided in
Figure 11.
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Parameter Values
Embedding size {128, 32}
Number of epochs 100
Learning rate {0.001, 0.005, 0.0001}
Dropout 0.2
Number of layers {4, 1}
Batch size 32

Table 4: Hyperparameter configuration used in the experiments for accuracy prediction.

Weight-space 
architecture

(e.g., our WS-KAN)

, 𝑦 =𝑥 =

, 𝑦 =𝑥 =

trained KANs trained to predict oracle’s pruned mask

mask
predictor

Figure 11: Pipeline for training a WS model for the task of pruning mask prediction.

C.3.1 MODEL ZOO – PRUNING

The model zoos used in these experiments build upon those described in App. C.2.1. More specifi-
cally, starting from the KANs obtained in App. C.2.1, we applied the Oracle prune algorithm—an
edge-pruning method provided by the PyKAN library7. Specifically, all edges whose average activa-
tion on the training dataset fell below a fixed threshold were removed. Throughout all experiments,
we used a threshold of 0.01.

C.3.2 PRUNING MASK PREDICTION – ADDITIONAL DETAILS AND RESULTS

We note that for the test metrics ROC-AUC and Accuracy reported in Table 3, we used the full set
of 500 test samples. Since Accuracy is a threshold-dependent metric, we selected the threshold by
maximizing validation accuracy and applied the same threshold during testing.

For the pruning plots for each dataset, as shown in Figures 5a, 5b, 12 and 13, we used a random
subset of 100 KANs from the test set, the same as the one for Figure 9.This decision stems from the
high computational cost of generating such plots, which requires full inference on the entire dataset
(e.g., MNIST) for each pruned KAN produced by every WS method.

Hyperparameter. For all datasets, we adopted a consistent training setup, closely aligned with
the configuration described in App. C.1. Specifically, we used a 4-layer architecture with a hidden
dimension of 128, a batch size of 32, weight decay of 0.01, and dropout of 0.2. Training was
performed for 15 epochs. For the learning rate, we conducted a grid search over {0.001, 0.0001}.

Additional results. In Figures 12 and 13, we present the downstream pruning results on F-
MNIST and K-MNIST, respectively. As shown in Figure 12, WS-KAN achieves the best per-
formance, striking the most favorable trade-off between accuracy and parameter sparsity, closely
approaching the oracle prune that serves as our supervision. Meanwhile, the other baselines per-
form markedly worse. In contrast, Figure 13 shows that DS is also highly effective, performing on
par with WS-KAN.

7https://github.com/KindXiaoming/pykan.
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Figure 12: Downstream pruning performance across methods over F-MNIST. We report: (i)
Test accuracy: the downstream accuracy of pruned networks, averaged over non-overlapping bins
of 20%, to highlight the relative effectiveness of pruning strategies under varying noise levels –
Figure 12a; (ii) Kept weights: the percentage of weights retained after pruning, averaged over the
same bins as in (i) – Figure 12b.
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Figure 13: Downstream pruning performance across methods over K-MNIST. We report: (i)
Test accuracy: the downstream accuracy of pruned networks, averaged over non-overlapping bins
of 20%, to highlight the relative effectiveness of pruning strategies under varying noise levels –
Figure 13a; (ii) Kept weights: the percentage of weights retained after pruning, averaged over the
same bins as in (i) – Figure 13b.

D ALIGNING KOLMOGOROV-ARNOLD NETWORKS

A complementary strategy to designing permutation-equivariant architectures, is to instead keep the
model class simple and canonize the input. In our context, the core idea would be to map each
KAN into a fixed canonical form by permuting its neurons so that two networks differing only by
permutations (and thus computing the same function) are aligned to the same representation.

A particularly interesting case arises in the context of MLPs as discussed in Ainsworth et al. (2022).
In that case, Θ’s are collection of scalers, and a simple choice of dist to be the Euclidean distance
∥ · ∥2, the alignment problem becomes

argmin
π

∥∥vec(ΘA)− vec
(
π(ΘB)

)∥∥
2
,= argmax

π
vec(ΘA) · vec

(
π(ΘB)

)
. (7)

We can re-express this in terms of the full weights,

argmax
π={Pi}

⟨W(A)
1 , P1W

(B)
1 ⟩F + ⟨W(A)

2 , P2W
(B)
2 P⊤

1 ⟩F + · · ·+ ⟨W(A)
L , W

(B)
L P⊤

L−1⟩F . (8)

Turning to KANs, the parameters ΘA and ΘB correspond to collections of univariate functions,
rather than scalars. To align such models, we must therefore define a distance function appropriate
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for functions. Importantly, there is no single “correct” choice here—different definitions may lead
to different alignment outcomes.

In this paper, consistent with our formalism in Section 3.2, we associate each such entry in Θ, with
a parameter vector of the form

(ΘA)i = [wb, ws, c],

where, for the sake of this example and with a slight abuse of notation, wb, ws, and c are the coef-
ficients defining the corresponding i-th 1D function. For convenience, we refer to these coefficients
as channels, and denote the c-th channel of this vector by (Θc

A)i = [wb, ws, c]c.

With this structure, we define the alignment objective as the sum of ℓ2 distances across all channels:

argmin
π

∑
c

∥∥vec(Θc
A)− vec

(
π(Θc

B)
)∥∥

2
= argmax

π

∑
c

vec(Θc
A) · vec

(
π(Θc

B)
)
, (9)

which parallels Eq. (7), but now summed across channels. Expanding this channel-wise objective
yields

argmax
π={Pi}

∑
c

(
⟨ϕ(c;A)

1 , P1ϕ
(c;B)
1 ⟩F + ⟨ϕ(c;A)

2 , P2ϕ
(c;B)
2 P⊤

1 ⟩F + · · ·+ ⟨ϕ(c;A)
L , ϕ

(c;B)
L P⊤

L−1⟩F
)

=

(
argmax
π={Pi}

⟨ϕ(A)
1 , P1 ∗ ϕ(B)

1 ⟩F + ⟨ϕ(A)
2 , P2 ∗ ϕ(B)

2 ∗ P⊤
1 ⟩F + · · ·+ ⟨ϕ(A)

L , ϕ
(B)
L ∗ P⊤

L−1⟩F
)
.

In the second line, we move the sum over channels c inside each Frobenius inner product. As a
result, the channel superscript c is omitted: the Frobenius inner product now implicitly sums over
c, absorbing the channel dimension. Importantly, ∗ denotes a contraction operator that acts only on
the first two indices, leaving the channel dimension untouched. Concretely, for the middle term we
have:

(P2 ∗ ϕ(B)
2 ∗ P⊤

1 )p,q,c :=
∑
p′,q′

(P2)p,p′ (ϕ
(B)
2 )p′,q′,c (P

⊤
1 )q,q′ . (10)

This formalism provides a straightforward extension of the alignment framework of Ainsworth et al.
(2022) for MLPs to the KAN setting: their algorithm can be directly applied once the ∗ operation is
defined as above.

D.1 ALIGNING A DATASET OF TRAINED KANS

While the formalism in App. D provides a method for aligning a pair of KANs, our experiments re-
quire aligning an entire dataset of KANs. To achieve this, we integrate our alignment technique with
the MergeMany algorithm introduced in Ainsworth et al. (2022). The central idea is to iteratively
run the alignment procedure between one model and the average of all other models.

In practice, we observed that convergence times could be prohibitively long. To address this, we
adopted the following strategy: we fixed the error tolerance at 0.001, then randomly sampled 1000
models and applied the MergeMany algorithm to this subset, consistent with Navon et al. (2023).
The outcome was a new model representing the average of the aligned subset. This model then
served as the reference for aligning the remaining training models as well as the test models, ulti-
mately yielding fully aligned training and test sets.

Finally, we note that in our formulation, all channels are equally weighted. While this simplifies
the alignment, it may be suboptimal in certain cases. Alternative weighting schemes could yield
improved results. We leave a detailed exploration of such extensions to future work.

E PROOFS

Lemma E.1 (MLP as an approximation of the univariate functions composing the KAN). Let B
denote the family of cardinal B-splines of degree k, defined on a fixed grid G over the domain
[a, b], and parameterized by coefficients c = [c0, . . . , cG+k−1] ∈ C ⊂ RG+k, where the set of
admissible coefficients lies in a compact domain C. Consider the function ψ : R → R defined as
ψ(x) = wb b(x) + wsB(x), where wb, ws ∈ W ⊂ R for some compact set W . b(x) denotes the
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silo function, and B(x) denotes the B-spline. Then, for any ε > 0, and for any compact domain X
there exists a set of weights for a multilayer perceptron MLP : RG+k+3 → R such that,

supx∈X
∣∣MLP(x,ws, wb, c)− ψ(x)

∣∣ < ε.

Proof. The claim follows directly from the universal approximation theorem Cybenko (1989). The
input vector to the MLP lies in the compact domain

(x,ws, wb, c) ∈ X ×W ×W × C,

which is compact since finite cartesian products of compact sets are compact. Moreover, the target
function ψ(·) is continuous, as it is a weighted sum of continuous functions—both the silo function
b(·) and the B-spline B(·) are continuous. Therefore, by the universal approximation theorem, there
exists an MLP that uniformly approximates ψ on this compact domain to arbitrary accuracy ε > 0.
This completes the proof.

Proposition E.2 (WS-KAN can simulate the forward pass of KANs). Let fθ be a given KAN
architecture, defined over an input domain [a, b]n, where each univariate function is represented
by a B-spline from the family B. Let G be its KAN-graph, where the nodes in the first layer are
enhanced with the input x ∈ [a, b]n. For every ε > 0, there exists a WS-KAN such that,

supx∈[a,b]n

∣∣WS-KAN(G)− fθ(x)
∣∣ < ε.

Proof. We recall that fθ(x) = (ϕL ◦ . . . ◦ ϕ1)x is a composition of continuous functions. We
denote by vl the nodes in the KAN-graph that correspond to the activations in layer l, defined
al. We prove via induction, that l + 1 layers of WS-KAN, can uniformly approximate the output
al+1 = (ϕl+1 ◦ . . . ◦ ϕ1)x over the nodes vl+1 to arbitrary precision.

Induction proof. We begin by defining a compact space, S, which encompasses all possible values
attained by any neuron within the KAN. Since the input to the KAN lies in [a, b]n (which is compact)
and the applied univariate functions are continuous, their outputs form compact sets. With a mild
abuse of terminology, we define the compact output space to be a compact set that includes the
outputs corresponding to all inputs in the unit ball B(x, 1) around each input. Each neuron then
receives a finite sum of elements, each belonging to a compact set, which implies that the neuron’s
value also lies within a compact set. Moreover, because the number of neurons is finite, the union
of all such compact sets is itself contained in a larger compact domain. Thus, there exists a compact
space, defined as S, that contains the values of all neurons. Additionally, we denote the maximal
width of the network by Nmax.

We now proceed with a proof by induction.

Step 1. Initialization. We define the KAN’s input over the KAN-graph as follows,

v0 = x, vl>0 = 0, elp,q = ϕ̃l
p,q := [wl

b;p,q, w
l
s;p,q, c

l
p,q],

so that the node features at layer 0 encode the KAN’s input x, while edge features store the spline
parameters. Thus, the base case is satisfied.

Step 2. Induction hypothesis. We assume that after l layers of WS-KAN message passing we have

∥vl − al∥ < δ,

where al denotes the activations at layer l of the KAN, and δ > 0 is an arbitrarily small approxima-
tion error that we can control. Given ϵ > 0, we now show that we are able to obtain vl+1 such that
∥vl+1 − al+1∥ < ϵ.

Step 3. Inductive step.

We recall a given WS-KAN update equation:

vF
i ← MLP(2; F)

v

(
vi,
∑

j: e(i,j)∈E

MLP(1; F)
v (vj , e(i,j))

)
, vB

i ← MLP(2; B)
v

(
vi,

∑
j: e(i,j)∈ET

MLP(1; B)
v (vj , e(i,j))

)
,

e(i,j) ← MLPe(vi,vj , e(i,j)), vi ← MLP(3)
v (vi,v

F
i ,v

B
i ).
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The KAN update rule at layer l + 1 is

al+1
p =

∑
q

ϕl
p,q(a

l
q),

where ϕl
p,q denotes a univariate spline function parameterized by (wl

b;p,q, w
l
s;p,q, c

l
p,q).

To reproduce this update within WS-KAN, we recall that MLPunivariate can be chosen to be an arbi-
trarly close approximation of the univariate function composting the KAN, recall Lemma 4.1, thus
we choose MLPunivariate, such that

∥MLPunivariate(a, b, c, d)− ψ(a)∥ < ϵ/2Nmax,

where ψ stands for the 1D univariate functions with the parameters (b, c, d).

Since MLPunivariate(a, b, c, d) is continuous and defined on a compact set, it is uniformally continuous.
Thus, there exists δ′ > 0 such that,

∥a− a′∥ < δ′ ⇒ ∥MLPunivariate(a, b, c, d)− MLPunivariate(a′, b, c, d)∥ < ϵ/2Nmax.

Thus, we fix δ < min(δ′, 1), and from the induction hypothesis we get that there is a WS-KAN
network that can guarantee ∥vl − al∥ < δ.

It holds that for a single neruon, given that ∥a− a′∥ < δ,∥∥MLPunivariate(a′, b, c, d)− ψ(a)
∥∥ =∥∥MLPunivariate(a′, b, c, d)− MLPunivariate(a, b, c, d) + MLPunivariate(a, b, c, d)− ψ(a)

∥∥ ≤∥∥MLPunivariate(a′, b, c, d)− MLPunivariate(a, b, c, d)
∥∥+ ∥∥MLPunivariate(a, b, c, d)− ψ(a)

∥∥ ≤
ϵ/2Nmax + ϵ/2Nmax = ϵ/Nmax

We set,

MLP(1;F )
v

(
vj , e(i,j)

)
= MLPunivariate(vl

q, w
l
b;p,q, w

l
s;p,q, c

l
p,q

)
. (11)

Thus, it holds that for ∥vl
q − al

q∥ < δ, which is our induction assumption, we have,

∥MLP(1;F )
v

(
vj , e(i,j)

)
− ϕl

p,q(a
l
q)∥ < ϵ/Nmax,

We can also assign weight to the following MLP, to output the following precisely,

MLP(2;F )
v (a, b) = b, (12)

(13)

The forward aggregator vforward
i thus becomes

|vforward
q −

∑
q

ϕlp,q(a
l
q)| ≤ ϵ/Nmax,

which approximates the KAN update in this layer.

The backward aggregator, edge update, and auxiliary terms are irrelevant for this construction, so
their associated MLPs, namely are set to the zero function, by assigning zero to all weight:

MLP(1;B)
v = MLP(2;B)

v = MLPe = 0, (14)

Finally, we set the weights of MLP(3)
v such that MLP(3)

v (a, b, c) = b. this ensures that vl+1
q = vforward

q .
Thus.

∥vl+1 − al+1∥2 =

(∑
p

(
vl+1
p − al+1

p

)2) 1
2

≤ (
∑
p

(ϵ/Nmax)
2)

1
2 ≤ ϵ/

√
Nmax < ϵ
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Proposition E.3 (KAN symmetries). Let θ = (ϕL, . . . ,ϕ1) denote the collection of parametric
one-dimensional functions composing an L-layer KAN. Consider the group, G := Sd1

× Sd2
×

· · · × SdL−1
, the direct product of symmetric groups corresponding to the intermediate dimensions

d1, . . . , dL−1. Let g = (P1, . . . ,PL−1) ∈ G, where each Pl is the permutation matrix of σl ∈ Sdl
.

Define the group action g · θ = θ′ with θ′ = (ϕ′L, . . . ,ϕ′1) given by,

ϕ′1 = P⊤
1 ϕ1 , ϕ′l = P⊤

L ϕlPl−1, ∀l = 2, . . . , L− 1 , ϕ′L = ϕLPL−1 .

Then, fθ(x) = fθ′(x) for all x.

Proof. We compute the p-th output component:

fθ(x)p = (ϕ2 ◦ ϕ1 ◦ x)p =
∑
q,k

ϕ2
p,q(ϕ

1
q,k(xk)) =

∑
q,k

ϕ2
p,σ(q)(ϕ

1
σ(q),k(xk))

=
∑
q,k

(ϕ2P )p,q(P
⊤ϕ1)q,k(xk) = fθ̃(x)p

The third equality holds by reindexing the summation using a permutation σ corresponding to
P . Recalling Eq. (4), the fourth equality follows from the identities (ϕ2P )p,q = ϕ2

p,σ(q) and
(P⊤ϕ1)q,k = ϕ1

σ(q),k.

F LARGE LANGUAGE MODEL (LLM) USAGE

We used large language models (LLMs) exclusively to support the writing process. Their role was
limited to improving clarity in technical explanations, refining grammar and style, and enhancing
overall readability. All research contributions—including experimental design, data analysis, and
conclusions—are entirely our own. The LLMs served solely as tools to improve presentation quality
and were not employed to generate research content or influence the substance of our work.
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