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Abstract

Contrastive vision-language representation learning has achieved state-of-the-art
performance for zero-shot classification, by learning from millions of image-
caption pairs crawled from the internet. However, the massive data that powers
large multimodal models such as CLIP, makes them extremely vulnerable to various
types of targeted data poisoning and backdoor attacks. Despite this vulnerability,
robust contrastive vision-language pre-training against such attacks has remained
unaddressed. In this work, we propose ROCLIP, the first effective method for
robust pre-training multimodal vision-language models against targeted data poi-
soning and backdoor attacks. ROCLIP effectively breaks the association between
poisoned image-caption pairs by considering a relatively large and varying pool
of random captions, and matching every image with the text that is most similar
to it in the pool instead of its own caption, every few epochs.It also leverages
image and text augmentations to further strengthen the defense and improve the
performance of the model. Our extensive experiments show that ROCLIP renders
state-of-the-art targeted data poisoning and backdoor attacks ineffective during
pre-training CLIP models. In particular, ROCLIP decreases the success rate for
targeted data poisoning attacks from 93.75% to 12.5% and that of backdoor attacks
down to 0%, while improving the model’s linear probe performance by 10% and
maintains a similar zero shot performance compared to CLIP. By increasing the
frequency of matching, ROCLIP is able to defend strong attacks, which add up to
1% poisoned examples to the data, and successfully maintain a low attack success
rate of 12.5%, while trading off the performance on some tasks 1.

1 Introduction

Recent large-scale vision-language models pre-trained on millions of image-caption pairs crawled
from the internet has gained an unprecedented success. Large-scale vision-language models such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) are trained using a multimodal contrastive
loss which pulls the representations of every image-caption pair together while pushing those of
different pairs apart. In doing so, they can learn state-of-the-art image representations, without the
need for a fixed set of predetermined labels to be specified at pte-training time. This enables zero-shot
transfer of the model to downstream tasks, without requiring specialized output heads or dataset
specific customization. Instead, natural language can be used to reference the learned visual concepts
afterwards (Radford et al., 2021; Jia et al., 2021). Crucially, alleviating the need for expensive
labeling of training examples enables scaling up the training data to millions of examples. However,
the massive data that powers such large models also makes them extremely vulnerable to various
types of targeted data poisoning and backdoor attacks (Carlini & Terzis, 2021; Yang et al., 2022).

1Code is available at https://github.com/BigML-CS-UCLA/RoCLIP

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Figure 1: Illustration of ROCLIP. for defending CLIP during pre-training. (a) ROCLIP keeps a pool
of random varying captions. During training, ROCLIP augments all images and captions. Then, it
finds the most similar caption zzzTnn(i) to an augmented image zzziI ; and instead of matching the image
zzzIi and caption zzzTi , it matches every augmented image to its zzzTnn(i).

Targeted data poisoning attacks on multimodal models add mismatched image-caption pairs to the
pre-training data, to change the prediction of particular images at the test time. Similarly, backdoor
attacks overlay a small patch on a subset of training data to cause the model to misclassify test images
with the same patch. Notably, poisoning just 0.0001% of the pre-training examples can lead to success
of a targeted poisoning attack. Similarly, poisoning 0.01% of pre-training examples can makes a
backdoor attack successful (Carlini & Terzis, 2021). Compared to clean-label data poisoning and
backdoor attacks in the supervised settings which require poisoning on average 1% of training data
(Turner et al., 2018; Geiping et al., 2021), attacking multimodal contrastive models requires orders of
magnitude fewer poisoned examples. Interestingly, the larger the model, the more vulnerable it is
against adversarial attacks (Carlini & Terzis, 2021).

Despite this vulnerability, robust pre-training of multimodal vision-language models against targeted
data poisoning and backdoor attacks has remained unaddressed. The recent work of Yang et al. (2022)
studied poison identification during fine-tuning of CLIP, by using another CLIP model pre-trained
on clean data to remove dissimilar image-caption pairs. Furthermore, Bansal et al. (2023) proposed
CleanCLIP to eliminate the effect of backdoor attacks from a pre-trained CLIP model, by fine-tuning
on a large subset of the clean pre-training data with in-modality contrastive loss on both vision and
language modalities. However, such approaches are not applicable to pre-training, as we also confirm
experimentally in Appendix 7.1.

In this work, we propose the first effective method, namely ROCLIP, for robust pre-training of
multimodal vision-language models such as CLIP, against targeted data poisoning and backdoor
attacks. Our approach is based on the following key observation: while the similarity between
the image-caption pairs of clean examples increases rapidly during the training, similarity between
poisoned image-caption pairs grows at a slower speed, early in training. As a result, poisoned images
and captions are not close to the groups of similar images and captions in the representation space,
during the initial training iterations. To break the association between poisoned image-caption pairs,
our main idea is to keep a relatively large and varying pool of randomly selected captions. Then, we
match every image with the text that is most similar to it in the pool instead of its original caption.
This effectively prevents the attack by breaking the association between poisoned image-caption
pairs, from early training epochs. We further strengthen our defense and improve the performance by
leveraging image and text augmentations.

Our extensive experiments show that our method renders state-of-the-art targeted data poisoning and
backdoor attacks ineffective during pre-training. In addition, our method leads to an increase of linear
probe accuracy by up to 10% while having a zero shot performance on par with CLIP. By increasing
the frequency of matching, ROCLIP is able to defend strong attacks, which add up to 1% poisoned
examples to the data, and successfully maintain a low attack success rate of 12.5%, while trading off
the performance on some tasks. We note that ROCLIP is the only effective defense method against
state-of-the-art attacks that can efficiently scale to pre-training large-scale vision-language models
such as CLIP.
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2 Related Work
Contrastive Representation Learning. Contrastive learning was originally proposed for self
supervised representation learning from unimodal data. Self-supervised contrastive learning works
by maximizing agreement between differently augmented views of the same example and minimizing
agreement between differently augmented views of different examples (Chen et al., 2020; Chen
& He, 2021; He et al., 2020). Several works improved the performance of contrastive-learning on
downstream tasks by imposing additional constraints to remove redundancy between components
of the representation vectors and prevent collapse of the representations (Bardes et al., 2021; Zbontar
et al., 2021), or using nearest-neighbor as positive pairs in the contrastive loss (Dwibedi et al., 2021;
Van Gansbeke et al., 2021).

Contrastive Language-Image Pretraining. Multimodal vision-language models like CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021) are pre-trained on 400M/1B image-text pairs, by maximizing
the agreement between image and text representations of every image-caption pairs and minimizing
those of different pairs. A recent line of work aims at improving the data efficiency and quality of
CLIP representations, by leveraging image and text augmentations. DeCLIP (Li et al., 2021) improves
data-efficiency of CLIP by maximizing the similarity between two augmented image features using
SimSiam (Chen & He, 2021), two augmented text features using Masked Language Modeling
(MLM) (Devlin et al., 2018), and matching augmented image features with their augmented text pairs
and other similar text features. SLIP (Mu et al., 2022) improves the performance by maximizing
the agreement between two augmented image features using SimCLR (Chen et al., 2020), and
matching the augmented image features with their text pair. CyCLIP (Goel et al., 2022) improves the
representations by symmetrization of the similarity between the two mismatched image-text pairs, as
well as the similarity between the image-image pair and the text-text pair. Finally, FILIP (Yao et al.,
2021) uses transformer-based encoders for both modalities to learn more fine-grained features.

Targeted Data Poisoning and Backdoor Attacks on CLIP. Contrastive pretrained language-image
models are extremely vulnerable to various types of targeted data poisoning and backdoor attacks
(Carlini & Terzis, 2021). Targeted data poisoning attacks fool the model to misclassify a particular
test example as an adversarial label. On the other hand, backdoor attacks overlay a small patch on a
subset of training data, and cause the model to misclassify test images with the same patch. Despite
this vulnerability, designing effective defense methods to protect the model from being poisoned
during pre-training has remained unaddressed.

CLIP has been also shown to be vulnerable to data poisoning attacks during fine-tuning (Yang et al.,
2022). To address this, Yang et al. (2022) proposed a pre-processing and a post-processing defense
to defend against targeted data poisoning attacks during fine-tuning. The pre-processing requires
a clean pre-trained CLIP to remove examples with low cosine similarity between image and their
corresponding text representation. The post-processing fine-tunes the poisoned model on another
clean dataset of the same scale as the fine-tuning data. Besides, Bansal et al. (2023) proposed a
method to clean backdoor attacks from CLIP, by fine-tuning the model on a clean subset of the
pre-training dataset with in-modality contrastive loss on both vision and language modalities. Such
approaches are however not applicable to pre-training, as we also confirm experimentally in Appendix
7.1. In our work, we propose the first effective defense method that can protect the model from both
targeted image attacks and backdoor attacks during pre-training.

3 Preliminary

3.1 Contrastive Language-Image Pre-training (CLIP)

CLIP is trained on millions of image-caption pairs scraped from the web. Formally, we consider
a dataset D ⊆ I × T consisting of pairs (xxxI

j ,xxx
T
j ) where xxxI

j ∈ I is a raw image and xxxT
j ∈ T is

a text (caption of the image). The CLIP architecture consists of an image encoder fI : I → Rd

that encodes the raw image xI
i into an embedding vector z̃zzIi , and a text encoder fT : T → Rd that

encodes the raw text xxxT
i into an embedding vector z̃zzTi of the same dimension. Then projected image

and text embeddings zzzIi , zzz
T
i are obtained by passing the encoded image and text zzzIi , zzz

T
j through their

corresponding projection heads. The projected representations are normalized to have unit ℓ2-norm.
Finally, the InfoNCE loss (Oord et al., 2018) is applied to pull the projected embeddings of every
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image and its corresponding caption together while pushing apart the projected embeddings of the
image from other captions in the same mini-batch. Formally, for a mini-batch of N image-caption
pairs {(xxxI

j ,xxx
T
j )}Nj=1, and their projected embeddings {(zzzIj , zzzTj )}Nj=1, the CLIP loss is defined as:

LCLIP = − 1

2N

N∑
j=1

log

[
exp

(〈
zzzIj , zzz

T
j

〉
/τ

)∑N
k=1 exp

(〈
zzzIj , zzz

T
k

〉
/τ

)]− 1

2N

N∑
k=1

log

[
exp

(〈
zzzIk, zzz

T
k

〉
/τ

)∑N
j=1 exp

(〈
zzzIj , zzz

T
k

〉
/τ

)] ,

(1)

where ⟨., .⟩ represents the inner product, and τ is a trainable temperature parameter. The performance
of the pre-trained CLIP model is evaluated via zero-shot and linear probe methods, as discussed
below.

Zero-shot classification. Pre-trained Language-Image models such as CLIP enable zero-shot transfer
of the model to downstream tasks, without the need for specialized output heads or dataset specific
customization. To do so, the downstream labels is transformed into natural language captions using
the provided engineered prompts templates, e.g. “A photo of a {label}”. Then, the cosine
similarity of the test image to each caption is computed, and the model predicts the label with the
highest image-caption similarity.

Linear probe. For a labeled downstream image dataset, CLIP image representations can also be
evaluated by training a linear classifier on the image representations obtained from the pre-trained
CLIP image encoder and the downstream labels.

3.2 Targeted Poisoning and Backdoor Attacks

Let D = {(xxxI
i ,xxx

T
i )}ni=1 be the set of all training examples. Poisoning attacks (Biggio et al., 2012)

inject a small subset of poisoned examples Dp to the original training dataset D, such that when the
model is trained on the poisoned training data {D ∪ Dp}, its prediction on particular test examples
are changed to the adversarial label yadv. At the same time, the poisoned model performs normally
on other test examples. In this work, we consider both targeted poisoning and backdoor attacks as we
discuss next.

Targeted Image attacks. In a targeted poisoning attack, the adversary aims to change the prediction
of one particular test examples xxxI

t to the adversarial label yadv. Targeted poisoning attacks can
be crafted following (Carlini & Terzis, 2021), by constructing a caption set Tadv of potential text
descriptions related to the label yadv, and making poisoned examples by assigning captions in Tadv
to every target xxxI

t , i.e., Dp = {(xxxI
t ,xxx

T
c ) : xxx

T
c ∈ Tadv}. For constructing the caption set Tadv , one can

search the training dataset for all sequences that contain this label string, and use these sequences
as the caption set. Alternatively, one can use the set of 80 different engineered prompt templates
provided by CLIP for classification (Radford et al., 2021), and either use a subset or repeat them as
necessary. The number of captions in Tadv determines the number of generated poisons per target.
To evade automated cleaning algorithms (e.g., removing duplicated images), tiny Gaussian noise can
be added to the images, or the captions can be modified by substituting or adding words, without
degrading the attack success rate. A diverse caption set ensures that the image encoder is poisoned
instead of the projection layers.

Backdoor attacks. In backdoor attacks, the adversary attaches a small trigger patch to the poisoned
images and pair them with adversarial captions Tadv related to yadv . In doing so, all the test images
with the trigger patch will be misclassified as yadv . In contrast to the targeted poisoning attack, instead
of using a particular xxxI

t , the adversary poisons different images xxxI
i ∈ I, by adding the trigger patch

to them. Specifically, the poisoned set is defined as Dp = {(xxxI
i ⊕ patch,xxxT

c ) : xxx
T
c ∈ Tadv,xxxI

i ∈ I}.
The caption set can be constructed in a similar manner to targeted poisoning attacks using captions
found in the training data or engineered prompt templates.

In general, while injecting poisoned examples in curated datasets used for supervised learning might
be difficult, such poisons can be easily injected in uncurated datasets used by large multimodal
models. This makes such models highly vulnerable to adversarial attacks.
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Algorithm 1 Robust CLIP pre-training (ROCLIP)

1: Input: Image encoder fI , text encoder fT , caption pool P = {zzzTi }Pi=1 initialized with random
captions, ROCLIP frequency K

2: for epoch = 1, · · · , T do
3: for every mini-batch of image-caption pairs: {(xxxI

j ,xxx
T
j )}Nj=1 ∈ D do

4: Augment image and captions in the mini-batch: {(xxxI
j ,xxx

T
j )}Nj=1

5: if T % K == 0 then
6: Pair every xxxI

j with its nearest augmented caption in pool zzzTnn(j)=argminzzzp
T∈P∥zzzjI−

zzzp
T ∥2

7: Append the pool with captions in the mini-batch and discarding the oldest captions
8: Train fI and fT with LROCLIP in Eq. 2
9: else

10: Train fI and fT with LCLIP in Eq. 1

3.3 Threat Model

Adversary Objective. The primary objective of the adversary is to manipulate the output representa-
tions of CLIP, such that certain images are misclassified into adversarial categories instead of their
true categories, while the other images are classified correctly.

Adversary Capabilities. We assume that the adversary has limited control over the pre-training data,
and can inject a small number (≤ 1% of the dataset size) of poisoned examples into the training
dataset. Adversary also has the knowledge of the model structure, the training algorithm, and the
hyperparameter used by their victim, but they cannot modify the training process directly.

4 Robust Training of Multimodal Models against Targeted Data Poisoning
and Backdoor Attacks

In this section, we first study the effect of data poisoning attacks on multimodal models. Then, we
present our method for robust training of such models against data poisoning and backdoor attacks.

4.1 Effect of Data Poisoning Attacks on CLIP

We start by studying the effect of data poisoning attacks on multimodal models. By minimizing the
CLIP contrastive loss in Eq. (1), the model changes such that every image representation zzzIj moves
towards its caption representation zzzTj and gets far away from other (dissimilar) caption representations
zzzTk . This makes corresponding categories of image and text (e.g. category of “Cat" or “Dog" in the
image and text modality) to get closer to each other and get distant from other categories, during
the pre-training. Crucially, as image-caption pairs belonging to a particular category are relatively
similar to each other, their gradients have a large alignment with other examples in the same category.
Therefore, categories of similar image-caption pairs insert a large cumulative gradient on the model
and change the model quickly to get close to their pairs in the other modality.

On the other hand, image-caption pairs of poisoned examples are not similar to the other clean
examples in the data. Hence, their gradient does not align well with the gradient of the clean
examples. Therefore, by training on the poisoned pairs, the poisoned images and captions get far
away from the other images and captions in the same category. That is, poisoned images become
distant from other images in the same category, and adversarial captions become distance from other
captions in the adversarial category. Next, we will rely on this observation to break the association
between poisoned image-caption pairs.

4.2 Robust Training with ROCLIP

To prevent targeted data poisoning and backdoor attacks from being successful, we aim to break the
association between the poisoned image-caption pairs. If this can be done, the poisoned image and
caption representations do not get close enough to each other during training and the attack does not
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Figure 3: Examples of matching the images in the clean or poisoned pairs during the training. The
image in the clean pair can find semantically similar captions in the caption pool and still match to
the correct captions, while the image in the poisoned pair will match to either random captions or
captions corresponding to the original image.

succeed. To achieve this, we rely on our key observation in Sec. 4.1: poisoned images and captions
are not close to groups of similar images and captions in the representation space, early in training. We
leverage two techniques to break the association between poisoned image-caption pairs: (1) A large
and varying pool of randomly selected captions; (2) Augmentations on both images and captions.

Figure 2: Training with ROCLIP. Majority of
clean images are matched with captions from the
same category as their original caption during train-
ing (blue line), while poisoned images are matched
with a caption from a different category than the
adversarial label (orange line).

The Pool. As illustrated in Fig. 1, instead of
matching every image with its corresponding
caption, we match every image with the caption
in the pool that is most similar to the image.
Based on the observation from Sec. 4.1, poi-
soned captions are not close to other captions in
the same category. Thus, our method prevents
the poisoned images to be matched with cap-
tions from the adversarial category. In doing
so, it breaks the data poisoning and backdoor
attacks. Fig. 2 shows the effect of pool when
training on a dataset with 15 poisoned images of
a deer xxxI

t paired with adversarial truck captions
{(xxxI

t ,xxx
T
c ) : xxxT

c ∈ Ttruck}. We see that while
the majority of clean images are matched with
captions from the same category as their origi-
nal caption during training (blue line), poisoned
images are matched with a caption from a differ-
ent category than the adversarial label (orange
line). This confirms our observation in Sec. 4.1,
and shows the effectiveness of the pool. The
pool may have a negative influence on the per-
formance, as it is unreliable especially early in training. To ensure a good model performance, we (1)
select a relatively large pool size so that every clean image can find caption similar to its original
caption; (2) train with our method every K epoch, and train with standard CLIP loss in the other
epochs. Note that it is necessary to train on the poisoned pairs consistently to poison the model. With
a smaller K, the method is able to defend the model and disassociate the poisoned image-caption
pairs. We select 2% of the total dataset size as our pool size and K = 3 in our experiments. Fig. 3
illustrates an example of how ROCLIP disassociates poisoned pairs during the training.

Augmentation. To strengthen our defense, we use various image and text augmentations during
the training. In particular, we use random image cropping, horizontal flipping, color jittering (Wu
et al., 2018), grayscale conversion (Wu et al., 2018), and blurring (Chen et al., 2020) in our image
augmentation policies. For the text augmentation, we use the EDA proposed by (Wei & Zou, 2019),
which includes synonym replacement, random swap, and random deletion as its augmentation policies.
The benefit of the augmentations are two-folded: First, similar to attacks on supervised learning
(Borgnia et al., 2021), it help further reducing the attack success rates, but cannot fully defend the
model, as we will confirm in our ablation study. Data augmentation is especially helpful during the
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CLIP epochs to prevent matching poisoned image-caption pairs. Second, augmentations can further
increase the method’s performance, as shown in Table 3 and Table 7.

In summary, ROCLIP first samples a pool of P caption representations P = {zzzTi }Pi=1 uniformly
at random. During training, for every example (xxxI

j ,xxx
T
j ) in the mini-batch, we first augment its

image and text with our augmentation policies, and then match its augmented image representa-
tion zzzj

I with the augmented caption representation in the pool that is most similar to zzzj
I , i.e.,

zzzTnn(j)= argminzzzp
T∈P∥zzzjI−zzzp

T ∥2. Effectively, we form the positive image-caption representation
pair (zzzjI , zzzTnn(j)) and use it instead of (zzzIj , zzz

T
j ). Similar to the CLIP loss, we obtain the negative

pairs from the mini-batch. That is, for a mini-batch of N image-caption pairs {(xxxI
j ,xxx

T
j )}Nj=1, and

their projected embeddings {(zzzjI , zzzjT )}Nj=1, the loss is defined as:

LROCLIP = (2)

− 1

2N

N∑
j=1

log

 exp
(〈

zzzj
I , zzzTnn(j)

〉
/τ

)
∑N

k=1 exp
(〈

zzzjI , zzzTnn(k)

〉
/τ

)
− 1

2N

N∑
k=1

log

 exp
(〈

zzzk
I , zzzTnn(k)

〉
/τ

)
∑N

j=1 exp
(〈

zzzjI , zzzTnn(k)

〉
/τ

)
 .

For the pool P , we consider a first-in-first-out queue, which is initialized with random caption
representations. After training on every mini-batch, we update P by taking the caption representations
of the N examples in the mini-batch and concatenating them at the end of the queue. We discard
the oldest N elements from the queue, which equals to the training batch size.

The pseudocode of our method, ROCLIP, is illustrated in Alg. 1.

5 Experiments

In this section, we evaluate the effectiveness of ROCLIP in breaking targeted data poison and
backdoor attacks while maintaining the model’s performance. We evaluate our method for defending
against various data poisoning and backdoor attacks, described in Sec. 3.2, during pre-training.

5.1 Training

Table 1: Details of downstream datasets.

DATASET CLASSES TRAIN SIZE TEST SIZE

CALTECH101 102 3,060 6,085
CIFAR10 10 50,000 10,000
CIFAR100 100 50,000 10,000
DTD 47 3,760 1,880
FGVCAIRCRAFT 100 6,667 3,333
FLOWERS102 102 2,040 6,149
FOOD101 101 75,750 25,250
IMAGENET1K 1000 50,000 50,000
OXFORDIIITPET 37 3,680 3,669
STANFORDCARS 196 8,144 8,041

CONC. CAPT. (1M) - 1,000,000 -

We evaluate ROCLIP during pre-
training on CLIP. For pre-training, we
use an open-source implementation of
CLIP as our model, with default ResNet-
50 as the image encoder and Transformer
as the text encoder. Each experiment
is run with a batch size of 512 for 24
epochs, as the performance improvement
afterwards is not significant, but more
training makes the model more prone to
being poisoned. We use Conceptual Cap-
tions 3M (CC3M) (Sharma et al., 2018)
as our pre-training dataset. Due to lim-
ited computational resources, for pre-training we randomly sampled 1M image-caption pairs from
CC3M as our training dataset. We assess our method on 10 downstream datasets introduced by
(Kornblith et al., 2019), the detail of which can be found in Table 1.

5.2 Attack Methods

We consider targeted image attacks and backdoor attacks, discussed in Sec. 3.2.

Targeted Image Attacks. In our pre-training experiment, we choose a random target image xxxt from
the conceptual captions validation set, and then choose a random target class from the ImageNet test
set to generate a set of |Tadv| adversarial captions. Note that, (Carlini & Terzis, 2021) pre-trained 32
CLIP models and measured the attack success rate as the fraction of positioned models. This requires
3200 GPU hours. To reduce the computation, we poison 16 different random images by generating
|Tadv| adversarial captions for each image? related to a label selected at random from ImageNet.
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Table 3: Linear probe and zero-shot top 1 accuracy. ROCLIP improves the performance of the model
by up to 10% for linear probe and obtains a similar zero-shot performance compared with CLIP.

Method Task

F1
02

Fd
10

1

I1
K

Pe
t

C
ar

s

C
al

10
1

C
10

C
10

0

D
T

D

A
ir.

0-shot 0.83 6.34 6.63 3.68 0.72 30.38 30.14 9.52 3.56 1.11
ROCLIP lin-prb 99.22 54.05 24.09 52.36 20.35 72.15 78.99 57.82 55.21 32.55

0-shot 1.0 7.1 9.6 3.4 0.8 34.9 34.9 7.3 3.7 0.8
CLIP lin-prb 99.5 44.9 22.2 48.2 12.9 70.4 70.5 45.8 48.2 24.9

Then, we report the attack success rate as the fraction of images that are classified as the adversarial
label, in a single pre-training run. In doing so, the attack success rate will be at least as high as
(Carlini & Terzis, 2021). In addition, note that attacking our smaller dataset of 1M examples also
results in a higher attack success rate compared to that of 3M used by (Carlini & Terzis, 2021). We
will first evaluate the effectiveness of ROCLIP in defending a moderate amount of poisons (|Tadv| =
50) without any performance loss. Then, we will examine if ROCLIP can defend very strong data
poisoning attacks (|Tadv| = 100− 10, 000) successfully.

Backdoor Attacks. We use the public Hidden Trigger Backdoor Attacks (HTBA) patches (Saha et al.,
2020), that are square triggers generated by drawing a random 4×4 matrix of colors and resizing
it to the desired patch size using bilinear interpolation. We use a resized 16×16 patch and put it
consistently on the left top corner of the image. In our pre-training experiments, we randomly select
150 images from the CC3M validation dataset and pair them with adversarial captions related to a
random target class from ImageNet. To evaluate the effectiveness of the backdoor attacks, we select
300 random images from the ImageNet validation set and patch them in the left top corner to measure
the attack success rate.

5.3 ROCLIP Robustly Pre-trains CLIP
Table 2: ROCLIP defense performance.

Model Attack Success Rate

CLIP Target Img 93.75%
Backdoor 78%

ROCLIP Target Img 12.5%
Backdoor 0%

First, we evaluate the effectiveness of our
method, ROCLIP, against targeted poisoning
and backdoor attacks during the pretraining
phase. We present our result in Table 2, where at-
tack success rate shows the fraction of poisoned
or backdoored images successfully classified as
the desired label. We see that without any de-
fense, 93.75% of the total poisoned images are
classified to the desired target class, and 78% of the backdoored images are classified as the target
class. On the other hand, ROCLIP is able to fully defend the attack and reduce the attack success rate
to 0% for the backdoor attacks and as low as 12.5 % for the targeted poisoning attacks. This clearly
confirms the effectiveness of ROCLIP in breaking various types of data poisoning and backdoor
attacks on CLIP during pre-training.

5.3.1 ROCLIP does not Harm the Performance

Next, we evaluate if ROCLIP negatively impacts the model performance. We assess the performance
of ROCLIP on a variety of datasets introduced by (Kornblith et al., 2019), the detail of which can be
found in Table 1. We evaluate ROCLIP with both zero-shot and linear-probe methods and present
the result in Table 3. It can be seen that ROCLIP does not harm the overall model performance. In
contrast, ROCLIP effectively improves the linear-probe classification performance across all ten
datasets by up to 10% and has an on-par zero-shot performance with CLIP. As we will show in our
ablation study, data augmentation contributes the most to ROCLIP’s performance boost. Nevertheless,
even without data augmentation, ROCLIP achieves a similar performance with CLIP.

5.3.2 ROCLIP against Very Strong Attacks

Next, we consider much stronger poisoning attacks against CLIP during pre-training. Note that, in
general a much lower poison rate is enough to successfully poison multimodal models (0.0001%),
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Table 4: ROCLIP against very strong data poisoning attacks ROCLIP can defend the model with
some performance tradeoff. Linear probe and zero-shot performance is reported on CIFAR-10 (C10),
CIFAR-100 (C100), Food101 (FD) and Caltech101 (Cal).

Poison Rate Zero-Shot Linear-Probe

0.01% 0.0512% 0.5% 1.0% C10 C100 FD Cal C10 C100 FD Cal

ROCLIP 0% 0% 0% 12.5% 21.3 7.3 3.4 17.0 69.7 46.6 45.6 59.8
CLIP 100% 100% 100% 100% 35.0 7.3 7.1 34.9 70.5 45.8 44.6 70.4

Table 5: Linear-Probe (LP) performance, Poison Success Rate (PSR), and Backdoor Success Rate
(BSR) with various pool sizes used in ROCLIP.

Pool Size 256 (0.2%) 2048 (2%) 21845 (20%) 0 (CLIP w/ Aug) 0 (CLIP)

Memory(MB) 39449 39627 39505 39342 37459

Time(s) 538.31 538.69 539.47 536.96 506.02

C10 LP 64.5% 67.1% 67.9% 72.9% 62.1%

C100 LP 34.9% 39.6% 41.1% 48.4% 37.4%

PSR 0% 0% 0% 12.5% 75%

BSR 0% 0% 0% 0.33% 37.5%

compared to supervised learning models (1%), and hence the highest poison rate considered in
(Carlini & Terzis, 2021) is 0.017%. Considering the very large size of the pretraining data for
multimodal models, this small poison rate translates to a considerable “poison number” that needs
to be generated by the adversary. Nevertheless, we evaluate the effectiveness of ROCLIP against a
very high poison rate of up to 1% of the dataset size for targeted image attacks. To defend the attacks
effectively, we change the frequency from K = 3 to K = 2. Table 4 shows that ROCLIP with K = 2
can effectively defend very stronger attacks, while trading off the performance on some tasks.

5.3.3 Comparison to Fine-tuning Defense Baselines

Finally, we compare the performance of ROCLIP with existing methods proposed to defend CLIP
during fine-tuning (Bansal et al., 2023; Yang et al., 2022). Due to page limit, we leave the discussions
in the Appendix 7.1. Our results confirm that such methods are indeed highly ineffective in defending
CLIP during pre-training.

5.4 Ablation Studies

In this section, we conduct further experiments on different components of ROCLIP to evaluate
its effects on defense and downstream performance. All experiments are conducted on 100K data
randomly sampled from CC3M, with 15 poisoned pairs and 90 backdoored pairs. We train the model
with a batch size of 256 for 30 epochs.

5.4.1 ROCLIP against Other Backdoor Attacks

Table 6: ROCLIP against different backdoors.

Model Attack Backdoor Rate BSR

CLIP Blended 0.09% 28.00%
WaNet 0.256% 43.40%

Label-Consis 0.512% 97.30%

ROCLIP Blended 0.09% 0.33%
WaNet 0.256% 0.67%

Label-Consis 0.512% 0.00%

In Sec. 5.3, we explored ROCLIP’s ef-
fectiveness in defending CLIP against
patched backdoor attacks. Here, we eval-
uate ROCLIP against three additional
backdoor attacks baselines, Blended,
WaNet, and label-consistent attacks,
used in (Bansal et al., 2023). We con-
sider 90 pairs of backdoored image-
caption pairs for Blended triggers, 256
pairs for WaNet triggers, and 512 pairs
of label-consistent pairs. Table 6 shows that ROCLIP is able to reduce the backdoor success rate to
nearly 0% for all three backdoor attacks.
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Table 7: Effect of pool and data augmentation on ROCLIP.

Method P+A Pool (P) Aug (A) CLIP

C10 LP 67.1% 60.1% 72.9% 62.1%

C100 LP 39.6% 36.5% 48.4% 37.4%

PSR 0% 0% 12.5% 75%

BSR 0% 0.67% 0.33% 42.3%

Figure 4: ROCLIP against more
challenging poisoned pairs.

5.4.2 ROCLIP with Different Pool Size

Next, we analyze the computation overhead of ROCLIP, and the effect of pool size on our method.
We apply ROCLIP with pool size of 0.2%, 2% and 20% of the pre-training dataset size. As shown in
Table 5, ROCLIP is very lightweight, and has a negligible memory overhead. The overall memory
usage of ROCLIP is similar to that of CLIP. In addition, the run-time overhead is also not significant,
and is mostly caused by data augmentation. Second, the size of the pool does not have a significant
influence on the defense. With different pool sizes, our method is able to defend the both the targeted
poisoning and the backdoor attacks. With a larger pool size, however, the downstream performance
of the model increases since it is more likely for the images to find fitting captions in a larger pool.

5.4.3 ROCLIP with Augmentations

Finally, we analyze the effect of data augmentations on our method. Table 7 shows that data augmenta-
tion improves the downstream performance. Note that even without data augmentation, ROCLIP ob-
tains a similar linear probe accuracy with CLIP. Data augmentation further improves the performance
of ROCLIP by 5% on CIFAR-10 and 2% on CIFAR-100. In addition, data augmentation significantly
improves the defense and reduces the poison success rate from 75% to 12.5% and backdoor success
rate from 42.3% to 0.33%. Using both the pool and data augmentation, ROCLIP is able to reduce
the success rate of backdoor and target image attacks to 0% with a superior downstream performance.

5.4.4 ROCLIP against Adaptive Attacks

One potential adaptive attack against ROCLIP is to use visually similar categories when selecting the
poisoned pairs, e.g., dog and cat. Note that, this strongly limits the choice of attackers’ target images
as well as adversarial captions. To evaluate the effectiveness of ROCLIP against such challenging
poisoned pairs, we include 15 poisoned image-caption pairs from 8 visually-similar-categories like
dog and cat, football and basketball (c.f. Appendix 7.2). Fig. 4 shows the effectiveness of ROCLIP.

6 Conclusion

We proposed RoCLIP, an effective method for robust training multimodal vision-language models
such as CLIP against data poisoning and backdoor attacks. ROCLIP utilizes a caption pool as well
as data augmentation to break the associations between the poisoned image and caption pairs, thus
effectively defending the models. Through extensive experiments, we demonstrated that our proposed
method drops the success rate of targeted data poisoning and backdoor attacks to 12.5% and 0%
respectively. At the same time, it improves the model’s performance by up to 10% on linear-probe
and obtained a comparable zero shot performance to the baseline CLIP model. By increasing the
frequency of matching, ROCLIP is able to defend very strong attacks with 1% poison rate and
maintain a low attack success rate of 12.5%, while trading off the performance on some tasks.

Limitations. ROCLIP improves the robustness of CLIP pre-training against targeted data poisoning
and backdoor attacks. Considering the demand for such models, our work makes a valuable step
towards safe machine learning. ROCLIP can defend against a moderate number of poisons with no
performance loss and against a high number of poisons with some performance tradeoff. Developing
stronger defense methods without performance loss is an interesting direction for future work.

Acknowledgment. This research was supported by the National Science Foundation CAREER
Award 2146492 and Cisco Systems.
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7 Appendix

7.1 Adapted fine-tuning defense baselines

Here, we apply the methods proposed in (Yang et al., 2022; Bansal et al., 2023) to defend CLIP against
data poisoning attacks or eliminate backdoor attacks from a pre-trained model during fine-tuning. We
apply these methods during pre-training CLIP and show that they are indeed highly ineffective in
protecting the model.

Pre-processing CLIP First, we show that pre-processing CLIP is not effective during pretraining. We
conduct our experiment from the 1M sub-dataset randomly-sampled from CC3M. Yang et al. (2022)
proposed using a pretrained model to calculate and compare cosine similarity between poisoned
image-caption pairs and clean image-caption pairs. Then, it finds a threshold to separate the majority
of poisoned pairs from clean pairs, and discard all the pairs with lower similarity than the threshold.
We applied the above idea to pretraining, in a cheating experiment. That is, we consider the poisoning
ratios of 0.005%-0.5%, and calculate the cosine similarity between the known generated poisoned
image-caption pairs (note that in practice the poisons are not known) at epoch 1. We chose epoch 1,
as the separation between cosine similarity of poisoned and clean image caption paris is largest at
epoch 1 (see Figure 2). Then we set the threshold such that a certain fraction of the poisoned pairs
are discarded, and filter examples with cosine similarity lower than this threshold.

Table 8: Ratio of clean data pairs discarded by Pre-processing CLIP when it discard a fixed ratio of
poisoned data pairs.

Discard/Poison % 0.005% 0.01% 0.1% 0.5%
75% 15.7% (*) 44.3% 98.3% 95.8%
85% 23.3% (*) 62.3% 98.9% 96.3%
95% 38.1% 87.7% 99.55% 97.1%

Tab. 8 shows the fraction of clean pairs that are discarded using different thresholds. We see that
regardless of the threshold, a very large fraction of clean pairs are discarded. We trained and evaluated
the two models when less than 30% of the clean data was discarded, marked with (*), and show the
results in Tab. 9. Both models with smallest amount of clean pairs removed were still poisoned. With
75% and 85% of the poison discarded, the targeted data poisoning attacks still have 53.84% poison
success rates. This confirms the ineffectiveness of the above method during pretraining. On the other
hand, ROCLIP is able to drop the success rate to 0% (using K = 2) and 12.5% (using K = 3), and
provides a much better trade-off between the attack success rate and model’s performance and can
defend a much higher poison number up to 1%.

Table 9: Defense and downstream performance of the Pre-processing CLIP compared to ROCLIP.
Model K Poison % Discard % PSR LP C10 LP C100 ZS C10 ZS C100
CLIP - 0.005% - 93.75% 70.5 45.8 34.9 7.2
Pre-proc. CLIP (*) - 0.005% 75% 58.3 70.2 45.6 27.9 7.3
Pre-proc. CLIP (*) - 0.005% 85% 58.3 69.9 45.5 24.0 6.5
ROCLIP 3 0.005% - 12.5% 78.9 57.8 30.1 9.5
ROCLIP 2 0.005% - 0% 69.7 46.6 21.3 7.27
ROCLIP 2 0.1% - 0% 69.7 46.6 21.3 7.27
ROCLIP 2 0.5% - 0% 69.7 46.6 21.3 7.27
ROCLIP 2 1% - 12.5% 69.7 46.6 21.3 7.27

We note that, the key factor for the success of ROCLIP is that poisoned images and captions are not
close to the other images and captions in the same category. For example, a poisoned dog image that
is captioned adversarially as a deer, remains far away from the rest of dog images in the representation
space, during the initial training epochs. Hence, nearest-neighbor matching done by ROCLIP can
effectively break the association of poisoned image caption pairs.

CleanCLIP Next, we show that CleanCLIP is not effective during pretraining. We conduct our
experiment from the 100K sub-dataset randomly-sampled from CC3M. (Yang et al., 2022) proposed
fine-tuning on a clean dataset (of the same size as pretraining) with CLIP loss, and (Bansal et al.,
2023) proposed fine-tuning on a clean subset of size 100K of the original training dataset (same size
as the pretraining data we use in this experiment) with CLIP loss+in-modality contrastive loss on
both image and text modalities. Since a clean dataset is not available during pretraining, here we use
the CleanCLIP loss (CLIP loss + in-modality contrastive loss) to pretrain CLIP on the (poisoned)
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Table 10: Defense and downstream performance of CleanCLIP compared to ROCLIP.
Model Poison % Backdoor % PSR BSR LP C10 LP C100
ROCLIP 0.015% 0.15% 0% 0% 67.1 39.6
CleanCLIP 0.015% 0.15% 25% 49% 67.7 43.2
CLIP 0.015% 0.15% 75% 49% 62.1 37.4

data. We conduct our experiment on 100K data, with 150 pairs of backdoored image-captions pairs
and 15 targeted poisoned pairs. The following table shows that while the in-modality loss enables
CleanCLIP to achieve a good performance, CleanCLIP cannot successfully defend against targeted
data poisoning and backdoor attacks during pretraining. On the other hand, ROCLIP effectively
drops the attack success rate to 0% for both targeted poisoning and backdoor attacks. This further
confirms the effectiveness of ROCLIP.

7.2 Challenging poisons

For the visually challenging poisons, we consider 8 pairs of categories: cat-dog; shark-goldfish;
snake-alligator; bee-butterfly; deer-buffalo; soccer-basketball; hammer-screwdriver; train-minivan.
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