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ABSTRACT

While most existing federated learning (FL) approaches assume a fixed set of
clients in the system, in practice, clients can dynamically leave or join the sys-
tem depending on their needs or interest in the specific task. This dynamic FL
setting introduces several key challenges: (1) the objective function dynamically
changes depending on the current set of clients, unlike traditional FL approaches
that maintain a static optimization goal; (2) the current global model may not serve
as the best initial point for the next FL rounds and could potentially lead to slow
adaptation, given the possibility of clients leaving or joining the system. In this
paper, we consider a dynamic optimization objective in FL that seeks the optimal
model tailored to the currently active set of clients. Building on our probabilis-
tic framework that provides direct insights into how the arrival and departure of
different types of clients influence the shifts in optimal points, we establish an
upper bound on the optimality gap, accounting for factors such as stochastic gra-
dient noise, local training iterations, non-IIDness of data distribution, and devia-
tions between optimal points caused by dynamic client pattern. We also propose
an adaptive initial model construction strategy that employs weighted averaging
guided by gradient similarity, prioritizing models trained on clients whose data
characteristics align closely with the current one, thereby enhancing adaptability
to the current clients. The proposed approach is validated on various datasets and
FL algorithms, demonstrating robust performance across diverse client arrival and
departure patterns, underscoring its effectiveness in dynamic FL environments.

1 INTRODUCTION

Federated learning (FL) is a decentralized machine learning paradigm that facilitates collaborative
model training across multiple clients, such as smartphones and Internet of Things (IoT) clients,
without exchanging individual data. Instead of transmitting raw data to the central server, each
client performs local training using its proprietary data, sending only model updates to the server.
These updates are then aggregated to refine the global model. In conventional FL frameworks, the
cohort of clients engaged in training is typically static, implying the objective function is also fixed.

In practical FL systems, the dynamic nature of client arrival and departure presents significant chal-
lenges to maintaining a robust and accurate model. For instance, clients may lose interest when their
local data no longer aligns with the central task, such as when a user’s application shifts from text
predictions to image recognition. On the other hand, clients may join when their current objectives
align with those of other clients, such as when multiple users are working with similar data types
or models addressing the same problem, like medical institutions collaborating on disease detection
models. Additional factors, such as evolving privacy policies, or shifts in data-sharing preferences,
further exacerbate these arrival and departure fluctuations, complicating the overall learning process.

Challenges: This dynamic FL setting introduces new challenges that are not present in traditional
static FL scenarios with a fixed objective function. Specifically, the arrival and departure of clients
dynamically alter the FL system’s objective, as the model must adapt to the current set of clients and
their associated tasks. For instance, if a client contributing unique data classes withdraws, the model
no longer needs to classify those classes, fundamentally altering the training objective. Conversely,
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Client 1

Goal: 𝒘∗ 𝒘∗ 𝒘∗
Traditional Federated Learning
with Partial Participation

𝐰∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝐰(𝐅𝟏 𝐰 + 𝐅𝟐 𝐰 + 𝐅𝟑 𝐰 )

Fixed Set of Clients: 1, 2, 3

This work

Dynamic Set of Clients

Goal: 𝒘 1 ∗ 𝒘 2 ∗ 𝒘 3 ∗

𝐰 𝟏 ∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝐰(𝐅𝟏 𝐰 + 𝐅𝟒 𝐰 )

𝐰 𝟐 ∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝐰(𝐅𝟓 𝐰 + 𝐅𝟖 𝐰 )

𝐰 𝟑 ∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝐰(𝐅𝟔 𝐰 + 𝐅𝟕 𝐰 + 𝐅𝟖 𝐰 )

Static Optimization Goal

1 and 4 left
5 and 8 join

Client 4

Dynamic Optimization Goals

Client 5 Client 8 Client 6 Client 8Client 7

5 left
6 and 7 join

Round 1 Round 2 Round 3

Figure 1: Comparison between traditional FL with partial participation settings and our setup. We
consider both dynamic set of clients and dynamic optimization goals. In each round, our goal is
to obtain a model that optimizes the loss functions of current clients. In comparison, traditional
FL with partial participation approaches consider a fixed set of clients in the system with a static
optimization goal as the goal is still to satisfy the clients within the current, and fixed system. Note
that traditional FL with full participation is a special case of traditional FL partial participation.

the addition of clients with previously unrepresented classes necessitates model adaptation to incor-
porate the updated classification task. Thus, the core challenge is not merely preserving the diversity
of the training set but dynamically adjusting the model to align with the evolving tasks defined by
the current clients in the system. To address these shifting objectives, FL systems must be designed
with the capacity for rapid and continuous adaptation, ensuring the model remains relevant, stable,
and effective as the landscape of participating clients evolves.

Illustrative Examples: Figure 1 illustrates our system model, highlighting its key differences from
traditional FL with partial client participation. In traditional FL with partial client participation,
although the set of active clients may change as some clients intermittently disengage, the optimiza-
tion goal remain constant throughout the training process. The objective is to converge towards the
optimal model w∗, which minimizes the aggregated loss functions across all clients, expressed as
F1(w) +F2(w) +F3(w). In this line of research, authors typically aim to design a client sampling
strategy (e.g., (Chen et al., 2022)) or modify the aggregation weight (e.g., (Wang & Ji, 2024)) to
minimize a static global loss function that remains constant over time. In contrast, our approach
addresses a more intricate scenario where both the set of clients and the optimization goals evolve
dynamically. In each round g, the set of clients changes, and the objective shifts to finding the round-
specific optimal model w(g)∗, defined as the minimizer of the loss function Fk(w) corresponding
to the clients in that round. This dual dynamic creates substantial complexity, necessitating con-
tinuous adjustment of the optimization target to reflect the evolving composition of clients, thereby
introducing challenges far beyond those encountered in traditional FL settings.

Contributions: Given the challenges introduced by the dynamic nature of client arrival and depar-
ture, this work makes the following key contributions to advance the field:

• We first propose a comprehensive probabilistic framework that models the formation of local
datasets and classifies clients into distinct types based on their underlying probability distribu-
tions. This framework sheds light on the dynamics of how the optimal point shifts across global
iterations, offering a detailed view of the impact of client variability on model performance. By
examining the probabilistic relationships among client types and their associated data distribu-
tions, our approach highlights how changes in local datasets influence global optimization.

• We provide a novel theoretical analysis where an upper bound on the optimality gap is derived,
quantifying the discrepancy between the global model and the theoretical optimal point. Our
analysis considers a dynamic optimization goal, where each round aims to find an optimized
model that minimizes the loss function of the currently active clients, in contrast to existing
literature that focuses on a static goal of minimizing the loss across all clients that have ever
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participated. This bound incorporates several critical factors influencing performance, includ-
ing: (1) stochastic gradient noise arising from inherent randomness in local updates, (2) the
number of local training iterations, which affects convergence behavior, (3) the non-IIDness of
data distribution, and (4) the deviations between optimal points caused by the dynamic arrival
and departure of clients. This comprehensive analysis provides a clearer understanding of the
trade-offs involved in model training.

• We develop a robust algorithm for constructing an effective initial point for each training round,
enabling rapid adaptation. Our approach constructs the initial model as a weighted average of
previous models, with weights proportional to the similarity between the computed gradients
of the models and the current set of participating clients. Leveraging these gradient-based simi-
larities, the algorithm prioritizes models trained on clients whose data characteristics align with
those of current participants, enhancing swift adaptation and mitigating performance degrada-
tion caused by dynamic client arrivals or departures. Experimental evaluations across multiple
datasets demonstrate that our method achieves significant performance gains, particularly in
scenarios characterized by sporadic or moderate patterns of client participation, highlighting
its applicability in real-world settings.

2 RELATED WORK

Federated learning (FL) has emerged as a prominent paradigm for distributed machine learning,
enabling the collaborative training of models across decentralized data sources while preserving
data privacy (McMahan et al., 2017; Kairouz et al., 2019; Li et al., 2020). One of the foundational
works introduced the Federated Averaging (FedAvg) algorithm, which remains a cornerstone of
many FL systems (McMahan et al., 2017). Subsequent studies have explored various aspects of
federated learning, including communication efficiency (Yang et al., 2019), robustness to adversarial
attacks (Bagdasaryan et al., 2020), and personalization strategies (Smith et al., 2017). However,
these approaches typically assume a fixed set of participating clients throughout the training process.
Reviews of FL techniques often consider static client participation, where all clients are expected
to remain available for the entire training duration (Kairouz et al., 2019; Li et al., 2020). This
assumption simplifies the modeling of convergence and performance but does not adequately capture
real-world scenarios characterized by dynamic client pattern. Addressing the dynamic nature of
client arrival and departure is a critical gap in the current literature, motivating the need for adaptive
methods that can effectively handle the entry and exit of clients during the training process.

To address the limitations of static client sets in federated learning, research on dynamic client se-
lection and flexible participation has gained momentum, particularly in response to the challenges
posed by varying client availability (Fu et al., 2023; Nishio & Yonetani, 2019; Yoshida et al., 2020;
AbdulRahman et al., 2020; Martini, 2024; Li et al., 2021; Lin et al., 2021; Chai et al., 2020; Gu et al.,
2021; Jhunjhunwala et al., 2022). These studies explore strategies such as optimizing client selec-
tion based on resource constraints, modeling participation patterns probabilistically, and employing
adaptive algorithms to address the effects of non-IID data. The goal is to enhance overall model
performance by strategically managing client participation during training, balancing computational
efficiency, communication costs, and data representativeness. However, these works often assume
a fixed client set, neglecting the dynamic nature of client arrival and departure. While (Ruan et al.,
2021) propose a flexible federated learning framework that allows for inactive clients, incomplete
updates, or dynamic client participation, their analysis is limited to scenarios where the optimiza-
tion goal changes only once, specifically when a single client joins during training. This restricts the
applicability of their approach to more complex and realistic patterns of client pattern.

In contrast to previous works, our approach addresses the challenge of a dynamically changing
optimization goal that evolves across global rounds, focusing on the more stringent issue of dy-
namic client arrival and departure over time. We introduce a probabilistic framework to model the
formation of local datasets, incorporating the concept of client types. These client types are charac-
terized by the underlying probability distributions that dictate how local datasets are sampled from
the global dataset. To mitigate the performance degradation caused by dynamic client arrival and
departure, we propose an adaptive method for constructing the initial model. This adaptive strategy
ensures robust performance, even as clients dynamically join or leave the system, leading to varying
data distributions throughout training. By addressing these complexities, our framework provides a
more flexible and resilient solution for federated learning in dynamic environments.
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3 DYNAMIC FL WITH CLIENT ARRIVAL AND DEPARTURE

We consider a dynamic FL system where clients may join or leave the training process based on their
interest or task needs. Clients may join when the model aligns with their objectives, when they have
sufficient new data to contribute, or when the system offers financial or computational incentives.
Conversely, they may leave if the global model drifts from their needs, if they lack sufficient data, or
if the model’s performance is not beneficial. Privacy or security concerns, such as adversarial threats
or inadequate privacy guarantees, may also lead clients to leave. Additionally, clients may leave to
allocate computational resources to other tasks or due to poor local model validation, while others
may rejoin when they see improvements in these factors.

To mathematically characterize these scenarios, each round of FL training, denoted by g ∈ G =
{1, . . . , G}, involves a set of clients collected in K(g) = {1, . . . ,K(g)}. All clients are connected
to a central server, with each client maintaining its own ML models tailored to specific tasks such
as pattern recognition and natural language processing. These models are trained locally on client-
specific data, allowing the system to leverage diverse data sources while preserving user privacy.

Probabilistic Modeling and Definitions of Loss Functions: To gain insights into dataset ran-
domness and quantify data heterogeneity, we develop a probabilistic model for client types and the
formation of local datasets. In this model, each local dataset D(g)

k is considered to be sampled from a
universal dataset D. This universal dataset represents the complete set of data that could potentially
be encountered throughout all training rounds. We will further quantify this probabilistic model-
ing in Section 4 when we present our performance analysis. The global dataset D(g) at any training
round g is defined as the union of all local datasets D(g)

k from clients k ∈ K(g): D(g) = ∪k∈K(g)D(g)
k .

Based on this model, the local loss function of client k is defined as

F
(g)
k

(
w,D(g)

k

)
≜

∑
d∈D ℓ

(
w, d

)
× 1{d ∈ D(g)

k }∑
d∈D 1{d ∈ D(g)

k }
(1)

Here, 1{d ∈ D(g)
k } is the indicator function whose value is 1 if the data point d in the universal

dataset belongs to the local dataset D(g)
k and 0 otherwise. D(g)

k ≜
∑

d∈D 1{d ∈ D(g)
k } is the size of

local dataset D(g)
k , and finally ℓ

(
w, d

)
measures the loss of data point d in universal dataset D under

model parameter w. Similarly, let D(g) ≜
∑

d∈D 1{d ∈ D(g)} denote the size of global dataset
D(g), we can define the global loss function as

F (g)
(
w,D(g)

)
≜

∑
d∈D ℓ

(
w, d

)
× 1{d ∈ D(g)}∑

d∈D 1{d ∈ D(g)}
(2)

Local Model Training and Global Model Update: In each round of training, the server first
transmits the current global model w(g) ∈ RM to all clients in the current round. After receiv-
ing the global model, each client k ∈ K(g) updates the model with its local dataset D(g)

k by e(g)i

steps of stochastic gradient descent (SGD). At SGD iteration h ∈ {0, . . . , e(g)i − 1}, the update
is w

(g),h+1
k = w

(g),h
k − η(g)∇F (g)

k (w
(g),h
k ,B(g)

k ) where η(g) is the learning rate in g-th round,
∇F (g)

k (w
(g),k
k ,D(g)

k ) is the gradient of client k’s local loss function in g-th round, B(g)
k ⊂ D(g)

k is
the mini-batch dataset drawn from the local dataset D(g)

k to compute the stochastic gradient. Note
that the initial point for the local model training is the current global model, i.e. w

(g),0
k = w(g)

and we denote the final local model as w
(g),F
k . The primary objective of training an ML model is

to minimize the global loss function, which directly affects the model’s performance in real-time
downstream tasks on clients. Dynamic client participation, where clients can join or leave the sys-
tem at any time, causes the global loss functions to vary over time. Thus, the optimal global model
parameters form a sequence {w(g)∗}Gg=1 where w(g)∗ = argminw∈RM F (g)(w,D(g)), g ∈ G.
Toward this goal, after all clients finish the local model training, the sends final model w(g),F

k to the
server, which aggregate all the final global models to update the global model in the following way:

w(g+1) =
∑

k∈K(g)

D
(g)
k w

(g),F
k

D(g) . The server initiates the next training round by sending the updated
global model w(g+1) to the current set of clients K(g+1), which includes clients that joined before
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model aggregation and excludes those that left during the previous round. Unlike existing literature
that aims to minimize the loss function across all potential clients, this work focuses on optimizing
for the current set of participating clients, targeting w(g)∗ at each global iteration g. This approach
better reflects the dynamic nature of client participation, as it avoids optimizing for clients that may
not rejoin the system. In our model, existing clients must complete local training before leaving,
while new clients can join at any time and will participate in the next global iteration if they join
after the model broadcast.

4 CONVERGENCE ANALYSIS

In this section, we derive a convergence bound for federated learning that accounts for dynamic
client participation, including both arrivals and departures. Our analysis addresses several key fac-
tors: (1) stochastic gradient noise, which arises from the inherent randomness of local updates; (2)
the impact of the number of local training iterations on convergence behavior; (3) the non-IID nature
of data distribution; and (4) deviations from optimal solutions due to the dynamic nature of client
participation. This analysis is grounded in widely accepted assumptions (Li et al., 2019; Ruan et al.,
2021) and is framed within a probabilistic model where client types are determined by a probabil-
ity distribution, which governs the random sampling process of the local dataset from the universal
dataset. Our experiments include extensive tests to demonstrate that the algorithm remains robust,
even when certain assumptions are not fully met.

Definition 1 (Client Type). Let Q denote the set of probability distributions according to which
global data are sampled and stored by the clients. For each client k ∈ K, there exists a distribution
q ∈ Q such that the probability that a local data sample xk ∈ D(g)

k equals the global data sample
d ∈ D(g) is p(xk = d) = q(d). Further, suppose there exists a set S ⊂ Z+ that indexes these
distributions so that Q = qα : α ∈ S. We say client k is of type α if the distribution of its local
samples xk ∈ D(g)

k is p(xk = d) = qα(d).

Assumption 1 (Finite Device Type). The number of client types S := |S| is finite.

Definition 2 (Mapping from client Index to client Type). For each client k ∈ K, we let τ(k) ∈
{1, 2, . . . , S} denote the type of client k.

Assumption 2 (µ-Strong Convexity and L-Smoothness). All local loss functions F (g)
k and the

global loss function F (g) are µ-strongly convex and L-smooth (or L-Lipschitz continuous gradient).

Definition 3 (Non-IIDness Measure). Let w(g)∗ be the minimizer of F (g) and w
(g)∗
k be the min-

imizer of F (g)
k . We can quantify the heterogeniety between the data distribution of each client and

that of other clients by Γ
(g)
k = F (g)(w

(g)∗
k )− F (g)

k (w
(g)∗
k ).

Assumption 3 (Bounded Variance of Stochastic Gradient). Let ∇F (g)
k (w, ξ) be the stochastic

gradient at client k in round g given parameter w and a mini-batch ξ. The variance of the stochastic
gradient is bounded by σ2

k if Eξ

[
∥∇F (g)

k (w, ξ)−∇F (g)
k (w)∥2

]
≤ σ2

k.

Before presenting the main analytical results, it is crucial to lay the groundwork with one lemma,
which will provide the essential context and foundation needed to fully comprehend and derive
the final outcomes. This lemma illustrates the maximum impact that variations in the set of
clients—including the types of new clients that join the system and the types of clients that left—can
have on shifting the new optimal point away from the previous optimal point.

Lemma 1. Let w(g)∗ be the minimizer of F (g) and w(g+1)∗ be the minimizer of F (g+1). If for
all clients k ∈ K(g), all rounds g ∈ G, all model parameters w ∈ RM , and all data d ∈ D, the
gradient of the loss function ∇ℓ is bounded on a compact set Ω which contains the possible values
of the gradient during model training, i.e. ∥∇ℓ(w, d)∥ ≤ C, ∀w ∈ Ω (Reddi et al., 2021; Wang
et al., 2022; Wang & Ji, 2024; Wang et al., 2024), the expected difference between two minimizers
of consecutive global loss functions is bounded as follows

E∥w(g)∗ −w(g+1)∗∥ ≤ 1

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)
+
C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣ (3)
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where ψ(g1,g2)(d) for any g1 ∈ G and g2 ∈ G, g1 ̸= g2 is defined as follows

ψ(g1,g2)(d) =

∑
k∈K(g1)

qτ(i)(d)

D(g1)
−

∑
i,j∈K(g2),i̸=j

qτ(i)(d)qτ(j)(d) +
∑

k∈K(g2)

qτ(i)(d)

D(g2)
(4)

Proof: Please see Appendix A. As observed in equation 3 and equation 4, the deviation of the
new optimal point w(g+1)∗ from the previous one w(g)∗ depends solely on the conditions in rounds
g and g + 1. Specifically, it is influenced by factors such as the size of the local datasets for each
client, the types of clients involved, and the convexity of the global function. Notably, this deviation
is independent of learning parameters such as the learning rate.

To mathematically understand the performance of our machine learning algorithm in our probabilis-
tic framework, we need to quantify how far the model at any given training round is away from the
optimal point given the client pattern dynamics. We capture this by deriving an upper bound on the
optimality gap which is defined to be ∥w(g) −w(g)∗∥ in a recursive relationship.

Theorem 1. If for all clients k ∈ K(g), all rounds g ∈ G, all model parameters w ∈ RM , and all
data d ∈ D, the gradient of the loss function ∇ℓ is bounded on a compact set Ω which contains the
possible values of the gradient during model training, i.e. ∥∇ℓ(w, d)∥ ≤ C, ∀w ∈ Ω (Reddi et al.,
2021; Wang et al., 2022; Wang & Ji, 2024; Wang et al., 2024), then we have the following recursive
relationship between two consecutive optimality gaps

E∥w(g+1) −w(g+1)∗∥ ≤ 2

1− 1

2
µη(g)

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

E∥w(g) −w(g)∗∥

︸ ︷︷ ︸
(a)

+
(
2 + µη(g)

)
C2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∑
k∈K(g)

D
(g)
k

D(g)

(
e
(g)
k − 1

)
e
(g)
k

(
2e

(g)
k − 1

)
3︸ ︷︷ ︸

(b)

+2η(g)
∑

k∈K(g)

D
(g)
k

(
e
(g)
k

)2
σ2
k

D(g)︸ ︷︷ ︸
(c)

+ 2η(g)

 ∑
k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
e
(g)
k

D(g)
E[Γ(g)

k ]


︸ ︷︷ ︸

(d)

+
2

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)
+

2C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣︸ ︷︷ ︸
(e)

(5)

Proof: Please see Appendix B.

For any client participation pattern, regardless of how many clients join or leave the system, equa-
tion 5 captures the impact of heterogeneity on the ML performance by detailing: (1) the number of
local SGD iterations e(g)k , (2) the non-IIDness of each client Γ(g)

k , (3) local SGD noises σk, and (4)
the size of local dataset and the types of each client in dynamic FL scenarios.

In the following, we examine each term in equation 5. Term (a) establishes the recur-
sive relationship and explicitly identifies the factors influencing the contraction coefficient 1 −
(1/2)µη(g)(

∑
k∈K(g)(D

(g)
k e

(g)
k /D(g))). A larger strong convexity coefficient µ, an increased

number of local SGD iterations e(g)k and a higher learning rate η(g)k all contribute to a smaller
contraction coefficient. The contraction coefficient must remain between 0 and 1 to guaran-
tee that the sequence converges. To achieve this, we need to choose η(g) and e

(g)
k such that

0 < ming{µη(g)(
∑

k∈K(g) D
(g)
k e

(g)
k /D(g))} < 2. Term (b) illustrates the influence of the num-

ber of local SGD iterations e(g)k and the gradient bounding constant C of the gradient. Notably,
when each client performs only one local SGD (i.e. e(g)k = 1), the bounding constant C does not
affect the bound. Term (c) indicates that clients with larger SGD noise σk will see a greater deviation
of the model from the current optimal point when performing more local SGD iterations e(g)k . It is
particularly concerning that the SGD noise accumulates with the square of the number of local SGD
iterations, resulting in a more rapid increase in deviation. This effect is further intensified with a
larger local dataset size. Term (d) highlights the impact of the non-IIDness metric Γ(g)

k and its inter-
action with the number of local SGD iterations. For clients with larger Γ(g)

k , performing more local
SGD iterations biases the local model toward the local dataset, thereby compromising the perfor-
mance of the global model when aggregated. Additionally, if the function’s gradient is not smooth
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(i.e., if the smoothness constant L is large), the non-IIDness metric will have a more pronounced
effect on the optimality gap. Finally, term (e) represents the expected difference between two opti-
mizers w(g)∗ and w(g+1)∗. As shown in Lemma 1, several factors can lead to a larger difference,
thereby increasing the optimality gap in round g + 1. These factors include (1) the types of new
clients joining the system, (2) the types of clients leaving, (3) the size of the global dataset in rounds
g and g + 1, and (4) the sizes of the local datasets of the joining and leaving clients.

5 DYNAMIC INITIAL MODEL CONSTRUCTION FOR FAST ADAPTATION

We present the key concepts of our proposed algorithm in this section, with the full pseudocode and
detailed explanations available in Appendix C.

Motivation: Although our analysis applies to any client pattern, machine learning performance
can be further improved by utilizing historical data distributions. Intuitively, if the data distribution
in round g closely resembles that of a previous round g′, where g′ < g, initializing the global
model in round g with the model from round g′ can lead to significant performance gains. This
approach leverages past knowledge to accelerate convergence and mitigates the adverse effects of
sporadic or unpredictable client patterns, which often cause fluctuations in model quality. By reusing
model states from rounds with similar data distributions, the learning process becomes more robust,
reducing the need for the model to relearn from scratch when encountering familiar data patterns.

Intuition: In complex scenarios, where data distributions are heterogeneous or where no data dis-
tribution resembles the current one, it is more advantageous to initialize the model using a weighted
sum of models from multiple prior rounds. The weight assigned to each model should ideally reflect
the degree of similarity between data distributions in a past round g′ and the current round g. How-
ever, systematically calculating this similarity and determining the appropriate weights remains a
challenging task. To address this, we propose utilizing a “pilot model” to compute gradients, which
are then employed to assess similarity and derive the weights for the weighted sum.

Initialization and Local Training: The algorithm starts with random initialization of the global
model w(0). Each session is defined by a consistent data distribution and begins whenever data
distribution changes due to client arrivals or departures. A session comprises at least one global
round, during which the data distribution remains stable. Within each session, clients conduct local
training based on the current global model, which could be a newly constructed initial model or
the latest model at the server. Each client trains locally for several epochs. Upon completion,
clients transmit their final local models to the server, where they are aggregated through a weighted
summation. The global model from the last round of each session is preserved for future use, either
for pilot model formation or constructing initial models in future sessions. The number of archived
global models matches the number of completed sessions.

Pilot Model Formation and Gradient Computation: This step focuses on constructing the pilot
model and computing gradients that accurately capture the characteristics of the current data distri-
bution. After completing the predefined P sessions in the pilot preparation stage, the pilot model wp

is constructed by averaging only those global models with good accuracy, as models with poor accu-
racy fail to adequately capture the underlying data distribution. Suppose there are J (≤ P ) models
that perform well on the data distribution during that round, denoted by w(j) for j = 0, . . . , J − 1.
The pilot model wPilot is then given by wPilot =

1
J

∑J−1
j=0 w(j). It is important to note that the pilot

model is computed only once throughout the algorithm’s entire execution. After the pilot prepara-
tion stage, at the start of each subsequent session, additional global rounds (V ) are conducted using
wPilot as the initial global model. The difference between the updated global model w(V−1)

Pilot and the
pilot model wPilot, represented as ∥w(V−1)

Pilot − wPilot∥, captures the gradients that characterize the
current data distribution. These computed gradients serve as a quantitative measure of the similarity
between different data distributions and are stored for future similarity assessments.

Similarity Assessment and Dynamic Initial Model Construction: The final step begins after at
least one session has been completed following the pilot preparation stage. This step assesses the
similarity between computed gradients and dynamically constructing the initial model for the current
session. Similarity is evaluated by calculating the two-norm of the differences between gradients
computed at the beginning of past sessions and the current gradient. Let the current gradient be

7
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denoted as ∇FPilot
△
=∥w(V−1)

Pilot − wPilot∥, and the past gradients as ∇F 0
Pilot, . . . ,∇F

S−1
Pilot . A scaling

factorR is introduced to adjust the sensitivity of the similarity assessment, influencing the weighting
of the gradient differences. These weights are used to construct the initial model for the current
session as a weighted sum of previously archived models:

w(g) =
∑
s

(ws ×w(s)), ws =
exp (−R∥∇F s

Pilot −∇FPilot∥2)∑
s exp (−R∥∇F s

Pilot −∇FPilot∥2)
(6)

where ws are the weights assigned to each global model w(q) saved at the end of sessions after the
pilot preparation stage, reflecting their similarity to the current data distribution. The softmin
function is applied to these scaled differences, yielding normalized weights ws, s = 0, . . . , S − 1,
which sum to unity. Smaller two-norm values indicate greater similarity and result in higher weights.
This approach ensures the initial model emphasizes models whose gradients closely match those of
the current clients, allowing rapid adaptation and mitigating performance degradation due to the
dynamic nature of client arrival and departure. By adjusting R, initial model construction can be
controlled. When R = 0, the model is an average of all past saved models after the pilot preparation
stage, regardless of the similarity between data distributions. In contrast, as R → ∞, the initial
model becomes the saved model trained on the data distribution most similar to the current one.

6 EXPERIMENTS

FL Algorithm and Baseline: We consider FedAvg (McMahan et al., 2017), FedProx (Li et al.,
2020), and SCAFFOLD (Karimireddy et al., 2020) as the federated learning algorithms in our ex-
periments to evaluate proposed algorithm. For all algorithms, the baseline continues model training
using the previous model from the last round, without constructing an appropriate initial model.

Task and Dataset: We conducted extensive experiments to evaluate our proposed algorithm (full
pseudocode provided in Algorithm 1 of Appendix C). The task of interest is image classification.
We used five image datasets, ranging from the simplest to the most challenging: MNIST (LeCun
et al., 1998), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky
& Hinton, 2009), and CIFAR100 (Krizhevsky & Hinton, 2009) The models for MNIST, Fashion-
MNIST, and SVHN are outlined in the Appendix D.2.

Label Distribution: In our experiments, we simulate a system of 10 clients. We consider four
methods for distributing the labels across these clients:

• Two-Shard(McMahan et al., 2017; Hsu et al., 2019; Li et al., 2020; Fallah et al., 2020; Karim-
ireddy et al., 2020): For datasets with 10 labels, each label is divided into two equally-sized
shards, and each client receives two different label shards. For datasets with 100 labels, the la-
bels are divided into 10 non-overlapping batches, and each batch is split into two shards, which
are then assigned to two randomly selected clients. Each client ends up with data from two labels
for 10-label datasets, or 20 labels for 100-label datasets .

• Half: Half the clients have one half of the labels, and the rest have the other half. Each client
has all the labels from their assigned half (i.e., 5 labels for 10-label datasets or 50 labels for
100-label datasets), and the data is evenly distributed, meaning that the amount of data for each
label is equally divided among the clients.

• Partial-Overlap: Two sets of labels are selected, each containing 60% of the total labels, with
a 20% overlap between them. Each client in the first set has 6 labels for 10-label datasets (or
60 labels for 100-label datasets), and each client in the second set has a similar distribution.
The overlapping labels are split between the two halves of clients, with half of the data for
overlapping labels going to the first set of clients and the other half to the second set. The non-
overlapping labels are assigned to the clients within each set, and the data corresponding to these
labels is evenly distributed across the clients, meaning that each client receives an approximately
equal share of the data for their assigned labels.

• Distinct: Each client is assigned a unique set of labels. For datasets with 10 labels, each client
receives 1 unique label, while for datasets with 100 labels, each client receives 10 unique labels.

Test Dataset and Client Pattern: As data distributions evolve across global rounds, the test dataset
for each round consists of data with labels that represent the union of all labels held by the clients in

8
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FL Algorithm Label Distribution Dataset (Model) 1st Transition 2nd Transition 3rd Transition
Proposed Baseline Proposed Baseline Proposed Baseline

FedProx

Two-Shard

MNIST (MLP) 91.71 87.88 98.45 96.4 94.77 90.72
Fashion-MNIST (MLP) 96.82 95.32 92.04 90.31 97.59 96.38

SVHN (CNN) 61.35 45.09 55.12 36.28 86.52 40.13
CIFAR10 (ResNet18) 91.77 83.88 46.26 35.62 82.58 58.34
CIFAR100 (ResNet18) 49.28 46.52 63.5 62.03 52.73 48.35

Half

MNIST (MLP) 96.02 90.12 93.01 87.83 96.29 90.56
Fashion-MNIST (MLP) 86.35 84.6 90.97 86.02 86.62 85.06

SVHN (CNN) 93.37 10.89 91.45 20.41 93.51 61.84
CIFAR10 (ResNet18) 86.32 48.83 90.38 54.74 87.68 58.41
CIFAR100 (ResNet18) 62.88 56.16 64.27 57.14 63.53 57.41

Partial-Overlap

MNIST (MLP) 90.92 86.23 94.09 89.7 91.32 87.35
Fashion-MNIST (MLP) 86.44 82.75 87.74 85.02 87.06 83.79

SVHN (CNN) 92.26 72.61 93.44 62.79 92.4 76.09
CIFAR10 (ResNet18) 81.5 77.05 86.99 83.88 81.69 79.8
CIFAR100 (ResNet18) 59.09 54.94 59.22 55.09 59.34 56.11

Distinct
MNIST (MLP) 98.05 92.75 95.98 88.77 94.11 85.66

Fashion-MNIST (MLP) 95.5 92.4 95.8 90.59 94.02 87.36
SVHN (CNN) 95.28 49.68 92.25 45.18 87.91 38.45

FedAvg

Two-Shard

MNIST (MLP) 91.71 87.88 98.45 96.4 94.77 90.72
Fashion-MNIST (MLP) 96.82 95.32 92.04 90.31 97.59 96.38

SVHN (CNN) 61.35 45.09 55.12 36.28 86.52 40.13
CIFAR10 (ResNet18) 91.77 83.88 46.26 35.62 82.58 58.34
CIFAR100 (ResNet18) 49.28 46.52 63.5 62.03 52.73 48.35

Half

MNIST (MLP) 96.02 90.12 93.01 87.83 96.29 90.56
Fashion-MNIST (MLP) 86.35 84.6 90.97 86.02 86.62 85.06

SVHN (CNN) 93.37 10.89 91.45 20.41 93.51 61.84
CIFAR10 (ResNet18) 86.32 48.83 90.38 54.74 87.68 58.41
CIFAR100 (ResNet18) 62.88 56.16 64.27 57.14 63.53 57.41

Partial-Overlap

MNIST (MLP) 90.92 86.23 94.09 89.7 91.32 87.35
Fashion-MNIST (MLP) 86.44 82.75 87.74 85.02 87.06 83.79

SVHN (CNN) 92.26 72.61 93.44 62.79 92.4 76.09
CIFAR10 (ResNet18) 81.5 77.05 86.99 83.88 81.69 79.8
CIFAR100 (ResNet18) 59.09 54.94 59.22 55.09 59.34 56.11

Distinct
MNIST (MLP) 98.05 92.75 95.98 88.77 94.11 85.66

Fashion-MNIST (MLP) 95.5 92.4 95.8 90.59 94.02 87.36
SVHN (CNN) 95.28 49.68 92.25 45.18 87.91 38.45

MNIST (MLP) 92.3 88.4 98.7 96.9 95.1 91.0
Fashion-MNIST (MLP) 97.1 95.6 92.5 91.1 97.9 96.7

SVHN (CNN) 62.4 47.0 56.1 37.5 87.1 41.3
CIFAR10 (ResNet18) 92.5 84.9 47.8 36.4 83.3 59.0

Two-Shard

CIFAR100 (ResNet18) 50.3 47.4 64.0 62.8 53.4 49.3

MNIST (MLP) 96.5 91.0 93.5 88.2 96.8 91.3
Fashion-MNIST (MLP) 87.0 85.1 91.5 86.4 87.3 85.5

SVHN (CNN) 94.0 11.5 91.9 21.7 94.1 62.9
CIFAR10 (ResNet18) 87.0 49.6 91.1 55.6 88.3 59.1

Half

CIFAR100 (ResNet18) 63.8 57.0 65.1 57.8 64.4 58.2

MNIST (MLP) 91.4 87.0 94.8 90.5 92.1 88.0
Fashion-MNIST (MLP) 87.2 83.0 88.5 85.8 87.6 84.4

SVHN (CNN) 93.2 73.8 94.4 63.8 93.3 77.1
CIFAR10 (ResNet18) 82.3 78.0 87.7 84.8 82.5 80.3

Partial-Overlap

CIFAR100 (ResNet18) 60.0 55.8 60.2 55.9 60.5 57.1

MNIST (MLP) 98.4 93.5 96.3 89.5 94.8 86.3
Fashion-MNIST (MLP) 95.9 93.1 96.2 91.4 94.3 88.0

SCAFFOLD

Distinct
SVHN (CNN) 95.8 50.6 93.0 46.2 88.6 39.1

Table 1: Performance comparison of FedProx, FedAvg and SCAFFOLD under different label dis-
tributions and datasets. Performance is measured across 3 transitions for each dataset.

that round. The client patterns used in all experiments are provided in Appendix D. These patterns
are designed to ensure that only a subset of the classes is present in each round.

Results and Takeaways: Table 1 presents a comparative analysis of the average accuracy of pro-
posed algorithm for both FedAvg and FedProx over the first T global rounds (with T = 10) fol-
lowing three shifts in data distribution. The results, encompassing all datasets, label distributions,
and models, demonstrate that our algorithm effectively mitigates performance degradation caused
by dynamic client arrivals and departures. Additionally, it accelerates performance recovery when
the current data distribution closely resembles a previous one. Figure 2, which focuses on selected
scenarios, further illustrates the advantages of our algorithm for both FedAvg and FedProx during
periods of significant performance drops or boosts resulting from data distribution shifts. In both
cases, the algorithm assigns higher importance to models trained on past distributions that share sim-
ilarities with the current one, allowing the initial model to adapt more rapidly to the new distribution,
consistently outperforming the baseline. The results confirm the effectiveness of our approach across
various federated learning algorithms, datasets, models, and data distributions.
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Figure 2: Performance comparison of proposed algorithm for FedProx and FedAvg with SVHN,
CIFAR 10, and CIFAR 100 using Two-Shard and Half label distributions. Our proposed scheme
shows robustness to the dynamic data distribution caused by dynamic client arrival and departure.

Other Experimental Results: Additional figures for other scenarios in Table 1 are included in Ap-
pendix D. These results demonstrate the broad applicability of proposed algorithm across different
federated learning frameworks.

7 CONCLUSION

In this paper, we addressed the challenges of dynamic federated learning by introducing an opti-
mization framework that adapts to dynamic client arrival and departure. Our approach accounts for
these fluctuations and provides insights into how they influence shifts in optimal points. By estab-
lishing an upper bound on the optimality gap and proposing an adaptive initial model construction
strategy guided by gradient similarity, we demonstrated enhanced adaptability to the current client
set. Empirical results validate the robustness of our method across various datasets and dynamic
client participation patterns. One promising direction for future work is to refine the initial model
construction process, such that the model is only updated when beneficial or necessary, potentially
reducing computational overhead while maintaining performance. This opens avenues for more
efficient FL systems that can dynamically balance the trade-offs between adaptation and stability.
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8 REPRODUCIBILITY

We utilize open-source datasets as described in Section 6. The complete mathematical proofs and
details can be found in Appendix A and B. The code for training and testing is provided in the
supplementary material.
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A PROOF OF LEMMA 1

I first present Hoeffding’s inequality which will be useful in our proof of Lemma 1.

Fact 1 (Hoeffding’s inequality). Let {Xk}ni=1 be independent random variables such that P(Xk ∈
[ak, bk]) = 1 for some ak < bk, and let ϵ > 0, X = 1

n

∑
kXk. Then:

P
(
∥X − E[X]∥ ≥ ϵ

)
≤ 2 exp

(
− 12n2ϵ2∑

k(bk − ak)2

)
(7)

We repeat the statement of Lemma 1 below for completeness.

Lemma 1. Let w(g)∗ be the minimizer of F (g) and w(g+1)∗ be the minimizer of F (g+1). If for
all clients k ∈ K(g), all rounds g ∈ G, all model parameters w ∈ RM , and all data d ∈ D, the
gradient of the loss function ∇ℓ is bounded on a compact set Ω which contains the possible values
of the gradient during model training, i.e. ∥∇ℓ(w, d)∥ ≤ C, ∀w ∈ Ω,, the expected difference
between two minimizers of consecutive global loss functions is bounded as follows

E∥w(g)∗ −w(g+1)∗∥ ≤ 1

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)

+
C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣
(8)

where ψ(g1,g2)(d) for any g1 ∈ G and g2 ∈ G, g1 ̸= g2 is defined as follows

ψ(g1,g2)(d) =

∑
k∈K(g1)

qτ(i)(d)

D(g1)
−

∑
i,j∈K(g2),i̸=j

qτ(i)(d)qτ(j)(d) +
∑

k∈K(g2)

qτ(i)(d)

D(g2)
(9)

Proof: By µ-strong convexity, we have

µ∥w(g)∗ −w(g+1)∗∥ ≤ ∥∇F (g+1)(w(g)∗)−∇F (g+1)(w(g+1)∗)∥ (10)

Since∇F (g+1)(w(g+1)∗) = 0 = ∇F (g)(w(g)∗), we have

∇F (g+1)(w(g)∗)−∇F (g+1)(w(g+1)∗) = ∇F (g+1)(w(g)∗)−∇F (g)(w(g)∗)

Combining all these, we will have

µ∥w(g)∗ −w(g+1)∗∥ ≤ ∥∇F (g+1)(w(g)∗)−∇F (g)(w(g)∗)∥ (11)

Based on equation 3, we have

E∥w(g)∗ −w(g+1)∗∥ ≤ 1

µ
E∥∇F (g+1)(w(g)∗)−∇F (g)(w(g)∗)∥ (12)

Now, the goal is to derive an upper bound on E∥∇F (g+1)(w(g)∗) − ∇F (g)(w(g)∗)∥. We have the
following equality:

∥∇F (g)(w)−∇F (g+1)(w)∥
= ∥∇F (g)(w)− E[∇F (g)(w)] + E[∇F (g)(w)]− E[∇F (g+1)(w)]

+ E[∇F (g+1)(w)]−∇F (g+1)(w)∥
≤ ∥∇F (g)(w)− E[∇F (g)(w)]∥+ ∥E[∇F (g)(w)]− E[∇F (g+1)(w)]∥
+ ∥E[∇F (g+1)(w)]−∇F (g+1)(w)∥

(13)

Taking the expectation of both sides of equation 13 and using the fact that the middle term is already
a scalar, we have:

E∥∇F (g)(w)−∇F (g+1)(w)∥ (14)
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≤ E∥∇F (g)(w)− E[∇F (g)(w)]∥︸ ︷︷ ︸
A

+ ∥E[∇F (g)(w)]− E[∇F (g+1)(w)]∥︸ ︷︷ ︸
B

(15)

+ E∥∇F (g+1)(w)−∇F (g+1)(w)∥︸ ︷︷ ︸
C

(16)

We first examine the expression for B. The expectation of the global loss function at round g + 1

E[∇F (g+1)(w)] =
1

D(g+1)

∑
d∈D

E[∇ℓ(w, d)× 1{d ∈ D(g+1)}]

=
1

D(g+1)

∑
d∈D

E[∇ℓ(w, d) | d ∈ D(g+1)]× P(d ∈ D(g+1))

(17)

Similarly, the expectation of the global loss function at round g

E[∇F (g)(w)] =
1

D(g)

∑
d∈D

E[∇ℓ(w, d)× 1{d ∈ D(g)}]

=
1

D(g)

∑
d∈D

E[∇ℓ(w, d) | d ∈ D(g)]× P(d ∈ D(g))

(18)

The difference between the expectations is

E[∇F (g+1)(w)]− E[∇F (g)(w)] (19)

≤ C
∑
d∈D

(
P(d ∈ D(g+1))

D(g+1)
− P(d ∈ D(g))

D(g)

)
(20)

≤ C
∑
d∈D

(
D(g)P(d ∈ D(g+1))−D(g+1)P(d ∈ D(g))

D(g+1)D(g)

)
︸ ︷︷ ︸

B1

(21)

Now, we should derive an upper bound on B1. We assume that there is only a total of K types of
clients that will appear in the system from the start to the end of training. Let τ(i) ∈ {1, · · · ,K}
denote the types of clients. Based on the types of clients, we can further simplify the expressions
P(d ∈ D(g)) and P(d ∈ D(g+1)) as follows:

P(d ∈ D(g+1)) = P(d ∈ ∪kD(g+1)
k ) ≤

∑
k∈K(g+1)

P(d ∈ D(g+1)
k ) (22)

=
∑

k∈K(g+1)

P(Xk = d) =
∑

k∈K(g+1)

qτ(i)(d). (23)

On the other hand, we have the following as a result of the inclusion-exclusion principle:

P(d ∈ D(g)) = P(d ∈ ∪kD(g)
k ) (24)

≥
∑

k∈K(g)

P(d ∈ D(g)
k )−

∑
i,j∈K(g),i̸=j

P((d ∈ D(g)
k ) ∩ (d ∈ D(g)

j )). (25)

Since the local data samples are independently distributed, the last term of the previous inequality
can be easily expressed:

∑
i,j∈K(g),i̸=j

P((d ∈ D(g)
k ) ∩ (d ∈ D(g)

j )) =
∑

i,j∈K(g),i̸=j

P(d ∈ D(g)
k )P(d ∈ D(g)

j ) (26)

=
∑

i,j∈K(g),i̸=j

qτ(i)(d)qτ(j)(d). (27)
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Therefore, we have:

P(d ∈ D(g)) ≥
∑

k∈K(g)

qτ(i)(d)−
∑

i,j∈K(g),i̸=j

qτ(i)(d)qτ(j)(d) (28)

Then, we have the upper bound on B1:

D(g)P(d ∈ D(g+1))−D(g+1)P(d ∈ D(g))

D(g+1)D(g)
(29)

≤

D(g)
∑

k∈K(g+1)

qτ(i)(d) +D(g+1)

 ∑
i,j∈K(g)

i ̸=j

qτ(i)(d)qτ(j)(d)−
∑

k∈K(g)

qτ(i)(d)


D(g+1)D(g)

(30)

= ψ(g+1,g)(d) (31)

Since ∥E[∇F (g)(w)]− E[∇F (g+1)(w)]∥ = ∥E[∇F (g+1)(w)]− E[∇F (g)(w)]∥, we have

B ≤ C∥
∑
d∈D

min{ψ(g+1,g)(d), ψ(g,g+1)(d)}∥ (32)

≤ C∥
∑
d∈D

min{ψ(g+1,g)(d), ψ(g,g+1)(d)}∥ (33)

Now, we derive expressions for A and C. If we assume that gradient of the loss function is bounded
by C on a compact set Ω, and view the Hoeffding’s inequality as the complement of the Cumulative
Density Function (CDF), we have the following result by using E[X] =

∫∞
0

[1− FX(x)] dx

E∥∇F (g)(w)− E[∇F (g)(w)]∥ ≤
√

Cπ

12D(g)
(34)

Similarly,

E∥∇F (g+1)(w)− E[∇F (g+1)(w)]∥ ≤
√

Cπ

12D(g+1)
(35)

Put all things together, we have proved

E∥w(g)∗ −w(g+1)∗∥ ≤ 1

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)

+
C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣
(36)

B PROOF OF THEOREM 1

We replicate the statement of Theorem 1 again for clarity.

Theorem 1. If for all clients k ∈ K(g), all rounds g ∈ G, all model parameters w ∈ RM , and all
data d ∈ D, the gradient of the loss function ∇ℓ is bounded on a compact set Ω which contains the
possible values of the gradient during model training, i.e. ∥∇ℓ(w, d)∥ ≤ C, ∀w ∈ Ω, then we have
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the following recursive relationship between two consecutive optimality gap

E∥w(g+1) −w(g+1)∗∥ ≤ 2

1− 1

2
µη(g)

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

E∥w(g) −w(g)∗∥

+
(
2 + µη(g)

)
C2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∑
k∈K(g)

D
(g)
k

D(g)

(
e
(g)
k − 1

)
e
(g)
k

(
2e

(g)
k − 1

)
3

+ 2η(g)
∑

k∈K(g)

D
(g)
k

(
e
(g)
k

)2
σ2
k

D(g)
+ 2η(g)

 ∑
k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
e
(g)
k

D(g)
Γ
(g)
k


+

2

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)
+

2C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣
(37)

Proof: By our global aggregation rules and the local model training rule, we have

w(g+1) =
∑

k∈K(g)

D
(g)
k

D(g)

w(g) − η(g)
e
(g)
k∑

h=1

∇F̃ (g)
k

(
w

(g),h−1
k

) (38)

= w(g) − η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∇F̃ (g)
k

(
w

(g),h−1
k

) (39)

△
= w(g) − η(g)∇F̃ (g) (40)

where we use ∇F̃ (g)
k

(
w

(g),h−1
k

)
to denote the stochastic gradient and ∇F̃ (g) to denote∑

k∈K(g)

D
(g)
k

D(g)

(∑e
(g)
k

h=1∇F̃
(g)
k

(
w

(g),h−1
k

))
for simplicity.

Next, we relate the optimality gap at round g + 1 to the optimality at round g:

∥w(g+1) −w(g+1)∗∥2 (41)

= ∥w(g+1) −w(g)∗ +w(g)∗ −w(g+1)∗∥2 (42)

≤ 2∥w(g+1) −w(g)∗∥2 + 2∥w(g)∗ −w(g+1)∗∥2. (43)

Similarly, we use ∇F (g)
k

(
w

(g),h−1
k

)
to denote the gradient computed using the entire dataset and

∇F (g) to denote
∑

k∈K(g)

D
(g)
k

D(g)

(∑e
(g)
k

h=1∇F
(g)
k

(
w

(g),h−1
k

))
for simplicity. We can expand the first

term further:
∥w(g+1) −w(g)∗∥2 (44)

= ∥w(g) − η(g)∇F̃ (g) −w(g)∗∥2 (45)

= ∥w(g) − η(g)∇F̃ (g) −w(g)∗ − η(g)∇F (g) + η(g)∇F (g)∥2 (46)

= ∥w(g) − η(g)∇F̃ (g) −w(g)∗∥2 + (η(g))2∥∇F̃ (g) −∇F (g)∥2 (47)

+ 2η(g)
〈
w(g) −w(g)∗ − η(g)∇F (g),∇F̃ (g) −∇F (g)

〉
(48)

= ∥w(g) −w(g)∗∥2 − 2η(g)
〈
w(g) −w(g)∗,∇F (g)

〉
+ (η(g))2∥∇F (g)∥2 (49)

+ (η(g))2∥∇F̃ (g) −∇F (g)∥2 + 2η(g)
〈
w(g) −w(g)∗ − η(g)∇F (g),∇F̃ (g) −∇F (g)

〉
(50)

= ∥w(g) −w(g)∗∥2−2η(g)
〈
w(g) −w(g)∗,∇F (g)

〉
︸ ︷︷ ︸

A1

+(η(g))2∥∇F (g)∥2︸ ︷︷ ︸
A2

(51)
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+(η(g))2∥∇F̃ (g) −∇F (g)∥2︸ ︷︷ ︸
A3

+2η(g)
〈
w(g) −w(g)∗ − η(g)∇F (g),∇F̃ (g) −∇F (g)

〉
︸ ︷︷ ︸

A4

. (52)

Note that E[A4] = 0 because E[∇F̃ (g) −∇F (g)] = 0. Now, let’s expand A1 and A2:

A2 = (η(g))2∥
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∇F (g)
k (w

(g),h−1
k )∥2 (53)

≤ (η(g))2
∑

k∈K(g)

D
(g)
k

D(g)
∥

e
(g)
k∑

h=1

∇F (g)
k (w

(g),h−1
k )∥2 (54)

≤ (η(g))2
∑

k∈K(g)

D
(g)
k

D(g)
e
(g)
k

e
(g)
k∑

h=1

∥∇F (g)
k (w

(g),h−1
k )∥2 (55)

≤ 2L(η(g))2
∑

k∈K(g)

D
(g)
k e

(g)
k

D(g)

e
(g)
k∑

h=1

(∇F (g)
k (w

(g),h−1
k )−∇F (g)∗

k ). (56)

Now, expanding A1:

A1 = −2η(g)⟨w(g) −w(g)∗,∇F (g)⟩ (57)

= −2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

⟨w(g) −w(g)∗,∇F (g)
k (w

(g),h−1
k )⟩ (58)

= −2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

⟨w(g) −w
(g),h−1
k ,∇F (g)

k (w
(g),h−1
k )⟩︸ ︷︷ ︸

A11

(59)

−2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

⟨w(g),h−1
k −w(g)∗,∇F (g)

k (w
(g),h−1
k )⟩︸ ︷︷ ︸

A12

. (60)

We then expand A11 and A12:

A11 = −2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

〈
w

(g)
k −w

(g),h−1
k ,∇F (g)

k (w
(g),h−1
k )

〉
(61)

≤
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

2η(g)
∥∥∥w(g)

k −w
(g),h−1
k

∥∥∥ ∥∥∥∇F (g)
k (w

(g),h−1
k )

∥∥∥ (62)

≤
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

η(g)
(

1

η(g)

∥∥∥w(g)
k −w

(g),h−1
k

∥∥∥2 + η(g)
∥∥∥∇F (g)

k (w
(g),h−1
k )

∥∥∥2) (63)

≤
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(∥∥∥w(g)
k −w

(g),h−1
k

∥∥∥2 + (η(g))2
∥∥∥∇F (g)

k (w
(g),h−1
k )

∥∥∥2) . (64)
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A12 = −2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

〈
w

(g),h−1
k −w(g)∗,∇F (g)

k (w
(g),h−1
k )

〉
(65)

≤ −2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w
(g)∗
k ) +

µ

2

∥∥∥w(g),h−1
k −w(g)∗

∥∥∥2) .
(66)

Combining A11 and A12, we have:

A1 =
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(
∥w(g) −w

(g),h−1
k ∥2 + (η(g))2∥∇F (g)

k (w
(g),h−1
k )∥2 (67)

−2η(g)
(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w(g)∗)− η(g)µ∥w(g),h−1
k −w(g)∗∥2

))
. (68)

Next, we combine A1 and A2:

A1 +A2 = 2L(η(g))2
∑

k∈K(g)

D
(g)
k

D(g)
(e

(g)
k + 1)

e
(g)
k∑

h=1

(
F

(g)
k (w

(g)
k )− F (g)∗

k

)
︸ ︷︷ ︸

B1 (first term)

(69)

−2η(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w(g)∗)
)

︸ ︷︷ ︸
B1 (second term)

(70)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2 (71)

−η(g)µ
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g),h−1
k −w(g)∗∥2︸ ︷︷ ︸

B2

. (72)

For the third item, we further simplify:

∥w(g),h−1
k −w(g)∗∥2 = ∥w(g),h−1

k −w(g) +w(g) −w(g)∗∥2 (73)

= ∥w(g),h−1
k −w(g)∥2 + ∥w(g) −w(g)∗∥2 (74)

+ 2⟨w(g),h−1
k −w(g),w(g) −w(g)∗⟩ (75)

≥ ∥w(g),h−1
k −w(g)∥2 + ∥w(g) −w(g)∗∥2 (76)

− 2∥w(g),h−1
k −w(g)∥ · ∥w(g) −w(g)∗∥ (77)

≥ ∥w(g),h−1
k −w(g)∥2 + ∥w(g) −w(g)∗∥2 (78)

− 2∥w(g),h−1
k −w(g)∥ − 1

2
∥w(g) −w(g)∗∥2 (79)

≥ −∥w(g),h−1
k −w(g)∥+ 1

2
∥w(g) −w(g)∗∥2. (80)
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From this, we derive an upper bound on B2:

B2 ≤ −
η(g)µ

2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∥w(g) −w(g)∗∥2 (81)

+ µη(g)
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g),h−1
k −w(g)∥2. (82)

Plug the expressions for the third item and B2 back into A1 +A2:

A1 +A2 ≤ B1 + (1 + µη(g))
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g),h−1
k −w(g)∥2 (83)

− η(g)µ

2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∥w(g) −w(g)∗∥2. (84)

We then expand B1 as follows:

B1 = 2L(η(g))2
∑

k∈K(g)

D
(g)
k

D(g)
(e

(g)
k + 1)

e
(g)
k∑

h=1

(
F

(g)
k (w

(g)
k )− F (g)∗

k

)
(85)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(
2L(η(g))2(e

(g)
k + 1)− 2η(g)

)
︸ ︷︷ ︸

−V
(g)
k

(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w(g)∗)
)

︸ ︷︷ ︸
B11

. (86)

We expand B11 further:

B11 = −V (g)
k

(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w(g)∗)
)

(87)

= −V (g)
k

(
F

(g)
k (w

(g),h−1
k )− F (g)

k (w(g)) + F
(g)
k (w(g))− F (g)

k (w(g)∗)
)

(88)

≤ −V (g)
k

(〈
∇F (g)

k (w(g)),w
(g),h−1
k −w(g)

〉
+
µ

2
∥w(g),h−1

k −w(g)∥2
)

(89)

− V (g)
k

(
F

(g)
k (w(g))− F (g)

k (w(g)∗)
)

(90)

≤ V (g)
k

〈
w

(g)
k −w

(g),h−1
k ,∇F (g)

k (w(g))
〉
−
µV

(g)
k

2
∥w(g),h−1

k −w(g)∥2 (91)

− V (g)
k

(
F

(g)
k (w(g))− F (g)

k (w(g)∗)
)

(92)

≤
V

(g)
k η(g)

2
∥∇F (g)

k (w(g))∥2 +
V

(g)
k

2η(g)
∥w(g)

k −w
(g),h−1
k ∥2 (93)

−
µV

(g)
k

2
∥w(g),h−1

k −w(g)∥2 − V (g)
k

(
F

(g)
k (w(g))− F (g)

k (w(g)∗)
)

(94)

≤ V (g)
k Lη(g)

(
F

(g)
k (w(g))− F (g)∗

k

)
+
V

(g)
k (1− µη(g))

2η(g)
∥w(g) −w

(g),h−1
k ∥2 (95)
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− V (g)
k

(
F

(g)
k (w(g))− F (g)

k (w(g)∗)
)

(96)

≤ V (g)
k Lη(g)

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
+ ∥w(g) −w

(g),h−1
k ∥2 (97)

+ V
(g)
k (1− Lη(g))

(
F

(g)
k (w(g)∗)− F (g)

k (w(g))
)

(98)

≤ V (g)
k Lη(g)

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
+ ∥w(g) −w

(g),h−1
k ∥2 (99)

+ V
(g)
k (1− Lη(g))

F (g)
k (w(g)∗)− F (g)∗

k +F
(g)∗
k − F (g)

k (w(g))︸ ︷︷ ︸
≤0

 (100)

≤ V (g)
k Lη(g)

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
+ ∥w(g) −w

(g),h−1
k ∥2 (101)

+ V
(g)
k

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
(102)

≤ V (g)
k

(
Lη(g) + 1

)(
F

(g)
k (w(g)∗)− F (g)∗

k

)
+ ∥w(g) −w

(g),h−1
k ∥2. (103)

Substituting the expression for B11 back into B1 and noting that V (g)
k ≤ 2η(g), we have:

B1 = 2L(η(g))2
∑

k∈K(g)

D
(g)
k

D(g)
(e

(g)
k + 1)

e
(g)
k∑

h=1

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
(104)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

2η(g)
(
Lη(g) + 1

)(
F

(g)
k (w(g)∗)− F (g)∗

k

)
(105)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2 (106)

= 2η(g)
∑

k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
D(g)

e
(g)
k∑

h=1

(
F

(g)
k (w(g)∗)− F (g)∗

k

)
(107)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2 (108)

= 2η(g)
∑

k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
D(g)

e
(g)
k Γ

(g)
k (109)

+
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2. (110)

Substituting the expression back into A1 +A2:

A1 +A2 ≤ 2η(g)
∑

k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
D(g)

e
(g)
k Γ

(g)
k (111)

+ (2 + µη(g))
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2 (112)
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− η(g)µ

2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∥w(g) −w(g)∗∥2. (113)

Next, we bound the term
∑e

(g)
k

h=1 ∥w(g) −w
(g),h−1
k ∥2:

e
(g)
k∑

h=1

∥w(g) −w
(g),h−1
k ∥2 =

e
(g)
k∑

h=2

∥
h−2∑
m=0

∇F (g)
k (w

(g),m
k )∥2 (114)

=

e
(g)
k −2∑
q=0

∥
q∑

m=0

∇F (g)
k (w

(g),m
k )∥2 ≤

e
(g)
k −2∑
q=0

(q + 1)

q∑
m=0

∥∇F (g)
k (w

(g),m
k )∥2 (115)

=

e
(g)
k −2∑
q=0

(q + 1)2C2 = C2

e
(g)
k −2∑
q=0

(q + 1)2 =
C2(e

(g)
k − 1)e

(g)
k (2e

(g)
k − 1)

6
. (116)

Substituting into A1 +A2, we get:

A1 +A2 ≤ 2η(g)
∑

k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
D(g)

e
(g)
k Γ

(g)
k (117)

+ (2 + µη(g))
∑

k∈K(g)

D
(g)
k

D(g)

C2(e
(g)
k − 1)e

(g)
k (2e

(g)
k − 1)

6
(118)

− µη(g)

2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∥w(g) −w(g)∗∥2. (119)

Finally, let’s derive the expression for A3:

A3 = (η(g))2

∥∥∥∥∥∥
∑

k∈K(g)

D
(g)
k

D(g)

e
(g)
k∑

h=1

(
∇F̃ (g)

k −∇F (g)
k

)∥∥∥∥∥∥
2

(120)

≤ (η(g))2
∑

k∈K(g)

D
(g)
k

D(g)

∥∥∥∥∥∥
e
(g)
k∑

h=1

(
∇F̃ (g)

k −∇F (g)
k

)∥∥∥∥∥∥
2

(121)

≤ η(g)
∑

k∈K(g)

D
(g)
k

D(g)
e
(g)
k

e
(g)
k∑

h=1

∥∥∥∇F̃ (g)
k −∇F (g)

k

∥∥∥2 (122)

≤ η(g)
∑

k∈K(g)

D
(g)
k

D(g)
(e

(g)
k )2σ2

k. (123)

Taking the expectation and combining the expressions for A1, A2, and A3, we have:

E∥w(g+1) −w(g+1)∗∥ ≤ 2

1− 1

2
µη(g)

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

E∥w(g) −w(g)∗∥ (124)
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+
(
2 + µη(g)

)
C2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∑
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D
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(
e
(g)
k − 1

)
e
(g)
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(
2e

(g)
k − 1

)
3

(125)

+ 2η(g)
∑

k∈K(g)

D
(g)
k

(
e
(g)
k

)2
σ2
k

D(g)
+ 2η(g)

 ∑
k∈K(g)

D
(g)
k

(
Lη(g)e

(g)
k + 2Lη(g) + 1

)
e
(g)
k

D(g)
Γ
(g)
k


(126)

+ 2E∥w(g)∗ −w(g+1)∗∥. (127)

Plugging the expression in Lemma 1 for the last terms yields

E∥w(g+1) −w(g+1)∗∥ ≤ 2

1− 1

2
µη(g)

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

E∥w(g) −w(g)∗∥ (128)

+
(
2 + µη(g)

)
C2

 ∑
k∈K(g)

D
(g)
k e

(g)
k

D(g)

 ∑
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D
(g)
k

D(g)

(
e
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k − 1

)
e
(g)
k

(
2e

(g)
k − 1

)
3

(129)

+ 2η(g)
∑

k∈K(g)

D
(g)
k

(
e
(g)
k

)2
σ2
k

D(g)
+ 2η(g)

 ∑
k∈K(g)

D
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Lη(g)e
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k + 2Lη(g) + 1

)
e
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D(g)
Γ
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
(130)

+
2

µ

(√
Cπ

12D(g)
+

√
Cπ

12D(g+1)

)
+

2C

µ

∣∣∣∣∣∑
d∈D

min{ψ(g,g+1)(d), ψ(g+1,g)(d)}

∣∣∣∣∣ (131)

C DYNAMIC INITIAL MODEL CONSTRUCTION FOR FAST ADAPTATION

Algorithm Details: Algorithm 1 outlines the pseudocode for our proposed “dynamic initial model
construction for fast adaptation” algorithm. In this context, a “session” differs from the “number
of global rounds.” A new round is initiated whenever there is a change in data distribution, such
as clients joining or leaving, while the set of clients remains constant within a round. Each round
comprises at least one global iteration. The implementation of Algorithm 1 requires specifying the
number of global iterations per round T , the number of rounds for pilot model preparation P , the
number of rounds dedicated to model training S, and the number of global iterations used to compute
the gradient reflecting the characteristics of the current dataset V .

Initially, in line 1, training begins with a randomly initialized global weight w(0), and several lists
are initialized: Q1 to store trained models, Q2 to store computed gradients, and Q3 to store the
two-norm values of differences between gradients. From lines 23 to 29, each client in the current set
performs local model training based on the current global model, which may be either a new initial
model or the latest model at the server. Upon completion of local training, each client transmits its
final local model to the server, where global aggregation is performed using a weighted sum. From
lines 30 to 32, the final global models are saved at the end of each round, either for pilot model
computation or as components of a new initial model.

Lines 33 to 35 describe the formation of the pilot model. When the pilot preparation stage con-
cludes—i.e., when the length of Q1 reaches P—the average of all models in the current Q1 is
taken to form the pilot model, wp. In lines 3 to 21, following the pilot model preparation stage
(for g = 0, . . . , PT − 1), an additional V global iterations are conducted at the start of each round
using the pilot model wp to compute the difference between the final global model, w(V−1)

p , and
the pilot model wp. This difference, w(V−1)

p − wp, reflects a combination of gradients computed
from mini-batches of local datasets across all current clients. These gradients encapsulate the data
characteristics, making them representative of the datasets and useful for evaluating the similarity
between different client sets.
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Algorithm 1 Dynamic Initial Model Construction for Fast Adaptation

Input: The number of global rounds within one round T , the number of sessions in pilot model
preparation stage P , the number of sessions to execute S(≥ P ), the number of global rounds V
to compute the gradient used to calculate similarity.

1: Initialize: Randomly initialize global model w(0), a listQ1 to store trained global models, and a
list Q2 to store gradients that will be used to calculate similarity, a list Q3 to store the two-norm
values between gradients, a similarity scaling factor R.

2: for g = 0, . . . , ST − 1 do
3: if g ≥ PT and g%T == 0 then
4: for g′ = 0, . . . , V − 1 do
5: if g′ == 0 then
6: w

(g′)
p ← wp

7: end if
8: for k ∈ K(g) do
9: for h ∈ {0, . . . , e(g)k − 1} do

10: Perform local model training based on w
(g′)
p .

11: end for
12: Send the final local model w(g′),F

k,p to the server.
13: end for
14: The servers perform the aggregation using weighted summation to get w(g′+1)

p .
15: end for
16: if |Q2| > 0 then
17: Compute the two-norm values of the difference between w

(V−1)
p −wp and every

element in Q2. Multiply all results by R and store them to Q3.
18: Q4 ← Softmin(Q3)
19: w(g) ← Q4[0]×w((P+1)T−1) + · · ·+Q4[(g − (P + 1)T )//T − 1]×w(g−1)

20: end if
21: Append w

(V−1)
p −wp to Q2.

22: end if
23: for k ∈ K(g) do
24: for h ∈ {0, . . . , e(g)k − 1} do
25: Perform local model training using SGD based on w(g).
26: end for
27: Send the final local model w(g),F

k to the server.
28: end for
29: The servers perform the aggregation using weighted summation to get w(g+1).
30: if g%T == T − 1 then
31: Append w(g) to Q1

32: end if
33: if |Q1| == P then
34: The pilot model wp ← The average of all models in Q1.
35: end if
36: end for

Lines 16 to 19 focus on computing both the similarity and the new initial model. Specifically, in
line 17, the two-norm of the difference between two gradients is used to represent similarity; smaller
two-norm values indicate greater similarity between client sets. We introduce a constantR to control
the emphasis on differences among the two-norm values. The function ofR becomes evident in lines
18 and 19. In line 18, the softmin function is applied to normalize the values and generate a set
of weights that sum to 1, assigning higher weights to smaller two-norm values. These weights are
stored in Q4. In line 19, the new initial model is computed as a weighted sum of all models from
the pilot preparation stage, using weights from Q4. The role of R is critical here: a high value
of R results in one dominant weight after the softmin operation, favoring the model trained on
the set of clients most similar to the current one. Conversely, a lower value of R leads to a more
balanced distribution of weights, reflecting the differences in two-norm values. Finally, in line 21,
the computed gradient is saved in Q2 for future similarity assessments.
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FL Algorithm Label Distribution Dataset (Model) 1st Transition 2nd Transition 3rd Transition
Proposed Baseline Proposed Baseline Proposed Baseline

FedProx Half TinyImageNet (ResNet34) 80.71 72.8 77.93 72.28 80.31 73.36

Half TinyImageNet (ResNet34) 80.72 72.81 77.77 72.24 80.43 73.42FedAvg Partial-Overlap TinyImageNet (ResNet34) 92.27 79.11 93.67 82.01 92.48 77.2

Table 2: Performance comparison of FedProx, FedAvg under different label distributions for Tiny
ImageNet dataset. Performance is measured across 3 transitions for each dataset.

D MORE EXPERIMENT RESULTS AND DETAILS

Table 2 is the average accuracy for the first 10 accuracy following three shifts in data distributions.

Figure 3 presents more results for FedProx with various label distributions, datasets and models.
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Figure 3: Performance comparison of proposed algorithm for FedProx to the baseline across the
remaining examined label distributions, datasets, and models.

Figure 4 presents more results for FedAvg with various label distributions, datasets and models.
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Figure 4: Performance comparison of proposed algorithm for FedProx to the baseline across the
remaining examined label distributions, datasets, and models.
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D.1 CLIENT PATTERN

For client pattern used in all label distributions, please see Table 3 and 4. Client pattern is the same
for FedAvg and FedProx.

Session Two Shard Distinct
MNIST Fashion-MNIST SVHN CIFAR10 CIFAR100 MNIST Fashion-MNIST SVHN

1 [0, 4, 6, 7] [0, 1, 4, 9] [1, 5, 6] [1, 5, 6] [1, 5, 6] [0, 1, 2] [0, 1, 2] [0, 1, 2]
2 [5] [5] [0, 4, 8] [0, 4, 8] [0, 2, 3, 9] [0, 1, 2] [0, 1, 2] [0, 1, 2]
3 [0, 4, 6] [0, 4, 6, 8] [3] [1, 2, 3, 5, 6, 9] [8] [3, 4, 5] [3, 4, 5] [3, 4, 5]
4 [5] [5] [1, 4] [4] [0, 2, 3, 4, 6, 9] [6, 7, 8, 9] [6, 7, 8, 9] [6, 7, 8, 9]
5 [4, 6, 7] [0, 4, 6, 7] [3, 5, 8] [1, 2, 3, 5, 6, 8] [5, 8] [0, 1, 2] [0, 1, 2] [0, 1, 2]
6 [5] [5] [1, 4, 7] [4] [0, 2, 3, 6, 7] [3, 4, 5] [3, 4, 5] [3, 4, 5]
7 [4, 6] [4, 6] [5] [1, 5, 6, 9] [1, 5, 8] [6, 7, 8, 9] [6, 7, 8, 9] [6, 7, 8, 9]
8 [5] [5] [1, 4] [0, 4] [0, 2, 7] [3, 4, 5] [3, 4, 5] [3, 4, 5]

Table 3: Client Pattern for Label Distribution Two-Shard and Distinct

Session Half & Partial-Overlap
MNIST Fashion-MNIST SVHN CIFAR10 CIFAR100

1 [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
2 [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9]
3 [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
4 [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9]
5 [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
6 [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9]
7 [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
8 [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9] [5, 6, 7, 8, 9]

Table 4: Client Pattern for Label Distribution Half and Partial-Overlap

D.2 MODELS FOR MNIST, FASHION-MNIST, AND SVHN

The model code for MNIST, Fashion-MNIST, and SVHN is as follows.

1 class net(nn.Module):
2 def __init__(self, dataset_name) -> None:
3 super().__init__()
4 if dataset_name == "mnist":
5 self.in_channel = 28 * 28
6 elif dataset_name == "fmnist":
7 self.in_channel = 28 * 28
8 self.out_channel = 10
9 self.net = nn.Linear(self.in_channel, self.out_channel)

10

11 def forward(self, x):
12 x = x.view(-1, x.shape[1] * x.shape[2] * x.shape[3])
13 x = self.net(x)
14 return nn.functional.log_softmax(x, dim=1)

Listing 1: Model for MNIST and Fashion-MNIST

1 class CNN_SVHN(nn.Module):
2 def __init__(self, num_classes=10):
3 super().__init__()
4 self.conv1 = nn.Conv2d(in_channels=3, out_channels=32,

kernel_size=3, padding=1)
5 self.conv2 = nn.Conv2d(in_channels=32, out_channels=64,

kernel_size=3, padding=1)
6 self.conv3 = nn.Conv2d(in_channels=64, out_channels=128,

kernel_size=3, padding=1)
7 self.fc1 = nn.Linear(128 * 4 * 4, 256)
8 self.fc2 = nn.Linear(256, num_classes)
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9 self.dropout = nn.Dropout(0.5) # Dropout with a probability
of 0.5

10

11 def forward(self, x):
12 x = F.relu(F.max_pool2d(self.conv1(x), 2))
13 x = F.relu(F.max_pool2d(self.conv2(x), 2))
14 x = F.relu(F.max_pool2d(self.conv3(x), 2))
15 x = x.view(x.size(0), -1)
16 x = F.relu(self.fc1(x))
17 x = self.dropout(x) # Apply Dropout after the first fully

connected layer
18 x = self.fc2(x)
19 return x

Listing 2: Model for SVHN
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