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Abstract

Recent advancements have seen Large Lan-001
guage Models (LLMs) and Large Multimodal002
Models (LMMs) surpassing general human ca-003
pabilities in various tasks, approaching the pro-004
ficiency level of human experts across multiple005
domains. With traditional benchmarks becom-006
ing less challenging for these models, new rig-007
orous challenges are essential to gauge their008
advanced abilities. In this work, we present009
OlympiadBench, an Olympiad-level bilingual010
multimodal scientific benchmark, featuring011
8,952 problems from Olympiad-level mathe-012
matics and physics competitions, including the013
Chinese college entrance exam. Each prob-014
lem is detailed with expert-level annotations015
for step-by-step reasoning. Evaluating top-tier016
models on OlympiadBench, we implement a017
comprehensive assessment methodology to ac-018
curately evaluate model responses. Notably,019
the best-performing model, GPT-4V, attains an020
average score of 17.23% on OlympiadBench,021
with a mere 11.28% in physics, highlighting022
the benchmark rigor and the intricacy of physi-023
cal reasoning. Our analysis orienting GPT-4V024
points out prevalent issues with hallucinations,025
knowledge omissions, and logical fallacies. We026
hope that our challenging benchmark can serve027
as a valuable resource for helping future AGI028
research endeavors.029

1 Introduction030

Large Language Models(LLMs) have demon-031

strated remarkable capabilities across various tasks032

such as text generation (Zhao et al., 2023), code033

generation (Zan et al., 2023) and mathematical rea-034

soning (Lu et al., 2023; Zhou et al., 2023), gar-035

nering significant attention from both academia036

and industry (Wei et al., 2022; Zhao et al., 2023;037

Bubeck et al., 2023). The most powerful models038

such as GPT-4 (OpenAI, 2023a) and Gemini Ul-039

tra (Team, 2023) have even surpassed oridinary040

human level on a wide variety of benchmarks such041

Question:

Solution:

Final answer: 2,251,252
Answer type: Sequence

Subfield: Number theory
Question type: Open-ended

Find all triples (𝑥, 𝑦, 𝑧) of positive integers such that 𝑥 ≤ 𝑦 ≤
𝑧 and 𝑥! 𝑦! + 𝑧! = 2012 𝑥𝑦𝑧 + 𝑧 .

First note that 𝑥 divides 2012 ⋅ 2 = 2! ⋅ 503. If 503 ∣ 𝑥 then the 
right-hand side of the equation is divisible by 503!, and it 
follows that 503" ∣ 𝑥𝑦𝑧 + 2. This is false as 503 ∣ 𝑥. Hence 
𝑥 = 2# with 𝑚 ∈ {0,1,2,3}. If 𝑚 ≥ 2 then 2$ ∣ 2012(𝑥𝑦𝑧 + 2). 
However the highest powers of 2 dividing 2012 and 𝑥𝑦𝑧 + 2 =
2#𝑦𝑧 + 2 are 2" and 2% respectively. So 𝑥 = 1 or 𝑦 = 1, 
yielding the two equations

𝑦! + 𝑧! = 2012 𝑦𝑧 + 2 ,
𝑦! + 𝑧! = 503 𝑦𝑧 + 1

In both cases …… It follows that 𝑦 ≡ −𝑧(𝑚𝑜𝑑 503 ) as 
claimed. Therefore 𝑦 + 𝑧 = 503𝑘 with 𝑘 ≥ 1. In view of 𝑦! +
𝑧! = 𝑦 + 𝑧 ( 𝑦 − 𝑧 " + 𝑦𝑧) the two equations take the form

𝑘 𝑦 − 𝑧 " + 𝑘 − 4 𝑦𝑧 = 8 (1)
𝑘 𝑦 − 𝑧 " + 𝑘 − 1 𝑦𝑧 = 1 (2)

In (1) we have 𝑘 − 4 𝑦𝑧 ≤ 8, which implies k ≤ 4……
Therefore (1) has no integer solutions.
Equation (2) implies 0 ≤ 𝑘 − 1 𝑦𝑧 ≤ 1, so that 𝑘 = 1 or 𝑘 = 2. 
Also 0 ≤ 𝑘 𝑦 − 𝑧 " ≤ 1, hence 𝑘 = 2 only if 𝑦 = 𝑧. However 
then 𝑦 = 𝑧 = 1, which is false in view of 𝑦 + 𝑧 ≥ 503. 
Therefore 𝑘 = 1 and (2) takes the form 𝑦 − 𝑧 " = 1, yielding 
𝑧 − 𝑦 = 𝑦 − 𝑧 = 1. Combined with 𝑘 = 1 and 𝑦 + 𝑧 = 503𝑘, 
this leads to 𝑦 = 251, 𝑧 = 252.
In summary the triple (2,251,252) is the only solution.

Figure 1: An example of IMO in OlympiadBench. Solv-
ing this example requires AI systems to span different
mathematical domains and conduct advanced reasoning.

as MMLU (Hendrycks et al., 2020), MMMU (Yue 042

et al., 2023), and even surpassing human expert in 043

many area. These results show a promising future 044

that LLMs can serve as proficient assistants for hu- 045

man scientists (Nguyen, 2023; Qiu et al., 2023). 046

Among the array of expert-level skills exhibited by 047

LLMs, scientific reasoning consistently emerges 048

as one of the most brilliant, showcasing some of 049

the most distinguished intellectual properties that 050

experts possess. Therefore, this paper primarily 051

focuses on mathematical and physical reasoning. 052

In recent years, several benchmarks related to 053

mathematics have been proposed, such as the 054

dataset GSM8K (Cobbe et al., 2021) as well as 055

the dataset MATH (Hendrycks et al., 2021). How- 056

ever, these benchmarks, are primarily developed 057
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before the advent of highly capable LLMs, and now058

lack sufficient challenge for the latest models. For059

instance, GPT-4 with prompting techniques(Zhou060

et al., 2023) has achieved a 97.0% success rate on061

GSM8K and 84.3% on MATH. The rapid evolu-062

tion of LLMs may soon lead to saturated results063

on these benchmarks. Concurrently, LLMs are064

not yet fully equipped to assist mathematicians in065

solving complex problems (Collins et al., 2023;066

Zhang et al., 2023), nor are they capable of per-067

forming expert-level mathematical reasoning inde-068

pendently. This discrepancy underscores the need069

for more challenging datasets to benchmark future070

advancements of LLMs in this domain. Similarly,071

physics presents comparable challenges for AI to072

those found in mathematics. Nevertheless, exist-073

ing benchmarks related to physics (Lu et al., 2022;074

Arora et al., 2023; Wang et al., 2024) are charac-075

terized by their relatively low difficulty and limited076

scope. There is also a significant lack of a rigorous077

and challenging benchmark in physics.078

In addition to the issue regarding the benchmark079

difficulty, it is important to note that these bench-080

marks predominantly focus on text. This presents a081

significant limitation, as a wide range of scientific082

reasoning contexts require multimodal reasoning083

abilities. For example, grasping geometry reason-084

ing in mathematics or understanding experiments085

designs in physics are scenarios where multimodal086

reasoning capabilities are crucial. Notably, various087

large multimodal models (LMMs) have been de-088

veloped (Team, 2023; Liu et al., 2023) and demon-089

strate proficiency on a variety of tasks (Lu et al.,090

2022; Yue et al., 2023; Zhang et al., 2024b; Lu et al.,091

2024), offering the potential for multimodal scien-092

tific reasoning. Nevertheless, there is still a lack093

of sufficient benchmarks to prove whether these094

LMMs are capable of handling scientific problems.095

Consequently, a challenging multimodal bench-096

mark is essential for advancing scientific reasoning097

tasks(Zhang et al., 2024a; Lu et al., 2023).098

To address the aforementioned inadequacies, we099

introduce OlympiadBench, a Olympiad-level bilin-100

gual multimodal scientific benchmark. This collec-101

tion comprises 8,952 math and physics problems102

sourced from International Olympiads, Chinese103

Olympiads, and the most challenging segments104

of the Chinese College Entrance Exam (GaoKao).105

We download PDF data from official websites and106

utilize Mathpix1 for OCR parsing. We meticu-107

1https://mathpix.com/

lously inspect, clean, and revise the data, and fur- 108

ther adopt LLMs for deduplication. Finally, we 109

annotate the data with crucial information such as 110

answer types and subfields, yielding a dataset that 111

is clean, accurate, and detailed. As shown in Fig- 112

ure 1, OlympiadBench features numerous distinct 113

characteristics such as difficulty, free-form gen- 114

eration, expert-level solution annotation, detailed 115

labeling of difficulty, wide-coverage of modality 116

and language, etc. These features are summarized 117

more clearly from Table 1. 118

We evaluate a wide variety of LLMs and LMMs 119

on OlympiadBench. GPT-4V, a fusion of the 120

strongest LLMs and LMMs, achieves a score of 121

20.35% in mathematics, 11.28% in physics. Im- 122

portantly, the experiment results show that LMMs 123

still struggle in computational error, incorrect rea- 124

soning or induction. For the process involved in 125

the correct responses, the process occasionally in- 126

cludes hallucinated reasoning, or choosing a more 127

complex solution when a simpler solution exists. 128

All these results highlight the substantial challenge 129

our benchmark presents to contemporary models 130

and point the direction of future efforts. 131

OlympiadBench is inspired by the significant ad- 132

vances made by DeepMind AlphaGeometry (Trinh 133

et al., 2024), which nearly matches the proficiency 134

of International Mathematical Olympiad (IMO) 135

gold medalists in geometry proofs. It is clear 136

that OlympiadBench, along with other challenging 137

datasets like the AI-MO challenge2, will witness 138

and benchmark the swift progress towards expert- 139

level AI assistants for solving scientific problems. 140

2 Related Work 141

This section gives an overview of the existing 142

datasets in solving mathematics and physics prob- 143

lems as well as multimodal datasets. 144

Mathematics Benchmarks. Solving mathe- 145

matics problems and proving theorems in natural 146

languages has been a key research focus in ma- 147

chine learning and natural language processing 148

since the 1960s (Bobrow, 1964). Previous bench- 149

marks (Koncel-Kedziorski et al., 2016; Wang et al., 150

2017; Ling et al., 2017; Amini et al., 2019; Cobbe 151

et al., 2021; Wei et al., 2023) focus predominantly 152

on math word problems (WMPs) which involve 153

four basic arithmetic operations with single or mul- 154

tiple operation steps (Lu et al., 2023). Typically, 155

the GSM8K (Cobbe et al., 2021) dataset targets 156

2https://aimoprize.com/
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elementary-level questions within 8 steps of basic157

arithmetic operations. However, these problems are158

typically text-only (Lu et al., 2023) and of lower159

difficulty, with reasoning limited to a few compu-160

tations. As the complexity of the problems rises,161

some works (Hendrycks et al., 2021; Frieder et al.,162

2023; Arora et al., 2023) introduce competition-163

level problems integrating mathematical logic and164

background knowledge. Yet, these challenging165

datasets are increasingly being surmounted (Zhou166

et al., 2023). Theorem proving is a problem to167

demonstrate the truth of a mathematical claim (a168

theorem) through a sequence of logical arguments169

(a proof) (Lu et al., 2023). Earlier efforts mainly170

focused on translating natural language proofs into171

formal representations, facing significant expertise172

and labor challenges (Zheng et al., 2022; Welleck173

et al., 2021). The emergence of LLMs has facili-174

tated notable advancements in the domain of natu-175

ral language proof (Jiang et al., 2023). Olympiad-176

Bench presents mathematical reasoning and theo-177

retical proofs all in natural language with detailed178

solution annotations.179

Physics Benchmarks. Physics questions in180

SciQ (Welbl et al., 2017) and ScienceQA (Lu181

et al., 2022) are mainly elementary and high school182

level multiple-choice questions, lacking complex183

reasoning and computational tasks. In MMLU-184

STEM (Hendrycks et al., 2020) and C-Eval-185

STEM (Huang et al., 2023), physics questions also186

adopt a multiple-choice format. JEEBench (Arora187

et al., 2023) extends this format to include multi-188

step reasoning with physics knowledge, yet it is189

limited in scope and purely text-only. SciEval (Sun190

et al., 2023) consists of a total of about 18,000191

challenging scientific questions, spanning three im-192

portant basic science fields: chemistry, physics and193

biology. SciBench (Wang et al., 2024) and OCW-194

Courses (Lewkowycz et al., 2022) offer college-195

level physics questions in free-response formats,196

where SciBench contains multimodal information.197

In contrast, OlympiadBench escalates in difficulty,198

diversifies in question types, and surpasses in vol-199

ume, setting a new benchmark for complexity and200

variety in the domain.201

Multimodal Benchmarks. For assessing202

multimodal capability, works such as Geome-203

try3K (Lu et al., 2021), GeoQA (Chen et al.,204

2021), GeoQA+ (Cao and Xiao, 2022), and Uni-205

Geo (Chen et al., 2022) have employed multimodal206

information for tackling geometric problems, in-207

tegrating natural language descriptions with dia-208

grams. ScienceQA (Lu et al., 2022), MMMU (Yue 209

et al., 2023), CMMMU (Zhang et al., 2024b) and 210

CMMU (He et al., 2024) are multimodal, multi- 211

discipline evaluation sets, encompassing a broad 212

range of subjects. MathVista (Lu et al., 2024) inte- 213

grates 28 existing and 3 newly constructed multi- 214

modal datasets involving mathematics, aiming to 215

establish a benchmark that encapsulates challenges 216

from a variety of mathematical and visual tasks. 217

However, it does not concentrate on delving into 218

the complexity of mathematics problems. 219

In summary, we introduce a new benchmark to 220

address these gaps. Table 1 presents a comparison 221

between OlympiadBench and several related bench- 222

marks, highlighting the significant advantages of 223

OlympiadBench across all aspects. 224

3 The OlympiadBench Dataset 225

To evaluate the reasoning abilities of LLMs and 226

LMMs in mathematics and physics problems, we 227

have created OlympiadBench, a bilingual and mul- 228

timodal scientific benchmark at the competition 229

level. This section provides a detailed account of 230

the construction process of OlympiadBench. Sum- 231

marized statistics of the dataset is shown in Table 232

2, and more detailed statistics per subject are in 233

Appendix A.2. 234

3.1 Design Principle 235

The motivation behind the design of Olympiad- 236

Bench is to establish a benchmark that represents 237

the pinnacle of human intellectual achievement, 238

thereby encouraging researchers of LLMs to push 239

the boundaries of mathematical and physical rea- 240

soning capabilities. To realize this vision, we focus 241

on curating challenges that epitomize the highest 242

level of competition worldwide. Specifically, our 243

benchmark includes: 244

1. Inclusion of Olympiad-Level Problems. 245

The chosen competition problems are of 246

Olympiad caliber, aimed at the most accom- 247

plished students in a region’s high school 248

education phase. These problems are open- 249

ended, setting them apart from the conven- 250

tional multiple-choice or fill-in-the-blank for- 251

mats. This selection is designed to more ac- 252

curately capture the complexity of advanced 253

mathematical reasoning. 254

2. Provision of Detailed Solutions. Given the 255

advanced difficulty of these problems, which 256
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Benchmark
Subject Multi- Detailed Difficulty Size Answer Language Question

Maths Physics modal solution level Maths Physics type type type

SciBench ✓ ✓ ✓ ✓ COL 217 295 Num EN OE
MMMU ✓ ✓ ✓ ✓ COL 540 443 Num EN MC,OE
MathVista ✓ ✓ - 1,000 Num EN MC,OE
ScienceQA ✓ ✓ H 617 EN MC
SciEval ✓ - 1,657 Num EN MC,FB,J
JEEBench ✓ ✓ ✓ CEE 236 123 Num EN MC,OE
MMLU ✓ ✓ COL 948 548 EN MC
AGIEval ✓ ✓ CEE 953 200 Num EN,ZH MC,FB,OE
GSM8K ✓ ✓ E 1,319 Num EN OE
MATH ✓ ✓ COMP 5,000 Num,Exp,Tup EN OE

OlympiadBench ✓ ✓ ✓ ✓ COMP 6,524 2,428 ALL EN,ZH OE

Table 1: For difficulty level, COMP: Competition, COL: College, CEE: College Entrance Examination, H: High
School, E: Elementary School, and we picked the highest level; For answer type, Num: Numeric value, Exp:
Expression, Equ: Equation, Int: Interval, Tup: Tuple; For language type, EN: English, ZH: Chinese; For question
type, OE: Open-ended, MC: Multiple-choice, FB: Fill-in-the-blank, J: Judgement. For the statistical analysis of
quantity and relevant metrics in AGIEval, we exclude 1,000 questions from the MATH benchmark to facilitate a
more accurate comparison. The “-” indicates that it cannot be confirmed. Upon comparison, OlympiadBench leads
in all aspects.

Statistics Number
Total Problems 8,952

* Problems with images 5,129 (57%)
* Problems with solutions 8,952 (100%)

Difficulties (CEE: COMP) 66%: 34%
EN: ZH 2,288: 6,664
Open-ended Questions 7,254 (81%)
Theorem Proving 1,698 (19%)
Math: Physics 6,524: 2,428

* Maths with images 3,102
* Physics with images 2,027

Average question tokens 253
Max question tokens 3,701
Average solution tokens 352
Max solution tokens 4,213

Table 2: Statistics of OlympiadBench. When calculating
tokens, images are not included.

may exceed the comprehension of individuals257

without a specialized background in mathe-258

matics, each problem is accompanied by ex-259

pertly crafted solutions that detail the reason-260

ing steps involved. This approach can not only261

reduces the difficulty of annotation and eval-262

uation but also enhances the accuracy of the263

solutions provided.264

3. Incorporation of Visuals. Recognizing the265

crucial role of visual information in conveying266

complex ideas, our benchmark incorporates267

problems that require understanding images,268

identifying spatial relationships, and other ad- 269

vanced reasoning tasks. This inclusion aims to 270

assess and improve the model’s capabilities in 271

interpreting visual data as part of its reasoning 272

process. 273

4. Minimization of Data Leakage Risks. To 274

minimize the risk of data leakage, we have 275

sourced problems from official Olympiad 276

competitions, converting them from their orig- 277

inal PDF files provided by official websites 278

to the markdown format required. This strat- 279

egy is aimed at reducing the likelihood of the 280

data being inadvertently incorporated into the 281

pre-training corpora of models. 282

Through these meticulously planned criteria, 283

OlympiadBench aspires to not only challenge but 284

also to significantly advance the frontier of LLM 285

capabilities in mathematical and physical reason- 286

ing. 287

3.2 Data Processing 288

The data processing pipeline is structured into three 289

distinct phases: data collection, format conversion 290

& deduplication, and classification labeling. 291

Data Collection. OlympiadBench is metic- 292

ulously compiled from three primary sources: 293

Global Mathematics and Physics Olympiad Prob- 294

lems, Regional and National Chinese Math Com- 295

petitions, and Gaokao Mock Questions for Mathe- 296
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matics and Physics 3. Each chosen for its distinct297

advantages in creating a robust and comprehen-298

sive benchmark for evaluating LLMs and LMMs in299

mathematical and scientific reasoning. Their chal-300

lenges progressively increase in difficulty, not only301

distinguishing the reasoning capabilities of models302

of various sizes but also offering guidance on scal-303

ing laws for specialized models in these domains.304

Format Conversion and Deduplication. Af-305

ter collecting all PDF files, we utilize the Math-306

pix 4 tool for OCR recognition and convert them307

into markdown format. However, no conversion308

process is flawless, necessitating manual verifica-309

tion by our team members between the original310

PDF files and the converted Markdown texts. The311

Markdown texts are further structured into a format312

akin to "Problem—Solution—Answer", employing313

its markup language for text organization. Sub-314

sequently, we leverage a specialized small-scale315

language model 5 trained on mathematical symbol316

corpora for vectorizing the data and performing317

deduplication based on cosine similarity.318

Classification Labeling. We note that both319

mathematics and physics problems predominantly320

comprise two types of questions: the open-ended321

problems and the theorem proving problems. We322

also note that the dataset, enriched by both323

Olympiad and national examination questions, cov-324

ers a broad spectrum of subfields, as illustrated in325

Figure 2. Therefore, we manually annotate each326

question with topic and problem type annotations.327

Answer type Example
Numeric 1/4
Expression x = (1/2)at2

Equation x2 + y2 = 1
Tuple (x, y, z) = (0, 0, 0)
Interval (−∞,−1) ∪ (1,+∞)

Table 3: Examples of the five answer types

3.3 Data Characteristics328

In contrast to previous benchmarks, Olympiad-329

Bench unveils two unique characteristics within330

its dataset: the incorporation of Progressive Prob-331

lems in Physics and the categorization of answers332

3Due to anonymity of this submission, we can not add
concrete source in this version.

4https://mathpix.com/
5https://huggingface.co/Laurie/

Bloom1b7-deepspeed-chat-Chinese-math

Physics-COMP&CEE (2,430):

Mechanics, Electromagnetism, 
Thermodynamics, 
Optics, Modern Physics

Maths-COMP (2,285):

Combinatorics, Algebra, 
Number Theory, Geometry

Maths-CEE (4,239):

Derivative, Conic Sections, 
Sequence, Trigonometric 
Functions, Set Theory, Logic, 
Elementary Functions, 
Inequality, Polar Coordinates 
and Parametric Equations, 
Probability and Statistics, 
Plane Geometry, Solid 
Geometry, Complex Numbers

Figure 2: Subfields Distribution of OlympiadBench

to most open-ended questions into a limited num- 333

ber of types. 334

Progressive Problems in Physics. In physics 335

competitions such as the International Physics 336

Olympiad (IPhO), problems are often structured 337

around a common material or scenario, with subse- 338

quent questions potentially relying on the answers 339

or information from previous questions. One exam- 340

ple is given in Figure 7 and Figure 8 This design 341

characteristic is commonly referred to as "Progres- 342

sive Problems." By linking a series of questions to- 343

gether, progressive problems require participants to 344

apply their knowledge and skills comprehensively 345

to gradually solve more complex issues. This type 346

of question design aims to test students’ depth of 347

understanding, application capabilities, and inno- 348

vative thinking, rather than just basic knowledge. 349

To better utilize this feature, we have compiled the 350

material, questions, and their answers that precede 351

each progressive problem into its "Context" field. 352

Answer Type Classification. Whether in math- 353

ematics or physics, the answers to problems requir- 354

ing definitive responses can largely be categorized 355

into the following types: numeric, expression, equa- 356

tion, interval, and tuple. Simple examples of these 357

can be seen in Table 3. 358

3.4 Automatic Scoring Pipeline 359

We design an automated scoring pipeline (see Al- 360

gorithm 1) to evaluate model-generated answers 361

across complex fields like mathematics and physics, 362

5

https://mathpix.com/
https://huggingface.co/Laurie/Bloom1b7-deepspeed-chat-Chinese-math
https://huggingface.co/Laurie/Bloom1b7-deepspeed-chat-Chinese-math


where answers vary from numbers to equations.363

This method simplifies answers into two categories:364

numeric values, handled through floating-point op-365

erations, and symbolic expressions, requiring sym-366

bolic computation.367

For equations, we ensure all terms are on one368

side before dividing to check for mathematical369

equivalence. Intervals and tuples are compared by370

extracting and evaluating each element. Numeric371

answers are verified against a small tolerance of372

error, defaulting to 1e-8 but adjustable for physics373

problems to allow for a specific error margin. For374

expressions, we use the SymPy6 library to confirm375

if the subtraction of two expressions approaches376

zero, indicating correctness.377

4 Experiments378

4.1 Settings379

We conduct evaluations of open-source and closed-380

sourced LMMs that have been selected with con-381

sideration of their comprehensive capabilities on382

OlympiadBench. At the same time, we have se-383

lected LLMs with strong mathematical and logical384

abilities for evaluation on plain text questions.385

As no accurate automatic evaluation method for386

theorem proving exists, we run full experiment on387

the automatic-scoring-available open-ended prob-388

lems with answer type included in the Table 3,389

which is discussed in this section. We do manual390

sampling check of GPT-4V for theorem proving391

problems with analysis reported at Section 5.1.392

4.1.1 Prompts393

We evaluate the models in a zero-shot setting. Due394

to the high difficulty of the OlympiadBench ques-395

tions, there should be considerable randomness in396

the results when using small batch data as the vali-397

dation set, so we directly use a specific prompt tem-398

plate for all models instead of conducting prompt-399

engineering for each model respectively. The400

prompt template for English and Chinese open-401

ended questions is shown in the figure 3. To ensure402

the most complete extraction of the model’s final403

results, we explicitly prescribe the types and for-404

mats of the answers in the prompt to promote the405

accuracy of the machine’s automatic scoring. In406

order to test the native mathematical and physical407

abilities of the models, the prompts used in the test408

do not introduce knowledge points and other ex-409

tra information contained in the dataset, but this410

6https://www.sympy.org

information can be applied in subsequent research. 411

Note that deepseek-math-7B-RL (Shao et al., 2024) 412

requires the addition of a specific chain-of-thought 413

prompt at the end of the input, which we adhered 414

to during the evaluation. 415

4.1.2 Evaluation Workflow 416

We first apply each model to generate answers for 417

questions in OlympiadBench using prompts formed 418

by prompt template, with open-ended models run- 419

ning on NVIDIA A800 GPUs. Then, we run the 420

automatic scoring pipeline to judge the correctness 421

of the answers as described in subsection 3.4. Fi- 422

nally, we calculate the micro-average accuracy as 423

the comparing metric. The code of the whole work- 424

flow is provided in the supplementary material. 425

4.2 Baselines 426

In our study, we evaluate the performance of cur- 427

rent leading bilingual large multimodal models 428

(LMMs), as well as bilingual large language mod- 429

els (LLMs) that has strong mathematical and rea- 430

soning abilities. We take both open- and closed- 431

source models into consideration, and use the 432

largest and latest released checkpoint or the best- 433

performing official API that can be achieved. 434

For LMMs, we selected GPT-4V(GPT- 435

4-Vision) (OpenAI, 2023b), Gemini-Pro- 436

Vision (Team, 2023), Qwen-VL-Max (Bai et al., 437

2023) for closed-source models, while Yi-VL- 438

34B (01-ai, 2024) and LLaVA-NeXT-34B (Liu 439

et al., 2024) for open-source models. For models 440

that demand compulsory image input, we take 441

their LMM counterpart (corresponding text-model 442

api or base LLM) for evaluation.To examine 443

the impact of replacing LMM with base LLM 444

for processing text-only data, we subsequently 445

compare the performance differences between 446

GPT-4V and GPT-4 7 on text-only questions in 447

OlympiadBench. 448

For LLMs, we select DeepSeekMath-7B- 449

RL (Shao et al., 2024) as the primary baseline for 450

text-only questions, and report the results of the 451

selected LMMs (or their LLM counterparts) on the 452

text-only questions for comparison, and addition- 453

ally evaluate GPT-4 as described above. 454

4.3 Main Results 455

The overall experiment result is shown in table 4. 456

Based on the results, our key findings can be sum- 457

7The version of GPT-4 and GPT-4V are both "0125-
preview".
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以下是中国<subject>竞赛中的解答题。

请根据题目的要求和所提供的信息计算得出答案。解答过程和结果中使
用的变量和公式请使用LaTeX格式表示。
请在最后以

显式给出结果。

The following is a question from an International <subject> competition.

Please calculate the answer according to the given requirements and the 
information provided. Please use LaTeX format to represent the variables and 
formulas used in the solution process and results. Please end your solution with 

- Single answer of the type “tuple” -

The answer of the question should be <ans_type>. Single answer 答案类型为<ans_type>。

The question has multiple answers, each of them should be <ans_type>. Multiple answers of single type 题目有多个答案，答案类型均为<ans_type>。

The question has multiple answers, with the answers in order being 
<ans_type>, …<ans_type>. Multiple answers of the same type 题目有多个答案，答案类型分别为<ans_type>、…<ans_type>。

“So the final answer is \boxed{answer}.” Single answer “所以最终答案是\boxed{答案}。”

“So the final answer is \boxed{multiple answers connected with commas}.” Multiple answers “所以最终答案是\boxed{用英⽂逗号连接的多个答案}。”

and give the result explicitly.

Figure 3: The template of the construction of the prompt for English(left) and Chinese(right) open-ended questions,
among which <subject>, <ans_type>, and whether there are multiple answers can all be obtained from the data
items in OlympiadBench dataset.

Models Maths Physics Avg.
En_COMP Zh_COMP Zh_CEE Avg. En_COMP Zh_CEE Avg.

LLaVA-NEXT-34B† 8 3.88 2.43 4.85 4.36 - 2.12 1.69 1.80 3.60
Yi-VL-34B† 9 4.38 5.11 4.68 4.67 - 0.95 1.75 1.55 3.37
Gemini-Pro-Vision 10 6.98 2.38 5.36* 5.35 - 3.01* 2.39 2.89 4.38
Qwen-VL-Max 10.80* 13.20 13.27* 12.76 - 3.97* 6.40* 4.44 10.31
GPT-4V 27.56* 14.94 19.15 20.35 - 11.41 10.74 11.28 17.23

Experiment with text-only
LLaVA-NEXT-34B 3.64 2.71 9.88 6.39 - 2.16 5.45 1.98 5.80
Yi-VL-34B9 4.18 5.30 9.08 6.69 - 0.87 9.08 1.21 5.95
DeepSeekMath-7B-RL 19.73 2.71 27.54 20.25 - 6.49 15.45 9.38 18.73
Gemini-Pro-Vision10 7.62 2.71 10.26* 7.96 - 4.76 7.27 5.56 7.63
Qwen-VL-Max 11.68* 14.29 27.34 19.83 - 4.37* 21.82 10.03 18.47
GPT-4V 29.51* 16.01 38.31* 31.20 - 12.99 25.45 16.98 29.24
GPT-4 30.69* 16.50 38.48 31.75 - 11.44 28.18 16.84 29.50

Table 4: Experimental results. En_COMP: COMP problems in English, Zh_COMP: COMP problems in Chinese,
Zh_CEE: CEE problems in Chinese. For closed-source models, the responses for some problems are not available,
we mark the results with * (all of the proportion of missing answers are less than 5%). The causes are further
described in Appendix B.3. Moreover, LLaVA-NEXT-34B and Yi-VL-34B only accepts input with single image,
we mark results from only one image input with †.

marized as the following:458

OlympiadBench is more challenging than ex-459

isting benchmarks, which provides new per-460

spective to compare LMMs. As shown in ta-461

ble 7, the most advanced model only achieves an462

average accuracy of 17.23% on OlympiadBench,463

which is much lower than that of existing bench-464

marks. Moreover, the gap between the models has465

been widened, thereby becoming more significant,466

which helps people to compare the differences in467

capabilities between different models more accu-468

rately.469

There still exists a huge difference between470

the most powerful closed-source models and471

open-source models, but a large model size is472

needed. The average accuracy of GPT-4V is473

more than 5 times larger than the best-performing474

open-source model (Yi-VL-34B). But Gemini-Pro-475

Vision, being closed-source models of the second- 476

tier size, is much less compatible on complicated 477

tasks such as OlympiadBench, for it achieves an 478

average accuracy that is only slightly higher than 479

open-source model. 480

The challenge lies more on question-with- 481

images, Physics and none-English text. The 482

model performance on text-only questions is sig- 483

nificantly above average, showing the challeng- 484

ing spirit of multi-modal questions. Meanwhile, 485

Physics questions, especially Physics questions 486

with images, are more challenging than math ques- 487

tions, as they require knowledge of the laws of 488

Physics as well as other world knowledge besides 489

mathematical abilities such as calculation and rea- 490

soning. Moreover, LMMs with a focus on bilingual 491

image-text training data, such as Qwen-VL-Max 492

and Yi-VL-34B, perform better on Chinese ques- 493

7



tions then English questions.494

Open source LLMs is catching at fast speed495

in the area of maths and physics. Although496

with a relatively small size, DeepSeekMath-7B-497

RL outperforms or is on par with Gemini-Pro-498

Vision and Qwen-VL-Max on the text-only part499

of OlympiadBench, especially in Math problems,500

showing promising future of open-source model of501

pre-training and fine-tuning on fine-grained mathe-502

matical and reasoning data.503

Multi-modal training slightly hurts perfor-504

mance on text-only math and physics tasks,505

but may also bring some improvement. The506

text-only version GPT-4 performs slightly better507

on all datasets of OlympiadBench, except for the508

En_COMP dataset. We hypothesis that the im-509

provement in the En_COMP dataset shows an en-510

hancement of long-context text reasoning capabili-511

ties, which is discussed in Appendix B.2.512

5 Analysis513

In this section, we conduct analysis on the GPT-514

4V’s answers of specific open-ended questions that515

have been sampled, as well as giving preliminary516

examination of theorem proving questions.517

5.1 Examination of Theorem Proving518

Questions519

For GPT-4V, we do manual sampling check to eval-520

uate the mathematical theorem proving questions.521

In the questions drawn according to the knowledge522

point distribution, GPT-4V only answers 6 out of523

81 questions correctly in Math-Zh_COMP, all of524

which are relatively simple and classic conclusions525

(e.g. AM-GM inequality), or involved only sim-526

ple computational derivations, and was basically527

unable to complete the proof within the token limi-528

tation in Math-En_COMP, indicating that existing529

models still cannot effectively solve lengthy rea-530

soning and proofs, which is consistent with the531

conclusions in existing papers (Trinh et al., 2024).532

In solving proof problems, GPT-4V exposes sev-533

eral important issues, including: inability to fully534

utilize image information (figure 6 as an example);535

tending to make mistakes in simplifying and trans-536

forming algebraic expressions; proposing simple,537

basic incorrect conclusions;struggling with classifi-538

cation discussions, etc. Detailed examples can be539

found in the Appendix C.540

Question Misunderstanding, 6%

Value Calc Error, 0%

Expression
Calc Error

27%

Logical Reasoning Error /
Conceptual Confusion

42%

Introducing
Unnecessary
Variables or 

Concepts, 12%

Unfinished Answering, 1%
Incorrect
Judging

12%

Mathematical Open-Ended Problems Physical Open-Ended Problems

Question Misunderstanding, 2%

Value
Calc
Error
7% .

Expression
Calc Error
10% .

Logical Reasoning /
Induction Error

45%Conclusion
Hallucination

1%

Unfinished
Answering
8%

Insufficient
Classification
Discussions
25%

Incorrect Judging, 1%

Figure 4: Distribution of the error occurring in GPT-
4V’s solving process of 164 sampled Olympic-level
open-ended problems.

5.2 Mistake Analysis of GPT-4V 541

We manually sample and check 97 maths (55 542

for English and 42 for Chinese) and 67 physics 543

Olympics-level open-ended problems that GPT-4V 544

fails, and analyze the type of mistakes, the overall 545

results are shown in figure 4. In maths problems, 546

the typical errors of GPT-4V include: insufficient 547

classification discussion, especially in combinato- 548

rial problems; poor performance in problems re- 549

quiring large calculations (e.g. conic curve prob- 550

lems), manifests as a lack of logic in the calcula- 551

tion process, resulting in the model being unable 552

to provide a reasonable answer. However, we also 553

found that GPT-4V has strong abilities in solving 554

quadratic equations and derivative problems. In 555

physics problems, GPT-4V tends to fall in con- 556

ceptual confusion, or introduce unnecessary vari- 557

ables or concepts, but its capability to simplify and 558

transform algebraic expressions is stronger than 559

in purely mathematical situations, with nearly no 560

numerical calculation errors. 561

6 Conclusion 562

We create OlympiadBench, an Olympiad-level 563

bilingual multimodal scientific benchmark to as- 564

sess the capabilities of large models in mathematics 565

and physics reasoning. Each problem is detailed 566

with expert-level annotations for step-by-step rea- 567

soning. In our benchmarking, we provide a de- 568

tailed analysis of model performance, pinpointing 569

prevalent error types and potential areas for en- 570

hancement. This significant and challenging effort 571

fills a notable void, and we intend to open-source 572

the benchmark to advance AGI and scientific rea- 573

soning research. Future efforts will focus on gath- 574

ering more challenging questions and broadening 575

the range of subjects to further develop rigorous 576

scientific benchmarks. 577
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Ethical Considerations578

In this paper, we introduce OlympiadBench, a579

highly challenging bilingual, multimodal scien-580

tific benchmark aimed at evaluating the mathe-581

matical and physical reasoning of large models582

now and AGI in the future. The paper outlines583

the dataset construction, including data gathering,584

OCR processing, cleansing, deduplication, and de-585

tailed annotation. OlympiadBench’s data, derived586

exclusively from official sources, substantially re-587

duces the likelihood of pre-training data leakage.588

We offer precise annotations for each problem589

and have implemented an exhaustive evaluation590

script for more accurate model performance assess-591

ment. Additionally, being bilingual and providing592

expert-level reasoning annotations for every ques-593

tion, OlympiadBench serves as a crucial resource594

for propelling AGI’s prowess in scientific reason-595

ing. Committed to environmental sustainability,596

we intend to release the dataset and accompanying597

scripts publicly to cut down on unnecessary car-598

bon footprint. In experiments, we comply with all599

licenses for models and data.600

Limitations601

In pursuit of understanding the logical reasoning602

abilities of LLMs and LMMs within the multi-603

modal domains of mathematics and physics, we604

develop OlympiadBench, a challenging bilingual605

multimodal scientific benchmark. Despite filling606

a notable void, this work acknowledges inherent607

limitations. First, in the OlympiadBench, some608

questions feature answers that require categorical609

discussions or textual descriptions, such as proofs,610

which currently cannot be assessed using regular611

expressions or tools like SymPy at the code level612

and necessitate manual review. However, this data613

holds significant research value. Secondly, the au-614

tomated scoring system we propose cannot per-615

form specific analysis based on the particulars of616

each question. It makes logical judgments solely617

based on the two symbols or numerical expres-618

sions inputted, without integrating any special con-619

straints that may exist within the actual problem620

context. What’s more, the development of datasets621

for multimodal scientific reasoning requires exten-622

sive manual effort in gathering and annotating data,623

which constrains the diversity and difficulty of mul-624

timodal scientific challenges. As a result, this ham-625

pers AI’s capacity to learn from and address more626

intricate scenarios.627
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1. Global Mathematics and Physics Olympiad 882

Problems. The Mathematics and Physics 883

Olympiad problems are globally recognized 884

for their complexity and quality. These prob- 885

lems often require multiple methods of solu- 886

tion and the ability to integrate sub-disciplines 887

from within the broader fields of mathematics 888

and physics. The participants in these compe- 889

titions represent some of the most proficient 890

individuals worldwide in logical reasoning 891

within mathematics and physics. This not only 892

sets a high standard for problem-solving but 893

also fosters a diverse set of analytical skills 894

that are crucial for the advancement of large 895

models. 896
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Subject Source Coverage Years Number

Maths

IMO 2006-2022 509
RMM 2011, 2013, 2015-2019, 2021, 2023 53
ARML 2009-2014, 2019, 2023 505
EMC 1998-2023 364

EGMO 2013, 2015-2023 64

Physics

IPhO 1984, 1986-1990, 2008-2012, 2014-2016, 2018-2019, 2021 381
APhO 2013-2015 200
EPhO 2019-2022 17

USAPhO 2017-2021 113
PUPC 2020-2022 65
OPhO 2020-2023 132

Table 5: Summary of Problems in Maths and Physics Competitions, the full name of each acronym is given in Table
6

a high level of difficulty, regional competi-899

tions and the CMO introduce elements spe-900

cific to the Chinese context. This inclusion901

is instrumental in furthering the development902

and research of Chinese-oriented and multilin-903

gual large models. By encompassing a wide904

array of mathematics and physics problems,905

these competitions provide a unique oppor-906

tunity to develop models that are adaptable907

and proficient across different mathematical908

queries, enhancing their versatility and effec-909

tiveness.910

3. Gaokao Mock Questions for Mathematics911

and Physics 11. Given that the resolution of912

Olympiad-level problems typically necessi-913

tates models with substantial parameter sizes,914

we also incorporate Gaokao simulation prob-915

lems to evaluate smaller models’ capabili-916

ties in answering free-form mathematics and917

physics questions.918

The integration of data from Gaokao simulation919

problems, regional and national competitions, to920

the global Olympiads constructs a smooth difficulty921

transition curve. This methodology not only dis-922

tinguishes the mathematical and physical problem-923

solving capabilities of different models but also924

provides guidance on the scaling laws for models925

specialized in these domains.926

A.2 Data Curation Process927

Our initial step involves a comprehensive survey928

of well-known Olympiad competitions, and the list929

11Due to anonymity of this submission, we can not add
concrete source in this version.

of which is accessible through the AoPS commu- 930

nity platform 12. We cataloged these competitions 931

based on several criteria: difficulty level, volume 932

of questions, availability of materials in public do- 933

mains, language, discipline, and coverage years. 934

Following the design principles outlined in Section 935

3.1, we meticulously select specific contests and 936

years that not only adhere to our dataset design cri- 937

teria but also try to span the widest possible range 938

of years (Table 5). 939

In the format conversion phase, we also man- 940

ually annotated the subfield of each question in 941

maths or physics, with their distribution detailed in 942

Table 9. 943

A.3 Example of Progressive Problem in 944

Physics 945

Figures 7 and 8 present a sequential challenge from 946

the International Physics Olympiad (IPhO) 2021, 947

illustrating the intricacies of progressive problem- 948

solving in a competitive context. This particu- 949

lar problem set exemplifies a common trait in ad- 950

vanced physics competitions: the dependency of 951

many questions on the solutions and materials of 952

preceding ones. These dependencies are sometimes 953

explicit, but most are implicit, weaving a complex 954

web of interconnected knowledge and reasoning. 955

An explicit instance of this dependency can be 956

observed in problem C.2, where the prompt directly 957

requires the use of the symbol β defined in B.1 for 958

the calculation of an unknown quantity. This re- 959

quirement not only tests the participants’ ability to 960

understand and apply physical concepts but also as- 961

sesses their skill in navigating through and linking 962

12https://artofproblemsolving.com/community/c13
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various parts of a problem set. Such explicit instruc-963

tions are crucial for guiding participants through964

the logical progression of the problems, yet the ma-965

jority of dependencies remain implicit, demanding966

a deeper level of comprehension and integration of967

the material.968

This structure of problem-solving reflects a re-969

alistic scientific inquiry, where discoveries and so-970

lutions often rely on previously established knowl-971

edge. The explicit mention of β in C.2 as de-972

rived from B.1 is emblematic of this educational973

approach, aiming to foster a holistic understand-974

ing and the ability to build upon existing informa-975

tion to solve complex problems. It underscores the976

importance of thorough comprehension of earlier977

sections for successful problem-solving in later sec-978

tions, simulating real-world scientific challenges979

where new solutions are often predicated on a foun-980

dation of established knowledge.981

B Evaluation Details982

B.1 Details of the Evaluated Models983

B.1.1 LMMs984

We have selected current mainstream LMMs that985

have performed the best on past scientific multi-986

modal datasets for evaluation.987

The closed-source models include: GPT-988

4V (OpenAI, 2023b), developed by OpenAI, which989

is currently the most powerful multimodal model.990

Gemini (Team, 2023) is the LMM series devel-991

oped by Google Deepmind, with Gemini-Ultra-992

Vision being purported to have surpassed GPT-4V993

on datasets like MMMU. However the unavail-994

ability of Google’s API for Gemini Ultra, we test995

the accessible Gemini-Pro-Vision as an alternative.996

Qwen-VL-Max (Bai et al., 2023), developed by Al-997

ibaba, is the largest LMM, and stands on par with998

GPT-4V and Gemini-Ultra in multi-modal tasks.999

Due to the large proportion of Chinese data used in1000

its training, Qwen-VL-Max has a certain advantage1001

in Chinese language ability.1002

The open-source models include: Yi-VL-1003

34B (01-ai, 2024) is the first open-source 34B1004

multi-modal model that has demonstrated satisfy-1005

ing performance on several latest datasets. With1006

Chinese text-image pairs included in the train-1007

ing process, Yi-VL-34B offers adequate multi-1008

lingual support. LLaVA-NeXT-34B (Liu et al.,1009

2024) claims to be the strongest open-source LMM,1010

with enhancements in reasoning, OCR, and world1011

knowledge. Despite being trained exclusively with1012

English multi-modal data, it demonstrates an emer- 1013

gent zero-shot Chinese multi-modal capability on 1014

Chinese benchmarks. 1015

It should be noted that an image must be passed 1016

for Gemini-Pro-Vision, LLaVA-NeXT, and Yi-VL 1017

during inference. Therefore, for the text-only ques- 1018

tions in OlympiadBench dataset, we use the corre- 1019

sponding text-model api (for closed-source mod- 1020

els), or their base LLM (for open-source models). 1021

To examine the impact of replacing LMM with 1022

base LLM for processing text-only data, we subse- 1023

quently compare the performance differences be- 1024

tween GPT-4V and GPT-4 on text-only questions 1025

in OlympiadBench. 1026

B.1.2 LLMs 1027

The field of LLM starts early in scientific areas such 1028

as mathematics and physics, with models specifi- 1029

cally trained occurring. We select DeepSeekMath- 1030

7B-RL (Shao et al., 2024) as the primary base- 1031

line for text-only questions. DeepSeekMath-7B- 1032

RL is pre-trained on 120B math-related data and 1033

enhanced chain-of-thought (CoT) reasoning capa- 1034

bilities using reinforcement learning, in the result 1035

scoring close to GPT-4 and Gemini-Ultra on the 1036

MATH (Hendrycks et al., 2021) dataset. We report 1037

the results of the selected LMMs (or their LLM 1038

counterparts) on the text-only questions for com- 1039

parison, and additionally evaluate GPT-4 in order 1040

to compare with GPT-4V 13. 1041

B.2 Detailed Experiment Result 1042

The comparison of the performance of mainstream 1043

closed-ended models on different datasets are 1044

shown in Table 7. 1045

To further discuss the performance difference 1046

between GPT-4 and GPT-4V on the Physics- 1047

En_COMP, we split the En_COMP dataset into 1048

two sub-datasets, with normal-PhO being normal 1049

PhO questions, and long-PhO being PhO questions 1050

that show in a relational series, therefore having 1051

long context. As shown in table 8, GPT-4 keeps 1052

performing slightly better on normal-PhO, but 1053

lags much behind on long-PhO, which may indi- 1054

cate improvement of long-context text reasoning 1055

capabilities after multimodal training. 1056

13The version of GPT-4 and GPT-4V are both "0125-
preview".
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Subject Acronym Full name

Maths

IMO International Mathematical Olympiad
RMM Romanian Master of Mathematics
ARML American Regions Mathematics League
EMC Euclid Mathematics Competition

EGMO European Girls’ Mathematical Olympiad

Physics

IPhO International Physics Olympiad
APhO Asian Physics Olympiad
EPhO European Physics Olympiad

USAPhO USA Physics Olympiad
PUPC Princeton University Physics Competition
OPhO Online Physics Olympiad

Table 6: Full names of all competitions’acronyms used in this paper

Benchmark GPT-4(V) Qwen Gemini
VL-Max Pro

MATH 52.9 - 32.6
MathVista(testmini) 49.9 50.0 45.2
OlympiadBench 17.23 10.31 4.38

Table 7: Comparison of Performance on Different
Benchmarks. The values for MATH and MathVista
are obtained from Gemini and Qwen’s report.

long-PhO
(157)

normal-PhO
(74)

GPT-4V 18.47 1.35
GPT-4 14.92 4.05

Table 8: Average accuracy of GPT-4V and GPT-4 for
the En_COMP dataset

B.3 Unavailable Responses for Closed-Source1057

Models1058

As described in table 4, the response for some prob-1059

lems are not available, the main causes are as fol-1060

lows:1061

1. Exceeding input limit: Some of the context1062

of the problems are too long, which exceed1063

the input token limitation for the API. This1064

case mainly occurs in Physics-En_COMP that1065

contains long-context problems of over 6,0001066

tokens.1067

2. Inappropriate response: Some problems trig-1068

ger inappropriate response, which are banned1069

by the API to return.1070

3. No response: Some problems continuously1071

get no or empty response from the API.1072

4. Request timed out: Some problems continu- 1073

ously fail to get a response. 1074

We removed the problems with unavailable re- 1075

sponse when calculating the accuracy. 1076

C Additional Analysis and Examples 1077

C.1 Detailed Description of the Error Types 1078

in GPT-4V’s solving process 1079

The error types are as follows: 1080

1. Question Misunderstanding 1081

2. Value Calculation Error 1082

3. Expression Calculation Error 1083

4. Logical Reasoning / Induction Error / Concep- 1084

tual Confusion 1085

5. Introducing Unnecessary variables or con- 1086

cepts 1087

6. Conclusion Hallucination 1088

7. Unfinished Answering: sometimes GPT-4V 1089

says the question have confliction in settings, 1090

or degenerates after some tokens. 1091

8. Insufficient Classification Discussions 1092

9. Incorrect Judging: Calls for future work of au- 1093

tomatically deciding required precision of the 1094

answer, or automatically judging expressions 1095

such as a
√
b and

√
a2b with a ≥ 0. 1096
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C.2 Other Observation for Open-Ended1097

Problems1098

1. Given a simple solution, GPT-4V may choose1099

a more complex method to solve the problem1100

(see Figure 5).1101

2. Models may give correct answers with a false1102

process. Mainly observed for problems with1103

a simple answer, such as the variables takes 01104

as the answer.1105

3. GPT-4V may not fully utilize the information1106

from the image (see Figure 6).1107

D Automatic Scoring Pipeline1108
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Algorithm 1: Auto Scoring Judge

Input: GroundTruth, ModelOutput;
Output: Boolean value indicating match;

Preprocess GroundTruth and ModelOutput;
if GroundTruth equals ModelOutput then

return True;
else

if GroundTruth and ModelOutput are intervals or tuples then
if GroundTruth equals ModelOutput as intervals or tuples then

return True;
else

return False;
end

else
if GroundTruth equals ModelOutput numerically then

return True;
else

if Both GroundTruth and ModelOutput contain "=" then
return EquationEqual(GroundTruth, ModelOutput);

else
return ExpressionEqual(GroundTruth, ModelOutput);

end
end

end
end
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Question GPT-4V’s Solution

已知正数 !, #	满⾜: ! + # = 1. 
求

!
" +

#
$的最小值.

由已知条件 ! + # = 1，我们可以将
!
" +

#
$表达为	!	和	#	

的函数。首先，我们将	#	用	!	表示出来，即	# = 1 − !。然后将	#	
代⼊	 !" +

#
$中，得到：

!
" +

#
$ = 

!
" +

#
!%"

为了找到这个表达式的最小值，我们可以使用微分法。首先，我们对

上述表达式求导：
&
&"

!
" +

#
!%" = !

"! +
#

(!%")! .
为了找到极值点，我们令导数等于零：…. 解这个⽅程，…我们得到：
3!) + 2! − 1 = 0. 这是⼀个⼆次⽅程，我们可以使用求根公式来解它：

! = %*± *!%#,-
), ,	其中- = 3, . = 2, / = −1，代⼊求根公式得到：! =

⋯ = %)±#
. . 我们得到两个解，分别是：! = !

/或! = −1.
由于 !	是正数，我们排除 !	 = 	−1	的解，所以 ! = !

/ . 将 ! 的值代⼊
# = 1 − !，得到…。

现在我们可以计算
!
" +

#
$的值：

!
" +

#
$ =

!
"
#
+ #

!
#
= ⋯ = 9.

所以最终答案是 9。

Standard Solution

由 - + . −
2 -. = - − . )≥ 0,故	- +
.	 ≥ 	2 -..所求

!
" +

#
$ =

!
" +

#
$ ! + # = 1 + 4 + $

" +
#"
$ ≥ 5 + 2 $

" ·
#"
$ = 9, 等号在

! = !
/ , # =

)
/处取到, 故最小值为

	9.

Figure 5: An example of GPT-4V giving a solution that is much complex than that of the standard solution, although
reaching the correct answer eventually.

Figure 6: An example of GPT-4V’s failure in utilizing image information from Math-Zh_COMP. GPT-4V starts
proving with "we have ∠DEF = ∠FBC = 59◦", which is an error that can evidently be identified from the image,
showing insufficient comprehension of the given plane geometry figure.
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Subset Subfield Number

CEE Math

Derivative 334
Conic Sections 351

Sequence 273
Trigonometric Functions 244

Set Theory 25
Logic 3

Elementary Functions 167
Inequality 139
PC&PE 95

Probability and Statistics 865
Plane Geometry 831
Solid Geometry 1375

Complex Numbers 8

COMP Math

Combinatorics 406
Algebra 567

Number Theory 295
Geometry 544

CEE&COMP Physics

Mechanics 1040
Electromagnetism 756
Thermodynamics 257

Optics 157
Modern Physics 220

Table 9: Statistics of subfield in Mathematics and Physics. PC&PE stands for Polar Coordinates and Parametric
Equations.
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Theory

Q2-1
English (Official)

Electrostatic lens (10 points)
Consider a uniformly charged metallic ring of radius 𝑅 and total charge 𝑞. The ring is a hollow toroid of
thickness 2𝑎 ≪ 𝑅. This thickness can be neglected in parts A, B, C, and E. The 𝑥𝑦 plane coincides with the
plane of the ring, while the 𝑧-axis is perpendicular to it, as shown in Figure 1. In parts A and B you might
need to use the formula (Taylor expansion)

(1 + 𝑥)𝜀 ≈ 1 + 𝜀𝑥 + 1
2𝜀(𝜀 − 1)𝑥2, when |𝑥| ≪ 1.

Figure 1. A charged ring of radius R.

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 Calculate the electrostatic potentialΦ(𝑧) along the axis of the ring at a 𝑧 distance
from its center (point A in Figure 1).

0.3pt

A.2 Calculate the electrostatic potential Φ(𝑧) to the lowest non-zero power of 𝑧, as-
suming 𝑧 ≪ 𝑅.

0.4pt

A.3 An electron (mass 𝑚 and charge −𝑒) is placed at point A (Figure 1, 𝑧 ≪ 𝑅). What
is the force acting on the electron? Looking at the expression of the force, deter-
mine the sign of 𝑞 so that the resultingmotionwould correspond to oscillations.
The moving electron does not influence the charge distribution on the ring.

0.2pt

A.4 What is the angular frequency 𝜔 of such harmonic oscillations? 0.1pt

Part B. Electrostatic potential in the plane of the ring (1.7 points)
In this part of the problem you will have to analyze the potential Φ(𝑟) in the plane of the ring (𝑧 = 0)
for 𝑟 ≪ 𝑅 (point B in Figure 1). To the lowest non-zero power of 𝑟 the electrostatic potential is given by
Φ(𝑟) ≈ 𝑞(𝛼 + 𝛽𝑟2).

B.1 Find the expression for 𝛽. You might need to use the Taylor expansion formula
given above.

1.5pt

Figure 7: An example illustrating the first section of Problem 2 in IPhO 2021.
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Theory

Q2-2
English (Official)

B.2 An electron is placed at point B (Figure 1, 𝑟 ≪ 𝑅). What is the force acting on the
electron? Looking at the expression of the force, determine the sign of 𝑞 so that
the resulting motion would correspond to harmonic oscillations. The moving
electron does not influence the charge distribution on the ring.

0.2pt

Part C. The focal length of the idealized electrostatic lens: instantaneous charging (2.3
points)
One wants to build a device to focus electrons—an electrostatic lens. Let us consider the following con-
struction. The ring is situated perpendicularly to the 𝑧-axis, as shown in Figure 2. We have a source that
produces on-demand packets of non-relativistic electrons. Kinetic energy of these electrons is𝐸 = 𝑚𝑣2/2
(𝑣 is velocity) and they leave the source at precisely controlled moments. The system is programmed so
that the ring is charge-neutral most of the time, but its charge becomes 𝑞 when electrons are closer than
a distance 𝑑/2 (𝑑 ≪ 𝑅) from the plane of the ring (shaded region in Figure 2, called “active region”). In
part C assume that charging and de-charging processes are instantaneous and the electric field "fills the
space" instantaneously aswell. One can neglectmagnetic fields and assume that the velocity of electrons
in the 𝑧-direction is constant. Moving electrons do not perturb the charge distribution on the ring.

Figure 2. A model of an electrostatic lens.

C.1 Determine the focal length 𝑓 of this lens. Assume that 𝑓 ≫ 𝑑. Express your an-
swer in terms of the constant 𝛽 from question B.1 and other known quantities.
Assume that before reaching the "active region" the electron packet is parallel
to the 𝑧-axis and 𝑟 ≪ 𝑅. The sign of 𝑞 is such so that the lens is focusing.

1.3pt

In reality the electron source is placed on the 𝑧-axis at a distance 𝑏 > 𝑓 from the center of the ring.
Consider that electrons are no longer parallel to the 𝑧-axis before reaching the "active region", but are
emitted from a point source at a range of different angles 𝛾 ≪ 1 rad to the 𝑧-axis. Electrons are focused
in a point situated at a distance 𝑐 from the center of the ring.

C.2 Find 𝑐. Express your answer in terms of the constant 𝛽 from question B.1 and
other known quantities.

0.8pt

Figure 8: An example illustrating the second section of Problem 2 in IPhO 2021.
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